
BBN Proprietary

Copy Number / £

TECHNICAL DETAILS OF THE BBN PAGER MODEL 701

Theodore R. Strollo
Jerry D. Burchflel
Raymond S. Tomlinson

22 July 1970

Bolt Beranek and Newman Inc.
50 Moulton Street

Cambridge, Mass. 02138

cj Bolt Beranek and Newman Inc., July 1970

7 June 70 BBN PROPRIETARY 10-1-4

10. ARITHMETIC PROCESSOR PAGING

10.1 Introduction
BBN has implemented a device called the BBN Pager which is
connected between the KA10 (PDP-10 arithmetic processor)
and the KA10’s memory port. In conjunction with a set of
hardware modifications to the KA10, the BBN Pager changes
the core memory mapping mechanism such that core memory
is allocated and protected in 512 word pages. The address
space of the machine is mapped for EXEC mode as well as
USER mode with the BBN Pager. The paging mechanism can be
bypassed by executing a specific CONO to the pager or by
executing (or depressing) IOB reset to invoke a so called
"transparent mode" for the running of the standard DEC
monitors or diagnostic software.
10.2 The Associative Mapping Process
When mapping is enabled in the pager, the 9 high order
virtual address bits, state of the EXEC/USER mode flip
flop, and type of request (read, write, execute) from the
KA10 are compared and tested with the contents of 1 to 54
(depends on pager configuration) associative registers.
This comparison is performed on all associative registers
simultaneously. If a match is found, the particular as
sociative register containing the match also contains
11 bits which become the high order 11 bits of the real
core address (hereafter abbreviated as R.C.A.).** The use
of 11 R.C.A. high order bits permits the KA10
to reference up to 1024K* words of memory. In this simple
case, the overall delay directly attributed to the pager
is about 100 nanoseconds plus cable delay. The simple case
is represented by Figure 10-1.

*K=1024 words ~ ———————
** A glossary of terms is presented at the end of this section

7 June 70 BBN PROPRIETARY 10-2-4

From KA10 Inside BBN Pager To Memory (When
a match is found)

Priority Inter-^
rupt Cycle J

Key Cycle (When
Examine or
Deposit Switch
is pushed on
computer
console)

These three levels are
used when a trap con
dition arises, but not
in the association
process itself.

Indirect AddreslL.
Fetch J

Read Level(R)--- >
Write Level(W)—>
Execute Level(E)-5

EXEC/USER Mode

9 Highest Bits
of 18 Bit
Address

9 Lowest Bits'i
of 18 Bit f
Address I

These levels are
tested against the
permission bits in
each Associative
Register

These levels are tested
for equivalence with the
corresponding bits in
each Associative Register

> Read Level(R+E)
Write Level(W)

11 Highest Bits
of Absolute
Address
9 Lowest Bits
of Absolute
Address

Bits in Associative Registers

USER Mode (0 for EXEC Mode)

Figure 10-1
Mapping From Virtual to Absolute Addresses
(Simplest Case, Match Found in Associative Register)

7 June 70 BBN PROPRIETARY 10-3-4

10.3 USER Mode Mapping when the Association Falls

When a match Is not found in an associative register (hereafter
abbreviated as A.R.), the pager begins a self-loading sequence
which basically involves the loading of an A.R. from infor
mation found in one or more tables in core memory. The
particular A.R. to get self-loaded is determined in a very
simple cyclic fashion. That is, if the last A.R. loaded was
A.R. 5, the next to be loaded will be A.R. 6(if it exists;
if not, the next existing A.R. in the cyclic sequence is used)
... The average pager is configured with 16 A.R.’s which
means that if the program confines most of its references to
an 8K or less working set, self-loading will be invoked
infrequently.

The first stage of the self-loading sequence involves reading
some Information from a table in core memory called the page
table (hereafter abbreviated as P.T.). This table is 512
words long and is itself a page which may be anywhere in core
memory. The origin of the P.T. is specified by the contents
of a register in the pager called the User Mode Base Register
(hereafter abbreviated as U.B.R.). The 11 bits of the U.B.R.
are used as the 11 high order address bits and are concaten
ated with the original 9 high order address bits (on which the
association failed) to reference the appropriate word in the
P.T.

The word which is read from the page table is of one of four
types as determined by bits 0 and 1 of the word. These types
are :

00 private page
01 shared page pointer
10 indirect page pointer
11 illegal format

10.3.1 Private Page

In the simplest case of a private page type, the rightmost 11
bits contain the high order R.C.A. bits and bits 2-4 contain
the read, write, execute access information which are used to
self-load an associative register. The private page entry
has many options which are detailed in Figure 10-2.

7 June 1970 BBN PROPRIETARY 10-4- 4

Entry type code 00, Private Page

Access permission bit
Trap to Monitor—ll=trap immediately

10=trap after loading A.R.
01=and 00 ■ don’t trap

; Trap on write or read-
------- modi fy-write re ference

; (useful to make private
copy of a page)

I------- Trap to User bit

*not used by Pager hardware
Figure 10-2, Private Page Entry in P.T.

Most of the option bits cause traps to occur which cause
the KA10 to take some special action when a page is
referenced in a particular way.

7 June 70 BBN PROPRIETARY 10-5-4

10.3.1.1 The Location Field
The location field is 22 bits wide. This permits the speci
fication of where a page really is in primary, secondary, or
even tertiary storage. If bits 14-17 are all 0’s, the right
most 11 bits contain the high order R.C.A. bits. If any of
bits 14-17 are set, a page not-in-core trap will be invoked
which will cause the KA10 to take special action.
10.3.1.2 Limiting the Size of the User Address Space
The pager contains a register called the Address Limit Reg
ister (A.L.R.) which is capable of restricting the legal
USER mode virtual addresses to the first 16k, 32K, 48K,
64K, 80K, 96K, 112K or the entire 256K.
10.3.2 The Core Status Table
Whenever an associative register is successfully loaded, a
word in the core memory status table is updated. This table
contains an entry for every page of real core in the system.
An entry contains information about that page related to:
the relative amount of time the page has been in core (con
tained in a 9 bit pager register called A.G.E.R.—AGE Reg
ister) , whether the page has been written into (the modification
bit), and which processes (of a subset of all processes
existing in the system) have referenced the page. The par
ticular processes referencing a page are identified by bits
in the process use field of the entry. These bits are
updated by the contents of a 26 bit pager register called
P.U.R.—Process Use Register.
The use of the core status table (C.S.T.) causes one additional
read-modify-wrlte cycle of overhead (while referencing the
C.S.T.) in the self-loading sequence.
The modification bit and write permission bits at the A.R. are
handled in a slightly complicated way. The modification bit
is set only if the memory request which initiated the loading
of an A.R. was a write or read-modify-wrlte cycle. The mod
ification bit is never cleared by the pager. If an A.R. is
loaded due to a non-write request, the write permission bit
of the A.R. is not set regardless of whether writes are per
mitted by the page table entry unless the page has already
been modified (indicated by the modification bit already set
from some previous operation) and write permission is specified
by the page table entry.

7 June 70 BBN PROPRIETARY 10-6-4

A.R. write permit *■ PT write permit A (WRRQ V modification bit)
new modification bit «- old modification V (WRRQ A PT write permit)

As special aid for the control of shared pages, a pager trap
is generated if the three high order bits of the page age field
in the C.S.T. entry are all 0’s. This provides a way for the
core manager to defer use of a particular real core page while
the page’s state is being tested or changed.

The core status table starts at absolute real core location
40008. A diagram of the table and its use by the pager is
shown in Figure 10-3.

7 June 70 BBN PROPRIETARY 10-7-4

Absolute Core Location
(Start of Table)

4000g

Dispatched
Real Core
Number

into by
Page

Absolute Core z
Location /
10000g (highest,
address to which
table can extend if

CORE STATUS
TABLE

1O24K real memory is used)

Core Status Table Entry x
350 9 108

AGER
Register

PUR
Register

1. Bits 0 - 8 of AGER replace Bits 0 - 8 of CST entry.

2. Bits 10 - 35 are "ORed" into Bits 10 - 35 of CST
entry.

3. Write request level is ”0Red” into Bit 9 of the
CST entry (if the write is permitted).

Figure 10-3

Pager References to the Core Status Table

7 June 70 BBN PROPRIETARY 10-8-4

10.3.3 Shared Page Pointer

The Shared Page Pointer entry in the P.T. is used for the
most commonly shared pages in the system. This type of
entry is detailed in Figure 10-4.

Entry Code (XI, Shared Page Pointer

Read
' Write

(Execute

\\ Directed Traps and Loading Information

(X 1 2 k\4 5 6_______ZV 14 26 27 35

(X 1 R W X it it if Shared Page
Number 13 bits

Unused *

Access permission bit

Trap to Monitor- -ll=trap immediately
10=trap after loading

A.R.
01=and (X(X = don’t trap

Trap on write or read-
modify-write reference
(useful to make private
copy of a page)

Trap to User bit

Figure 10-4 Shared Page Pointer

The Shared Page Number/fleld is used as a dispatch into the
Special Pages Table (S.P.T.) which starts at absolute core
location 20,0(X(?g. The contents of the specified S.P.T. entry
contains the page location information In bits 14-35 In the
same format as a private P.T. entry bits 14-35. (see section
10.3.1.1).

7 June 70 BBN PROPRIETARY 10-9-4

10.3.4 Indirect Page Pointer
The Indirect Page Pointer entry in the P.T. is used for
uncommonly shared files or processes or for indirectly
referencing the dynamic address space of a file or process
which is expected to change. This type of entry is de
tailed in Figure 10-5.

Entry Code 10, Indirect Page Pointer

Read
Write

Execute

Directed Traps and Loading Information

Trap to Monitor—ll=trap immediately
10=trap after loading

A.R.
01=and 00 = don’t

trap
Trap on write or read-
modify-wrlte reference
(useful to make private
copy of a page)

-Trap to User bit

Figure 10-5 Indirect Page Pointer

7 June 70 BBN PROPRIETARY 10-10-4

The Page Table Number (P.T.N.) is used as a dispatch into
S.P.T. to fetch an entry which contains the location in
bits 14-35 (see section 10.3.1.1) Of the indirect page
table. The Page Number Field of the Indirect Page Pointer
is used as a dispatch into the Indirect Page Table. The
specified entry of this table can be any of the three page
table entry types just described. An attempt to use indi
rect page pointers to a depth of more than 2 will result
in a pager trap.
The access permission finally granted via Indirect Page
Pointer mapping is the ’’AND” of the R,W,X bits and other
access permissions starting with the first Indirect Page
Pointer down through all P.T. entries until the destination
page is found. This generally results in a reduction of
the final access granted.
10*3.5 Summary of p.T. Entry Types
All three page table entry types have the virtue that the
actual location of a page is kept in only one place instead
of being replicated in many page tables (for example).
Detailed examples of the three P.T. entries are presented in Figure 10-6.

June
70

BBN PROPRIETARY

7 June 70 BBN PROPRIETARY 10-12-4

10.4 EXEC Mode Mapping

EXEC Mode mapping is really quite similar to USER Mode mapping.
The major difference being that four distinct areas of the
EXEC Mode address space are separately mapped and mapping of
the ’’Resident Monitor” is separately enabled. These four areas
are shown in Figure 10-7.

P
Resident Monitor Code

Mapping Optional
(normally not invoked)

32K Mapped Individually
per KA10 processor

64K Swappable Monitor
Code

19 2K

256K

Mapped Privately
per process

Figure 10-7 Exec Mode Address Space

The associative mapping process is exactly the same for EXEC
mode as USER mode. However, most of the page table (for the
self-loading sequence) for the EXEC mode address space is
fixed in absolute addresses. Namely:

Optional Resident Monitor Map
(Not used unless
Monitor Mapping

3 PPP 8
Resident
is turned on)

to 3P778

First KA10’s Map 31PP8 to 31778

Second KAlp’s Map 37PP8 to 37778

Common Swappable Monitor Map 32PP8 to 35778

absolute
Real Core
locations

7 June 70 BBN PROPRIETARY 10-13-4

The area that is mapped privately per process is actually
mapped by an area of the special overhead page associated
with each process called the Process Storage Block (P.S.B.).
The address of the P.S.B. is specified’ by the-contents of
an 11 bit pager register called the Monitor Base Register
(M.B.R.). Only the highest 128 words of the P.S.B. are used
for mapping purposes. The remainder is used for process
specific temporary storage, stacks, and 2 more words are
used by the pager. Thus locations 600ft - 777o of the P.S.B
map the highest 64K of the EXEC mode address Space.

7 June 70 BBN PROPRIETARY 10-1M

10.5 Invoking the USER Address Space With the KAlff In EXEC Mode

There are two classes of instruction modifications which were
made to the KA10 to enable the system to make references to
parameters in the user’s address space when the machine is in
EXEC mode.

10.5.1 UMOVEx

The first class of instruction modifications is the UMOVEx
set which forces MOVES to and from USER space.

User Map MoveUMOVE

100 M A I X Y
0 6 7 8 9 12 13 :Lil 17 18 35

Move one word from the source to the destination specified by
M, using the user address map. The source is unaffected, the
original contents of the destination are lost.

UMOVE User Move 100
UMOVEI User Move Immediate 101
UMOVEM User Move to Memory 102
UMOVES User Move to Self 10 3

These instructions provide a convenient way for the monitor
to Invoke the USER address mapping to fetch or store infor
mation into the USER address space (UMOVE or UMOVEM). UMOVEI
provides a way for the monitor to do address computation
using indirect addressing through the USER address space.
Of course, indexing and AC references are not affected by the
choice of USER map/EXEC map. However, addresses which indirect
through the USER AC’s are handled specially (see section 10.5.3).

10.5.2 XCT AC, E

The next instruction change is a modification to the XCT
instruction to use the AC Field (formerly ignored) to affect
which map is used.

The AC field is interpreted as shown in Figure 10-8. If the
specified bit is on, use of USER address space is forced for
any of the conditions indicated.

7 June 70 BBN PROPRIETARY 10-15-4

AC Field

9

Effective Data Fetch, Address Data Store,
Address Byte Pointer ■ Computation Byte
Computation, Fetch, From Fetch/Store,
Last Address
of BLT

Po^r Stack,
Push Memory,
’’From* of
BLT

Byte Pointer Push Stack,
Pop Memory,
‘To’ of BLT

11 1210

Bit

Figure 10-8 XCT AC bits

The Instruction to be executed is always fetched from monitor
space. To BLT a data block from a user location specified in
AC left,

HRRI AC, FIRST
XCT 4, [BLT AC, LAST|

• • •
FIRST: BLOCK N

LAST = .-1

To BLT a data block into a user region specified by the first
and last user locations in AC left and right respectively,

HRRM AC, INSTR
HLR AC, AC
HRLI AC, FIRST
XCT 11, INSTR

7 June 70 BBN PROPRIETARY 1O-16-4

INSTR: BLT AC, 0
FIRST: BLOCK N
XCT 15, INSTR can BLT data from one place to another in the
user’s address space. (Useful for zeroing out a region)

To transfer a series of bytes specified by a user byte
pointer in AC,

LP: XCT 3, |lLDB AC2, AC]
(or (iDPB AC2, ACj)

UMOVEx AC, E is equivalent to XCT 15, |MOVEx AC, E~l .

7 June 70 BBN PROPRIETARY 10-17-4

10.5.3 Call From Monitor Flag (PC Flag Bit 7)
Bit 7 of the PC flags word Is used to store the state of a
flip flop named CALL FROM MONITOR. This bit is saved and
restored in the same fashion as the other PC flag bits. It
is cleared by MR START, and set whenever an EX JSYS (ef
fective address<1000) Is executed in EXEC mode. This bit
indicates to the called JSYS routine that effective addres
ses, byte pointers, and BLT pointers passed as arguments
should refer to the EXEC mode address space, not the cur
rent USER address space. When this bit is on, special
XCT and UMOVEX references are automatically forced into
the EXEC mode address space instead of the USER’S space.
This feature simplifies the coding of EX JSYS routines
which accept pointers as arguments and which may be called
either from USER mode or EXEC mode. The routine merely
makes use of any pointers with UMOVEx, or special XCT
instructions, and the CALL FM MON flag automatically forces
references into the correct address space.

7 June 70 BBN PROPRIETARY 10-28-4

10.5.4 Forced References to USER Space Locations 0-17g
A 5 bit AC BASE REGISTER exists in the pager to provide an
independent mapping mechanism for saved accumulators. This
special mapping process to reference saved AC’s is invoked
by forced references to USER space (UMOVEX or special XCT)
with addresses <20g.
During the mapping process, the low 4 bits are taken from
the virtual address, the next 5 bits (27-31) are supplied
from the AC BASE REGISTER, the top 9 bits (18-26) are
forced to 775, and EXEC mode addressing is forced. This
intermediate virtual address is then passed to the pager
for mapping in the standard fashion. This means that the
saved accumulators are mapped into one of 32 blocks, (selected
by the AC BASE REGISTER) each 16 words long, located in
page 775 of the EXEC mode virtual address space. (Recall
this page is mapped privately per process).
This space is ordinarily used as a stack of saved AC’s.
Upon entry to an EX JSYS which is pseudo-interruptable,
the AC’s are BLT’ed into this save region. The EX JSYS
then references its own AC’s in the normal fashion, and the
AC’s saved from the calling program via UMOVEX and XCT
instructions with forced user space effective addresses
<20g. Pointers passed from the calling program which orig
inally pointed into the AC’s are evaluated with UMOVE or
special XCT instructions, and automatically reference
these saved AC’s. This feature operates in the same
fashion whether the calling program was USER mode or EXEC
mode, i.e. the CALL FM MON flag forces special references
2.20g into the EXEC mode space, but special references <200 go Into the saved AC stack independent of this flag. 0

A side effect of this feature is that forced references
<20q in USER mode reference the user’s shadow core. (The
first 20glocations of the user’s page zero).

7 June 70 BBN PROPRIETARY 10-19-4

10.6 Pager Traps
A paging trap will occur whenever one of the following
events happens:

1. The trap bits in the process page table
force a trap.

2. The addressed page (or indirecting page
table) is not in core.

3. An illegal condition is detected.
4. The Core Status Table entry for an ad

dressed page contains an age with the
three highest bits = 0.

When one of the above conditions happens, the pager first
stores the cause and location of the trap into the P.S.B.
at location 571g. The format of this word is shown in
Figure 10-9. Tnen, if the APR operation in progress was
a write, it stores the data into location 572ft of the P.S.B.
Finally, it forces the APR to execute absolute location
70o (170o if second APR). Location 70o should contain a
JSYS instruction to a trap routine. 0
The arrangement of the Trap Cause field was chosen so that
decoding of the cause could be easily accomplished by the
JFFO instruction.
To restart a process which was terminated by a pager trap,
the following Information is of value:

1. The program counter (PC) saved by the JSYS
at location 70g is correct.

2. If the read or execute bits in 571ft of the
P.S.B. are set, restart is completed by
performing a JRSTF @ through the PC word
saved by the JSYS at location 70g (170g).

3. If the read bit is not set but the write
bit is set in 571o of the P.S.B., the data

572g of the P.S.B. must be written into
the address in 571g of the P.S.B. before
returning control to the process via JRSTF.

7 June 70 BBN PROPRIETARY 10-20-l|

A sample program to restart a process whicn was terminated
by a paging trap is given below:

CONO PGR, 0 ;L0AD PAGER WITH NEW BASE REGISTERS,
ETC. (see section 10.7 for details)

MOVE 1, 777571 ;GET TRAP STATUS WORD

TLNE 1, 12

JRST BEGIN

;SKIP IF NEITHER READ NOR EXECUTE
;BITS SET

MOVE 777572 ;GET DATA WORD

TLNE 1, 1

JRST MONWR

;SKIP IF USER MODE

UMOVEM (1) ;COMPLETE USER MODE WRITE

BEGIN: HRLZI 17, 777520

BLT 17, 17

;RESTORE AC’s FOR THE PROCESS

JRSTF @777573 ;RESUME PROCESS (JSYS IN LOCATION 70g

;SAVES THE FLAGS AND PC IN 777573).

MONWR: MOVEM (1)

JRST BEGIN

;COMPLETE MONITOR MODE WRITE

Figure 10-1 shows that the PI cycle, Key Cycle, and Indirect
Address Fetch levels are provided to the pager. The reason
for the PI cycle and KEY cycle bits is to distinguish traps
of the running program from PI and KEY cycle traps (KEY cycles
occur when the console EXAMINE, DEPOSIT, or XCT switches are
pushed). The Trap Status Word in Figure 10-9 contains suf
ficient information to simulate a KEY cycle operation and
recover from the trap provided timing is not critical (e.g.
BLKO or BLKI to magtape or dectape might get data late In
dications). However, a pager trap during a PI cycle should
never occur and is a disaster so recovery is impossible. The
running program can be continued after such a trap by JRSTF
@777573 as in the sample restart program. The indirect address
sequence bit is used to distinguish data reads of non-existent
memory from Indirect addressing reads of non-existent memory.

7 June 70 BBN PROPRIETARY 10-21- 4

In the former case, the software may wish to create a ’’new
memory page” and proceed, but in the latter case, a prog
ramming error has been made.
Another interesting feature of the pager is the monitor
after-loading trap. All other directed traps take place
at the beginning of the self-loading sequence, before any
associative register has been loaded with mapping information
for the new page, but the after-loading trap takes place at
completion of the self-loading sequence. This enables the
Monitor to perform statistics-taking operations for specified
pages each time one is loaded into an associative register.

7 June 70 BBN PROPRIETARY 10-22-4

TRAP STATUS WORD

0 8 9 10

E (Execute request)
V
W (Write request)

V
R (Read request)

I (Indirect address sequence in progress)
PI (Priority Interrupt cycle in progress)

KEY (KEY cycle in progress—console Examine,
XCT, or deposit switch pushed)

Non-EX-MEM
V
Parity Error

Figure 10-9

Bits 0-8, trap cause are decoded as follows: Bits 0 and 1
define one of four groups each defined below:

Group 0: TSR 0, 1 = 00
Bit Meaning if ON
2 AGE = 00X3 AGE = 02X < as read from
4 AGE = 04X C C.S.T.
5 AGE = 06X
6 Monitor After-Loading A.R. trap

7 June 70 BBN PROPIETARY 10-23-4

Group 1: TSR 0, 1 - 01
Bit Meaning if on

3
4
5
6
7
8

Shared not in core
page table not in core (p.t.2)
2nd indirect, private not in core (p.t.3)
Indirect shared not in core (p.t.2 or p.t. 3)
Indirect page table not in core (p.t.3)
Excessive Indirect pointers (>2)

Group 2: TSR 0, 1 = 10
Bit Meaning If on
2
3
4
5
6
7
8

Private Not in core
Write copy trap (bit 9 in P.T.)
User trap (bit 8 in P.T.)
Access trap (P.T. bit 12 = 0 or
Illegal Read or Execute
Illegal Write
Address Limit Register Violation
0,1=3 (illegal format)

bits 10-11=3)

or P.T. bits

Group 3: TSR 0, 1 = 11
Bit Meaning if on
2

(in 2nd or 3rd ?
page table) c b

6
7
8

Private Not in core
Write copy trap (bit 9 in P.T.)
User trap (bit 8 in P.T.)
Access trap (P.T. bit 12 = 0 or
Illegal Read or Execute
Illegal Write
Address Limit Register Violation
0,1=3 (illegal format)

bits 10-11=3)

or P.T. bits

7 June 70 BBN PROPRIETARY 10-24-4

10.7 Controlling the Pager via I/O Buss CONO's

The I0B reset pulse generated by the APR causes the pager
to completely clear Itself. In the cleared state no map
ping is performed by the pager and all memory requests
are passed unchanged to the memory buss. The pager is
assigned device mnemonic PGR (device number 24) and int
erprets the three low bits of CONO PGR, X as described
below. Other bits of the CONO are ignored.

CONO PGR, 0 Clears all associative registers
and reloads the Monitor and User
mode base registers and Address
Limit Register from location 71
and the Core Status age and process
use registers from location 72.
(see Figure 10-10)

CONO PGR , 1 Clears all associative registers
mapping EXEC mode pages.

CONO PGR , 2 Clears the associative register
mapping the page addressed by the
next write (or read-modify-write)
memory reference. The Pager op
erates in the normal manner both
before and after this write ref
erence but does not complete the
write operation.

Note that because a priority interrupt may occur between the
execution of this CONO and the following write instruction,
it is normally required to do the following:

CONO PI, 40T0T ;TURN OFF PI SYSTEM
CONO PGR, 2 ;CLEAR PAGE OF NEXT WRITE
MOVEM PAGE*1000 ;CLEAR PAGE
CONO PI, 200 ;TURN PI SYSTEM BACK ON

CONO PGR, 3 Clears all associative registers
mapping USER mode pages

CONO PGR, 4 Turns off all mapping, leaving base
registers and associative registers
unchanged

CONO PGR, 5 is equivalent to CONO PGR, 4

7 June 70 BBN PROPRIETARY 10-25-4

CONO PGR, 6 Turns off mapping for resident
monitor (virtual addresses
20-777778) and turns on USER
mode mapping and mapping of
EXEC space 100000 - 777777

8 8
Turns on mapping for all address
208 - 777777c for both EXEC mode
ana USER mode references

CONO PGR, 7

7 June 70 BBN PROPRIETARY 10-26-4

CONO PGR, 0 causes the Pager to reload its
main registers as follows:

1. Read absolute location 71g. (171g if second APR),
interpreted as below.

17 18 22 23 24 250 3 4 6 7

xxxx 3 11 bits 5 bits XX 11 bits

page table
ALR (Address Limit Register)
Limits Legal USER mode virtual
addresses to the first 16K,
32K, 48K, 64K, 80K, 96K, or
112K.

MBR (Monitor Base
Register) Location
of the Process Sto-
rage Block.

AC Base
Register

UBR (User Mode Base Register)
The location of the User Mode

No restriction
112K restriction
96K restriction
80K restriction
64k restriction
48K restriction
32K restriction
16K restriction

000 =
001 =
010 =
011 =
100 =
101 =
110 =
111 =

2. Read location 72g (172g if second APR)

358 9 10
9 bits 26 bits

v' PUR (Process Use Register)
Not Used

AGER (AGE Register)

Figure 10-0
Initializing the Pager For Running a New Process

7 June 70 BBN PROPRIETARY 10-27-^

Glossary

A.G.E.R. AGE Register
A.L.R. Address Limit Register
A.P.R. Arithmetic PRocessor (KA10)
A.R. Associative Register
C.S.T. Core Status Table
M.B.R. Monitor Base Register
PGR PaGeR device mnemonic
P.S.B. Process Storage Block
P.T. Page Table
P.T.N. Page Table Number
P.U.R. Process Use Register
R.C.A. Real Core Address
S.P.N. Shared Page Number
S.P.T. Special Pages Table
U.B.R. User Mode Base Register

BBN Pager Model 701 9July?0

I. INTRODUCTION

The BBN Pager Model 701 is a device available to research
PDP-10 users from Bolt Beranek and Newman Inc. for changing
the memory mapping mechanism of the PDP-10. In conjunction
with a set of modifications to the DEC PDP-10 arithmetic
processor (the KA10), the BBN Pager allows paging of core
memory, that is individual relocation of each 512 word page
of the machine’s address space.

II. ADVANTAGES OF PAGING

There are a number of advantages to the entire computer
system when core memory is paged.

Efficient Use of Core Memory

One advantage of paging is that core memory is used more
efficiently. Pieces (l.e. pages) of programs may be
scattered anywhere in real core and the BBN pager relo
cates each page to provide a contiguous ’’virtual memory”
for the user. Thus, the system no longer has to worry
about collecting "holes" in core memory (as is required
by the current PDP-10 dual relocation hardware) in order
to fit programs in a contiguous area of real core.

Virtual Memory Increases the Effective Size of Real Core

Another advantage of paging is that a program can run which
would physically take more core than the real core available
in the system. This concept is called "virtual memory".
Only pages that are needed at the moment must be in core.
When new pages which are not in core are requested they can
be swapped in from the drum and the program can then con
tinue execution. Running partially loaded programs can
substantially Increase core memory efficiency.

Access Protection on a Page Basis

Another feature of the pager is the ability to provide
separate access protection for each 512 word page in the
address space. Independent Read, Write, and Execute pro
tections are provided.

III. PARTICULAR ADVANTAGES OF TEE BBN PAGER MODEL 701

The Core Status Table

The BBN pager maintains a core status table which keeps
records of the activity of the pages in core memory. The

BBN Pager Model 701 9July70

pager notes when a page has been used, which processes
have used that page, how long that page has been in
core, and whether or not the page has been written into.
High Quality Engineering
The pager is constructed by machine wire wrapping and is
made up primarily of standard DEC M-series modules, except
for the BBN designed associative register card. Good
engineering practice has been observed throughout the
implementation of the pager. For ease in maintenance
and software debugging, Indicator lights are used on every
control flip-flop and all critical levels in the pager.
Also, the pager has a single stepping feature which
enables one to step through or loop on each hardware
"subroutine" of the pager cycle. In addition, the wire
list for the pager has been carefully processed by
computer programs to assure that no signal overloads
exist, etc. The pager is also isolated from the memory
buss during power up and down sequencing.
Software Support
The BBN pager has a complete set of diagnostic support
and time sharing support software. The BBN TENEX time
sharing system was explicitly designed for use with the
BBN pager.

Compatibility with DEC Software
Modifications to the KA10 have been made in such a way
that the hardware will continue to run in a so-called
transparent mode if desired. In this transparent mode
all of the DEC diagnostics will run and the DEC 10/50
system will also run.

IV. BRIEF TECHNICAL DESCRIPTION OF BBN PAGER
The paging mechanism involves the "association" of the
9 high order address bits from the KA10 with the contents
of a set of associative registers. If a match is found,
the register which contained the match also contains 11
"real" high order core address bits. (The reason for 11
bits is to permit up to 1 million words of real core to
be referenced by the KA10). If no match is found, ref
erence .is made to a 512 word "page table" in real core
memory. The word in this page table which is referenced
is determined by a dispatch based on the original 9 high

-2-

BBN Pager Model 701 9July70

order address bits. In the simple case of a private page
which is in core, the 11 high order address bits are found
in this word and are automatically loaded into an as
sociative register by the pager. There are 3 other cases:

a. The page is not in core or is non
existent in which case a page fault
(trap) will occur.

b. The page is shared—in which case a
reference is made to another table
in core to find out where the page
is really located.

c. The page indirectly points to an
entry in another page table.

The pager maps both the user’s address space and the mon
itor’s address space separately. £The full technical
details of the memory mapping mechanism are described in
a forthcoming documentQ One of the particular advantages
of our mapping implementation Is that the real core
address of a page (even a shared page) is kept in one
(and only one) place in the system!

V. PRICE, DELIVERY, AND OPTIONS
BBN will supply a fully assembled and checked out pager
for $50K*, F.O.B., Cambridge, Mass. The pager will be
checked out on a PDP-10 at BBN, Cambridge, Mass, and will
undergo an 8 hour reliability test at BBN which the cust
omer may witness. Payment terms are 30 days after ac
ceptance at BBN, Cambridge. Delivery is 6 to 8 months
ARO.*

*Priae and Delivery quotes are subject to change.

Included with the pager are a complete set of pager prints,
pager wire list, and the pager diagnostic (symbolic and
binary) on a DECTAPE. Also included are a package of print
updates and a set of instructions for the necessary wiring
changes and module additions which must be made to the KA10
to accomodate the BBN pager. Contact Ted Strollo for
details on assistance from BBN on the KA10 modifications.
Associative Registers
The BBN pager is normally configured with 16 associative
registers. The pager will function with 1 to 54 associative

-3-

BBN Pager Model 701 9July7O

registers but if you ever intend to go beyond 16 registers,
let us know with yourorder! (A larger power supply is needed).
The number 16 is reasonable for most use of the TENEX
system. Installations which will be running many user
programs with large ’’working sets’’ (e.g. LISP) will operate
more efficiently with more associative registers. These
registers are available at approximately $250 per register
from BBN. Such registers are added in the field by simply
plugging them In.

VI. CONDITIONS OF PAGER SALE
The KA10 processor mods for the BBN pager have been engine
ered to be compatible with KAlO’s which have up to and
including ECO #KA10-00060 installed in the machine. BBN
cannot take responsibility for keeping the processor mods
compatible with any future DEC modifications of the KA10.
It is envisioned that there will be very few modifications
to the KA10 in the future since DEC is busily working on
new machines and most of the bugs and problems with the
KA10 have been solved. (We have confirmed that no KA10
ECO’s are in progress or envisioned by DEC personnel). If,
of course, a major problem is found with the KA10 which
is fixed by a DEC ECO, BBN will make every effort to find
a way to make its modifications compatible with the ECO or
vice versa. When we find this possible we will distribute
these changes to our customers.
The BBN KA10 processor modifications assume the KA10 wiring
runs are exactly the same as in BBN’s two KAlO’s. This
means that the basic KA10 wiring runs as well as all ECO’s
must not have been changed by either DEC or customer person
nel. If there have been any deviations, our add/delete
lists cannot be followed literally to achieve the correct
results. In order to help those who may have deviated, we
have Included the mnemonics of signals being added and
deleted with our processor modifications.
It has been our experience at BBN that DEC will continue
to maintain a KA10 with the BBN processor mods installed.
The customer is responsible for obtaining the memory buss
cable to connect the pager to the memory buss connection
of the KA10. Two special additional cables to connect the
KA10 to the pager are provided by BBN (length to be specified
by customer with order and not to exceed 30 feet).
BBN will distribute documentation on pager ECO’s (should any
be issued) to our customers.

-4-

BBN Pager Model 701 9July70

VII TENEX SOFTWARE DISTRIBUTION
The TENEX software will be available to research PDP-10 users
under a special licensing arrangment (detailed in a forth
coming document). Those customers who buy the BBN Pager
Model 701 are entitled to a copy of the TENEX software package
at the price of reproduction. Those research PDP-10 users
who are not interested in buying the BBN Pager Model 701
but would like a copy of the TENEX software may obtain the
TENEX software package for a licensing fee of $15K plus
the price of reproduction.
Because of variations in customer equipment configurations,
this TENEX system software will in most cases, require some
software modifications to work on the customer’s PDP-10
installation. BBN will be able to provide assistance with
these modifications; contact Ted Strollo for details.
Our customers will also be included on all public distri
butions of TENEX software modifications, improvements, and
bug fixes which will be distributed for the price of repro
duction .

-5-

8December69 BBN PROPRIETARY 10-1-2

10. ARITHMETIC PROCESSOR PAGING

10.1 Introduction
BBN is designing an interface between the KA-10 arithmetic
processor and core memory which we call the Pager. This
device receives from the APR over a standard memory buss
execute,'read, write, and read-modify-write requests. It
then maps any incoming virtual address into an appropriate
real core address (provided the request is legal) and passes
the request to the memory modules over another standard memory-
buss. The mapping requires about 100 nanoseconds.
The paging hardware performs the following functions:

(1) Independently maps each 512-word block (or page)
of the 262,14M-word virtual address space into an
absolute core location, or, if the block is not
currently in core, traps to a core managing
program.
Provides independent protection for each 512-word
page in the read, write, and execute modes.
Records statistics in a Core Status Table which 4“ rs thfi V'^.7 ••'.TYi r\T-,

(2)

(3)

The principal advantage of paging over the current dual-
protect-and-relocate scheme incorporated in the KA-10 is
that each process is provided with a large, constant
262,1^-word virtual machine, yet requires only those pages
which are referenced during an interaction to be in core.
This can significantly reduce the core memory requirements of
running programs.
10.2 Mapping .
It is presently impractical to keep mapping information for
all 512 pages of a virtual address space in hardware because
of the quantity of hardware required. For this reason, a
limited number (16 originally, expandable to 32) of asso
ciative hardware registers are employed and the mapping
information is kept in 512-word Page Tables in core memory.
The manner in which virtual addresses are mapped into real
addresses is shown in Figure 10-1.
Whenever a page not mapped by the associative registers is
referenced, the pager initiates a loading sequence (requiring
about three memory cycles) during which the appropriate page
table entry is referenced and an associative register loaded
with the required mapping information. Associative registers
are reloaded in a round-robin fashion. We hold the theory
that a program’s memory references will be sufficiently
’’collected” that 16 mapping registers are enough to prevent
too frequent reloading. ■ .

ouecemoeroy BBN PROPRIETARY

As shown in Figure 10-2, which page table is referenced
during the loading sequence depends upon the memory re
quest. There is one page table for user mode requests
and three possible partial page tables for monitor mode
requests. The locations of the monitor mode page tables
are as follows:

Optional Map 3000g to 3077g \
(Not used unless Resident
Monitor Mapping is turned on)

First APR’s Map 3100g to 31778
/■Absolute locations

Second APR’ s Map 3700g to 3777g I t

Common Map 3200g to 3577g t
Private Map 600g to 7778 of the Process Storage Block

The locations of the user mode page table and of the pro
cess state page are loaded into the pager when processes
are switched, as described later.

10.3 Controlling the Pager via I/O Buss CONO * s

T’XIS 27OSSL puiss nn Hy APR C8US2S tho

to completely clear itself. In the cleared state no
mapping is performed by the pager and all memory requests
are passed unchanged to the memory buss. The pager is
assigned device number 24 and interprets the three low
bits of CONO*24, X as described below. Other bits of the
CONO are ignored.

CONO 24,0

CONO 24,1

CONQ 24,2

Clears all associative registers and
reloads the Monitor and User mode base
registers and Address Limit Register
from location 71 and the Core Status
age and process registers from location
570 of the (newly mapped) Process Storage
Block.
Clears all associative registers map
ping monitor mode pages.
Clears the associative register map
ping the page addressed by the next
write (or read-modify-write) memory
reference. The Pager operates in the
normal manner both before and after
this write reference but does not
complete the write operation.

Monitor Mode
20g

User Mode

16 K Although processes
may operate in16 K

16 K environments as
large as 256 K,

s the Upper Bound
Register may be
set to exclude

16 K
16 K
16 K all memory refer-’
16 K J ences above 16,

4R. fill. Rn.
96’ or’112’K.

Processes not requiring
a large virtual address
space may achieve economy
by using the Upper Bound
Register and merging the
User Mode page table into
the top of the Process
Storage Block. The num—

. ber of overhead pages re-j
• quited is then reduced :
i from two to one. 1

K Unmapped area*
Absolute addresses

K Mapped individuallj
$ per Processor

Mapped commonly
for all processes ,
and all processors.
Non-resident in
formation in the

128 K Exec and Monitor
is referenced via
this map. The map
itself is in the
unmapped core area,
between 3200fl and 35778. a

64 K Mapped privately
per process

111111%

Figure 10-2
Mapping of Virtual Addresses

*Optionally mapped by locations 3000 to 3077

BBN PROPRIETARY
CONO 24,0 causes the Pager to reload its main registers.
as follows:

1. Read absolute location 71g» (171g if second APR),
interpreted as below.

0 17 35
xxxx 3 11 bits xxxxxxx 11 bits

MBR (Monitor Base Register)
Location of the Process
State Page.

UBR (User Mode Base Register)
The location of the User Mode
page table.

ALR (Address Limit Register)
Limits legal virtual addresses
to the first 16K, 32K, 48K, 64K
80K, 96K, or 112K.

000 = No restriction
001 = 112K restriction
010 = 96K restriction
011 = 80K restriction
100 = 64K restriction
101 = 48k restriction
110 = 32K restriction
111 ii >-

>■ LCO U1J.L/U LUU

2. Read location (MBR) 570g.

Figure 10-3
Initializing the Pager For a Nev; Process

t
(1
c
(1
c
(1
c

BBH PROPRIETARY

X

BBL’ PROPRIETARY
4000$ CORE STATUS TABLE

10000g

Absolute
Page No.

/
0Z______ 8 9 10

9 Bits | [
i i ---------—

modification
9 Bits

0 8
AGER

Core Status Table Entry ,
_____ ______ ________________ j35

26 Bits

26 Bits

35
PUR

1. Bits 0 - 8 of AGER replace Bits 0 - 8 of CST entry.
2. Bits 10 - 35 are ”0Red” into Bits 10 - 35 of

CST entry.

3. Write request level is ”ORed" into Bit 9 of
the CST entry (if the write is permitted).

Figure 10-6
Pager References to the Core Status Table

jddh rnurnininiti
i

If no trap condition occurs during self-loading, an asso
ciative register is loaded with the required mapping in
formation and the pager proceeds. Note, however, that
the write permission bit in an associative register is set
only when both the modification bit in the Core Status
Table and the write permit bit in the page table entry
are set.
10.5 Pager Traps
A paging trap will occur whenever one of the following
events happens:

1. The trap bits in the process page table force
a trap.

2. The addressed page (or indirecting page table)
is not in core.

3. An illegal condition is detected.
4. The Core Status Table entry for an addressed page

contains an age with the three highest bits = 0
(meaning that the core manager is controlling
the page).

When one of the above conditions happens, the pager first
stores the cause and location of the trap into the Process Sto
rage block at location 571p. The format of this word is
f* K y* rviinri *1 t~A Q rn 4 +* ♦- K a ATJX7 i-w* S v» r'* _
wmvhx* (• 4*.* ~

gress was a write, it stores the data into location 572$
of the state page. Finally, it forces the APR to execute
absolute location 70g (170g if second APR). Location 70g
should contain a JSYS Instruction to a trap routine.
The arrangement of the Trap Cause field was chosen so that
decoding of the cause could be easily accomplished by the
JFFO instruction.
To restart a process which was terminated by a pager trap,
the following information is of value:

1. The program counter (PC) saved by the JSYS at
location 70g is correct.

2. If the read or execute bits in 571q of the state page are set, restart is completed°by performing
a JRSTF @ through the PC word saved by the JSYS
at location 70g (170g).

. 3. If the read bit is not set but the write bit is
set in 571g, the data in 572g must be written
into the address of 571g before returning control
to the process via JRSTF.

CDecember69 BBN PROPRIETARY 10-11-2

A sample program
by a paging trap

to restart a process
is given below:

which was terminated

CONO 24,0
MOVE 1,777571
SETZM 777571
TLNE 1,12
JRST BEGIN
MOVE 777572
TLNE 1,1
JRST MONWR
UMOVEM (1)

BEGIN: HRLZI 17,777520
BLT 17,17
JRSTF @777573

MONWR: MOVEM (1)
JRST BEGIN

;LOAD PAGER WITH NEW BASE REGISTERS
;UPPER BOUND REGISTER, AND DUMP REGISTER
;GET TRAP STATUS WORD
■jCLEAR TRAP STATUS FOR NEXT TIME
;SKIP IF NEITHER READ NOR EXECUTE
jBITS SET
;GET DATA WORD
;SKIP IF USER MODE
^COMPLETE USER MODE WRITE
;RESTORE AC’s FOR THE PROCESS
;RESUME PROCESS (JSYS IN LOCATION 70o
;SAVES THE FLAGS AND PC IN 777573).
;COMPLETE MONITOR MODE WRITE

In Figure 10-7 the function of the PI cycle, Key Cycle, and
Indirect Address Sequence bits may not be clear. The reason
for the PI cycle and KEY cycle bits is to distinguish traps
'of the running program from PI and KEY cycle traps (KEY
cycles occur when the console EXAMINE, DEPOSIT, Or XCT
switches are pushed). The Trap Status Word in Figure 10-7
contains sufficient information to simulate a KEY cycle
operation and recover from the trap provided timing is not
critical (e.g., BLKO or BLKI to magtape or dectape might miss
latency). However, a pager trap during a PI cycle is a
disaster and recovery is impossible. The running program can
be continued after such a trap by JRSTF @777573 as in the sam
ple restart program. The Indirect address sequence bit is
used to distinguish data reads of non-existent memory from
indirect addressing reads of non-existent memory. In the
former case, the’ software may wish to create new memory and
proceed, but in the latter case, a programming error has
been made..

Another interesting feature of the pager is the monitor
after-loading trap. All other directed traps take place at
the beginning of the self-loading sequence, before any
associative register has been loaded with mapping information
for the new page, but the after-loading trap takes place at
completion of the self-loading sequence. This enables the
Monitor to perform statistics-taking operations for specified
pages each time one is loaded into an associative register.
Such statistics may be very useful in evaluating core
management strategies and in evaluating the performance of
the pager. *

yuecemoeroy BBN PROPRIETARY

10.6 Core Management Philosophy
Core management for processes with large virtual address
spaces is a significant problem. To minimize difficulties
we have designed into the Pager several features (Figure
10-6).

(1) Recording modification
Because a write request will set the modified bit
in the Core Status Table, core-to-drum swaps need
be performed only for pages with this bit set.

(2) Identifying Processes using a page
By loading the process use register (PUR with a
bit identifying the current process the Core
Status Table entry for each page will contain a
record of the processes which have used each page.
The core management program can then discriminate
pages in use by active processes from those which
were used by processes now inactive.

(3) Marking time-of-last-reference
When a large process is compute bound, its ’’working H rr-} 11 i 1 nK'inn'a t.r 4 In i" *5 m o M w
periodically incrementing the age register, the
core manager can look at the Gbre Status Table and
for each process distinguish recently referenced
pages from ones not referenced for a long time.
The latter are likely to be outside current
working sets and are good candidates for replace
ment by new pages.

(1|) Provide for dual-processor operation
Because one APR may be computing for a process,
while the other APR is tampering with the Core
Status Table, we have included a special check in
the paging hardware for ages less than 20g. When
the software is about to examine sDme entry in the
Core Status Table, it may EXCH' a word with the
left-most three bits = 0 for the Core Status Table
entry. This will prevent the other APR from
Inadvertently loading this page during the
examination.

	Y:\New Folder\New Folder\moon 001.png
	Y:\New Folder\New Folder\moon 002.png
	Y:\New Folder\New Folder\moon 003.png
	Y:\New Folder\New Folder\moon 004.png
	Y:\New Folder\New Folder\moon 005.png
	Y:\New Folder\New Folder\moon 006.png
	Y:\New Folder\New Folder\moon 007.png
	Y:\New Folder\New Folder\moon 008.png
	Y:\New Folder\New Folder\moon 009.png
	Y:\New Folder\New Folder\moon 010.png
	Y:\New Folder\New Folder\moon 011.png
	Y:\New Folder\New Folder\moon 012.png
	Y:\New Folder\New Folder\moon 013.png
	Y:\New Folder\New Folder\moon 014.png
	Y:\New Folder\New Folder\moon 015.png
	Y:\New Folder\New Folder\moon 016.png
	Y:\New Folder\New Folder\moon 017.png
	Y:\New Folder\New Folder\moon 018.png
	Y:\New Folder\New Folder\moon 019.png
	Y:\New Folder\New Folder\moon 020.png
	Y:\New Folder\New Folder\moon 021.png
	Y:\New Folder\New Folder\moon 022.png
	Y:\New Folder\New Folder\moon 023.png
	Y:\New Folder\New Folder\moon 024.png
	Y:\New Folder\New Folder\moon 025.png
	Y:\New Folder\New Folder\moon 026.png
	Y:\New Folder\New Folder\moon 027.png
	Y:\New Folder\New Folder\moon 028.png
	Y:\New Folder\New Folder\moon 029.png
	Y:\New Folder\New Folder\moon 030.png
	Y:\New Folder\New Folder\moon 031.png
	Y:\New Folder\New Folder\moon 032.png
	Y:\New Folder\New Folder\moon 033.png
	Y:\New Folder\New Folder\moon 034.png
	Y:\New Folder\New Folder\moon 035.png
	Y:\New Folder\New Folder\moon 036.png
	Y:\New Folder\New Folder\moon 037.png
	Y:\New Folder\New Folder\moon 038.png
	Y:\New Folder\New Folder\moon 039.png
	Y:\New Folder\New Folder\moon 040.png
	Y:\New Folder\New Folder\moon 041.png
	Y:\New Folder\New Folder\moon 042.png
	Y:\New Folder\New Folder\moon 043.png
	Y:\New Folder\New Folder\moon 044.png
	Y:\New Folder\New Folder\moon 045.png
	Y:\New Folder\New Folder\moon 046.png
	Y:\New Folder\New Folder\moon 047.png
	Y:\New Folder\New Folder\moon 048.png
	Y:\New Folder\New Folder\moon 049.png
	Y:\New Folder\New Folder\moon 050.png
	Y:\New Folder\New Folder\moon 051.png
	Y:\New Folder\New Folder\moon 052.png
	Y:\New Folder\New Folder\moon 053.png
	Y:\New Folder\New Folder\moon 054.png
	Y:\New Folder\New Folder\moon 055.png
	Y:\New Folder\New Folder\moon 056.png
	Y:\New Folder\New Folder\moon 057.png
	Y:\New Folder\New Folder\moon 058.png

