(Translated by https://www.hiragana.jp/)
Maximum and minimum of an array using minimum number of comparisons - GeeksforGeeks
Open In App

Maximum and minimum of an array using minimum number of comparisons

Last Updated : 23 Jul, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report

Given an array, the task is to find the maximum and the minimum element of the array using the minimum number of comparisons.

Examples:

Input: arr[] = {3, 5, 4, 1, 9}
Output: Minimum element is: 1
              Maximum element is: 9

Input: arr[] = {22, 14, 8, 17, 35, 3}
Output:  Minimum element is: 3
              Maximum element is: 35

 

Maximum and minimum of an array :

To solve the problem of finding the minimum and maximum elements in an array, you can follow these steps:

Step 1: Write functions to find the minimum (setmini) and maximum (setmaxi) values in the array.

Step 2: In the setmini function:

  • Initialize a variable (mini) to INT_MAX.
  • Iterate through the array, and if an element is smaller than the current mini, update mini to that element.
  • Return the final value of mini.

Step 3: In the setmaxi function:

  • Initialize a variable (maxi) to INT_MIN.
  • Iterate through the array, and if an element is larger than the current maxi, update maxi to that element.
  • Return the final value of maxi.

Step 4: In the main function:

  • Declare an array and its size.
  • Print the result ,Call the setminimum and setmaxi functions to find the minimum and maximum values.

Below is the implementation of the above approach:

C++
#include <iostream>
#include <limits.h>
using namespace std;

int setmini(int A[], int N)
{
    int mini = INT_MAX;
    for (int i = 0; i < N; i++) {
        if (A[i] < mini) {
            mini = A[i];
        }
    }
    return mini;
}
int setmaxi(int A[], int N)
{
    int maxi = INT_MIN;

    for (int i = 0; i < N; i++) {
        if (A[i] > maxi) {
            maxi = A[i];
        }
    }
    return maxi;
}
int main()
{
    int A[] = { 4, 9, 6, 5, 2, 3 };
    int N = 6;
    cout <<"Minimum element is: " <<setmini(A, N) << endl;
    cout <<"Miximum  element is: "<< setmaxi(A, N) << endl;
}
Java Python JavaScript

Output
Minimum element is: 2
Miximum  element is: 9

Time Complexity: O(N)

Auxiliary Space: O(1)

Maximum and minimum of an array using Sorting:

One approach to find the maximum and minimum element in an array is to first sort the array in ascending order. Once the array is sorted, the first element of the array will be the minimum element and the last element of the array will be the maximum element.

Step-by-step approach:

  • Initialize an array.
  • Sort the array in ascending order.
  • The first element of the array will be the minimum element.
  • The last element of the array will be the maximum element.
  • Print the minimum and maximum element.

Below is the implementation of the above approach:

C++
// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;

struct Pair {
    int min;
    int max;
};

Pair getMinMax(int arr[], int n)
{
    Pair minmax;

    sort(arr, arr + n);

    minmax.min = arr[0];
    minmax.max = arr[n - 1];

    return minmax;
}

int main()
{
    int arr[] = { 1000, 11, 445, 1, 330, 3000 };
    int arr_size = sizeof(arr) / sizeof(arr[0]);

    Pair minmax = getMinMax(arr, arr_size);

    cout << "Minimum element is " << minmax.min << endl;
    cout << "Maximum element is " << minmax.max << endl;

    return 0;
}

// This code is contributed by Tapesh(tapeshdua420)
Java Python C# JavaScript

Output
Minimum element is 1
Maximum element is 3000

Time complexity: O(n log n), where n is the number of elements in the array, as we are using a sorting algorithm.
Auxilary Space: is O(1), as we are not using any extra space.

Number of Comparisons:

The number of comparisons made to find the minimum and maximum elements is equal to the number of comparisons made during the sorting process. For any comparison-based sorting algorithm, the minimum number of comparisons required to sort an array of n elements is O(n log n). Hence, the number of comparisons made in this approach is also O(n log n).

Initialize values of min and max as minimum and maximum of the first two elements respectively. Starting from 3rd, compare each element with max and min, and change max and min accordingly (i.e., if the element is smaller than min then change min, else if the element is greater than max then change max, else ignore the element) 

Below is the implementation of the above approach:

C++
// C++ program of above implementation 
#include<bits/stdc++.h>
using namespace std;

// Pair struct is used to return 
// two values from getMinMax()
struct Pair 
{
    int min;
    int max;
}; 

Pair getMinMax(int arr[], int n)
{
    struct Pair minmax;     
    int i;
    
    // If there is only one element 
    // then return it as min and max both
    if (n == 1)
    {
        minmax.max = arr[0];
        minmax.min = arr[0];     
        return minmax;
    } 
    
    // If there are more than one elements,
    // then initialize min and max
    if (arr[0] > arr[1]) 
    {
        minmax.max = arr[0];
        minmax.min = arr[1];
    } 
    else
    {
        minmax.max = arr[1];
        minmax.min = arr[0];
    } 
    
    for(i = 2; i < n; i++)
    {
        if (arr[i] > minmax.max)     
            minmax.max = arr[i];
            
        else if (arr[i] < minmax.min)     
            minmax.min = arr[i];
    }
    return minmax;
}

// Driver code
int main()
{
    int arr[] = { 1000, 11, 445, 
                  1, 330, 3000 };
    int arr_size = 6;
    
    struct Pair minmax = getMinMax(arr, arr_size);
    
    cout << "Minimum element is " 
         << minmax.min << endl;
    cout << "Maximum element is " 
         << minmax.max;
         
    return 0;
} 

// This code is contributed by nik_3112
C Java Python C# JavaScript

Output
Minimum element is 1
Maximum element is 3000

Time Complexity: O(n)
Auxiliary Space: O(1) as no extra space was needed.

Number of Comparisons:

In this method, the total number of comparisons is 1 + 2*(n-2) in the worst case and 1 + (n-2) in the best case. 
In the above implementation, the worst case occurs when elements are sorted in descending order and the best case occurs when elements are sorted in ascending order.

Maximum and minimum of an array using the Tournament Method:

The idea is to divide the array into two parts and compare the maximums and minimums of the two parts to get the maximum and the minimum of the whole array.

Below is the implementation of the above approach:

C++
// C++ program of above implementation
#include <bits/stdc++.h>
using namespace std;

// structure is used to return
// two values from minMax()
struct Pair {
    int min;
    int max;
};

struct Pair getMinMax(int arr[], int low, int high)
{
    struct Pair minmax, mml, mmr;
    int mid;

    // If there is only one element
    if (low == high) {
        minmax.max = arr[low];
        minmax.min = arr[low];
        return minmax;
    }

    // If there are two elements
    if (high == low + 1) {
        if (arr[low] > arr[high]) {
            minmax.max = arr[low];
            minmax.min = arr[high];
        }
        else {
            minmax.max = arr[high];
            minmax.min = arr[low];
        }
        return minmax;
    }

    // If there are more than 2 elements
    mid = (low + high) / 2;
    mml = getMinMax(arr, low, mid);
    mmr = getMinMax(arr, mid + 1, high);

    // Compare minimums of two parts
    if (mml.min < mmr.min)
        minmax.min = mml.min;
    else
        minmax.min = mmr.min;

    // Compare maximums of two parts
    if (mml.max > mmr.max)
        minmax.max = mml.max;
    else
        minmax.max = mmr.max;

    return minmax;
}

// Driver code
int main()
{
    int arr[] = { 1000, 11, 445, 1, 330, 3000 };
    int arr_size = 6;

    struct Pair minmax = getMinMax(arr, 0, arr_size - 1);

    cout << "Minimum element is " << minmax.min << endl;
    cout << "Maximum element is " << minmax.max;

    return 0;
}

// This code is contributed by nik_3112
C Java Python3 C# JavaScript

Output
Minimum element is 1
Maximum element is 3000

Time Complexity: O(n)
Auxiliary Space: O(log n) as the stack space will be filled for the maximum height of the tree formed during recursive calls same as a binary tree.

Number of Comparisons:

Let the number of comparisons be T(n). T(n) can be written as follows: 

T(n) = T(floor(n/2)) + T(ceil(n/2)) + 2
T(2) = 1
T(1) = 0

If n is a power of 2, then we can write T(n) as: 

T(n) = 2T(n/2) + 2

After solving the above recursion, we get 

T(n) = 3n/2 -2

Thus, the approach does 3n/2 -2 comparisons if n is a power of 2. And it does more than 3n/2 -2 comparisons if n is not a power of 2.

Maximum and minimum of an array by comparing in pairs:

The idea is that when n is odd then initialize min and max as the first element. If n is even then initialize min and max as minimum and maximum of the first two elements respectively. For the rest of the elements, pick them in pairs and compare their maximum and minimum with max and min respectively. 

Below is the implementation of the above approach:

C++
// C++ program of above implementation 
#include<bits/stdc++.h> 
using namespace std; 

// Structure is used to return 
// two values from minMax() 
struct Pair 
{ 
    int min; 
    int max; 
}; 

struct Pair getMinMax(int arr[], int n) 
{ 
    struct Pair minmax;     
    int i; 
    
    // If array has even number of elements 
    // then initialize the first two elements 
    // as minimum and maximum 
    if (n % 2 == 0) 
    { 
        if (arr[0] > arr[1])     
        { 
            minmax.max = arr[0]; 
            minmax.min = arr[1]; 
        } 
        else
        { 
            minmax.min = arr[0]; 
            minmax.max = arr[1]; 
        } 
        
        // Set the starting index for loop 
        i = 2; 
    } 
    
    // If array has odd number of elements 
    // then initialize the first element as 
    // minimum and maximum 
    else
    { 
        minmax.min = arr[0]; 
        minmax.max = arr[0]; 
        
        // Set the starting index for loop 
        i = 1; 
    } 
    
    // In the while loop, pick elements in 
    // pair and compare the pair with max 
    // and min so far 
    while (i < n - 1) 
    {         
        if (arr[i] > arr[i + 1])         
        { 
            if(arr[i] > minmax.max)     
                minmax.max = arr[i]; 
                
            if(arr[i + 1] < minmax.min)         
                minmax.min = arr[i + 1];     
        } 
        else        
        { 
            if (arr[i + 1] > minmax.max)     
                minmax.max = arr[i + 1]; 
                
            if (arr[i] < minmax.min)         
                minmax.min = arr[i];     
        } 
        
        // Increment the index by 2 as 
        // two elements are processed in loop 
        i += 2; 
    }         
    return minmax; 
} 

// Driver code 
int main() 
{ 
    int arr[] = { 1000, 11, 445, 
                1, 330, 3000 }; 
    int arr_size = 6; 
    
    Pair minmax = getMinMax(arr, arr_size); 
    
    cout << "Minimum element is "
        << minmax.min << endl; 
    cout << "Maximum element is "
        << minmax.max; 
        
    return 0; 
} 

// This code is contributed by nik_3112 
C Java Python C# JavaScript

Output
Minimum element is 1
Maximum element is 3000

Time Complexity: O(n)
Auxiliary Space: O(1) as no extra space was needed.

Number of Comparisons:

The total number of comparisons: Different for even and odd n, see below: 

If n is odd: 3*(n-1)/2

If n is even: 1 + 3*(n-2)/2 = 3n/2-2, 1 comparison for initializing min and max,
and 3(n-2)/2 comparisons for rest of the elements

The third and fourth approaches make an equal number of comparisons when n is a power of 2. 
In general, method 4 seems to be the best.
Please write comments if you find any bug in the above programs/algorithms or a better way to solve the same problem.


Similar Reads