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ABSTRACT. This paper describes a formula of C. F. GAUSS for calculating the day of the
week from the calendar date and gives a conceptual proof. A formula for the Julian day
number is derived. My implementation of the formula in REXX and C is included.

PREFACE

GAUSS’ formula calculates the day of the week, Monday, . . . , Sunday, from the calendar date
year-month-day. I learned about it in 1962 when reading the Mathematical Recreations [2] by
MAURICE KRAITCHIK (1882–1957). It is stated there without proof, together with an application
to a perpetual calendar.

This article explains the formula and its mathematical background, including a proof and the
concepts behind the algorithms implemented in the program gauss.c.

GAUSS never published his formula; it appeared only in 1927 in his Werke [1, [XI, 1.]. For the
convenience of the reader I have included this notice in appendix A.1
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1. GAUSS’ FORMULA EXPLAINED

1.1. The Gauss formula. Given are d = day, m = month, y = year. We split the year into
the century part and the two digit year inside the century. For m ≥ 3 it is done for the
year y = 100 · c + g , i.e. c = [y/100], g = y −100 · c, such that 0 ≤ g ≤ 99. For m = 1,2 it is
done for the year y −1 = 100 · c + g .

Following KRAITCHIK [2, The Calendar, p. 110–111] GAUSS’ formula is:

w ≡ d +e + f + g + [g /4] (mod 7)

where w ≡ 1, . . . corresponds to Monday, . . . , etc., and with the following constants de-
pending on the month (e) resp. century ( f ):

Month m 1 2 3 4 5 6 7 8 9 10 11 12
e 0 3 2 5 0 3 5 1 4 6 2 4

Gregorian Calendar Century c mod 4 f
1600,2000, . . . 0 0
1700,2100, . . . 1 5
1800,2200, . . . 2 3
1900,2300, . . . 3 1

2010 Mathematics Subject Classification. Primary 68-04; Secondary 68N15.
Key words and phrases. Calendar formula, perpetual calendar, Julian day number.

1
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For the Julian calendar the same formula applies with modified constants f according to the
following table:

Julian Calendar Century c mod 7 f
0000,0700,1400, . . . 0 5
0100,0800,1500, . . . 1 4
0200,0900,1600, . . . 2 3
0300,1000,1700, . . . 3 2
0400,1100,1800, . . . 4 1
0500,1200,1900, . . . 5 0
0600,1300,2000, . . . 6 6

Some perpetual calendars exploit this formula (or present tables that are equivalent to
the formula). A short explanation (with some gaps) of this formula is given in the next
section 1.2 and a complete proof in section 2.

1.2. A short reasoning. First, recall the Gregorian rule for leap years:

A normal year has 365 days, with an extra day – the leap day 29.02. – added every four
years, except for century years, when the century is not divisible by 4.

In terms of our variables this reads

y = 100 · c + g is a leap year :⇐⇒
(g 6= 0 and g ≡ 0 mod 4) or (g = 0 and c ≡ 0 mod 4)

This rule implements a periodicity of 400 years that have exactly 3 · 24+ 25 = 97 leap
years and 3 · 76+ 75 = 303 normal years. Otherwise put, 400 consecutive years in the
Gregorian Calendar consists always of exactly 97 ·366+303 ·365 = 146097 days, which
results in an average length of a Gregorian year of 146097

400 = 365.2425 days (or, if you
prefer, has 31,556,952 seconds).

A brief ‘reasoning’ on this formula (with some shortcuts) runs as follows:

The first term d , the progression with days, is obvious.

365 ≡ 1 (mod 7), so the first and last day of any normal year fall on the same weekday.
This explains the term g (from year to year progress). The other term [g /4] accounts for
the extra day every four years.

How much week days do we have to shift from one century to the next ? 100 ≡ 2 (mod 7),
plus the 24 leap years in the century give 24 ≡ 3 (mod 7), so a century adds 2+3 = 5 shift
days.

For the Julian Calendar we have 25 leap years in a century, thus a century shifts by 2+4 = 6 days.

This explains the f values: 5+5 ≡ 3 (mod 7), 5+5+5 ≡ 1 (mod 7). Their dependency
on c (mod 4) and the gap (‘leap’) from c ≡ 3 to c ≡ 0 (mod 4) is due to the leap century
rule (in the Gregorian Calendar).

This leaves us to explain the ‘magic’ values for e. Let us look at the following table with
the number d(m) of days in a month, the sum e(m) of days for the previous months
(number of days from begin of the year for non leap years only) and their values mod 7:

m 1 2 3 4 5 6 7 8 9 10 11 12
d(m) 31 28 31 30 31 30 31 31 30 31 30 31
e(m) 0 31 59 90 120 151 181 212 243 273 304 334

(mod 7) 0 3 3 6 1 4 6 2 5 0 3 5

The ‘magic’ value is e = e(m) for the months m = 1,2 and e = e(m)− 1 for the other
months . . . (mod 7).
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It is left to the reader as an exercise to render this reasoning into an irreproachable math-
ematical proof and to develop a more conceptual approach.

Instead, you might as well study the program in the appendix B.2: the function offset
in gauss.c gives a different parametrization of dates in terms of offset and year ; the
function date is inverse to offset.

Or, you might want to read the conceptual approach developed in section 2.

1.3. Historical Perspective. The actual internationally used calendar is derived from
the Roman calendar as reformed by Julius Caesar in 46 BC, who introduced the leap day
every four years (Julian Calendar). The average length of the Julian year is therefore
365.25 days.

Now, the solar (or tropical) year, which is founded on the revolution of the Earth around
the Sun, defined by passing the vernal equinox, is measurably shorter: 365 days, 5 hours,
48 minutes and 45.51 seconds, or 31,556,925.51 s, or 365.242193402 days. This is about
11 minutes and 15 seconds shorter than the Julian average year.

In the course of the centuries this discrepancy added up, leading to the fact that the Ju-
lian year was behind schedule: it had inserted too many leap days. In the 16th century
the deviation amounted to about 12 days. UGO BONCOMPAGNI (Bologna 1502 – Roma
1585), better known as Pope GREGORY XIII (1572), established in 1582 a calendar re-
form (Gregorian Calendar), which dropped 10 days: the day following (Julian) October
4 became (Gregorian) October 15, and introduced the leap year rules described above.

Note, however, the Gregorian year is not perfect for all times. It is (again) too long: but
this time by only 26.49 seconds, but this will also add up over time. The imperfection
accumulates to a whole day in about 1/(365.2425−365.242193402) = 3261 years. Then,
an additional leap day would have to be left out again . . . With the advent of leap sec-
onds this will, of course, not happen: clocks nowadays tick much more accurate than
heavenly bodies once did (they didn’t – but we didn’t know).

As the scale for numbering the years is changing occasionally in our History, we will
have to make a choice. In this paper we will treat all Calendar dates as if the Gregorian
Calendar is valid thru eternity (so called proleptic Gregorian Calendar). We will also
make use of the astronomical numbering of years by integers . . . ,−3,−2,−1,0,1,2, . . .
(instead of the Historians’ numbering of 4 BC, 3 BC, 2 BC, 1 BC, 1 AD, 2 AD). Ignoring
the possibly finite number of years since Creation, we will use the rational integers for
the years.

The program gauss.c ignores the historical truth as well and neglects the Julian rules
in force from 46 BC up to 1582 (and beyond in several countries). Instead, it treats all
input dates according to Gregorian rules, but it gives the date of the Julian Calendar in
its output.

2. TOWARDS A CONCEPTUAL APPROACH

2.1. Heuristical remarks. In principle the days from now to the past or to the future
look like the set Z of rational integers. But there is no natural day zero and one has to
make an arbitrary choice. We will see one way to do this numbering in section 2.4.

The set T of dates is another funny renumbering of Z by a triple t = (y,m,d) of year,
month, day (in some countries noted as d.m.y, in others d/m/y or even m/d/y; the ISO
8601 format prescribes y-m-d and this is also used in my program gauss.c.
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The searched for map from T to the set of weekdays {Monday,. . . , Sunday} should be as
simple as the canonical map Z → F7, the integers (mod 7). We will construct a candidate,
to be called Gauss maps

ω : T −→ F7

in a fairly natural way and give an explicit formula in terms of the coordinates y,m,d —
it turns out to be the Formula of Gauss (8) in Corollary 2.3.

2.2. The leap function. For a year y ∈ Z we set the century c = [y/100] and the remain-
der g = y −100 ·c, such that 0 ≤ g ≤ 99. The (Gregorian) leap function on the set of years
is a boolean map

λ : Z −→ {0,1}

given by

λ(y) =
{

1 if (g 6= 0∧ g ≡ 0 mod 4)∨ (g = 0∧ c ≡ 0 mod 4),

0 otherwise

The subset of leap years will be denoted by

Λ= {y ∈ Z |λ(y) = 1}

We have

Λ= 400Z∪ ⋃
k 6≡0 mod 25

4k +100Z

We also define for a month m and any year y

λ(y,m) =
{
λ(y) if m > 2

0 for m = 1,2

As we need to keep track of counting leap years thru the centuries, let us note some
properties of λ, more or less obvious from the definitions.

Lemma 2.1. Let 0 ≤ g < 100. We have

c∑
l=1

λ(100 · l ) = [c/4] c ≥ 0(1)

g∑
k=1

λ(100 · c +k) = [g /4](2)

100c+g∑
x=1

λ(x) = [c/4]+24 · c + [g /4] c ≥ 0(3)

−
0∑

x=1+100c+g
λ(x) = [c/4]+24 · c + [g /4] c < 0(4)

Proof. The relations (1), (2) are obvious by the leap year rule. As to (3):

100c+g∑
y=0

λ(y) =
c−1∑
l=0

99∑
k=0

λ(100 · l +k)+
g∑

k=0
λ(100 · c +k)

=
c∑

l=0
λ(100 · l )+

c−1∑
l=0

99∑
k=1

λ(100 · l +k)+
g∑

k=1
λ(100 · c +k)

= [c/4]+1+
c−1∑
l=0

24+ [g /4]

= [c/4]+1+24 · c + [g /4] and λ(0) = 1.
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As to (4): by symmetry λ(−x) =λ(x), hence

0∑
x=1+100c+g

λ(x) =
−1−100c−g∑

x=0
λ(x)

and we are in the situation of (3) with −1−100c−g = 100(−1−c)+(100−1−g ), −1−c ≥ 0,
0 ≤ 100−1− g < 100,

0∑
x=1+100c+g

λ(x) = 1+
−1−100c−g∑

x=1
λ(x) =

= 1+
[−1− c

4

]
+24(−c −1)+

[
100−1− g

4

]
=

= 1+
[−1− c

4

]
−24 · c −24+25+

[−1− g

4

]
=

=−[c/4]−24 · c − [g /4]

where we have used the relation 1+ [−1−n
4

]=−[ n
4

]
, valid for any n ∈ Z. �

2.3. Shifting Dates. The set T of valid ‘dates’ is a subset of

Z× {1, . . . ,12}× {1, . . . ,31}

defined by

T := Z× {1,3,5,7,8,10,12}× {1, . . . ,31}

∪ Z× {4,6,9,11}× {1, . . . ,30}

∪ Z× {2}× {1, . . . ,28}

∪Λ× {2}× {29}

The last set in the union are the leap days (29th of February).

We have a finite ‘fibration’ map
π : T −→ Z

given by the first projection π(y,m,d) = y . Normal fibers π−1(y), y ∉ Λ, have 365 ele-
ments, whereas ‘leap’ fibers (y ∈Λ) have 366, i.e. fiber cardinality is

(5) |π−1(y)| = 365+λ(y)

We use the natural order of days: t < t ′ if t ′ is later than t . The cardinality of the segment
of the year of all days up to t = (y,m,d) is

(6) |{t ′ ∈π−1(y) | t ′ ≤ t }| = d +e(m)+λ(y,m)

We have a natural shift operation of the additive group Z on T :

σ : Z×T −→ T

(n, t ) 7−→ n + t

where n + t is defined as t shifted by n days, earlier (n < 0) or later (n > 0) in time. We
also write σt (n) =σ(n, t ) = n + t , as well as t ′− t = n for t ′ = n + t .

Examples

1+ (2000,2,28) = (2000,2,29)

1+ (2001,2,28) = (2001,3,1)

−365+ (2001,1,1) = (2000,1,2)

−152930+ (2001,6,30) = (1582,10,15)

1872+ (1947,2,4) = (1952,3,21)

(y,m,d) = d +e(m)+λ(y,m)+ (y −1,12,31)



6 BERNDT E. SCHWERDTFEGER

This operation is simply transitive. Therefore, any t ∈ T gives rise to an isomorphism

σt : Z
∼−→ T

n 7−→ n + t

which is linear: σt (n +m) = n +σt (m). Taking the inverse σ−1
t and combining with

Z → F7 gives us Gauss maps

ωt : T −→ F7

which have the property ωt (n +u) = n +ωt (u) =ω−n+t (u). So, there are only 7 of them,
differing from each other by a constant ∈ F7.

Now I choose t0 = (0,12,31) as the arbitrary origin of our counting.

Let t = (y,m,d) ∈ T be any date. To calculate ω(t ) = ωt0 (t ) we need to determine n ∈ Z
with n = t − t0. Then ω(t ) = n mod 7 ∈ F7.

To this end, we will have to go thru the fibers from t to t0, from the fiber π−1(y) to the
fiber π−1(1), and keep track of the number of days in passing.

. . . •t

◦t0

0 1 . . . y −1 y

(in this picture we assume y > 0).

Proposition 2.2.

(7) t − t0 = d +e(m)+365 · (y −1)+ [c/4]+24 · c + [g /4]

Proof. Let us first assume y > 0, then by (6) and (5)

t − t0 = d +e(m)+λ(y,m)+
y−1∑
x=1

|π−1(x)| =

= d +e(m)+λ(y,m)+
y−1∑
x=1

(365+λ(x)) =

= d +e(m)+365 · (y −1)+
{∑y

x=1λ(x) m ≥ 3∑y−1
x=1λ(x) m = 1,2

= d +e(m)+365 · (y −1)+
100c+g∑

x=1
λ(x) =

= d +e(m)+365 · (y −1)+ [c/4]+24 · c + [g /4]

where we have substituted y = 100 ·c+g resp. y −1 = 100 ·c+g , and applied the Lemma
in section 2.2, relation (3).
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Let us now assume y ≤ 0, we are in the situation of the following picture:

• . . .
t

◦t0

y −1 y . . . −1 0

and counting similarly the fibers we get

t − t0 = d +e(m)+λ(y,m)−
0∑

x=y
|π−1(x)| =

= d +e(m)+λ(y,m)−
0∑

x=y
(365+λ(x)) =

= d +e(m)+365 · (y −1)−
0∑

x=1+100c+g
λ(x) =

= d +e(m)+365 · (y −1)+ [c/4]+24 · c + [g /4]

where we have substituted y = 100 ·c+g resp. y −1 = 100 ·c+g , and applied the Lemma
in section 2.2, relation (4). �

Corollary 2.3. (Gauss formula)

(8) ω(y,m,d) = d +e + f + g + [g /4]

where f = 5 · r when c = q ·4+ r , 0 ≤ r ≤ 3 and e =
{

e(m) for m = 1,2

e(m)−1 for m > 2

Proof. We have ω(t ) = t − t0 mod 7, hence by the proposition

ω(t ) = d +e(m)+ y −1+ [c/4]+3 · c + [g /4]

For m = 1,2, as well as for m > 2

e(m)+ y −1 = e(m)−1+ y = e +100 · c + g

therefore

ω(t ) = d +e +5 · c + [c/4]+ g + [g /4] =
= d +e +5 · (q ·4+ r )+q + g + [g /4] =
= d +e + f + g + [g /4]

�

2.4. The Julian day number. The Julian day number is defined as the number of days
passed since JC -4712-01-01, which is -4713-11-24 in the proleptic Gregorian Cal-
endar, hence is given by j (t ) = t − t1 = (t − t0)− (t1− t0), where t1 = (−4713,11,24). From
equation (7) we evaluate

t1 − t0 = 24+e(11)+365 · (−4713−1)+ [−48/4]+24 · (−48)+ [87/4] =−1721425

hence

(9) j (t ) = 1721060+d +e(m)+365 · y + [c/4]+24 · c + [g /4]
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APPENDIX A. THE FORMULA IN GAUSS’ NACHLASS

GAUSS never published his formula for finding the day of the week. It appeared in 1927
in [1, XI, 1.] p. 206 with remarks by ALFRED LOEWY regarding its derivation.

A.1. Den Wochentag des 1. Januar eines Jahres zu finden.

Handschriftliche Eintragung in: Sammlung astronomischer Tafeln, unter Aufsicht der Kgl. Preußischen Akademie der Wis-
senschaften, I. Band, Berlin 1776. — 1798 von GAUSS erworben.

Bezeichnet man den kleinsten positiven Rest einer Grösse A nach dem Modulus m durch R : A
(mod m), so lassen sich alle Vorschriften des Gregorianischen Kalenders auf folgende geschmei-
dige Art darstellen:

1.

Wenn man die Tage vom 1ten Januar 1701 an zählt, d. i. diesen mit 1, den 2ten mit 2, den 31ten

Dec. 1700 mit 0, den 30ten mit −1 etc. bezeichnet, so ist der 1te Januar in irgend einem Jahre A

= 1+ (A−1701)365+ 1

4

(
(A−1701)−R : (A−1701) mod 4

)
− 1

100

(
(A−1701)−R : (A−1701) mod 100

)
+ 1

400

(
(A−1601)−R : (A−1601) mod 400

)
2.

Die Wochentage Sonntag, Montag, etc. mit 0,1 etc. bezeichnet, ist der 1te Januar irgend eines
Jahres, qua Wochentag,

≡ 6+ A+ (2A+5R : (A−1) mod 4)

+ (3A+4R : (A−1) mod 100)

+ (A+2+6R : (A−1) mod 400)

 mod 7.

Also von 1601 bis 2000

≡ 6+6A+5R : (A−1) mod 4+4R : (A−1) mod 100.

Allgemein

≡ 1+5R : (A−1) mod 4+4R : (A−1) mod 100+6R : (A−1) mod 400.

A.2. Comparison. The reader may look up the remarks by LOEWY in [1]. I contend that
the formula in A.1 is identical to (8). Using earlier notation, let y = A −1 = 100c + g and
c = 4q + r , then in GAUSS’ notation R : y mod m = y − [y/m]m, hence

R : y mod 4 = R : g mod 4 = g −4[g /4]

R : y mod 100 = g

R : y mod 400 = 100r + g

Calculating in F7 the weekday of January 1st of year A by A.1 is

= 1+5R : y mod 4+4R : y mod 100+6R : y mod 400 =
= 1+5g −20[g /4]+4g +12r +6g =
= 1+ g + [g /4]+5r =ω(A,1,1) by formula (8). �

https://gdz.sub.uni-goettingen.de/id/PPN235957348
https://gdz.sub.uni-goettingen.de/id/PPN235957348
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APPENDIX B. PROGRAM LISTINGS

The program gauss displays

• the day of the week ({Mon, Tue, Wed, Thu, Fri, Sat, Sun})
• the Gregorian date,
• the Julian date (JC),
• the day of the year (D#),
• the week of the year (W#),
• the Julian day number (J#),
• the Unix day (X#)

The input syntax is date [offset], where date is in ISO 8601 format year-mm-dd and
offset can be any integer. Weeks run from Monday to Sunday, its numbering follows ISO.

When experimenting with some input you will see that gauss is tolerant to some false
dates (correcting them): asking for 1999-2-29 it correctly answers 1999-03-01. Empty
input will terminate the program.

B.1. Earlier implementations. The subroutines go back to an implementation in REXX
in the late 1980s on the IBM VM/CMS operating system. They were used in a program to
generate weekly statistics of defects in a project. Then, at the wake of another leap year
(1996), I put them all together into a small REXX program (gauss.rexx, see below in
section B.3 for a recent version) and wrote up a rationale of the algorithm and a proof of
the formula. This rough explanation of Gauss’ formula constituted the original content
at my Web site (June 1999).

In March 2004 I ported the program to Perl, and in March 2009 to C. Since 2004 the
Julian day number and the Julian Calendar date was included.

The subroutine date implements the operation of the integers on the dates and offset
returns the day of the year of a date. The subroutine leap implements the Gregorian
leap year rules and weekday returns the result of Gauss’ formula. I deviate from the text
above and use as numbering of the weekdays Monday = 0, . . . , Sunday = 6. This way the
Julian day number is ≡ to the weekday. The subroutine julian calculates the Julian day
number.

For positive y we have in REXX c = y % 100 (integer divide), and the remainder is g =
y // 100. This is false for negative y , when REXX yields y//100 = -[-y/100] instead.
C suffers from the same wrong floor function as the other programming languages: the
Euclidean algorithm gives the formula a = q · b + r with q = [a/b] and 0 ≤ r < b for
positive b. If a is negative the C function a/b gives the wrong result except if b divides
a. The routines quot and mod correct the handling of the floor function for negative
arguments (and I allow for negative years).

These implementations have been run on various platforms:

• REXX on VM, OS/2, DOS, Windows, Linux
• Perl on Linux, AiX, Windows
• C on Windows and Linux.

B.2. Program listing gauss.c.

/ * −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*

Module : gauss . c
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Description :

This program explores Gauss ’ formula f o r weekday calculation

in the p r o l e p t i c Gregorian Calendar .

For a detai led explanation see my calendar a r t i c l e :

https : / / berndt−schwerdtfeger . de /wp−content / uploads / pdf / cal . pdf

Input : year−mm−dd [ o f f s e t ] ( ISO 8601 Format )

Output : Weekday , date , Julian Calendar date , day of the year ,

week of the year , Julian day number , Unix day number

Subroutines : date , o f f s e t , weekday , julian , leap , quot , mod

Sample : gauss 2010−01−0 +120

Fri 2010−04−30, JC 2010−04−17, D# 120 W# 17 J # 2455317 X# 14729

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Copyright (C) 2010 Berndt E . Schwerdtfeger

Licensed under the Apache License , Version 2.0 ( the " License " ) ;

you may not use t h i s f i l e except in compliance with the License .

You may obtain a copy of the License at

https : / /www. apache . org / l i c e n s e s / LICENSE−2.0

Unless required by applicable law or agreed to in writing , software

d i s t r i b u t e d under the License i s d i s t r i b u t e d on an "AS IS " BASIS ,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r express or implied .

See the License f o r the s p e c i f i c language governing permissions and

l i mi t a t i o n s under the License .

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−* /

#include <stdio . h>

#include < s t d l i b . h>

/ / s e t constants

char *wd[ ] = { "Mon" , "Tue" , "Wed" , "Thu" , " F r i " , " Sat " , "Sun" } ;

int em[ 1 3 ] = {0 ,0 ,31 ,59 ,90 ,120 ,151 ,181 ,212 ,243 ,273 ,304 ,334};

const int JULIAN = 0 ;

const int GREGOR = 1 ;

/ / prototype statements f o r functions

void date ( int , long , long * , int * , int * ) ; / / type , o f f s e t , year , month, day

long o f f s e t ( long , int , int ) ; / / = o f f s e t into year y

int weekday ( long , int , int ) ; / / = { 0 | 1 | 2 | 3 | 4 | 5 | 6 } , 0 = Monday

long j u l i a n ( long , int , int ) ; / / = number of days since JC −4712/01/01
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int leap ( int , long ) ; / / = 1 i f year i s a leap year

long quot ( long , long ) ; / / = [ a / b ] ( corrected : works i f a < 0)

long mod( long , long ) ; / / = a − quot ( a , b ) * b

/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ / main program

/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

int main( int argc , char * argv [ ] ) {

i f ( argc == 1 | | * argv [ 1 ] == ’ ? ’ ) {

p r i n t f ( " \ngauss v1 . 4 , 2010−12−03\n" ) ;

p r i n t f ( "−− Copyright (C) 2009−2010 Berndt E . Schwerdtfeger −− \n\n" ) ;

p r i n t f ( " Input : year−mm−dd [ o f f s e t ] \n\n" ) ;

p r i n t f ( " Output : Weekday , date , Jul ian Calendar date , day of the year , \ n" ) ;

p r i n t f ( " week of the year , Jul ian day number, Unix day number\n\n" ) ;

p r i n t f ( " Sample : gauss 2010−01−00 +120\n" ) ;

p r i n t f ( " F r i 2010−04−30, JC 2010−04−17, D# 120 W# 17 J # 2455317 X# 14729\n\n" ) ;

return EXIT_SUCCESS ; / / end the program

} / / argc > 1 here

int w,m, d , jm , jd ;

long y , jy , j , x , n=0;

char l i n e [ 8 0 ] ;

sscanf ( argv [ 1 ] , "%ld−%d−%d" ,&y,&m,&d ) ;

i f ( argc == 3)

sscanf ( argv [ 2 ] , "%ld " ,&n ) ; / / get the o f f s e t

else i f ( argc > 3) {

p r i n t f ( "Too many parameters ! \ n" ) ;

return EXIT_FAILURE ; / / end the program

}

while ( 1 )

{

n += o f f s e t ( y ,m, d ) ; / / c o r r e c t the o f f s e t

date (GREGOR, n , &y , &m, &d ) ; / / c o r r e c t y , m, d

j = j u l i a n ( y ,m, d ) ; / / s e t Julian day number

x = j − 2440588; / / s e t Unix day number

j y = −4712; / / s e t i n i t i a l julian year

date (JULIAN , j +1 , &jy , &jm , &jd ) ; / / c o r r e c t jy , jm , jd

n = o f f s e t ( y ,m, d ) ; / / s e t o f f s e t in t h i s year

w = weekday ( y ,m, d ) ; / / s e t weekday ( Gauss )

p r i n t f ( "%s %ld−%02d−%02d , JC %ld−%02d−%02d , " ,wd[w] , y ,m, d , jy , jm , jd ) ;

p r i n t f ( "D# %03d W# %02d J # %ld X# %ld \n" ,n , ( n−w+9)/7 , j , x ) ;

f g e t s ( l ine , s i z e o f l ine , stdin ) ; / / read next

i f ( l i n e [0]== ’ \n ’ )

break ;

n = 0 ;
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sscanf ( l ine , "%ld−%d−%d %ld " ,&y,&m,&d,&n ) ;

} / / end of while loop

return EXIT_SUCCESS ; / / e x i t the program

} ;

/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ / subroutines : date , o f f s e t , weekday , julian , leap , quot , mod

/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
void date ( int c , long n , long * y , int * m, int * d ) {

int i ;

while (n > 365 + leap ( c , * y ) ) { / / i f o f f s e t l a r g e r than # of

n −= 365 + leap ( c , * y ) ; / / . . . days in a year

* y += 1 ; / / . . . f ind the c o r r e c t year

}

while (n <= 0 ) { / / i f o f f s e t i s negative

* y −= 1 ; / / . . . f ind the c o r r e c t year

n += 365 + leap ( c , * y ) ; / / . . . and o f f s e t

}

i = leap ( c , * y ) ; / / adjust f o r leap day

*m = 12;

while (n <= em[ *m] + i ) { / / searching f o r the month

*m −= 1 ;

i f ( *m<3) i =0;

}

*d = n − em[ *m] − i ; / / g e t t i n g the day

}

/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
long o f f s e t ( long y , int m, int d ) {

int x = d + em[m] ; / / o f f s e t into t h i s year

i f (m > 2)

x += leap (GREGOR, y ) ; / / adjust f o r leap day

return x ;

}

/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
int weekday ( long y , int m, int d ) {

i f (m < 3)

y −= 1 ;

long c = quot ( y , 1 0 0 ) ;

int g = mod( y , 1 0 0 ) ;

int f = 5 * mod( c , 4 ) ;

int e = em[m] ;

i f (m > 2)

e −= 1 ;

return (−1 + d + e + f + g + g/4)%7; / / Gauss ’ formula
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}

/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
long j u l i a n ( long y , int m, int d ) {

long x = 0 ;

i f (m < 3) {

y −= 1 ;

x = 365;

}

long c = quot ( y , 1 0 0 ) ;

int g = mod( y , 1 0 0 ) ;

x += em[m] ;

return 1721060 + d + x + 365*y + quot ( c , 4 ) + 24*c + g / 4 ;

}

/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
int leap ( int c , long y ) {

int i = 0 ;

i f ( y%4 == 0)

i = 1 ;

i f ( c == GREGOR)

i f ( y%100 == 0) / / i f century . .

i −= ( y%400 != 0 ) ; / / . . adjust

return i ;

}

/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
long quot ( long a , long b ) {

long x ;

x = a/b ;

i f ( a < 0 ) / / f o r negative numerator . .

x −= ( a%b != 0 ) ; / / . . i f remainder , subtract 1

return x ;

}

/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
long mod( long a , long b ) {

return a − quot ( a , b ) * b ; / / remainder always p o s i t i v e

}

B.3. Program listing gauss.rexx.

/ * s e t constants and i n i t i a l i z e variables * /

d . = 31 / * default value f o r days in a month * /

d. 2 = 28; d. 4 = 30; d. 6 = 30; d. 9 = 30; d.11 = 30

e . = 0

Do m = 1 to 12
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e .m = e . 0 / * number of days in previous months * /

e . 0 = e .m + d .m / * simply sum them up * /

end

d. 0 = "Mon" ; d. 1 = "Tue" ; d. 2 = "Wed" ; d. 3 = "Thu" ;

d. 4 = " F r i " ; d. 5 = " Sat " ; d. 6 = "Sun" ;

/ * get the arguments * /

Arg date n .

I f date = ’ ’ then signal help

do forever

I f substr ( date , 1 , 1 ) = ’− ’

then do
parse var date ’− ’ y ’− ’ m ’− ’ d

y = −y

end
else parse var date y ’− ’ m ’− ’ d

I f n = ’ ’ then n=0

I f m = ’ ’ | m < 1 | m > 12 | d = ’ ’ then signal error

n = n + o f f s e t ( y ,m, d) / * get c o r r e c t o f f s e t * /

date = date (n , y ) / * get c o r r e c t date * /

I f substr ( date , 1 , 1 ) = ’− ’

then do
parse var date ’− ’ y ’− ’ m ’− ’ d

y = −y

end
else parse var date y ’− ’ m ’− ’ d

j = j u l i a n ( y ,m, d) / * get Julian day number * /

x = j − 2440588 / * get Unix day number * /

jdate = jdate ( j +1,−4712) / * get Julian date * /

n = r i g h t ( o f f s e t ( y ,m, d ) , 3 , 0 ) / * get o f f s e t in t h i s year * /

w = weekday ( y ,m, d) / * get weekday ( Gauss ) * /

say d .w date | | jdate ’D# ’ n ’W# ’ r i g h t ( ( n−w+11)%7 ,2 ,0) ’ J # ’ j ’X# ’ x

Pull date n .

I f date = ’ ’ then e x i t
end

return

error :

do
say ’ERROR: month and day must not be empty ’

say ’ and month in the range 1 . . 12 ’

end
help :

do
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say ’ ’

say ’ Gregorian Calendar ( since 1582−10−15) ’

say ’ ’

say ’ Input : year−month−day [ o f f s e t ] ’

say ’ ’

say ’ Output : Weekday , date , Jul ian Calendar date , day of the year , ’

say ’ week of the year , Jul ian day number, Unix day number ’

say ’ ’

say ’ Example : gauss . rexx 2018−11−28 −16 ’

say ’ Mon 2018−11−12, JC 2018−10−30, D# 316 W# 46 J # 2458435 X# 17847 ’

say ’ ’

e x i t
end

/ * −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− *

* Subroutines

* date ( o f f s e t , year ) = ’ y−m−d ’ Gregorian Calendar date

* jdate ( o f f s e t , year ) = ’ JC y−m−d ’ Julian Calendar date

* o f f s e t ( y ,m, d) = o f f s e t into year y

* weekday ( y ,m, d) = { 0 | 1 | 2 | 3 | 4 | 5 | 6 } ( Gauss formula ) 0 = Monday

* julian ( y ,m, d) = integer , number of days since JC −4712−01−01

* leap ( year ) = 1 i f year i s a leap year

* div ( a , b ) = int a / b ( corrected i n t e g e r divide , works i f a < 0)

* mod( a , b ) = a − div ( a , b ) * b

* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− * /

date : procedure expose e .

Arg d , y

y = y + 0 / * remove t r a i l i n g blank , maybe * /

Do while d > 365 + leap ( y ) / * i f o f f s e t l a r g e r than # of * /

d = d − 365 − leap ( y ) / * . . . days in a year * /

y = y + 1 / * . . . find the c o r r e c t year * /

end

Do while d <= 0 / * i f o f f s e t i s negative * /

y = y − 1 / * . . . find the r i g h t year * /

d = d + 365 + leap ( y ) / * . . . and o f f s e t * /

end

l . = leap ( y ) ; l . 1 = 0 ; l . 2 = 0 / * adjust f o r leap day * /

m = 12

Do while d <= e .m + l .m / * searching f o r the month * /

m = m − 1

end

d = r i g h t (d − e .m − l .m , 2 , 0)

m = r i g h t (m, 2 , 0 )
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return y | | ’− ’ | | m | | ’− ’ | | d

jdate : procedure expose e .

Arg d , y

Do while d > 365 + ( y//4=0) / * i f o f f s e t l a r g e r than # of * /

d = d − 365 − ( y//4=0) / * . . . days in a year * /

y = y + 1 / * . . . find the c o r r e c t year * /

end

Do while d <= 0 / * i f o f f s e t i s negative * /

y = y − 1 / * . . . find the r i g h t year * /

d = d + 365 + ( y//4=0) / * . . . and o f f s e t * /

end

l . = ( y //4=0) ; l . 1 = 0 ; l . 2 = 0 / * adjust f o r leap day * /

m = 12

Do while d <= e .m + l .m / * searching f o r the month * /

m = m − 1

end

d = r i g h t (d − e .m − l .m , 2 , 0)

m = r i g h t (m, 2 , 0 )

return ’ , JC ’ y | | ’− ’ | | m | | ’− ’ | | d | | ’ , ’

o f f s e t : procedure expose e .

Arg y , m , d

l . = leap ( y ) ; l . 1 = 0 ; l . 2 = 0 / * adjust f o r leap day * /

m = m + 0

return d + e .m + l .m / * o f f s e t into t h i s year * /

weekday : procedure expose e .

Arg y , m , d

I f m < 3 then y = y − 1

c = div ( y ,100)

g = mod( y ,100)

f = 5 * mod( c , 4 )

m = m + 0

e = e .m

I f m > 2 then e = e − 1
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return ( −1 + d + e + f + g + g % 4 ) // 7 / * Gauss ’ formula * /

j u l i a n : procedure expose e .

Arg y , m, d

e = 0

I f m < 3 then
do

y = y − 1

e = 365

end
c = div ( y ,100)

g = mod( y ,100)

m = m + 0

e = e + e .m

return 1721060 + d + e + 365*y + div ( c , 4 ) + 24*c + g%4

leap : procedure

Arg y

c = div ( y ,100)

g = mod( y ,100)

return ( g \= 0 & g // 4 = 0 ) | ( g = 0 & c // 4 = 0 )

div : procedure

Arg a , b

x = a % b

I f a < 0 then x = x − ( a // b \= 0 )

return x

mod: procedure

Arg a , b

return a − div ( a , b ) * b
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