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Abstract  

Electric-motored personal mobility devices (PMDs) are appearing on Australian roads. While legal 

to import and own, their use is typically illegal for adult riders within the road transport system. 

However, these devices could provide an answer to traffic congestion by getting people out of cars 

for short trips (“first-and-last mile” travel). City of Ryde council, Macquarie University, and 

Transport for NSW examined PMD use within the road transport system. Stage 1 of the project 

examined PMD use within a controlled pedestrian environment on the Macquarie University 

campus. Three PMD categories were used: one-wheelers (an electric unicycle, the Solowheel); two-

wheelers (an electric scooter, the Egret); and three-wheelers (the Qugo). The two-wheeled PMD 

was most effective in terms of flexibility. In contrast, the three-wheeled PMD was most effective in 

terms of speed. One-wheeled PMD riders were very satisfied with their device, especially at speed, 

but significant training and practice was required. Two-wheeled PMD riders had less difficulty 

navigating through pedestrian precincts and favoured the manoeuvrability of the device as the 

relative narrowness of the two-wheeled PMD made it easier to use on a diversity of path widths. 

The usability of all PMDs was compromised by the weight of the devices, difficulties in ascending 

steeper gradients, portability, and parking. This was a limited trial, with a small number of 

participants and within a unique environment. However, agreement has been reached for a Stage 2 

extension into the Macquarie Park business precinct for further real-world trials within a fully 

functional road transport system. 

Introduction  

New alternative vehicles such as motorised mobility devices (MMDs) and personal mobility 

devices (PMDs) are rapidly entering the Australian road transport system and are becoming 

common features of Australian roads and footpaths. Their entry marks both a migration from in-

home assistive technologies (MMDs), as well as opportunities offered by new materials and 

propulsive systems that have seen the morphing of existing vehicle types such as bicycles and toy 

vehicles into electric-powered devices (PMDs) [1]. MMDs were developed for mobility assistance 

within the home or a building as a motorised wheelchair, but have migrated into the road transport 

system and morphed into an alternative electric vehicle. PMDs were developed as mobility 

alternatives to other forms of transport (cars, motorcycles, bicycles, pedestrians) within the road 

transport system with the aim of enabling sustainable transportation including accessible links with 

public transport [2].  

Rose and Richardson [3] have noted that: 

“The motor car continues to evolve but it is being complemented by alternative means 

of independent motorised mobility including personal mobility devices, low powered 

two wheel vehicles and small footprint four wheel vehicles. For road network managers, 

the growth of alternative vehicles can have a variety of impacts and implications, from 

the design of individual elements of the road system, such as parking bays, to the 

refinement of the regulatory structures that govern vehicle use.” (p.1) 
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That sustainable transport futures will require significant reductions in use of the private car is 

uncontested. Whether and how existing patterns and volumes of personal mobility can be sustained 

through other modes is far more controversial, especially in light of strongly-held preferences for 

the independence afforded by the car [4]. Technological solutions to this dilemma are frequently 

proposed. Electric and hybrid vehicles, for example, are being explored as low emission means of 

getting around that work with, rather than against, the cultural, social and habitual appeal of the car 

[5,6,7]. Attention has also turned to electric bikes, and in particular their potential to offset some of 

the fitness and distance constraints of conventional bicycles [8]. Car and other vehicle 

manufacturers are also developing and marketing technologies to provide an alternative to the car, 

especially for shorter trips and to be used on footpaths as well as roads. The Segway is the most 

commonly used and known of such devices (see review in [9], but they also include a plethora of 

two and three wheeled ‘scooters’, known by the shorthand terms ‘low speed private transport mode’ 

[10] or ‘low speed mobility devices’ [11], or, as in this paper, ‘personal mobility devices’ (PMDs, 

[2, 3]. Such technologies, like electric bikes, allow an individual rider to travel short distances 

quickly without the physical effort required of cycling, and in some their small size makes transfers 

between transport modes possible. They therefore, in principle, have considerable potential as 

sustainable transportation alternatives [12]. 

This sustainability potential of PMDs is currently curtailed by the safety and regulatory aspects of 

PMDs. In many jurisdictions across the world it is not legal to ride PMDs on roads or on the 

footpath, with limited exceptions [2,13]. The speed of PMDs, and their interaction with both 

pedestrians and with other vehicles, are areas of concern [1]. Safety concerns, especially around the 

impact of the speed and weight of such devices on collisions with pedestrians, are regularly raised 

[14]. There are also concerns about the use of such devices upon urban pedestrian infrastructure 

designed for walking.  

Research on PMDs has been sparse despite being raised as a sustainable transport alterative more 

than ten years ago [12]. There is, however, a growing body of scholarship focused on PMDs that 

emanates from perspectives ranging across psychology, engineering, road safety, urban planning 

and transport policy. These studies have myriad foci, including: the performance and characteristics 

of PMDs [9, 15], their safety dimensions [16,17], acceptability as a transport mode [18], regulatory 

impacts [15] and use in real world settings [19]. Three themes are especially pertinent to their 

sustainable transport potential.  

A first theme is an explicit evaluation of PMDs as a sustainable transport solution. In this theme, the 

potential of small, powered, devices to bridge the ‘first and last mile’ – between home and transit 

and/or transit and work locations – is considered. San Francisco’s ‘EasyConnect’ project assessed 

the perceptions and feasibility of low-speed modes (specifically the Segway) in facilitating 

movement around transit hubs, and found that users willingly adopted the Segway as a means of 

getting around during the work day (e.g. going out to lunch) but were more likely to use electric 

bicycles to bridge the first and last mile [12, 19]. More recently, Iryo and colleagues [20] have 

suggested that low speed modes enlarge people’s final destinations around train stations and other 

transport hubs, and it car trips to and from transit trips were switched to PMDs then there will be 

reduced transport emissions from these trips [see also 10].  

A second theme is the safety dimensions of PMDs. There is a voluminous literature on the risk of 

injury to both riders and pedestrians, especially of the Segway [21], but a safety dimension more 

relevant to sustainable transportation is the contours of PMD use on existing infrastructure [17,22]. 

Here, the question is how, if at all, can such devices be appropriately used in pedestrian 

environments such as footpaths, shared paths and separated cycleway. There is even more limited 

research here, though the broader literature on pedestrian-cyclist interactions provides some 

guidance. Recent empirical studies from Australia and the United Kingdom found that cyclists 
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moderate their behaviour (especially speed and direction) in the presence of pedestrians, and that 

there is little conflict between pedestrians and cyclists [23,24]. PMDs are different to bicycles in 

their potential speed and novelty to pedestrians, thus it is necessary to conduct specific research on 

their use in pedestrian environments. 

A final theme in existing PMD research is the usability and acceptability of the devices. Mirroring 

research on electric bicycles, a Japanese study found a low level of recognition of PMDs among the 

general public and that acceptance increased after use [25]. However, this research was based on 

only 10 minutes of riding a PMD. To better understand acceptability it is necessary to undertake a 

more comprehensive analysis in terms of both extent of PMD use and evaluation of acceptability. 

Given these potentials and policy concerns, it is surprising that such devices have largely been 

ignored by scholars interested in sustainable transport and in road safety. Moreover, the little 

research that exists focuses on just one device – the Segway – that is unique in terms of weight, 

speed and requisite rider skill, and that is qualitatively different from the proliferation of motorised 

devices appearing in cities around the world [12,13,14,18,20]. This paper addresses these research 

and policy lacunae, reporting on a study that explored the operation of PMDs in a naturalistic 

setting. The paper begins with an overview of existing research on PMDs and identifies key factors 

to be understood if they are to be successfully implemented as sustainable transport solutions. The 

bulk of the paper evaluates the viability of PMDs in pedestrian environments, focusing on user 

experiences and perceptions, as well as interactions with pedestrians. The project tested PMDs in an 

authentic setting, with a focus on their acceptability and perception to those riding them (‘riders’), 

and their interactions with pedestrians. 

Materials and Methods 

For the purposes of the present article, a shortened method section will be presented. For more details 

regarding the device selection and the criteria used in assessing safety and user acceptability see the 

report of the pilot trial of personal mobility devices at Macquarie University prepared for the PMD 

Project Steering Committee [26].  

Building on the methodological foundations of three separate research trials conducted in Canada, 

Germany and the United States [14,16,19], the authors conducted a naturalistic study of participants 

riding PMDs on footpaths and shared paths on a university campus. As it is currently not legal to 

ride a PMD on a road or footpath in New South Wales, insurance and regulatory concerns limited 

participants to university employees, and bounded PMD use to within the university campus. 

Nonetheless, where, how often and how far each rider travelled on a PMD was determined by the 

rider, not the research team. The university campus has an area of 126 hectares, with capacity for 

individual trips greater than five kilometres. This was adjudged to be of sufficient size to gauge 

perceptions of use, and the density of pedestrians (a daytime campus population of approximately 

20,000) sufficient to evaluate interaction 

Devices 

Two different devices were used in the study, selected according to a set of criteria focused on the 

safety for riders and others users of the shared use paths (see Table 1). Weight criteria were 

established based on analysing the potential risk of injury to the riders and other path users, which 

was directly related to the kinetic energy, but also the potential risk of back injury if the rider was to 

lift or carry the device. Width was determined to be not greater than the width of a standard 

wheelchair. A two-wheeled device and a three-wheeled (the latter gyro stabilized) device were 

chosen, as depicted in Figure 1 below. The particular models chosen were those that were in 

commercial (not prototype) production and available to be imported to Australia. Commercial 

prices were paid for each device and the research was not sponsored by the suppliers or 
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manufacturers of devices. The power output of each device was limited, enabling a maximum speed 

of 10 km/h as measured on level ground with a 80 kg loading mass. GPS units were wired to the 

PMD’s battery and the units turned on and off by the same switch or key as the PMD activation 

circuit. The GPD units tracked the speed of trips, distance travelled, and the time and location of the 

PMD within the university campus. 

Table 1: 

Specification Two-wheeled personal 

mobility device 

Three-wheeled personal 

mobility device 

Designed maximum speed (km/h) 6/ 12/ 20/ 35 km/h 25 km/h 

Motor Output (W) 250 W 1000 W 

Weight (with battery) 15 kg  33 kg 

Maximum load (kg) 100 kg 120 kg 

Width (mm) 560 mm 580 mm 

Brake System Motor-brake 3 disc brakes 

Foldable version Yes handle bar only 
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Figure 1: The two-wheeled PMD (left) and the three-wheeled PMD (right). From the authors. 

Participants 

Riders were recruited as volunteers from among university staff, via advertisements and other 

campus coverage of the trial, with a preference for those staff who travelled across campus on a 

daily basis. Seventeen riders in total (nine men and eight women) were recruited. They underwent 

training on the device, including information on the trial protocols regarding compulsory helmet use 

and the requirements to give way to all pedestrians, and to dismount when crossing roadways. 

Participants then rode a PMD for one week in pedestrian zones, principally footpaths. After one 

week, most participants were trained on another device and trialled that one for a week. Riders had 

an average age of 37 years; three quarters had full drivers’ licences and 70 percent came to work as 

either a car passenger or driver. Forty percent used a bicycle on a regular basis.  

Data collection and analysis 

User experiences and perceptions were gained from pre-, mid- and post-trial questionnaires that 

were administered to gain subjective reflections of participants' experiences of riding different 

PMDs (see Table 2). Questions covered perceptions of ease of use, weight and storage. Answers 

were coded and simple descriptive statistics calculated. The sample size was not large enough for 

further statistical analysis. Riders were encouraged to write about their experiences on a Wiki site 

open only to university staff and students. At the end of the trial these blog posts were collated and 

thematically coded in terms of: pedestrian interactions, safety, fun, attracting attention, hills and 

stairs, infrastructure, incidents, lack of power, secure parking, technical issues, time saved and the 

weight of devices.  

Table 2: Research questions examined, methods of data collection, and methods of analysis 

Research question Data collection 

method 

Method of analysis 

User experiences and 

perceptions 

User questionnaire 

Qualitative comments 

Descriptive statistics 

Thematic coding 

Device usage GPS tracking of speed 

and distance 

Mapping of trip routes 

Average speed 

Pedestrian interactions 2 fixed and 1 mobile 

surveillance camera 

 

 

Device usage was traced through GPS tracking which supplied the start date, time and location and 

each update the unit made including speed, location and distance travelled (Table 2). Data were 

updated at intervals of one minute. Camera locations were entered into the software.  

Information on interactions with pedestrians was gained through rider questionnaires, as well as 

through fixed surveillance cameras placed at two sites of high pedestrian activity supplemented by a 

mobile camera places at two different sites at different parts of the trial (Table 2). These sites were 

chosen on the basis of where the PMDs were being ridden. When a PMD passed in the vicinity of a 

camera an alert was sent to the PMD email address, logging time, place and device. Data related to 

PMD events captured on the CCTV cameras were extracted from the footage using the time and 

date stamping. One hundred and thirty video events were extracted and analysed. Video events were 

analysed using a coding scheme designed to capture pedestrian interactions with PMDs, identify 

PMD riders’ level of compliance and observe the riders' experiences to complement the 

questionnaires. Each clip was numerically coded for: time and date; location; device type; number 
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of pedestrians present that either interacted or were in close enough proximity to a PMD to 

potentially interact with the PMD; number of vehicles present including motor vehicles, bicycles 

and skateboards; whether the PMD rider or pedestrians had to move out of the way; whether 

pedestrians were using technologies such as mobile phones or music through headphones that could 

distract them; and whether any incidents were captured. Each of the 130 clips underwent analysis 

based on the above coding scheme. After the initial analysis, a second analysis based on the same 

coding was conducted by a second person to verify initial analysis results and maintain reliability, 

validity and accuracy. A summary of descriptive measures such as frequency counts was produced 

from the data contained in all 130 cases. 

Results and Discussion 

Summary of PMD usage 

Because PMD use was confined to the university campus during the workday, total usage of the 

devices is not directly relevant to their potential in sustainable transport terms. Nonetheless, an 

overview of device usage provides important background to user perceptions and pedestrian 

interactions. The actual usage of PMDs varied from participant to participant, ranging from 1.5 km 

to 30 km in one week. The average distance travelled in each day of use was more than two 

kilometres for both devices, with 50 percent of trips covering distances between 500 metres and 

1000 metres, and 25 percent of trips extending to more than 1000 metres. The average speed per 

trip was 6 kilometres per hour, which is a little over a fast walking pace [1]. 

Perceptions of riders using a PMD 

Before the trial, only a small number of riders had heard of PMDs and none had ridden one. 

Nonetheless, all riders of the two-wheeled devices found them easy to use, while 16 percent of 

three-wheeled device riders found it hard to use, principally because of difficulties with balance. All 

stated the devices became easier to use with practice. Riders identified the advantages of the PMD 

compared to walking to primarily be about speed, rather than expending less energy. Ninety percent 

of riders found using a device very or moderately enjoyable, and the same percentage found it 

moderately or very comfortable to ride (see Table 3). Three-wheeled devices were more 

comfortable but less enjoyable than two-wheeled devices.  

Table 3: Level of enjoyment and comfort experienced 

 

 Two-wheeled 

device (%) 

three-wheeled 

device (%) 

All (%) 

Very Enjoyable 53.3 33.3 44.4 

Moderately Enjoyable 46.7 41.7 44.4 

Not Enjoyable 0 25.0 11.1 

Very Comfortable 26.7 58.3 40.7 

Moderately Comfortable 73.3 33.3 55.6 

Not Comfortable 6.7 8.3 7.4 

 

Likewise, qualitative comments from the blog emphasised the fun experienced by some riders: 

PMDs were seen as a more enjoyable way of getting around campus. 

 Having fun on the two-wheeled device (it brings back loads of happy childhood memories of 

riding around on a scooter). 
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There were, however, a number of identified problems with riding a PMD on campus. Riders were 

asked to identify disadvantages, summarised in the table below and addressed in turn. Essentially, 

ease of use was compromised by perceptions of limited power, device weight, storage and 

portability, stairs and infrastructure (Table 4). 

Table 4: Identified disadvantages of PMD use 

 Two-wheeled 

device (% of 

riders identifying) 

Three-wheeled 

device (% of 

riders identifying) 

All (% of riders 

identifying) 

Underpowered 46.7 25.0 37 

Heavy 20.0 50 33.3 

Too wide 0 41.7 18.5 

Secure parking 20.0 33.3 25.9 

Stairs 20.0 16.7 18.5 

Infrastructure 13.3 25.0 18.5 

Pedestrians 6.7 0 3.7 

 

The devices were limited to 10 kilometres per hour through a limitation on power. A consequence 

of this was that devices struggled going uphill, or had to be pushed, and a widespread perception by 

riders that they were ‘underpowered’. Almost 50% of two-wheeled device riders identified hills and 

being underpowered as the most common problem with their use of the PMD on campus.  

 The two-wheeled device is a slug up hill , on the flat it maintains its 10kp/h , downhill it 

accelerates beyond the 10 kp/h and you have to brake heavily . Big downside is uphill it’s 

got nothing, having more acceleration would help this immensely. 

The video analysis showed that in eight instances the participant was walking the PMD (mainly 

two-wheeled devices) and on five occasions two-wheeled device riders used their foot to either 

support their balance or to add leg power to the device to go up a pedestrian ramp designed for 

wheelchair access.  

PMDs are intended as portable devices, and riders were provided with quality bike locks to secure 

the devices to bike racks. However, most preferred to take (wheel, rather than ride) the PMDs into 

buildings, offices, meeting rooms etc. On the university campus this often meant negotiating stairs 

at some point, and difficulties with stairs and carrying PMDs were often identified disadvantages of 

the PMD.  

 After using the two-wheeled device for the week, I found it good to get across campus 
quickly, but overall it was more trouble than its worth in many cases.  The size and weight 

of it make it bad for anywhere that requires it to be carried. If it were smaller and lighter, or 

if it collapsed to a smaller size this may be different. 

Weight is a key component of perceptions of portability. At 15 kg, two-wheeled device riders also 

identified its weight distribution and ease of folding as important and difficult, and half of three-

wheeled device riders identified its weight of 33 kg as a disadvantage. Storage and secure parking at 

diverse locations was also an issue; a device is not really portable if there is nowhere to store it at a 

destination.  

The project design anticipated that road and path infrastructure, as well as connections between the 

two (kerb ramps, crossings, etc.) would be a determinant of ease of use. An initial infrastructure 

assessment was undertaken by property staff at the university and minor changes made. Despite 
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this, changes in surface, uneven surfaces and the increased elevation (or “bump”) often associated 

with kerb ramps were identified as issues. ‘Bumpy’ rides induced by certain types of paving across 

campus were not appreciated, for example: 

 It does not ride well over rougher terrain (eg, car park, cobbled areas) and can give your 

back a jarring, especially if you are an 'older' person (two-wheeled device rider). 

As a result of these difficulties, half of the riders (52 percent) used the PMD less than they had 

anticipated. The differences between the devices were stark here: two-thirds of three-wheeled 

device riders used the device less than anticipated, compared with 40% of two-wheeled device 
riders. The reasons for this reduction in use are shown in Table 5 below. Most notably, finding the 

device hard to use was not an issue for two-wheeled device riders, but was the third most important 

reason for using the three-wheeled device less than anticipated. 

 
Table 5: Riders’ reasons for using the PMD less than anticipated 

 

 Two-wheeled 

device (% of 

reasons identified) 

Three-wheeled 

device (% of 

reasons identified) 

All (% of reasons 

identified)* 

Walking was quicker 

 

12.5 7.7 9.5 

Walking was more 

convenient 

37.5 7.7 19.0 

PMD was too heavy 

 

12.5 30.8 23.8 

Problems with secure 

parking 

25.0 23.1 23.8 

Needed exercise from 

walking 

0 7.7 4.8 

Helmet use was 

annoying 

12.5 7.7 9.5 

PMD was hard to use 0 15.4 9.5 

 

Pedestrian-PMD Interactions 

PMD rider experiences with pedestrians were largely positive, with one third of riders never 

experiencing difficulties with pedestrians, and sixty percent only occasionally experiencing 

difficulties. Indeed, for almost all riders, interacting with others on shared paths was considered 

easy. This was more so for two-wheeled device than three-wheeled device riders (see Table 6 

below). A certain level of frustration with sharing was evident with the three-wheeled device, 

presumably because of its larger size and weight.  

Table 6: Riders’ perceptions of interactions with pedestrians 

 Two-wheeled 

device (%) 

Three-wheeled 

device (%) 

All (%) 

Easy 92.3 50 86.7 

Difficult 0 0 0 

Frustrating 7.7 50 13.3 
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Riders’ blog comments such as those below confirm these findings:  

 Pedestrians seem to be reasonably comfortable with two-wheeled device around.  When they 

hear the sound of the bell/engine, they move to one side. 

 I do reasonably well at weaving through pedestrians (two-wheeled device Rider). 

Several comments were made in regards to the devices attracting positive attention and three-

wheeled device riders commented that pedestrians were more aware of its presence than the two-

wheeled device, facilitating the ease of pedestrians moving out of the way.  

 There has been far more pedestrian/staff interaction with this device, but still, I've found it 
generally positive …The sound of it coming definitely helps with people being aware of it 

too (three-wheeled device rider). 

When asked to identify common problems experienced riding on campus, the most frequently 

identified problem was pedestrians (25 percent of problems identified). When asked to expand, 

problems included navigating around pedestrians when the path was crowded and pedestrians being 

unaware, unresponsive or distracted, as evident in the blog comments below. 

 Pedestrians are even more unpredictable than I expected - stopping suddenly, ignoring 
bells, etc (two-wheeled device Rider). 

 I had one pedestrian texting on the phone that walked straight into me. I had slowed in 

general anticipation and eventually came to an abrupt halt …  it’s still hard to look into the 

faces to read expressions while also riding and anticipating walkers (two-wheeled device 

Rider). 

There was also one incident reported on a three-wheeled device due to the rider’s attempt to give 

way to pedestrians on a narrow path. The rider lost balance when applying the brakes, ran a couple 

of steps then fell on the road resulting in minor scrapes and bruises. 

Objective information from the video confirmed these subjective impressions (see Table 7). Of the 

130 instances of PMD use captured on video, pedestrians were present on 104 occasions (87%). 

Overall, there was harmony between PMD riders and pedestrians as they passed each other. The 

majority (79%) of the time PMDs did not have to alter their direction, slow down or brake for 

pedestrians. Neither did pedestrians need to move out of the way (90% of the time). Even during 

times of significant crowding of 10-15 people in the proximity of a PMD, both the PMD and 

pedestrians appeared to seamlessly anticipate and navigate around each other. On five occasions the 

rider was observed to disembark in order to be cautious of oncoming pedestrians. The instances 

where pedestrians had to move out of the way were highest for the three-wheeled device (15%). 

Table 7: PMD-Pedestrian Interactions 

 Two-wheeled 

device (n=71) 

Three-wheeled 

device (n=48) 

All (n=119) 

Pedestrians present 

 

63 41 104 

PMD rider changed course 

 

15 7 22 

Pedestrian(s) changed course 

 

3 4 7 

Both pedestrian and PMD 

rider changed course 

2 3 5 
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Neither PMD nor pedestrian 

rider changed course 

43 27 70 

 

 

 

Concluding comments 

PMDs are certainly a novel (and sometimes fun) form of transport has found that in specific 

environments users adopt small motorised devices as a means of getting to destinations more 

quickly than walking. This study, though small and exploratory in nature, has found that the barriers 

to the uptake of PMDs as a sustainable transport option are far from insurmountable. With 

controlled use in a real world setting, PMDs are perceived to be easy to use and valued for their 

ability to deliver people to destinations more quickly than walking. This study hence provides 

important lessons for policy makers concerned with the appropriate regulations and infrastructures 

for the general class of small, motorised devices. Principal here is minimizing weight given existing 

road and path infrastructure will almost certainly necessitate carrying or lifting the device at some 

stage. Another important consideration is ensuring that PMDs have adequate power to ascending 

ramps and other inclines, while limiting their speed. PMD users should not expect, or be permitted, 

to travel at speeds much greater that those of pedestrians. This means a maximum speed on open 

footpaths of 10 km/h, and a maximum speed of 5 km/h for areas where pedestrians are present (and 

3 or 4 km/h is preferable as a 'tortoise mode' speed in busy areas of pedestrian movement) [1]. 

The design of the PMDs is an issue, as there is concern that human factors not fully taken into 

account with these devices (e.g., the weight and associated portability of the devices, as well as the 

width of foot plates, small diameter and narrow wheels, lack of a speedometer, lack of speed 

limiting, lack of storage provision and access to battery charging). Overall, the usability of all 

PMDs is compromised by the weight of the devices, their portability (particularly when used in 

conjunction with public transport), provision for parking and storage, and difficulties in 

performance with hill climbs and descents. That said, while PMD use is illegal for road use in 

Australia currently, these devices are largely compatible with existing road and pedestrian 

infrastructure (especially for the lighter and narrower devices). 

Legal restrictions prevented the research from assessing PMD ability to bridge first and last mile 

distances. Nonetheless, the project tested PMDs in an authentic setting, with a focus on their 

acceptability and perception to those riding them (‘riders’), and their interactions with pedestrians. 

Subsequently, agreement has been reached for a Stage 2 extension into the Macquarie Park business 

precinct for further real-world trials within a fully functional road transport system. Lightweight, 

two-wheeled scooters are most appropriate from the perspective of riders, pedestrians and 

sustainable transport, and their functional use in bridging first and last mile distances will be an 

important consideration. 
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