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How Sound Propagates

Sound takes place when bodies strike the air, . . . by its being moved in a
corresponding manner; the air being contracted and expanded and
overtaken, and again struck by the impulses of the breath and the strings,
for when air falls upon and strikes the air which is next to it, the air is
carried forward with an impetus, and that which is contiguous to the first
is carried onward; so that the same voice spreads every way as far as the
motion of the air takes place.

—Aristotle (384–322 BCE), Treatise on Sound and Hearing

More than two thousand years ago, Aristotle correctly declared that sound
consists of the propagation of air pressure variations.

Even to the casual observer, sound is plainly revealed to be a conse-
quence of vibrating or pulsating objects in contact with air. Surfaces feel a
force from all the molecules colliding with them; every molecule bouncing
off the surface gives it a tiny shove. A bounce is a change of velocity and
thus an acceleration, imparting a force F on the molecule (and an equal
and opposite force acting on the surface) according to Sir Isaac Newton’s
law F = ma, wherem is the mass of the accelerated molecule, and a is the
acceleration.

Fluctuations of pressure above (condensations) and below (rarefactions)
the average pressure, arriving at the surface as sound, cause a very small
increase or decrease in the number of collisions per second, and a cor-
responding tiny but measurable change of force on the surface. These
fluctuations above and below the ambient pressure are called the pressure
amplitude δP , where the total pressure is P = P0 + δP , and P0 is the
ambient pressure. Usually only the amplitudes matter to us; it is changes in
pressure that we hear, not the ambient pressure. We (and other animals)
however are spectacularly sensitive to these changes; a pressure fluctuation
of just a few parts in a billion (a few billionths of an atmosphere) is enough
for us to hear if it happens fast enough.
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As small as it is, the tympanum is huge on the molecular scale. There
are so many molecules colliding with it every millisecond (roughly 1023—
that’s 1 followed by 23 zeros) that they average out and give a nearly
steady pressure, amounting to about 14 lb of force on every square inch.
Air pressure is usually measured in kilopascals (1 kPa = 0.145 pounds per
square inch, or psi). Sea-level air pressure is about 100 kPa, or 14.5 psi. The
tympanummembrane, which separates the middle and outer ear, normally
has equal air pressure on both sides, so there is no net force on it, except for
tiny fluctuations.

Aristotle could not have known that air is a seething mass of
molecules crashing into one another. More than a billion collisions are
suffered by every molecule every second at sea level and room temperature.
In spite of all the collisions, air is mostly empty space: the molecules
occupy only about one part in 5000 of the available volume. Think of
10 bumper cars in an area the size of a football field. You might think
that this was a relatively safe, low density of cars—unless each car was
traveling at thousands of kilometers per hour. There would be many col-
lisions every second. Between collisions, molecules speed along a straight
path at typically half a kilometer per second, managing to travel only
a tenth of the length of a typical bacterium before suffering another
collision.

The density and speed of air molecules are in this way sufficient to
explain atmospheric air pressure and the speed of sound. Individually,
the air molecules (mostly diatomic nitrogen and oxygen) act like drunken
messengers flying and colliding every which way. Nonetheless, these col-
lisions can collectively communicate even slight fluctuations in pressure
to neighboring collections of molecules, which in turn pass them on to
their neighbors, leading to sound propagation. Air molecules are usually
not traveling directly along the path of the sound wave; the information
that there is higher or lower pressure somewhere propagates no faster than
the average speed of molecules along a given direction.

The typical 500 meter/second (m/s) molecule is traveling either in the
wrong direction or only 300 to 400 m/s along the direction of propagation
of the sound. Thus the effective speed with which the morass of mole-
cules communicates pressure variations is less than their average speed of
500m/s. The measured speed of sound in air is about 343 m/s at room
temperature.

The “seething mass of molecules” picture explains why the speed of
sound is insensitive to pressure, since pressure hardly affects the speed
of individual molecules. They crash into each other more often at high
pressure, but between collisions they travel at a speed that depends only on
the temperature, not the pressure. The speed of sound on Mount Everest is
nearly the same as at sea level, if the temperatures are the same.

The average speed of molecules is proportional to the square root of the
temperature, and inversely proportional to the square root of the mass of
the molecules in the gas.
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“Helium voice,” the Donald Duck–like sound when someone speaking
has just inhaled a puff of helium, is the result of the much higher speed
of sound in helium than in air. Helium has a mass of four atomic units;
air has an average mass of about 29 atomic units and

√
29/4 ≈ 2.7. The

speed of sound in helium, 972 m/s, is about 2.8 times that of air, at 343
m/s. Another harmless gas (except that like helium, it displaces oxygen and
can be lethal if breathed for more than a short time), sulfur hexaflouride,
SF6, is much heavier at 146 atomic units and should have a speed of
343 × √

29/146 = 153 m/s; the measured value is 150, less than half the
speed of sound in air. “SF6 voice” is even more astonishing in its effect
than helium voice, and in the opposite direction. (However, the nature of
and reasons for the changes in the sound of the voice using helium and
SF6 will be explained in section 17.9. In spite of impressions, the gases do
not change the pitch of the voice!)

The energy needed to make audible sound is very small. You can shout
for a year, and the energy produced that winds up as sound would not be
enough to boil a cup of water. A full orchestra playing loudly produces
only about enough sound energy to power a weak lightbulb. An orchestral
crescendo might bathe a listener in sound pressure fluctuations of about
1 pascal (1 Pa). Sea-level air pressure is 100,000 Pa, so the crescendo loud
enough to damage your hearing, if it lingered too long, is varying the
pressure by just 0.001%. Clearly, a very delicate detection system is at work.
We will find in chapter 21 that human hearing depends on a few thousand
single-molecule links between cochlear hair cells.

At the extreme—loud sound near the threshold of pain—the air pressure
variations are over a million times bigger than the threshold of hearing,
or about a 0.03% pressure variation, 30 Pa or so. This still seems small,
and yet is almost immediately damaging! This sound level corresponds to
a power arriving at the ear 10,000,000,000,000 (1013) times larger than that
which produces the softest sound we can hear. (The power increases as the
square of the pressure variations.) The dynamic range of our hearing is
truly remarkable.

Why should you buy a 600-watt (W) amplifier for your loudspeakers
if a full orchestra normally produces just a watt of power, 40 or 50 W at
the loudest? The answer is that to reproduce sound, rather large forces
must be exerted on the speaker cone to get it to vibrate in a prescribed
way. The conversion efficiency from motion of a loudspeaker cone to
sound is very low. The cones are moved with electric currents in coils near
magnets, wasting considerable energy. Imagine all the effort you would
expend waving your hands back and forth 1000 times. Only a tiny fraction
of that energy would go into pushing air around; most of the energy
expended would go into working against yourself, so to speak: internal
friction, stopping your arms with one set of muscles after starting them
swinging with another, working against gravity, and so on. So it is with a
loudspeaker. For that matter, musicians can work up a sweat playing an
instrument, all to produce well under a tenth of a watt of sound.
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1.1
Push and Pushback: Impedance

We need to develop a better intuitive foundation for sound propagation.
The “drunken messenger” picture explains the speed of sound but applies
on the molecular scale, too small to give a good sense of wave phenomena
such as reflection, diffraction, refraction, and so on. For example, much
of the sound traveling down a tube reflects from its open end, reversing
direction rather than exiting to freedom. Why doesn’t the sound just
leave the tube? Why is the reflected wave a rarefaction (pressure low
relative to ambient) if the incident wave approaching the end of the tube
was a compression (pressure high relative to ambient)? Why does sound
of high-enough frequency (the frequency is the number of wave crests
traveling by per second), on the other hand, mostly escape the tube without
reflecting? There are not many references that provide a foundation for a
comprehensive understanding of these sorts of phenomena; those written
for engineers and physicists all too often derive equations and formulas but
skimp on the intuition.

Imagine dividing air into small cells. Each cell is large on the molecular
scale; they are packed one next to the other. The size of the cell is
determined by the wavelength of the sound involved (there needs to be at
least several cells per wavelength) and the details of any obstacles, sound
sources, and so on. If we can understand how the cells communicate
with each other, are pushed by and then push back on neighboring
cells, we can understand propagation, reflection, diffraction, and even
refraction of sound. This is our first glance at a powerful engineer’s trick,
wherein the properties of complex objects are lumped into a few well-
chosen summarizing properties. These have vastly less information than
the original system, but enough to carry the essential physics, and leadmore
easily to the correct conclusions.

To understand impedance in air, we begin by considering solid elastic
bodies, such as pucks on an air hockey table or coins on a slick surface.
We need to understand such things in any case, because usually before
air is set in motion, something more massive, like a string or a block of
wood, is set in motion. Each puck or coin is a lumped object—we ignore
the details of atomic or molecular structure inside, but keep essentials such
as size, density, and elasticity, just as we will for air cells when we return
to them. The essentials are used to build a theory of what happens when
adjacent lumps interact. You may have noticed, for example, that in a
head-on collision between two pennies, one initially at rest, the moving
penny stops dead in its tracks, and the second one picks up where the
first one left off. (The demonstration does not work well with quarters
or coins having serrated, gearlike edges colliding with other such coins.
Presumably the serrations cause a rather nonideal collision, gnashing of
the gears, chattering, and so on.)
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Complete transfer ofmomentum does not happenwhen a nickel collides
with a penny at rest, nor when a penny collides with a nickel at rest. The
energy of the first, moving coin is only partially transferred to the second.
If we make a line of coins, each coin becomes an agent of transfer of energy
from left to right, if the first coin was traveling in that direction. A coin
that is much heavier or lighter than its neighbors will impede the transfer
of energy. Two nickels are impedance matched; the stationary nickel gives
as good as it gets, stopping the moving nickel dead. A penny and a nickel
are impedance mismatched; a penny does not exert as much force back
on the colliding nickel as another nickel would and does not decelerate the
nickel all the way to zero speed. The nickel continues on its way, albeit more
slowly. Only in the case of equal masses does the energy get completely
transferred from one coin to the other; this is clear since for the head-on
nickel-penny and penny-nickel collisions, both coins remain inmotion and
that movement carries energy.

If you line up 5 or 6 pennies perfectly on a slick surface and hit the end
of the row head-on with another penny, you will notice the row stays intact,
with the projectile penny adding to the row and the last penny popping off
at the opposite end. The impedance matching works all the way down the
penny chain, each penny for an instant carrying the momentum, giving as
good as it got on its left, and then almost instantly giving and getting forces
on its right that stop it cold and give the momentum to the next penny.
Put a nickel in the chain of pennies and the first penny will rebound from
the row; the last will still pop off the end but with less energy than before.
All the energy of the first coin is not transferred down the chain; rather,
part of the energy has been reflected and part transmitted, because of the
impedance mismatch, which can be blamed on the interloping nickel. The
situation is depicted in figure 1.1.

The impedance of the untethered coins is proportional to their mass.
Two untethered objects of equal mass, therefore, indeed have the same
impedance. The bigger the impedance mismatch, the more energy is
reflected and the less transmitted. The formula for the fraction of energy

Figure 1.1
In the top row, a penny collides head-on
with a row of five pennies, resulting in the
expulsion of the last penny in the row with
the same speed as the first penny had. The
masses are all the same and the chain of
pennies is impedance matched, resulting in
100% transfer of the energy from the first
penny to the last, except for friction. In the
bottom row, the presence of the nickel
replacing one of the pennies causes a
mismatched impedance, with some of the
energy reflected back toward the first
penny, causing it to rebound; only part of
the energy reaches the last penny.
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R that the moving massm1 retains in a head-on collision with a stationary
massm2 is

R = (m1 − m2)2

(m1 + m2)2
. (1.1)

If one coin weighs one-tenth as much as the first, say,m1 = 1,m2 = 10, R
will be 92/112 = 81/121, which means 67% of the energy gets reflected on
one bounce, and 33% transmitted.

What Is Impedance, Really?

Roughly speaking, impedance, which we symbolize with the letter Z,
measures the response of a body to a force—in fact, the force applied
divided by the velocity attained (Z ∼ force ÷ velocity). A heavy object
moves slower than a light one after the same force is applied starting at
rest, so impedance is high for a heavy object, low for a light one. This
is still a rough definition, since in the measurement of Z , the force is
taken to vary sinusoidally (see chapter 3), and the velocity, while also
sinusoidal, may lag or lead the force. We will consider these complications
later.

With this notion of Z (force applied ÷ velocity attained), it is possible
to see why matched impedance leads to complete energy transfer between
two bodies. According to one of Newton’s laws, they experience equal and
opposite force as they collide or interact, and what velocity is lost by one
is gained by the other—just the ticket if you want to transfer energy from
one place to another, or from one thing to another. One coin stops and the
other takes off with the same velocity.

The utility of impedance is to help determine the transfer of energy be-
tween bodies. Matched impedance means efficient energy transfer; unequal
impedances mean rejection or reflection of energy. Ideally, impedance can
be determined for any part of an object, such as a block of metal or a section
of pipe with air in it. If two such objects are joined somehow, an impedance
mismatch (if any) can be calculated, and the transduction (transfer) of
energy from one part to another can then be determined.

As an example, suppose two strings of different density are tied together.
We will see in chapter 8 that waves travel down a uniform string quite
readily, with a velocity c = √

T/ρ, where T is the tension (a force) along
the string, and ρ is the density (mass per unit length) of the string. The two
parts tied together have the same tension, since tension is communicated
all along the string, but they have different density, and thus different
wave speeds c . They also have different impedances. The impedance of
transverse oscillations of a stretched string is

Z =
√

Tρ. (1.2)



October 12, 2012 Time: 06:58pm chapter1.tex

Chapter 1 How Sound Propagates 9

Given the densities ρ1 and ρ2 of the two string segments, we can easily
calculate the reflection and transmission of energy at their junction using
formulas 1.3 and 1.4 given below.

Antireflection Strategies

Suppose we insert a third coin between two mismatched coins, one more
massive than the other. The middle coin should be of some intermediate
mass, tomake themismatches of adjacent coins less severe. It is not difficult
to show that taking the mass of the middle coin to be the geometric
mean of the two original coins (that is, m = √m1m2) is optimal. The
transmission with the intermediate coin in place in the 1:10 impedance
mismatch considered earlier then works out to 53% from the first to the
last coin; an improvement over the previous 33%. We would do even
better with more intermediate coins selected to further reduce the adjacent
impedance mismatches.

Abrupt changes in impedance at a boundary between two objects or
regions lead to low transmission of energy across the boundary. Like the
nickel in a line of pennies, regions with different impedance push back
too much or too little. Suppose we have a system of one impedance Z1
on the left side connected to a second system on the right with a different
impedance Z2. The sudden change of impedance at the interface causes a
fraction of energy R to be reflected:

R = (Z1 − Z2)2

(Z1 + Z2)2
. (1.3)

Thus equation 1.1 generalizes to more general types of impedance,
including (as we shall see) restoring force and friction. The transmitted
energy is

T = 4
(Z1Z2)

(Z1 + Z2)2
, (1.4)

and the reflected and transmitted fractions sum to one: R+T = 1—that is,
what is not transmitted is reflected.1

Impedance matching plays a role in many domains. In the preceding ex-
ample, the coins were a “medium” for the propagation of the translational
energy possessed by the first coin. Light is similar: it propagates nicely
through transparent media, such as air and glass, but these do not have
the same impedance. The impedance (called refractive index in the case of
light) has a mismatch passing from air to glass, with the result that some

1The impedances are in fact complex numbers, so we have R = (|Z1 − Z2|2/|Z1 + Z2|2)
and T = 4[Re(Z∗

1 Z2)/|Z1 + Z2|2], where Re denotes the real part of the variables within the
parenthesis, and | · · · |2 is the absolute value squared of · · · .
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light will reflect at the interface, whether it is coming from air to glass or
vice versa. If a coating can be found with intermediate impedance, it can
break up the impedance mismatch into two smaller steps, with the result
that less light will be reflected and more transmitted. This is the principle
of antireflection-coated eyeglasses and camera lenses. The coating works
better for some colors (wavelengths) than others; this explains the color
sheen often seen on coated optics.

As an example of the importance of impedance to sound and music,
consider a violin. The body of a violin is much heavier and stiffer than
a string and has a much higher impedance. Both impedances vary with
frequency too. The body needs to tap into the energy of the string in order
to make sound. (Vibrating strings by themselves are almost silent—this will
be made clear in the following chapters; see especially the discussion of
dipole sources—for example, section 7.7). Hypothetically the string could
be attached directly to the body, but there are several problems with this
(see figure 1.2). The directly connected string may not set the correct
body vibrations into play. Worse, there is a large impedance mismatch
between string and body, preventing the string from imparting enough of
its energy to the violin. (Note: We don’t want the transfer of energy from
string to body to be too efficient either, lest the string dump its energy
too fast.)Figure 1.2

What would this sound like? A string is
attached directly to a violin body at one
spot (no bridge) and to a rigid wall at
another. It is bowed in the usual way.

Impedance and the Violin

Air has a refractive index nair of about 1, and glass can be nglas s = 1.5 or so.
The refractive index is essentially impedance; the formula for the fraction
of light reflected is

R = (n1 − n2)2

(n1 + n2)2
. (1.5)

This is a 4% reflection of light for air–glass, for each surface, and there are
always at least two surfaces and sometimes many more, as in expensive
camera lenses. By adding an optimal single coating, with the geometric
mean refractive index √nair nglas s , we can get this down to a 2% reflection.
Multiple coatings can do even better.

Can something be inserted between string and violin body to lessen the
impedance mismatch, thus allowing the energy to take two smaller steps,
instead of one large one? While we are at it, can we sweeten the sound by
modulating the impedance (and ultimately the loudness of the instrument)
according to frequency? The answer is yes: this is the job of the bridge, as we
discuss in chapter 18. The bridge is the “intermediate coin” that mediates
the transfer of energy from string to body. Its impedance is cleverly tuned
by choice of shape, size, and material to depend in a certain way on the
frequency of vibration.
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Figure 1.3
An Australian bullwhip can achieve
supersonic speeds at the whip end,
resulting in a loud crack heard some
distance away. Courtesy Cgoodwin.

Bullwhip—The High Art of ImpedanceMatching

The bullwhip is a spectacular example of impedance matching (figure 1.3).
If most of the energy from the relatively heavy handle region can somehow
be efficiently transferred to a light string (“popper”) at the other end, the
popper will wind up moving very fast. Sudden impedance mismatches
along the whip would reflect energy, so the bullwhip is gradually tapered
and also carefully constructed so as to have no abrupt changes in density
or stiffness. The energy of a moving mass m due to its motion is E =
1
2mv

2, where v is its velocity. A reasonable estimate is that the popper
weighs 1/400th as much per centimeter of length as does the handle end.
The energy per centimeter if the handle region weighs M kilograms per
centimeter is E = 1/2MV2, where M is the mass of a centimeter near the
handle end, and V its initial velocity. If this gets transferred to the popper,
then the same energy is now written E = 1/2mv2, wherem is the mass per
centimeter of the popper, and v is the velocity of the popper. The ratio of
the two velocities is

v

V
=
√

M
m

= 20 (1.6)

in this case. A factor of 20 does not sound huge, until you realize it is easy
to get the handle moving at 40 miles an hour (a fast baseball pitch is 100
miles per hour), and 20 times that is 800 miles per hour, or faster than
the speed of sound at 770 miles per hour! The popper thus goes supersonic
(faster than the speed of sound). A supersonic object traveling through the
air creates a shock wave, a very sharp pressure pulse. (More on supersonics
and shock waves in section 7.9.) The pulse itself travels through the
air at the speed of sound, but when it reaches the ear, it is heard as a loud
bang.

ImpedanceMismatches Are Not Always Bad

One does not always want to maximize energy flow across junctions
between two parts of a system.We need the impedancemismatch at the bell
end of a trumpet or clarinet to cause reflections and define its resonance
frequencies. Impedance mismatches are carefully controlled to achieve
desirable timbre in wind and string instruments. For string instruments,
large mismatches are required at the points between which strings are
stretched, lest the vibrations drain away too rapidly, rendering the string
frequencies ill-defined. The infamous wolf note of cellos is a breakdown
of this requirement (see section 18.7)—a near impedance matching where
none was wanted.
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Impedance of Masses and Springs Together

Untethered coins on a table move along without hindrance (except for
friction, which we have neglected so far) but many objects are tied down
and experience a restoring force pulling them back if they are displaced.
The concept of impedance applies, but now impedance can be high
owing not only to large mass but also to large stiffness because of a spring,
which also tends to keep speed low. A mass and spring can combine
to make an oscillator that vibrates at a certain natural frequency; if you
push back and forth at that frequency, the impedance is low even if the
mass is large and the spring is strong, because the oscillator gets moving
very fast.

Three universal properties of matter figure into impedance: (1) Mass is
responsible for resistance to acceleration, as is encoded in Newton’s second
law of motion F = ma (force = mass × acceleration). For a given force,
acceleration andmass are inversely proportional. (2) Stiffness is responsible
for resistance to being stretched or compressed, as encoded in the spring
equation F = −kx, where F is the force, k is the spring constant, and
x is the displacement. (3) The third universal property is friction. We are
deferring that topic for the moment; see section 10.6.

If the force is applied slowly, acceleration is weak. The force is then
usually governed by compressibility or springiness, which therefore gives
stiffness-dominated impedance. If a force is applied suddenly, the object
hardly has time to move and sense its stiffness, but the mass of the object is
felt immediately; the impedance is mass dominated.

Defining andMeasuring Impedance

We measure impedance by applying a back-and-forth, sinusoidal forcing.
(The sinusoid is the subject of chapter 3.) The impedance will depend on
the frequency of this forcing. If the period (time interval between repetition
of the periodic force) of the forcing is very short (high frequency), then
the force is changing suddenly; not much movement of the object takes
place because such a short time elapses between reversals of the force. The
impedance will tend to be mass dominated. If the frequency is low and
the forcing period is very long, then the force is being applied slowly; the
impedance will tend to be stiffness dominated. The object or matter in
question is forced according to F (t)= F sin(2π ft); this periodically pushes
right and left with frequency f . The sine function never gets bigger than 1,
so the maximum force is F .

The object or matter being forced sinusoidally will temporarily build up
speed in one direction and then slow down, stop, and reverse direction,
building up speed in the opposite direction. Reaching high speed suggests
a large response to the forcing, which in turn implies that the object
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presents low resistance—that is, low impedance, to energy at the forcing
frequency f . The frequency-dependent impedance Z( f ) is defined as the
ratio of the maximum force F to the maximum speed u( f ) reached at that
frequency f :

Z( f ) = F
u( f )

. (1.7)

The higher the speed u( f ) attained, the lower the impedance. This defin-
ition still ignores the phase lag or lead of the velocity relative to the force.
The impedance Z( f ) used by engineers is a complex number—that is, it
contains the imaginary number

√−1; however, we will suppress that fact.
(The information we throw away by doing this is the phase [see chapter 3]
of the velocity attained relative to the forcing. We will discuss the phase
quite thoroughly, but will not write it in terms of complex numbers.)
Impedance is a measure of the ratio of the (sinusoidal) force applied to
the speed attained. If we apply a large force and don’t get much speed out
of our efforts, the impedance is high. If for the same force, the point where
the force is being applied reaches a high velocity, the impedance is low. It
is important to remember that in our simplified version of impedance, the
force is calculated as the maximum force at the point of application, and u
is the maximum speed attained by that point.

To measure impedance, we can control the force and then measure
the resulting speed—that is, control the numerator and measure the de-
nominator in expression 1.7. Or we can control the speed of the point
of application, and then measure the force that is needed to maintain
that speed—that is, we can control the denominator and measure the
numerator in equation 1.7. If the force or the velocity is controlled at the
same spot on the object, the same value for the impedance is obtained either
way. Extended objects will have different impedances depending on where
the force is applied.

1.2
Impedance of Air

The idea of “push and pushback” and impedance can now be made more
precise for air. Air has mass and is springy—so there ought to be a way to
connect air to the impedance ideas we just discussed. Again we arbitrarily
divide up a body of air into cells. The cell walls are purely mathematical—
completely elastic and having no mass of their own. They do not exert any
force or pressure of their own, but rather just follow along with the adjacent
air. This division into cells does no harm, yet it helps our thinking. Each cell
has mass and springiness. It is in contact with other cells with their own
mass and springiness. Taking the cells to be cubic, if we push on one side
of a cell, it will tend to bulge out on five other sides.
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Figure 1.4
A piston initiates a pressure pulse in the
cellular picture of sound propagation.
Propagation, reflection, and diffraction are
all represented.

The restoring force that any given cell presents upon being pushed on
one side depends on how much pushback it receives when it tries to bulge
out on the other sides. If one side of the cell is up against a rigid wall, the
pushback from pushing on any other side will be higher, since one side can’t
move at all. Thus the presence of the wall causes an impedance change.

The impedance of a cell of air has three components: a component due
to the mass of the air inside, a component due to the restoring force or
springiness of the air, and a component due to friction, which we can safely
ignore if the air is far enough from surfaces. In analogy with our line of
pennies, cells of air are stacked next to each other, in three dimensions
rather than one. Normally, each cell of air is just like the ones adjacent,
which strongly suggests that air is impedance matched with itself and will
efficiently transmit propagating sound.

Let’s see how this works to explain the propagation of sound. Figure 1.4
shows a sequence of five snapshots in the evolution of a cell system with
walls and a piston present. On the left, a piston has just pushed into the
area, causing a region of high pressure next to its surface. Each cell contains
the same quantity of air, so smaller cells are higher pressure. The piston
holds its place, and the pressure wave begins propagating by the “shove and
be shoved” principle. The color shows the pressure, and the distortions of
the walls of the air cells are shown. A half-wall mid-chamber intersects the
wave, and in the last frame we see reflection and diffraction from the wall
well under-way. The cells just next to the piston are compressed initially,
but they shove their neighbors and return to normal pressure. The domino
effect continues as the wave propagates.

How big do the cells need to be? There is no single answer to this
question, because a few smaller cells can often be replaced by one bigger
cell, but there is a limit: the cells need to be much smaller than the shortest
important sound wavelength, so that the information that they are being
pushed on one side travels to the other sides in a time much shorter
than a period of the sound. Usually a few centimeters or, at worst, a few
millimeters on a side (giant on the scale of the distance between atoms
and molecules in air) will suffice. In free space, they can be about a tenth
of the smallest wavelength present, or even larger. But there may be solid
objects or density changes on a much smaller scale than the wavelength,
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which rudely interrupt the wave. If their effect is to be included accurately,
especially if the listener is nearby, smaller cells need to be used near such
objects.

If a cell pushes back too hard (higher impedance than its neighbor),
then the neighbor doing the pushing will recoil, pushing back on its neigh-
bor on the opposite side, causing a positive pressure pulse to propagate
backward—a reflection. If the adjacent cell, on the other hand, pushes
back too feebly (lower impedance than its neighbor), then the pushing
neighbor will keep moving toward the weak neighbor, ultimately pulling
on its neighbor on the opposite side. That neighbor pulls in turn on its
neighbor on the opposite side, and so on. A rarefaction is propagating back
toward the source. A positive pressure fluctuation will thus partially reflect
back as a negative one if it meets reduced impedance. If the adjacent cells
are impedance matched, each pushes back just enough so as not to reflect
any of the pulse.

The impedance of water is about 3400 times larger than the impedance
of air. You may have noticed that if you are underwater, it is very difficult
to hear someone above water, even if he is shouting. Using formula 1.3
for the amount of energy reflected, we find that about 99.9% of the sound
arriving from the air is reflected from the water surface. Sound launched
within water travels quite well; if it reaches the surface, it reflects back
down. Notice from formula 1.3 that the percent of energy reflected is the
same, nomatter which side of the interface the energy is approaching from.

Several types of impedances are used for air, depending on the situation.
All of them are a ratio of a force to a velocity or, if you like, the ratio of a
“push” to “flow.”

Specific acoustical impedance z. The push or force is measured in fluids
as pressure p—that is, force per unit area on a surface. The flow ν is just
the speed with which the small cell moves due to the pressure. The specific
acoustical impedance is just the ratio of these two quantities:

z = p
ν
.

Again, we are glossing over the relative phase lag of the pressure versus the
velocity; they may reach their maxima at different times under sinusoidal
pressure variations.

If there are no surfaces or reflections of any sort, the specific acoustical
impedance is an intrinsic property of the medium, given by the product of
the density of the medium ρ0 and the speed of sound in it c ; z = ρ0c .

Acoustical impedance (lumped) Z. The specific acoustical impedance
is determined at a single point. Sometimes a lumped impedance is better
to work with. For example, when we want to determine the impedance
mismatch and reflection upon a sudden change of pipe diameter, it is
convenient to have a single lumped impedance for pipes of given diameter.



October 12, 2012 Time: 06:58pm chapter1.tex

16 Part I Sound Itself

For this, the impedance definition is changed a little, so that all the cells
across the pipe are lumped together and the velocity used is the volume
velocity—that is, the velocity attained by the little cells times the area S of
the pipe. For a pipe where the diameter is small compared to a wavelength,
the velocity v as a sinusoidal wave passes by will be essentially uniform
across the pipe, so the volume velocity is U = v × S and the acoustic
impedance of the pipe of cross-sectional area S is

Z = p
U

= ρ0c
S
.

Thus the impedance of a pipe is inversely proportional to the area of the
pipe.

In developing our “push and pushback” intuition for sound propaga-
tion, we are in fact coming very close to the way numerical computations
are done. We will not go into the details of the algorithms here, but it is
not difficult to imagine that a computer can be programmed to determine
the result of all the pushing and shoving by air cells, including the effects of
boundaries.

Keeping track of the air pressure variations everywhere, including the
effect of various nearby surfaces, is an enormous task, even for twenty-first-
century computers. However, by employing banks of graphics-processing
chips (the computers within the computer that control screen display,
called graphics-processing units, or GPUs), we can carry out the calcu-
lations required to simulate the generation and propagation of sound.
GPUs became powerful and cheap primarily because of the demands of
computer games. It will not be long before acoustical consulting firms will
be providing their clients with accurate and perfectly detailed computer
simulations of the sound in concert halls or other soundspaces, including
the effects of curtains, statues, chairs, and people; sound absorbing surfaces
of all sorts; open windows; and so on. The process of computing the sound
pressure field—by following the movement of the sources of sound, the
propagation of sound waves, and all the reflections, refractions, absorption,
and so on that are present, turning it finally into a playable sound file—is
called auralization.

1.3
Propagation of Sound in Pipes

Pipes make the whole issue of sound propagation much simpler, provided
we confine ourselves to sounds whose wavelengths are long compared to
the diameter of the pipe. Such long wavelengths propagate along the axis
of the pipe but don’t vary much from center to edge of the pipe, permitting
a one-dimensional treatment in terms of the distance down the axis of the
pipe. Pressure is given as a function of this distance and time along the pipe
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axis. This is much simpler than trying to work out all the variations in a
three-dimensional sound field.

We suppose that such a pressure wave is traveling down the pipe. This
is easily arranged in a number of ways, such as slapping an open end with
a flat object. The propagation of such a pulse down a straight-walled tube
is intuitive from the cellularization and impedance picture of the air in the
pipe. First, since we will not be concerned with variations in pressure across
the pipe, we can enlarge the cells into thin lozenges that extend across the
pipe, taking on the cross section of the pipe. The pressure is taken to be
constant everywhere in a given lozenge.

Each lozenge has mass m and is pushing out on its two neighbors;
they push back just as hard in the quiescent state. If a disturbance arrives,
a lozenge momentarily pushes on its neighbor a little harder, which now
feels an unbalanced net force F as it begins to accelerate according to
F =ma. The acceleration in turn induces a harder push on the next
lozenge, and so on down the line, leading to propagation of the pulse.

We now turn to what happens when changes in the pipe are encountered
by the pulse.

Reflection of Sound at a Closed End

The impedance of all the lozenge cells is the same because they are all
identical in a pipe that does not change cross section. Suppose, however,
the pulse meets a rigid end cap—that is, infinite impedance. The cell next
to the wall pushes back on the adjacent cell very hard, since it has nowhere
to go. This “over-pushback” causes the adjacent cell to recoil in the reverse
direction; in turn, it pushes on its neighbor on the side away from the
wall, and so on. There is thus a traveling pressure pulse that has reversed
direction; it has bounced or reflected off the end cap with no loss of energy
(figure 1.5).Note that the end cap did not move at all to cause this reflection,
or echo, of the sound.

Reflection of Sound at an Open End

If a pipe terminates in an open end, it is much the same as a sudden very
large increase in pipe diameter. We expect a sharp drop in impedance; the
discontinuity will reflect sound amplitude back with the opposite sign. The

Figure 1.5
Reflection at a closed end cap in a pipe,
taken directly from a Paul Falstad Ripple
simulation. The simulation of a single
half-wave, as seen here, can be set up in
Ripple by initiating sinusoidal waves to the
left of the pipes and later erasing all but one
half-pulse inside the pipe before it reaches
the junction.
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Figure 1.6
Reflection of a pressure pulse at the open
end of a narrow pipe (top) and the closed
end of a narrow pipe (bottom). Three
significant effects are seen: First, the sign
of the pulse reverses in the case of the
open end, but not in the case of the closed
end. Second, in the case of the open end,
not much of the sound is emitted; most
reflects. Third, there is a slight delay (as
seen using the vertical reference line) of a
pulse in the case of the open-end pipe as
compared to the closed-end pipe, as if the
open pipe were slightly longer. The delay
is evidence of the end correction which
makes open pipes effectively somewhat
longer than their nominal physical
dimensions.

air at the end of the pipe feels less pushback, overshoots, and pulls on the
air behind it, initiating a rarefraction that propagates backwards.

Figures 1.6 and 1.7 show this effect quite nicely. Both figures are taken
directly from Ripple simulations, which we can set up by drawing the pipes
and sending in sinusoidal waves. The simulation is stopped, and the Erase
Wave tool is used to trim the wave to lie inside the pipe and to be only half
a wavelength across.

An open pipe partly reflects the wave with a change of sign. It reflects as
if from a place just outside the end of the pipe, making the pipe effectively
longer by about 0.6 times the diameter, for wavelengths that are large
compared to the diameter.

As an interesting test of our understanding, suppose we send a pulse
through a tube heading toward an open end, but this time the pulse
exists outside the pipe as well. What will happen when the pulse reaches
the end of the tube? The air inside the pipe has no idea that the pres-
sure pulse exists outside until it reaches the end; as the pressure exits
the pipe, instead of finding lower pressure laterally as it did before, it
now finds matched higher pressure outside. There is no sudden pressure
release laterally, no impedance change. The entire pulse proceeds as if
nothing happened; there is no back reflection inside the pipe at all.
Figure 1.7 comprises two snapshots from a Ripple simulation verifying this
effect.

Figure 1.7
Two snapshots of a Ripple simulation
showing a pulse propagating from left to
right both inside and outside a tube.
When the pulse exits the pipe, no
reflection takes place.
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Reflection of Sound at the Junction of Different-diameter Pipes

If the pipe changes diameter, the pulse will meet a change in impedance.
Cells on the other side of the diameter change will push back too hard (if the
impedance it meets is higher than its own), or too little (if the impedance
it meets is lower). This will cause partial reflections of the sound at such
junctions.

Earlier, we said that the impedance of air in a pipe depends on the
diameter of the pipe. The bigger diameter, the lower the impedance. This
makes a certain amount of sense, since a small pipe “impedes” the flow of
air more than a large pipe. The impedance is again Zpipe = ρ0c

S , where ρ0 is
the density of air, c is the speed of sound, and S is the cross-sectional area
of the tube.

The physical reason for the increase of specific impedance as the pipe
diameter decreases is understandable from the cellular picture. The higher
specific impedance of a small pipe implies that if a small cell of air is
pushed, a neighboring cell will push back harder than it would in a larger
pipe. Why should this be? All the pushing and pushing back is of course
communicated by the air in the pipe from cell to cell at the speed of sound.
Suppose a given cell is being pushed to the right for a time τ ; in free space,
that push would be communicated in all directions a distance x = cτ in
the time τ , where c is the velocity of sound. In the pipe, most of those
directions lead to the walls of the pipe, where the pressure pulse created by
the push is reflected. Some of the reflected pressure returns fast enough to
the cell that was originally disturbed that it leads to an increased pushback,
while the original push is still happening and therefore in phase with the
pushing, thus increasing the impedance. “Fast enough” is in relation to the
frequency of pushing. This suggests the wall needs to be within an eighth
of a wavelength or so, to return in phase. Most musical instruments are

Figure 1.8
Sound of the same wavelength propagates
in a narrow and a wide pipe in this Ripple
simulation. It escapes more readily from the
wide pipe, which can be seen by inspecting
the intensity of the reflected waves in the
right pair of panels. This can be justified
using the cellular picture and impedance
arguments, as explained in the text.
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Figure 1.9
Reflection at a discontinuity in pipe
diameter, taken directly from a Falstad
Ripple simulation. (Top) A compression
pulse traveling to the right encounters a
smaller pipe, causing a compression
reflection (same sign as the incident wave)
and partial transmission of the
compression pulse. (Bottom) A pulse of
higher pressure (compression) traveling to
the right encounters a larger pipe, causing
the reflection of a rarefaction pulse
(opposite sign from the incident pulse)
and partial transmission of the
compression pulse.

operating at frequencies such that the wall is always this close or closer. In
fact, the pressure pulse doesn’t reflect just once, but many times, depending
on the diameter of the pipe. Thus the narrower the pipe, the higher the
impedance.

The cellular picture confirms that short-wavelength sound will escape
the pipe more readily than does long-wavelength sound. The frequency is
higher for the shorter wavelength, so a cell just inside the pipe may not
get an in-phase, reinforcing reflection from the walls in time to increase its
impedance. It acts more like a free cell and thus doesn’t noticemuch change
as it encounters cells outside the pipe: little impedance mismatch, and little
reflection. This is exactly what is seen in the Ripple simulation in figure 1.8,
where a wave train of the same wavelength is traveling down a narrow and
a wide pipe (right). After the encounter with the open end, much stronger
reflection is seen inside the narrow pipe, and stronger transmission is seen
outside the wide pipe (even accounting for the fact that there was more
wave energy in the big pipe to begin with). Take note of the wavelength of
the wave compared to the pipe diameter in both cases.

If a pipe suddenly becomes narrower, or wider, there is a corresponding
abrupt impedance change (mismatch) at the junction of the two sections
of pipe. If a positive pressure pulse is traveling from a wider to a narrower
pipe, a positive pressure pulse returns from the junction, reflecting part of
the energy. If instead it encounters a wider pipe, a negative pressure pulse
reflects part of the energy (figure 1.9).




