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Abstract

Ant colony optimization is a technique for optimization that was introduced in the early 1990’s. The inspiring source of ant
colony optimization is the foraging behavior of real ant colonies. This behavior is exploited in artificial ant colonies for the search
of approximate solutions to discrete optimization problems, to continuous optimization problems, and to important problems in
telecommunications, such as routing and load balancing. First, we deal with the biological inspiration of ant colony optimization
algorithms. We show how this biological inspiration can be transfered into an algorithm for discrete optimization. Then, we outline
ant colony optimization in more general terms in the context of discrete optimization, and present some of the nowadays best-
performing ant colony optimization variants. After summarizing some important theoretical results, we demonstrate how ant colony
optimization can be applied to continuous optimization problems. Finally, we provide examples of an interesting recent research
direction: The hybridization with more classical techniques from artificial intelligence and operations research.
 2005 Elsevier B.V. All rights reserved.

Keywords: Ant colony optimization; Discrete optimization; Hybridization

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
2. The origins of ant colony optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

2.1. Ant System for the TSP: The first ACO algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
3. The ant colony optimization metaheuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

3.1. Successful ACO variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
3.2. Applications of ACO algorithms to discrete optimization problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

4. Theoretical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
5. Applying ACO to continuous optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
6. A new trend: Hybridization with AI and OR techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

6.1. Beam-ACO: Hybridizing ACO with beam search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
6.2. ACO and constraint programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

E-mail address: cblum@lsi.upc.edu (C. Blum).
1 Christian Blum acknowledges support from the “Juan de la Cierva” program of the Spanish Ministry of Science and Technology of which he is
a post-doctoral research fellow, and from the Spanish CICYT project TRACER (Grant TIC-2002-04498-C05-03).

1571-0645/$ – see front matter  2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.plrev.2005.10.001

http://www.elsevier.com/locate/plrev
mailto:cblum@lsi.upc.edu
http://dx.doi.org/10.1016/j.plrev.2005.10.001


354 C. Blum / Physics of Life Reviews 2 (2005) 353–373

6.3. Applying ACO in a multilevel framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
6.4. Applying ACO to an auxiliary search space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

7. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

1. Introduction

Optimization problems are of high importance both for the industrial world as well as for the scientific world.
Examples of practical optimization problems include train scheduling, time tabling, shape optimization, telecommu-
nication network design, or problems from computational biology. The research community has simplified many of
these problems in order to obtain scientific test cases such as the well-known traveling salesman problem (TSP) [61].
The TSP models the situation of a travelling salesman who is required to pass through a number of cities. The goal of
the travelling salesman is to traverse these cities (visiting each city exactly once) so that the total travelling distance
is minimal. Another example is the problem of protein folding, which is one of the most challenging problems in
computational biology, molecular biology, biochemistry and physics. It consists of finding the functional shape or
conformation of a protein in two- or three-dimensional space, for example, under simplified lattice models such as the
hydrophobic-polar model [92]. The TSP and the protein folding problem under lattice models belong to an important
class of optimization problems known as combinatorial optimization (CO).
According to Papadimitriou and Steiglitz [79], a CO problem P = (S, f ) is an optimization problem in which are

given a finite set of objects S (also called the search space) and an objective function f :S → R+ that assigns a positive
cost value to each of the objects s ∈ S . The goal is to find an object of minimal cost value.2 The objects are typically
integer numbers, subsets of a set of items, permutations of a set of items, or graph structures. CO problems can be
modelled as discrete optimization problems in which the search space is defined over a set of decision variables Xi ,
i = 1, . . . , n, with discrete domains. Therefore, we will henceforth use the terms CO problem and discrete optimization
problem interchangeably.
Due to the practical importance of CO problems, many algorithms to tackle them have been developed. These

algorithms can be classified as either complete or approximate algorithms. Complete algorithms are guaranteed to
find for every finite size instance of a CO problem an optimal solution in bounded time (see [77,79]). Yet, for CO
problems that are NP-hard [44], no polynomial time algorithm exists, assuming that P #= NP . Therefore, complete
methods might need exponential computation time in the worst-case. This often leads to computation times too high
for practical purposes. Thus, the development of approximate methods—in which we sacrifice the guarantee of finding
optimal solutions for the sake of getting good solutions in a significantly reduced amount of time—has received more
and more attention in the last 30 years.
Ant colony optimization (ACO) [36] is one of the most recent techniques for approximate optimization. The inspir-

ing source of ACO algorithms are real ant colonies. More specifically, ACO is inspired by the ants’ foraging behavior.
At the core of this behavior is the indirect communication between the ants by means of chemical pheromone trails,
which enables them to find short paths between their nest and food sources. This characteristic of real ant colonies is
exploited in ACO algorithms in order to solve, for example, discrete optimization problems.3
Depending on the point of view, ACO algorithms may belong to different classes of approximate algorithms. Seen

from the artificial intelligence (AI) perspective, ACO algorithms are one of the most successful strands of swarm intel-
ligence [16,17]. The goal of swarm intelligence is the design of intelligent multi-agent systems by taking inspiration
from the collective behavior of social insects such as ants, termites, bees, wasps, and other animal societies such as
flocks of birds or fish schools. Examples of “swarm intelligent” algorithms other than ACO are those for clustering

2 Note that minimizing over an objective function f is the same as maximizing over −f . Therefore, every CO problem can be described as a
minimization problem.
3 Even though ACO algorithms were originally introduced for the application to discrete optimization problems, the class of ACO algorithms
also comprises methods for the application to problems arising in networks, such as routing and load balancing (see, for example, [28]), and for the
application to continuous optimization problems (see, for example, [86]). In Section 5 we will shortly deal with ACO algorithms for continuous
optimization.
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and data mining inspired by ants’ cemetery building behavior [55,63], those for dynamic task allocation inspired by
the behavior of wasp colonies [22], and particle swarm optimization [58].
Seen from the operations research (OR) perspective, ACO algorithms belong to the class of metaheuristics [13,

47,56]. The term metaheuristic, first introduced in [46], derives from the composition of two Greek words. Heuristic
derives from the verb heuriskein (ευρισκειν) which means “to find”, while the suffix meta means “beyond, in an
upper level”. Before this term was widely adopted, metaheuristics were often calledmodern heuristics [81]. In addition
to ACO, other algorithms such as evolutionary computation, iterated local search, simulated annealing, and tabu
search, are often regarded as metaheuristics. For books and surveys on metaheuristics see [13,47,56,81].
This review is organized as follows. In Section 2 we outline the origins of ACO algorithms. In particular, we present

the foraging behavior of real ant colonies and show how this behavior can be transfered into a technical algorithm for
discrete optimization. In Section 3 we provide a description of the ACO metaheuristic in more general terms, outline
some of the most successful ACO variants nowadays, and list some representative examples of ACO applications.
In Section 4, we discuss some important theoretical results. In Section 5, how ACO algorithms can be adapted to
continuous optimization. Finally, Section 6 will give examples of a recent successful strand of ACO research, namely
the hybridization of ACO algorithms with more classical AI and OR methods. In Section 7 we offer conclusions and
an outlook to the future.

2. The origins of ant colony optimization

Marco Dorigo and colleagues introduced the first ACO algorithms in the early 1990’s [30,34,35]. The development
of these algorithms was inspired by the observation of ant colonies. Ants are social insects. They live in colonies and
their behavior is governed by the goal of colony survival rather than being focused on the survival of individuals.
The behavior that provided the inspiration for ACO is the ants’ foraging behavior, and in particular, how ants can
find shortest paths between food sources and their nest. When searching for food, ants initially explore the area
surrounding their nest in a random manner. While moving, ants leave a chemical pheromone trail on the ground.
Ants can smell pheromone. When choosing their way, they tend to choose, in probability, paths marked by strong
pheromone concentrations. As soon as an ant finds a food source, it evaluates the quantity and the quality of the food
and carries some of it back to the nest. During the return trip, the quantity of pheromone that an ant leaves on the
ground may depend on the quantity and quality of the food. The pheromone trails will guide other ants to the food
source. It has been shown in [27] that the indirect communication between the ants via pheromone trails—known
as stigmergy [49]—enables them to find shortest paths between their nest and food sources. This is explained in an
idealized setting in Fig. 1.
As a first step towards an algorithm for discrete optimization we present in the following a discretized and simplified

model of the phenomenon explained in Fig. 1. After presenting the model we will outline the differences between the
model and the behavior of real ants. Our model consists of a graph G = (V ,E), where V consists of two nodes,
namely vs (representing the nest of the ants), and vd (representing the food source). Furthermore, E consists of
two links, namely e1 and e2, between vs and vd . To e1 we assign a length of l1, and to e2 a length of l2 such that
l2 > l1. In other words, e1 represents the short path between vs and vd , and e2 represents the long path. Real ants
deposit pheromone on the paths on which they move. Thus, the chemical pheromone trails are modeled as follows.
We introduce an artificial pheromone value τi for each of the two links ei , i = 1,2. Such a value indicates the strength
of the pheromone trail on the corresponding path. Finally, we introduce na artificial ants. Each ant behaves as follows:
Starting from vs (i.e., the nest), an ant chooses with probability

(1)pi = τi

τ1 + τ2
, i = 1,2,

between path e1 and path e2 for reaching the food source vd . Obviously, if τ1 > τ2, the probability of choosing e1 is
higher, and vice versa. For returning from vd to vs , an ant uses the same path as it chose to reach vd ,4 and it changes
the artificial pheromone value associated to the used edge. More in detail, having chosen edge ei an ant changes the

4 Note that this can be enforced because the setting is symmetric, i.e., the choice of a path for moving from vs to vd is equivalent to the choice
of a path for moving from vd to vs .
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Fig. 1. An experimental setting that demonstrates the shortest path finding capability of ant colonies. Between the ants’ nest and the only food
source exist two paths of different lengths. In the four graphics, the pheromone trails are shown as dashed lines whose thickness indicates the trails’
strength.

artificial pheromone value τi as follows:

(2)τi ← τi + Q

li
,

where the positive constant Q is a parameter of the model. In other words, the amount of artificial pheromone that is
added depends on the length of the chosen path: the shorter the path, the higher the amount of added pheromone.
The foraging of an ant colony is in this model iteratively simulated as follows: At each step (or iteration) all the

ants are initially placed in node vs . Then, each ant moves from vs to vd as outlined above. As mentioned in the caption
of Fig. 1(d), in nature the deposited pheromone is subject to an evaporation over time. We simulate this pheromone
evaporation in the artificial model as follows:

(3)τi ← (1− ρ) · τi , i = 1,2.
The parameter ρ ∈ (0,1] is a parameter that regulates the pheromone evaporation. Finally, all ants conduct their return
trip and reinforce their chosen path as outlined above.
We implemented this system and conducted simulations with the following settings: l1 = 1, l2 = 2, Q = 1. The

two pheromone values were initialized to 0.5 each. Note that in our artificial system we cannot start with artificial
pheromone values of 0. This would lead to a division by 0 in Eq. (1). The results of our simulations are shown in
Fig. 2. They clearly show that over time the artificial colony of ants converges to the short path, i.e., after some time
all ants use the short path. In the case of 10 ants (i.e., na = 10, Fig. 2(a)) the random fluctuations are bigger than in
the case of 100 ants (Fig. 2(b)). This indicates that the shortest path finding capability of ant colonies results from a
cooperation between the ants.
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Fig. 2. Results of 100 independent runs (error bars show the standard deviation for each 5th iteration). The x-axis shows the iterations, and the
y-axis the percentage of the ants using the short path.

The main differences between the behavior of the real ants and the behavior of the artificial ants in our model are
as follows:

(1) While real ants move in their environment in an asynchronous way, the artificial ants are synchronized, i.e., at
each iteration of the simulated system, each of the artificial ants moves from the nest to the food source and
follows the same path back.

(2) While real ants leave pheromone on the ground whenever they move, artificial ants only deposit artificial
pheromone on their way back to the nest.

(3) The foraging behavior of real ants is based on an implicit evaluation of a solution (i.e., a path from the nest to the
food source). By implicit solution evaluation we mean the fact that shorter paths will be completed earlier than
longer ones, and therefore they will receive pheromone reinforcement more quickly. In contrast, the artificial ants
evaluate a solution with respect to some quality measure which is used to determine the strength of the pheromone
reinforcement that the ants perform during their return trip to the nest.

2.1. Ant System for the TSP: The first ACO algorithm

The model that we used in the previous section to simulate the foraging behavior of real ants in the setting of Fig. 1
cannot directly be applied to CO problems. This is because we associated pheromone values directly to solutions to
the problem (i.e., one parameter for the short path, and one parameter for the long path). This way of modeling implies
that the solutions to the considered problem are already known. However, in combinatorial optimization we intend
to find an unknown optimal solution. Thus, when CO problems are considered, pheromone values are associated to
solution components instead. Solution components are the units from which solutions to the tackled problem are
assembled. Generally, the set of solution components is expected to be finite and of moderate size. As an example
we present the first ACO algorithm, called Ant System (AS) [30,35], applied to the TSP, which we mentioned in the
introduction and which we define in more detail in the following:

Definition 1. In the TSP is given a completely connected, undirected graphG = (V ,E) with edge-weights. The nodes
V of this graph represent the cities, and the edge weights represent the distances between the cities. The goal is to
find a closed path in G that contains each node exactly once (henceforth called a tour) and whose length is minimal.
Thus, the search space S consists of all tours in G. The objective function value f (s) of a tour s ∈ S is defined as
the sum of the edge-weights of the edges that are in s. The TSP can be modelled in many different ways as a discrete
optimization problem. The most common model consists of a binary decision variable Xe for each edge in G. If in a
solution Xe = 1, then edge e is part of the tour that is defined by the solution.

Concerning the AS approach, the edges of the given TSP graph can be considered solution components, i.e., for
each ei,j is introduced a pheromone value τi,j . The task of each ant consists in the construction of a feasible TSP
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Fig. 3. Example of the solution construction for a TSP problem consisting of 4 cities (modelled by a graph with 4 nodes; see Definition 1). The
solution construction starts by randomly choosing a start node for the ant; in this case node 1. Figures (a) and (b) show the choices of the first,
respectively the second, construction step. Note that in both cases the current node (i.e., location) of the ant is marked by dark gray color, and the
already visited nodes are marked by light gray color (respectively yellow color, in the online version of this article). The choices of the ant (i.e.,
the edges she may traverse) are marked by dashed lines. The probabilities for the different choices (according to Eq. (4)) are given underneath the
graphics. Note that after the second construction step, in which we exemplary assume the ant to have selected node 4, the ant can only move to
node 3, and then back to node 1 in order to close the tour.

solution, i.e., a feasible tour. In other words, the notion of task of an ant changes from “choosing a path from the
nest to the food source” to “constructing a feasible solution to the tackled optimization problem”. Note that with this
change of task, the notions of nest and food source loose their meaning.
Each ant constructs a solution as follows. First, one of the nodes of the TSP graph is randomly chosen as start node.

Then, the ant builds a tour in the TSP graph by moving in each construction step from its current node (i.e., the city
in which she is located) to another node which she has not visited yet. At each step the traversed edge is added to the
solution under construction. When no unvisited nodes are left the ant closes the tour by moving from her current node
to the node in which she started the solution construction. This way of constructing a solution implies that an ant has
a memory T to store the already visited nodes. Each solution construction step is performed as follows. Assuming the
ant to be in node vi , the subsequent construction step is done with probability

(4)p(ei,j ) = τi,j∑
{k∈{1,...,|V |}|vk /∈T } τi,k

, ∀j ∈
{
1, . . . , |V |

}
, vj /∈ T .

For an example of such a solution construction see Fig. 3.
Once all ants of the colony have completed the construction of their solution, pheromone evaporation is performed

as follows:

(5)τi,j ← (1− ρ) · τi,j , ∀τi,j ∈ T ,

where T is the set of all pheromone values. Then the ants perform their return trip. Hereby, an ant—having constructed
a solution s—performs for each ei,j ∈ s the following pheromone deposit:

(6)τi,j ← τi,j + Q

f (s)
,

where Q is again a positive constant and f (s) is the objective function value of the solution s. As explained in the
previous section, the system is iterated—applying na ants per iteration—until a stopping condition (e.g., a time limit)
is satisfied.
Even though the AS algorithm has proved that the ants foraging behavior can be transferred into an algorithm for

discrete optimization, it was generally found to be inferior to state-of-the-art algorithms. Therefore, over the years
several extensions and improvements of the original AS algorithm were introduced. They are all covered by the
definition of the ACO metaheuristic, which we will outline in the following section.
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Fig. 4. The working of the ACO metaheuristic.

3. The ant colony optimization metaheuristic

The ACO metaheuristic, as we know it today, was first formalized by Dorigo and colleagues in 1999 [32]. The
recent book by Dorigo and Stützle gives a more comprehensive description [36]. The definition of the ACO meta-
heuristic covers most—if not all—existing ACO variants for discrete optimization problems. In the following, we
give a general description of the framework of the ACO metaheuristic.
The basic way of working of an ACO algorithm is graphically shown in Fig. 4. Given a CO problem to be solved,

one first has to derive a finite set C of solution components which are used to assemble solutions to the CO problem.
Second, one has to define a set of pheromone values T . This set of values is commonly called the pheromone model,
which is—seen from a technical point of view—a parameterized probabilistic model. The pheromone model is one
of the central components of the ACO metaheuristic. The pheromone values τi ∈ T are usually associated to solution
components.5 The pheromone model is used to probabilistically generate solutions to the problem under consider-
ation by assembling them from the set of solution components. In general, the ACO approach attempts to solve an
optimization problem by iterating the following two steps:

• candidate solutions are constructed using a pheromone model, that is, a parameterized probability distribution
over the solution space;

• the candidate solutions are used to modify the pheromone values in a way that is deemed to bias future sampling
toward high quality solutions.

The pheromone update aims to concentrate the search in regions of the search space containing high quality solutions.
In particular, the reinforcement of solution components depending on the solution quality is an important ingredient
of ACO algorithms. It implicitly assumes that good solutions consist of good solution components. To learn which
components contribute to good solutions can help assembling them into better solutions.

Algorithm 1. Ant colony optimization (ACO)

while termination conditions not met do
ScheduleActivities
AntBasedSolutionConstruction() {see Algorithm 2}
PheromoneUpdate()
DaemonActions() {optional}

5 Note that the description of the ACO metaheuristic as given for example in [32] allows pheromone values also to be associated with links
between solution components. However, for the purpose of this introduction it is sufficient to assume pheromone values associated to components.
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end ScheduleActivities
end while

In the following, we give a more technical description of the general ACO metaheuristic whose framework is
shown in Algorithm 1. ACO is an iterative algorithm whose run time is controlled by the principal while-loop of Al-
gorithm 1. In each iteration the three algorithmic components AntBasedSolutionConstruction(), PheromoneUpdate(),
and DaemonActions()—gathered in the ScheduleActivities construct—must be scheduled. The ScheduleActivities con-
struct does not specify how these three activities are scheduled and synchronized. This is up to the algorithm designer.
In the following we outline these three algorithmic components in detail.

Algorithm 2. Procedure AntBasedSolutionConstruction() of Algorithm 1

s = 〈〉
Determine N (s)

whileN (s) #= ∅ do
c ← ChooseFrom(N (s))
s ← extend s by appending solution component c
Determine N (s)

end while

AntBasedSolutionConstruction() (see also Algorithm 2): Artificial ants can be regarded as probabilistic constructive
heuristics that assemble solutions as sequences of solution components. The finite set of solution components C =
{c1, . . . , cn} is hereby derived from the discrete optimization problem under consideration. For example, in the case
of AS applied to the TSP (see previous section) each edge of the TSP graph was considered a solution component.
Each solution construction starts with an empty sequence s = 〈 〉. Then, the current sequence s is at each construction
step extended by adding a feasible solution component from the setN (s) ⊆ C \ s.6 The specification ofN (s) depends
on the solution construction mechanism. In the example of AS applied to the TSP (see previous section) the solution
construction mechanism restricted the set of traversable edges to the ones that connected the ants’ current node to
unvisited nodes. The choice of a solution component from N (s) (see function ChooseFrom(N (s)) in Algorithm 2) is
at each construction step performed probabilistically with respect to the pheromone model. In most ACO algorithms
the respective probabilities—also called the transition probabilities—are defined as follows:

(7)p(ci | s) = [τi]α · [η(ci)]β∑

cj ∈N (s)

[τj ]α · [η(cj )]β
, ∀ci ∈N (s),

where η is an optional weighting function, that is, a function that, sometimes depending on the current sequence,
assigns at each construction step a heuristic value η(cj ) to each feasible solution component cj ∈ N (s). The values
that are given by the weighting function are commonly called the heuristic information. Furthermore, the exponents
α and β are positive parameters whose values determine the relation between pheromone information and heuristic
information. In the previous sections’ TSP example, we chose not to use any weighting function η, and we have
set α to 1. It is interesting to note that by implementing the function ChooseFrom(N (s)) in Algorithm 2 such that
the solution component that maximizes Eq. (7) is chosen deterministically (i.e., c ← argmax{η(ci) | ci ∈ N (s)}), we
obtain a deterministic greedy algorithm.

PheromoneUpdate(): Different ACO variants mainly differ in the update of the pheromone values they apply. In
the following, we outline a general pheromone update rule in order to provide the basic idea. This pheromone update
rule consists of two parts. First, a pheromone evaporation, which uniformly decreases all the pheromone values, is
performed. From a practical point of view, pheromone evaporation is needed to avoid a too rapid convergence of the
algorithm toward a sub-optimal region. It implements a useful form of forgetting, favoring the exploration of new
areas in the search space. Second, one or more solutions from the current and/or from earlier iterations are used to

6 Note that for this set-operation the sequence s is regarded as an ordered set.
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increase the values of pheromone trail parameters on solution components that are part of these solutions:

(8)τi ← (1− ρ) · τi + ρ ·
∑

{s∈Supd|ci∈s}
ws · F(s),

for i = 1, . . . , n. Hereby, Supd denotes the set of solutions that are used for the update. Furthermore, ρ ∈ (0,1] is a
parameter called evaporation rate, and F :S +→ R+ is a so-called quality function such that f (s) < f (s′) -⇒ F(s) !
F(s′), ∀s #= s′ ∈ S . In other words, if the objective function value of a solution s is better than the objective function
value of a solution s′, the quality of solution s will be at least as high as the quality of solution s′. Eq. (8) also allows
an additional weighting of the quality function, i.e., ws ∈ R+ denotes the weight of a solution s.
Instantiations of this update rule are obtained by different specifications of Supd and by different weight settings.

In many cases, Supd is composed of some of the solutions generated in the respective iteration (henceforth denoted
by Siter) and the best solution found since the start of the algorithm (henceforth denoted by sbs). Solution sbs is often
called the best-so-far solution. A well-known example is the AS-update rule, that is, the update rule of AS (see also
Section 2.1). The AS-update rule, which is well-known due to the fact that AS was the first ACO algorithm to be
proposed in the literature, is obtained from update rule (8) by setting

(9)Supd ← Siter and ws = 1 ∀s ∈ Supd,

that is, by using all the solutions that were generated in the respective iteration for the pheromone update, and by
setting the weight of each of these solutions to 1. An example of a pheromone update rule that is more used in practice
is the IB-update rule (where IB stands for iteration-best). The IB-update rule is given by:

(10)Supd ←
{
sib = argmax

{
F(s) | s ∈ Siter

}}
with wsib = 1,

that is, by choosing only the best solution generated in the respective iteration for updating the pheromone values.
This solution, denoted by sib, is weighted by 1. The IB-update rule introduces a much stronger bias towards the
good solutions found than the AS-update rule. However, this increases the danger of premature convergence. An even
stronger bias is introduced by the BS-update rule, where BS refers to the use of the best-so-far solution sbs. In this
case, Supd is set to {sbs} and sbs is weighted by 1, that is, wsbs = 1. In practice, ACO algorithms that use variations of
the IB-update or the BS-update rule and that additionally include mechanisms to avoid premature convergence achieve
better results than algorithms that use the AS-update rule. Examples are given in the following section.

DaemonActions(): Daemon actions can be used to implement centralized actions which cannot be performed by
single ants. Examples are the application of local search methods to the constructed solutions, or the collection of
global information that can be used to decide whether it is useful or not to deposit additional pheromone to bias
the search process from a non-local perspective. As a practical example, the daemon may decide to deposit extra
pheromone on the solution components that belong to the best solution found so far.

3.1. Successful ACO variants

Even though the original AS algorithm achieved encouraging results for the TSP problem, it was found to be
inferior to state-of-the-art algorithms for the TSP as well as for other CO problems. Therefore, several extensions
and improvements of the original AS algorithm were introduced over the years. In the following we outline the basic
features of the ACO variants listed in Table 1.

Table 1
A selection of ACO variants

ACO variant Authors Main reference
Elitist AS (EAS) Dorigo [30]

Dorigo, Maniezzo, and Colorni [35]

Rank-based AS (RAS) Bullnheimer, Hartl, and Strauss [21]
MAX–MIN Ant System (MMAS) Stützle and Hoos [91]
Ant Colony System (ACS) Dorigo and Gambardella [33]
Hyper-Cube Framework (HCF) Blum and Dorigo [11]
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A first improvement over AS was obtained by the Elitist AS (EAS) [30,35], which is obtained by instantiating
pheromone update rule (8) by setting Supd ← Siter ∪ {sbs}, that is, by using all the solutions that were generated in
the respective iteration, and in addition the best-so-far solution, for updating the pheromone values. The solution
weights are defined as ws = 1 ∀s ∈ Siter. Only the weight of the best-so-far solution may be higher: wsbs ! 1. The
idea is hereby to increase the exploitation of the best-so-far solution by introducing a strong bias towards the solution
components it contains.
Another improvement over AS is the Rank-based AS (RAS) proposed in [21]. The pheromone update of RAS

is obtained from update rule (8) by filling Supd with the best m − 1 (where m − 1 " na) solutions from Siter, and
by additionally adding the best-so-far solution sbs to Supd. The weights of the solutions are set as ws = m − rs
∀s ∈ Supd \ {sbs}, where rs is the rank of solution s. Finally, the weight wsbs of solution sbs is set to m. This means that
at each iteration the best-so-far solution has the highest influence on the pheromone update, while a selection of the
best solutions constructed at that current iteration influences the update depending on their ranks.
One of the most successful ACO variants today isMAX–MIN Ant System (MMAS) [91], which is character-

ized as follows. Depending on some convergence measure, at each iteration either the IB-update or the BS-update rule
(both as explained in the previous section) are used for updating the pheromone values. At the start of the algorithm
the IB-update rule is used more often, while during the run of the algorithm the frequency with which the BS-update
rule is used increases.MMAS algorithms use an explicit lower bound τmin > 0 for the pheromone values. In addition
to this lower bound,MMAS algorithms use F(sbs)/ρ as an upper bound to the pheromone values. The value of this
bound is updated each time a new best-so-far solution is found by the algorithm.
Ant Colony System (ACS), which was introduced in [33], differs from the original AS algorithm in more aspects

than just in the pheromone update. First, instead of choosing at each step during a solution construction the next
solution component according to Eq. (7), an artificial ant chooses, with probability q0, the solution component that
maximizes [τi]α · [η(ci)]β , or it performs, with probability 1−q0, a probabilistic construction step according to Eq. (7).
This type of solution construction is called pseudo-random proportional. Second, ACS uses the BS-update rule with
the additional particularity that the pheromone evaporation is only applied to values of pheromone trail parameters
that belong to solution components that are in sbs. Third, after each solution construction step, the following additional
pheromone update is applied to the pheromone value τi whose corresponding solution component ci was added to the
solution under construction:

(11)τi ← (1− ξ) · τi + ξ · τ0,
where τ0 is a small positive constant such that Fmin ! τ0 ! c, Fmin ← min{F(s) | s ∈ S}, and c is the initial value
of the pheromone values. In practice, the effect of this local pheromone update is to decrease the pheromone values
on the visited solution components, making in this way these components less desirable for the following ants. This
mechanism increases the exploration of the search space within each iteration.
One of the most recent developments is the Hyper-Cube Framework (HCF) for ACO algorithms [11]. Rather

than being an ACO variant, the HCF is a framework for implementing ACO algorithms which is characterized by
a pheromone update that is obtained from update rule (8) by defining the weight of each solution in Supd to be
(
∑

{s∈Supd} F(s))−1. Remember that in Eq. (8) solutions are weighted. The set Supd can be composed in any possible
way. This means that ACO variants such as AS, ACS, orMMAS can be implemented in the HCF. The HCF comes
with several benefits. On the practical side, the new framework automatically handles the scaling of the objective
function values and limits the pheromone values to the interval [0,1].7 On the theoretical side, the new framework
allows to prove that in the case of an AS algorithm applied to unconstrained problems, the average quality of the
solutions produced continuously increases in expectation over time. The name Hyper-Cube Framework stems from
the fact that with the weight setting as outlined above, the pheromone update can be interpreted as a shift in a hyper-
cube (see [11]).
In addition to the ACO variants outlined above, the ACO community has developed additional algorithmic fea-

tures for improving the search process performed by ACO algorithms. A prominent example are so-called candidate
list strategies. A candidate list strategy is a mechanism to restrict the number of available choices at each solution

7 Note that in standard ACO variants the upper bound of the pheromone values depends on the pheromone update and on the problem instance
that is tackled.
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construction step. Usually, this restriction applies to a number of the best choices with respect to their transition prob-
abilities (see Eq. (7)). For example, in the case of the application of ACS to the TSP, the restriction to the closest cities
at each construction step both improved the final solution quality and led to a significant speedup of the algorithm
(see [40]). The reasons for this are as follows: First, in order to construct high quality solutions it is often enough to
consider only the “promising” choices at each construction step. Second, to consider fewer choices at each construc-
tion step speeds up the solution construction process, because the reduced number of choices reduces the computation
time needed to make a choice.

3.2. Applications of ACO algorithms to discrete optimization problems

As mentioned before, ACO was introduced by means of the proof-of-concept application to the TSP. Since then,
ACO algorithms have been applied to many discrete optimization problems. First, classical problems other than the
TSP, such as assignment problems, scheduling problems, graph coloring, the maximum clique problem, or vehicle
routing problems were tackled. More recent applications include, for example, cell placement problems arising in
circuit design, the design of communication networks, or bioinformatics problems. In recent years some researchers
have also focused on the application of ACO algorithms to multi-objective problems and to dynamic or stochastic
problems.
Especially the bioinformatics and biomedical fields shows an increasing interest in ACO. Recent applications of

ACO to problems arising in these areas include the applications to protein folding [83,84], to multiple sequence
alignment [76], and to the prediction of major histocompatibility complex (MHC) class II binders [57]. The protein
folding problem is one of the most challenging problems in computational biology, molecular biology, biochemistry
and physics. It consists of finding the functional shape or conformation of a protein in two- or three-dimensional space,
for example, under simplified lattice models such as the hydrophobic-polar model. The ACO algorithm proposed in
[84] is reported to perform better than existing state-of-the-art algorithms when proteins are concerned whose native
conformations do not contain structural nuclei at the ends, but rather in the middle of the sequence. Multiple sequence
alignment concerns the alignment of several protein or DNA sequences in order to find similarities among them. This
is done, for example, in order to determine the differences in the same protein coming from different species. This
information might, for example, support the inference of phylogenetic trees. The ACO algorithm proposed in [76] is
reported to scale well with growing sequence sizes. Finally, the prediction of the binding ability of antigen peptides
to major MHC class II molecules are important in vaccine development. The performance of the ACO algorithm
proposed in [57] for tackling this problem is reported to be comparable to the well-known Gibbs approach.
ACO algorithms are currently among the state-of-the-art methods for solving, for example, the sequential ordering

problem [41], the resource constraint project scheduling problem [71], the open shop scheduling problem [9], and
the 2D and 3D hydrophobic polar protein folding problem [84]. In Table 2 we provide a list of representative ACO
applications. For a more comprehensive overview that also covers the application of ant-based algorithms to routing
in telecommunication networks we refer the interested reader to [36].

4. Theoretical results

The first theoretical problem considered was the one concerning convergence. The question is: will a given ACO
algorithm find an optimal solution when given enough resources? This is an interesting question, because ACO al-
gorithms are stochastic search procedures in which the pheromone update could prevent them from ever reaching an
optimum. Two different types of convergence were considered: convergence in value and convergence in solution.
Convergence in value concerns the probability of the algorithm generating an optimal solution at least once. On the
contrary, convergence in solution concerns the evaluation of the probability that the algorithm reaches a state which
keeps generating the same optimal solution. The first convergence proofs concerning an algorithm called graph-based
ant system (GBAS) were presented by Gutjahr in [53,54]. A second strand of work on convergence focused on a class
of ACO algorithms that are among the best-performing in practice, namely, algorithms that apply a positive lower
bound τmin to all pheromone values. The lower bound prevents that the probability to generate any solution becomes
zero. This class of algorithms includes ACO variants such as ACS andMMAS. Dorigo and Stützle, first in [90] and
later in [36], presented a proof for the convergence in value, as well as a proof for the convergence in solution, for
algorithms from this class.
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Table 2
A representative selection of ACO applications

Problem Authors Reference
Traveling salesman problem Dorigo, Maniezzo, and Colorni [30,34,35]

Dorigo and Gambardella [33]
Stützle and Hoos [91]

Quadratic assignment problem Maniezzo [64]
Maniezzo and Colorni [66]
Stützle and Hoos [91]

Scheduling problems Stützle [89]
den Besten, Stützle, and Dorigo [26]
Gagné, Price, and Gravel [39]
Merkle, Middendorf, and Schmeck [71]
Blum (respectively, Blum and Sampels) [9,14]

Vehicle routing problems Gambardella, Taillard, and Agazzi [42]
Reimann, Doerner, and Hartl [82]

Timetabling Socha, Sampels, and Manfrin [87]

Set packing Gandibleux, Delorme, and T’Kindt [43]

Graph coloring Costa and Hertz [24]

Shortest supersequence problem Michel and Middendorf [74]

Sequential ordering Gambardella and Dorigo [41]

Constraint satisfaction problems Solnon [88]

Data mining Parpinelli, Lopes, and Freitas [80]

Maximum clique problem Bui and Rizzo Jr [20]

Edge-disjoint paths problem Blesa and Blum [7]

Cell placement in circuit design Alupoaei and Katkoori [1]

Communication network design Maniezzo, Boschetti, and Jelasity [65]

Bioinformatics problems Shmygelska, Aguirre-Hernández, and Hoos [83]
Moss and Johnson [76]
Karpenko, Shi, and Dai [57]
Shmygelska and Hoos [84]

Industrial problems Bautista and Pereira [2]
Silva, Runkler, Sousa, and Palm [85]
Gottlieb, Puchta, and Solnon [48]
Corry and Kozan [23]

Multi-objective problems Guntsch and Middendorf [52]
Lopéz-Ibáñez, Paquete, and Stützle [62]
Doerner, Gutjahr, Hartl, Strauss, and Stummer [29]

Dynamic (respectively, stochastic) problems Guntsch and Middendorf [51]
Bianchi, Gambardella, and Dorigo [4]

Music Guéret, Monmarché, and Slimane [50]

Recently, researchers have been dealing with the relation of ACO algorithms to other methods for learning and
optimization. One example is the work presented in [6] that relates ACO to the fields of optimal control and reinforce-
ment learning. A more prominent example is the work that aimed at finding similarities between ACO algorithms and
other probabilistic learning algorithms such as stochastic gradient ascent (SGA), and the cross-entropy (CE) method.
Zlochin et al. [96] proposed a unifying framework called model-based search (MBS) for this type of algorithms.
Meuleau and Dorigo have shown in [72] that the pheromone update as outlined in the proof-of-concept application
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to the TSP [34,35] is very similar to a stochastic gradient ascent in the space of pheromone values. Based on this
observation, the authors developed an SGA-based type of ACO algorithm whose pheromone update describes a sto-
chastic gradient ascent. This algorithm can be shown to converge to a local optimum with probability 1. In practice,
this SGA-based pheromone update has not been much studied so far. The first implementation of SGA-based ACO
algorithms was proposed in [8] where it was shown that SGA-based pheromone updates avoid certain types of search
bias.
While convergence proofs can provide insight into the working of an algorithm, they are usually not very useful

to the practitioner that wants to implement efficient algorithms. This is because, generally, either infinite time or
infinite space are required for an optimization algorithm to converge to an optimal solution (or to the optimal solution
value). The existing convergence proofs for particular ACO algorithms are no exception. As more relevant for practical
applications might be considered the research efforts that were aimed at a better understanding of the behavior of ACO
algorithms. Of particular interest is hereby the understanding of negative search bias that might cause the failure of an
ACO algorithm. For example, when applied to the job shop scheduling problem, the average quality of the solutions
produced by some ACO algorithms decreases over time. This is clearly undesirable, because instead of successively
finding better solutions, the algorithm finds successively worse solutions over time. As one of the principal causes for
this search bias were identified situations in which some solution components on average receive update from more
solutions than solution components they compete with [12]. Merkle and Middendorf [69,70] were the first to study
the behavior of a simple ACO algorithm by analyzing the dynamics of its model, which is obtained by applying the
expected pheromone update. Their work deals with the application of ACO to idealized permutation problems. When
applied to constrained problems such as permutation problems, the solution construction process of ACO algorithms
consists of a sequence of local decisions in which later decisions depend on earlier decisions. Therefore, the later
decisions of the construction process are inherently biased by the earlier ones. The work of Merkle and Middendorf
shows that this leads to a bias which they call selection bias. Furthermore, the competition between the ants was
identified as the main driving force of the algorithm.
For a recent survey on theoretical work on ACO see [31].

5. Applying ACO to continuous optimization

Many practical optimization problems can be formulated as continuous optimization problems. These problems are
characterized by the fact that the decision variables have continuous domains, in contrast to the discrete domains of the
variables in discrete optimization. While ACO algorithms were originally introduced to solve discrete problems, their
adaptation to solve continuous optimization problems enjoys an increasing attention. Early applications of ant-based
algorithms to continuous optimization include algorithms such as Continuous ACO (CACO) [5], the API algorithm
[75], and Continuous Interacting Ant Colony (CIAC) [37]. However, all these approaches are conceptually quite
different from ACO for discrete problems. The latest approach, which was proposed by Socha in [86], is closest to the
spirit of ACO for discrete problems. In the following we shortly outline this algorithm. For the sake of simplicity, we
assume the continuous domains of the decision variables Xi , i = 1, . . . , n, to be unconstrained.
As outlined before, in ACO algorithms for discrete optimization problems solutions are constructed by sampling

at each construction step a discrete probability distribution that is derived from the pheromone information. In a way,
the pheromone information represents the stored search experience of the algorithm. In contrast, ACO for continuous
optimization—in the literature denoted by ACOR—utilizes a continuous probability density function (PDF). This den-
sity function is produced, for each solution construction, from a population of solutions that the algorithm keeps at all
times. The management of this population works as follows. Before the start of the algorithm, the population—whose
cardinality k is a parameter of the algorithm—is filled with random solutions. This corresponds to the pheromone
value initialization in ACO algorithms for discrete optimization problems. Then, at each iteration the set of generated
solutions is added to the population and the same number of the worst solutions are removed from it. This action cor-
responds to the pheromone update in discrete ACO. The aim is to bias the search process towards the best solutions
found during the search.
For constructing a solution, an ant chooses at each construction step i = 1, . . . , n, a value for decision variable Xi .

In other words, if the given optimization problem has n dimensions, an ant chooses in each of n construction steps
a value for exactly one of the dimensions. In the following we explain the choice of a value for dimension i. For
performing this choice an ant uses a Gaussian kernel, which is a weighted superposition of several Gaussian functions,
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Fig. 5. An example of a Gaussian kernel PDF consisting of five separate Gaussian functions. © Springer-Verlag, Berlin, Germany. The author is
grateful to K. Socha for providing this graphic.

as PDF. Concerning decision variable Xi (i.e., dimension i) the Gaussian kernel Gi is given as follows:

(12)Gi(x) =
k∑

j=1
ωj

1
σj

√
2π

e
− (x−µj )2

2σj
2

, ∀x ∈ R,

where the j th Gaussian function is derived from the j th member of the population, whose cardinality is at all times k.
Note that 1ω, 1µ, and 1σ are vectors of size k. Hereby, 1ω is the vector of weights, whereas 1µ and 1σ are the vectors of
means and standard deviations respectively. Fig. 5 presents an example of a Gaussian kernel PDF consisting of five
separate Gaussian functions.
The question is how to sample a Gaussian kernel Gi , which is problematic: While Gi describes very precisely the

probability density function that must be sampled, there are no straightforward methods for sampling Gi . In ACOR
this is accomplished as follows. Each ant, before starting a solution construction, that is, before choosing a value for
the first dimension, chooses exactly one of the Gaussian functions j , which is then used for all n construction steps.
The choice of this Gaussian function, in the following denoted by j∗, is performed with probability

(13)pj = ωj
∑k

l=1ωl

, ∀j = 1, . . . , k,

where ωj is the weight of Gaussian function j , which is obtained as follows. All solutions in the population are ranked
according to their quality (e.g., the inverse of the objective function value in the case of minimization) with the best
solution having rank 1. Assuming the rank of the j th solution in the population to be r , the weight ωj of the j th
Gaussian function is calculated according to the following formula:

(14)ωj = 1
qk

√
2π

e
− (r−1)2
2q2k2 ,

which essentially defines the weight to be a value of the Gaussian function with argument r , with a mean of 1.0, and
a standard deviation of qk. Note that q is a parameter of the algorithm. In case the value of q is small, the best-ranked
solutions are strongly preferred, and in case it is larger, the probability becomes more uniform. Due to using the ranks
instead of the actual fitness function values, the algorithm is not sensitive to the scaling of the fitness function.
The sampling of the chosen Gaussian function j∗ may be done using a random number generator that is able to

generate random numbers according to a parameterized normal distribution, or by using a uniform random generator
in conjunction with (for instance) the Box–Muller method [18]. However, before performing the sampling, the mean
and the standard deviation of the j∗th Gaussian function must be specified. First, the value of the ith decision variable
in solution j∗ is chosen as mean, denoted by µj∗ , of the Gaussian function. Second, the average distance of the other
population members from the j∗th solution multiplied by a parameter ρ is chosen as the standard deviation, denoted
by σj∗ , of the Gaussian function:

(15)σj∗ = 1
k
ρ

k∑

l=1

√(
xl
i − x

j∗
i

)2
.
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Parameter ρ, which regulates the speed of convergence, has a role similar to the pheromone evaporation rate ρ in
ACO for discrete problems. The higher the value of ρ ∈ (0,1), the lower the convergence speed of the algorithm, and
hence the lower the learning rate. Since this whole process is done for each dimension (i.e., decision variable) in turn,
each time the distance is calculated only with the use of one single dimension (the rest of them are discarded). This
allows the handling of problems that are scaled differently in different directions.
ACOR was successfully applied both to scientific test cases as well as to real world problems such as feedforward

neural network training [15,86].

6. A new trend: Hybridization with AI and OR techniques

Hybridization is nowadays recognized to be an essential aspect of high performing algorithms. Pure algorithms
are almost always inferior to hybridizations. In fact, many of the current state-of-the-art ACO algorithms include
components and ideas originating from other optimization techniques. The earliest type of hybridization was the
incorporation of local search based methods such as local search, tabu search, or iterated local search, into ACO.
However, these hybridizations often reach their limits when either large-scale problem instances with huge search
spaces or highly constrained problems for which it is difficult to find feasible solutions are concerned. Therefore,
some researchers recently started investigating the incorporation of more classical AI and OR methods into ACO
algorithms. One reason why ACO algorithms are especially suited for this type of hybridization is their constructive
nature. Constructive methods can be considered from the viewpoint of tree search [45]. The solution construction
mechanism of ACO algorithms maps the search space to a tree structure in which a path from the root node to a leaf
corresponds to the process of constructing a solution (see Fig. 6). Examples for tree search methods from AI and OR
are greedy algorithms [79], backtracking techniques [45], rollout and pilot techniques [3,38], beam search [78], or
constraint programming (CP) [68].
The main idea of the existing ACO hybrids is the use of techniques for shrinking or changing in some way the

search space that has to be explored by ACO. In the following we present several successful examples.

6.1. Beam-ACO: Hybridizing ACO with beam search

Beam search (BS) is a classical tree search method that was introduced in the context of scheduling [78], but
has since then been successfully applied to many other CO problems (e.g., see [25]). BS algorithms are incomplete
derivatives of branch & bound algorithms, and are therefore approximate methods. The central idea behind BS is to
allow the extension of sequences in several possible ways. At each step the algorithm extends each sequence from a
set B, which is called the beam, in at most kext possible ways. Each extension is performed in a deterministic greedy

Fig. 6. This search tree corresponds to the solution construction mechanism for the small TSP instance as shown and outlined in Fig. 3. The bold
path in this search tree corresponds to the construction of solution s = 〈e1,2, e2,4, e3,4, e1,3〉 (as shown in Fig. 3(c)).
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fashion by using a scoring function. Each newly obtained sequence is either stored in the set of complete solutions Bc

(in case it corresponds to a complete solution), or in the set Bext (in case it is a further extensible sequence). At the
end of each step, the algorithm creates a new beam B by selecting up to kbw (called the beam width) sequences from
the set of further extensible sequences Bext. In order to select sequences from Bext, BS algorithms use a mechanism to
evaluate sequences. An example of such a mechanism is a lower bound. Given a sequence s, a lower bound computes
the minimum objective function value for any complete solution that can be constructed starting from s. The existence
of an accurate—and computationally inexpensive—lower bound is crucial for the success of beam search.8
Even though both ACO and BS have the common feature that they are based on the idea of constructing candidate

solutions step-by-step, the ways by which the two methods explore the search space are quite different. While BS is
a deterministic algorithm that uses a lower bound for guiding the search process, ACO algorithms are adaptive and
probabilistic procedures. Furthermore, BS algorithms reduce the search space in the hope of not excluding all optimal
solutions, while ACO algorithms consider the whole search space. Based on these observations Blum introduced a
hybrid between ACO and BS which was labelled Beam-ACO [9]. The basic algorithmic framework of Beam-ACO is
the framework of ant colony optimization. However, the standard ACO solution construction mechanism is replaced
by a solution construction mechanism in which each artificial ant performs a probabilistic BS in which the extension
of partial solutions is done in the ACO fashion rather than deterministically. As the transition probabilities depend on
the pheromone values, which change over time, the probabilistic beam searches that are performed by this algorithm
are adaptive.
Beam-ACO was applied to the NP -hard open shop scheduling (OSS) problem, for which it currently is a state-of-

the-art method. However, Beam-ACO is a general approach that can be applied to any CO problem. A crucial point
of any Beam-ACO application is the use of an efficient and accurate lower bound. Work that is related to Beam-ACO
can be found in [64,67]. For example in [64], the author describes an ACO algorithm for the quadratic assignment
problem as an approximate non-deterministic tree search procedure. The results of this approach are compared to
both exact algorithms and beam search techniques. An ACO approach to set partitioning that allowed the extension of
partial solutions in several possible ways was presented in [67].

6.2. ACO and constraint programming

Another successful hybridization example concerns the use of constraint programming (CP) techniques (see [68])
for restricting the search performed by an ACO algorithm to promising regions of the search space. The motivation
for this type of hybridization is as follows: Generally, ACO algorithms are competitive with other optimization tech-
niques when applied to problems that are not overly constrained. However, when highly constrained problems such
as scheduling or timetabling are concerned, the performance of ACO algorithms generally degrades. Note that this is
also the case for other metaheuristics. The reason is to be found in the structure of the search space: When a problem
is not overly constrained, it is usually not difficult to find feasible solutions. The difficulty rather lies in the optimiza-
tion part, namely the search for good feasible solutions. On the other side, when a problem is highly constrained the
difficulty is rather in finding any feasible solution. This is where CP comes into play, because these problems are the
target problems for CP applications.
CP is a programming paradigm in which a combinatorial optimization problem is modelled as a discrete optimiza-

tion problem. In that way, CP specifies the constraints a feasible solution must meet. The CP approach to search for
a feasible solution often works by the iteration of constraint propagation and the addition of additional constraints.
Constraint propagation is the mechanism that reduces the domains of the decision variables with respect to the given
set of constraints. Let us consider the following example: Given are two decision variables, X1 and X2, both having
the same domain {0,1,2}. Furthermore, given is the constraint X1 < X2. Based on this constraint the application of
constraint propagation would remove the value 2 from the domain of X1. From a general point of view, the constraint
propagation mechanism reduces the size of the search tree that must be explored by optimization techniques on the
search for good feasible solutions.
The idea of hybridizing ACO with CP is graphically shown in Fig. 7. At each iteration, first constraint propagation

is applied in order to reduce the remaining search tree. Then, solutions are constructed in the standard ACO way with

8 Note that an inaccurate lower bound might bias the search towards bad areas of the search space.
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Fig. 7. ACO-CP: A hybrid between ACO and CP.

respect to the reduced search tree. After the pheromone update, additional constraints might be added to the system
(i.e., posted in CP language). As an example, consider an iteration in which the best-so-far solution is improved.
In this case a constraint might be posted that requires a feasible solution to be at least as good as the new best-
so-far solution. Meyer and Ernst introduced and applied the idea described above in an application to the single
machine job scheduling problem [73]. The results are especially promising for problem instances where the search
space of feasible solutions is too large for complete methods, but already sufficiently fragmented to cause difficulties
for ACO.

6.3. Applying ACO in a multilevel framework

The idea that is presented in the following is not really an ACO hybrid. It rather promotes the application of
ACO within a general problem solving framework known as the multilevel framework. Optimization techniques that
are based on this framework, i.e., multilevel techniques, have been in use since quite a long time, especially in the
area of multigrid methods (see [19] for an overview). More recently, they have been brought into focus by Walshaw
for the application to CO. Walshaw and co-workers applied multilevel techniques to graph-based problems such as
mesh partitioning [95], the traveling salesman problem [93], and graph coloring [94]. The basic idea of a multilevel
scheme is simple. Starting from the original problem instance, smaller and smaller problem instances are obtained by
successive coarsening until some stopping criteria are satisfied. This creates a hierarchy of problem instances in which
the problem instance of a given level is always smaller (or of equal size) to the problem instance of the next lower
level. Then, a solution is computed to the smallest problem instance and successively transformed into a solution of
the next higher level until a solution for the original problem instance is obtained. At each level, the obtained solution
might be subject to a refinement process. This idea is illustrated with respect to the application of ACO as refinement
process in Fig. 8.
In [59,60] the authors presented the first application of an ACO algorithm in a multilevel framework for mesh

partitioning. The resulting algorithm outperforms the classical k-METIS and Chaco algorithms for graph partitioning
on several benchmark instances. Furthermore, its performance is comparable to the performance of the evolutionary
multilevel algorithm provided by the popular JOSTLE library, and obtains for some of the benchmark instances new
best solutions. In general, applying ACO in a multilevel framework is only possible if an efficient and sensible way
of contracting a problem instance, and expanding solutions to higher levels, can be found. So far, the multilevel
framework is mainly used in graph-based problems, where the coarsening of a problem instance is obtained by edge
contractions. The application of the multilevel framework to problems that are not graph-based is one of the research
subjects for the near future.
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Fig. 8. ML-ACO: Applying ACO in the multilevel framework. The original problem instance is P . In an iterative process this problem instance
is simplified (i.e., contracted) until the lowest level instance Pn is reached. Then, an ACO algorithm (or any other optimization technique) can be
used to tackle problem Pn . The obtained best solution sn is expanded into a solution sn−1′ of the next bigger problem instance Pn−1. With this
solution as the first best-so-far solution, the same ACO algorithm might be applied to tackle problem instance Pn−1 resulting in a best obtained
solution sn−1. This process goes on until the original problem instance was tackled.

6.4. Applying ACO to an auxiliary search space

The idea that we present in this section is based on replacing the original search space of the tackled optimization
problem with an auxiliary search space to which ACO is then applied. A precondition for this technique is a function
that maps each object from the auxiliary search space to a solution to the tackled optimization problem. This technique
can be beneficial in case (1) the generation of objects from the auxiliary search space is more efficient than the
construction of solutions to the optimization problem at hand, and/or (2) the mapping function is such that objects
from the auxiliary search space are mapped to high quality solutions of the original search space.
An example of such a hybrid ACO algorithm was presented in [10] for the application to the k-cardinality tree

(KCT) problem. In this problem is given an edge-weighted graph and a cardinality k > 0. The original search space
consists of all trees in the given graph with exactly k edges, i.e., all k-cardinality trees. The objective function value
of a given tree is computed as the sum of the weights of its edges. The authors of [10] chose the set of all l-cardinality
trees (where l > k, and l fixed) in the given graph as auxiliary search space. The mapping between the auxiliary search
space and the original search space was performed by a polynomial-time dynamic programming algorithm for finding
the optimal k-cardinality tree that is contained in an l-cardinality tree. The experimental results show that the ACO
algorithm working on the auxiliary search space significantly improves over the same ACO algorithm working on the
original search space.

7. Conclusions

In this work we first gave a detailed description of the origins and the basics of ACO algorithms. Then we outlined
the general framework of the ACO metaheuristic and presented some of the most successful ACO variants today.
After listing some representative applications of ACO, we summarized the existing theoretical results and outlined the
latest developments concerning the adaptation of ACO algorithms to continuous optimization. Finally, we provided a
survey on a very interesting recent research direction: The hybridization of ACO algorithms with more classical artifi-
cial intelligence and operations research methods. As examples we presented the hybridization with beam search and
with constraint programming. The central idea behind these two approaches is the reduction of the search space that
has to be explored by ACO. This can be especially useful when large scale problem instances are considered. Other
hybridization examples are the application of ACO for solution refinement in multilevel frameworks, and the applica-
tion of ACO to auxiliary search spaces. In the opinion of the author, this research direction offers many possibilities
for valuable future research.
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