
Systems Reference Library

IBM System/360 Principles Df OperatiDn

This publication is the machine reference manual for
the IBM System/360. It provides a direct, comprehtm­
sive description of the system structure; of the arith­
metic, logical, branching, status switching, and in­
put/ output operations; and of the interruption system.·

The reader is assumed to have a basic knowledge of
data processing systems and to have read the IBM
System/360 System Summary, Form A22-6810, which
describes the system brieRy and discusses the input/
output ·devices available.

For information about the characteristics, functions,
and features of a specific· System/360 model, use the
functiomiI characteristics manual for that model in
conjunction with the IBM System/360 Principles of
Operation. Descriptions of specific input/output de­
vices used with the System/360 appear in separate
publications. Publications that relate to the IBM Sys­
tem/360 Model 20 are described in the IBM Sys­
tem/360 klodel 20 Bibliography, Form A26-3565.
Other IBM Systems Reference Library publications
concerning the System/360 are identified and de­
scribed in the IBM System/360 Bibliography, Form
A22-6822.

File No. S360-01
Form A22-6821-7

EIGHTH EDITION (September, 1968)
This is a reprint of A22-6821-6 incorporating changes released in the following
Technical Newsletters:

FORM NUMBER

N22-0278
N22-0282

PAGES AFFECTED

150.3
7, 8, 17, 18, 41, 42, 42.1, 43,
44, 45-50, 50.1-50.5, 65, 66,
77, 78, 79, 80, 80.1, 83, 84,
136.5, 136.6, 150.3, 155, 156,
161, 162, 169-175

DATE

November 1, 1967
December 15, 1967

Changes are periodically made to the specifications herein; before using this
publication in connection with the operation of IBM systems, refer to the
latest System/360 SRL Newsletter, Form N20-0360, for the editions that are
applicable and current.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

This manual has been prepared by the Systems Development Division,
Product Publications, Dept. B98, PO Box 390, Poughkeepsie, New York
12602. A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be sent to the
above address.

IBM System/360
General-Purpose Design
Compatibility .. .
System Program
System Alerts ,
Multisystem Operation
Input/Output ,
Technology

System Structure..............
Main Storage

Information Formats
Addressing :
Information Positioning

Central Processing Unit
General Registers
Floating-Point Registers

Arithmetic and Logical Unit
Fixed-Point Arithmetic
Decimal Arithmetic
Floating-Point Arithmetic
Logical Operations

Program Execution.
Instruction Format
Address Generation .. .
Sequential Instruction Execution
Branching .. .
Program Status Word
Interruption .. .

Byte-Oriented Operand Feature
Protection Features.
Timer Feature .. .
Direct Control Feature
Multisystem Operation
Input and Output

Input/Output Devices and Control Units
Input/Output Interface
Channels
Input/Output Instructions
Input/Output Operation Initiation
Input/Output Commands
Input/Output Termination .. .
Input/Output Interruptions

System Control Panel
System Control Panel Functions
Operator Control Section
Operator Intervention Section.
Customer Engineering Section ..

Fixed-Point Arithmetic
Data Format
Number Representation
Condition Code
Instruction Format
Instructions

Load
Load Halfword
Load and Test
Load Complement
Load Positive .. .

t~~~ ~~l~i~r: •. ..:.::.::::::::::::.:: ::::::::::::::::::::
Add
Add Halfword .. .
Add Logical
Subtract
Subtract Halfword .. .
Subtract Logical
Compare
Compare Halfword
Multiply
Multiply Halfword

5
5
5
5
6
6
6
6

7
7
7
8
8
8
9
9

10
10
10
11
12
12
12
13
14
14
15
15
17
17
17
17
17
18
18
18
18
19
19
19
20
20
21
21
22
23
23

24
24
24
25
25
26
26
26
26
27
27
27
27
28
28
28
29
29
29
30
30
30
30

Contents

Divide
Convert to Binary
Convert to Decimal
Store
Store Halfword
Store Multiple
Shift Left Single
Shift Right Single
Shift Left Double
Shift Right Double

Fixed-Point Arithmetic Exceptions

Decimal Arithmetic
Data Format
Number Representation
Condition Code
Instruction Format
Instructions

Add Decimal
Subtract Decimal
Zero and Add
Compare Decimal......
Multiply Decimal
Divide Decimal
Pack
Unpack
Move with Offset " ..

Decimal Arithmetic Exceptions

Floating.Point Arithmetic
Data Format
Number Representation
Normalization
Condition Code

31
31
32
32
32
32
32
33
33
34
34

35
35
35
36
36
36
37
37
37
38
38
38
39
39
40
40

41
41
41
42
42

Instruction Format
Instructions

'" 42.1

Load
Load and Test
Load Complement
Load Positive
Load Negative .
Add Normalized
Add Unnormalized
Subtract Normalized
Subtract Unnormalized
Compare
Halve
Multiply
Divide
Store

43
44
44
44
44
45
45
46
46
47
47
48
48
49
50
50 Floating-Point Arithmetic Exceptions ..

Extended Precision and Rounding 50.1
Data Format50.1
Instructions 50.1
Load Rounded
Add Normalized ...
Subtract Normalized

........... 50.2
.. 50.2

.. 50.3
Multiply 50.3

Logical Operations
Data Format
Condition Code
Instruction Format
Instructions

Move
Move Numerics
Move Zones
Compare Logical
AND..
OR

51
51
52
52
53
53
54
54
54
55
55

Exclusive OR
Test Under Mask .. .
Insert Character
Store Character
Load Address .. ,
Translate
Translate and Test
Edit .. .
Edit and Mark
Shift Left Single
Shift Right Single
Shift Left Double
Shift Right Double

Logical Operation Exceptions

55
56
56
56
56
57
57
57
60
60
60
60
60
60

Branching 62
Normal Sequential Operation 62

Sequential Operation Exceptions. 62
Decision-Making 63
Instruction Formats 64
Branching Instructions 64

Branch On Condition... 65
Branch and Link .. 66
Branch On Count 66
Branch On Index High 66
Branch On Index Low or Equal. 66.1
Execute 67

Execute Exceptions 67

Status Switching .. .
Program States

Problem State
Wait State
Masked States
Stopped State .. .

Protection
Area Identification
Protection Action
Locations Protected .. .

Program Status Word
Multisystem Operation

Direct Address Relocation
Malfunction Indication
System Initialization

Instruction Format
Instructions

LoadPSW....
Set Program Mask
Set System Mask
Supervisor Call
Set Storage Key
Insert Storage Key
Test and Set.... ..
Write Direct
Read Direct
Diagnose

Status-Switching Exceptions

Interruptions
Interruption Action

Instruction Execution .. .
Source Identification
Location Determination

Input/Output Interruption
Program Interruption

Operation Exception
Privileged-Operation Exception
Execute Exception
Protection Exception
Addressing Exception
Specification Exception
Data Exception
Fixed-Point-Overflow Exception
Fixed-Point-Divide Exception
Decimal-Overflow Exception .
Decimal-Divide Exception .
Exponent-Overflow Exception
Exponent-Underflow Exception

68
68
68
68
69
69
70
70
70
70
71
72
72
72
72
72
73
73
73
74
74
74
74
74
75
75
76
76

77
77
78
78
78
78
79
79
79
79
79
79
80
80
80
80
80
80
80
80

Significance Exception 80
Floating-Point-Divide Exception 80.1

Supervisor-Call Interruption 80.1
External Interruption 81

Timer .. 81
Interrupt Key 82
External Signal 82

Machine-Check Interruption 82
Priority of Interruptions 83

Input/Output Operations
Attachment of Input/Output Devices

Input/Output Devices ,
Control Units
Channels..
System Operation
Compatibility of Operation

Control of Input/Output Devices
Input/Output Device Addressing
States of the Input/Output System
Resetting of the Input/Output System
Condition Code
Instruction Format
Instructions
Start 110
Test 110
Halt 110
Test Channel
Input/Output Instruction Exception Handling

Execution of Input/Output· Operations
Blocking of Data
Channel Address Word
Channel Command Word
Command Code
Definition of Storage Area
Chaining
Skipping
Program-Controlled Interruption
Commands

Termination of Input/Output Operations
Types of Termination...
Input/Output Interruptions ..
Channel Status Word
Unit Status Conditions
Charmel Status Conditions
Content of Channel Status Word

84
84
84
84
85
87
88
88
88
89
91
92
93
93
94
95
96
98
98
98
99
99
99

100
100
101
103
104
105
108
108
111
113
113
116
118

System Control Panel.......... ... 122
System Control Functions 122

System Reset 122
Store and Display.......... 122
Initial Program Loading 123

Operator Control Section 123
Emergency Pull Switch 124
Power-On Key 124
Power-Off Key 124
Interrupt Key 124
Wait Light 124
Manual Light 124
System Light 124
Test Light.... 124
Load Light 124
Load-Unit Switches 124
Load Key 125
Prcfix-Select Key Switch. 125

Operator Intervention Section .. 125
System-Reset Key 125
Stop Key 125
Rate Switch 125
Start Key.... 125
Storage-Select Switch 126
Address Switches 126
Data Switches 126
Store Key 126
Display Key................ 126
Set IC Key................... 126
Address-Compare Switch 126
Alternate-Prefix Light. 126

Customer Engineering Section 126

Appendixes
A. Instruction Use Examples
B . .r ixeu-.Point and Two's Complement Notation
C. Floating-Point Arithmetic
D. Powers of Two Table
E. Hexadecimal Tables
F. USASCII-8 and EBCDIC Charts
C. Formats and Tables

Data Formats
Hexadecimal Representation
Instructions by Format Type
Control Word Formats

127
127
137
138
140
141
149
151
151
151
152
153

Operation Codes
Permanent Storage Assignment .
Condition Code Setting
Interruption Action
Instruction Length Recording
Program Interruptions
Functions That May Differ Among Models .. .
Alphabetic List of Instructions

154
155

.. 155
... 155

156
156
161

List of Instructions by Set and Feature
]65
166
168 List of Instructions by Operation Code .

Index 169

The mM System/360 is a solid-state, program com­
patible, data processing system providing the speed,
precision, and data manipulating versatility demand­
ed by the challenge of commerce, science, and in­
dustry. System/360, with advanced logical design im­
plemented by microminiature technology, provides a
new dimension of performance, Hexibility, and relia­
bility. This dimension makes possible a new, more
efficient systems approach to all areas of information
processing, with economy of implementation and ease
of use. System/360 is a single, coordinated set of new
data processing equipment intended to replace old
logical structures with an advanced creative design for
present and future application.

The logical design of System/360 permits efficient
use at several levels of performance with the preser­
vation of upward and downward program compati­
bility. In addition, extremely high performance and
reliability requirements may be met by using the
multisystem feature to combine several models into
one multisystem.

General.Purpose Design
System/360 is a general-purpose system that may be
tailored readily for commercial, scientific, communica­
tions, or control applications. A Standard instruction
set provides the basic computing function of the sys­
tem. To this set a decimal feature may be added to
provide a Commercial instruction set or a Hoating­
point feature may be added to provide a Scientific in­
struction set. When the instructions associated with
storage protection are added to the commercial and
scientific features, a Universal instruction set is ob­
tained. Timer and direct-control features may be used
with systems to support time-sharing or real-time oper­
ations, and in teleprocessing applications.

System/360 is designed to accommodate large quan­
tities of addressable storage. The markedly increased
capacities over previous storage are provided by the
combined use of high-speed storage of medium size
and large-capacity storage of medium speed. Thus,
the requirements for both performance and size are
satisfied in one system by the availability of different
types of storage units. Also, the design makes provi­
sion for development, in the future, of even greater
storage capacities.

IBM System/360

Another aspect of the general-purpose design of
System/360 is its standard-interface method for at­
taching all input/output devices. Future input/output
devices will also attach to this input/ouput interface
which is common to all System/360 channels.

Models of System/360 differ in storage speed, stor­
age width (the amount of data obtained in each stor­
age access), register width, and capabilities for proc­
essing data concurrently with the operation of multi­
ple input/output devices. Several cpu's permit a wide
choice in internal performance. The range is such that
the ratio of internal performances between the largest
and the smallest model is approximately 50: 1 for sci­
entific computation and 15: 1 for commercial process­
ing. Yet none of these differences affect the logical
appearance of System/360 to the programmer.

An individual System/360 is obtained by selecting
the system components most suited to the applications
from a wide variety of alternatives in internal per­
formance, functional ability, and input/output (I/O).

Compatibility
All models of System/360 are upward and downward
compatible; that is, any program gives identical results
on any model. Compatibility allows for ease in systems
growth, convenience in systems backup, and simplicity
in education. The compatibility rule has three limi­
tations.

1. The systems facilities used by a program should
be the same in each case. For example, the optional
cpu features and the storage capacity, as well as the
quantity, type, and priority of I/O equipment, should
be equivalent.

2. The program should be independent of the re­
lation of instruction execution times and of I/O data
rates, access times, and command execution times.

3. The compatibility rule does not apply to detail
functions for which neither frequency of occurrence
nor usefulness of result warrants identical action in
all models. These functions, all explicitly identified in
this manual, are concerned with the handling of in­
valid programs and machine malfunctions.

System Program
Interplay of equipment and program is an essential
consideration in System/360. The system is designed
to operate with a supervisory program that coordi-

IBM System/360 5

nates and executes all I/O instructions, handles excep­
tional conditions, and supervises scheduling and exe­
cution of multiple programs. System/360 provides for
efficient switching from one program to another, as
well as for the relocation of programs in storage. To
the problem programmer, the supervisory program
and the equipment are indistinguishable.

IBM provides System/360 programs that control and
schedule the use of CPU facilities, main storage, stor­
age devices attached to channels, input/ output de­
vices, etc. These programs are designed to control all
system resources, including programs supplied by the
customer and by IBM.

System Alerts
The interruption system permits the CPU to respond
automatically to conditions arising outside of the sys­
em, in I/O units, or in the CPU itself. Interruption
switches the CPU from one program to another by
changing not only the instruction address but all es­
sential machine-status information.

Protection features permit one program to be pre­
served when another program erroneously attempts to
gain access to information in the protected storage

'area. Protection does not cause any loss of perform­
ance. Storage operations initiated from the CPU, as
well as those initiated from a channel, are subject to
the protection procedure.

Programs are checked for correctness of instructions
and data as the instructions are executed. This polic­
ing-action distinguishes and identifies program errors
and machine errors. Thus, program errors cannot cause
machine checks: each of these types of error causes a
different type of interruption. When an interruption
due to machine malfunction occurs, the information
necessary to identify the error is recorded automatical­
ly in a predetermined storage area. This logging of
pertinent information can be used to assist in the
analysis of machine faults. Moreover, operator errors
are reduced by minimizing the number of manual con­
trols and the need for their use. To reduce accidental
operator errors, operator consoles are basically I/O de­
vices that function under control of the system pro­
gram.

Multisystem Operation
Several models of System/360 can be combined into
one multisystem configuration. Three types of com-

6

munication between cpu's are available. Largest in ca­
pacity, and moderately fast in response, is communi­
cations by means of a shared I/O device, such as a disk
file. Faster data transfer may be obtained by direct
connection between the channels of two individual
systems. Finally, some models permit sharing of stor­
age between cpu's, making information exchange pos­
sible at storage speeds. These types of communication
are supplemented by alJowing one CPU to be inter­
rupted by another CPU and by making status informa­
tion directly available from one CPU to another.

Input/Output
Channels provide the data path and control for I/O

devices as they communicate with the cpu. In general,
channels operate asynchronously with the CPU and, in
some cases, a single data path is made up of several
subchannels. When this is the case, the single data
path is shared by several low-speed devices, such as
card readers, punches, printers, and terminals, each on
a separate subchannel. This type of channel is called
a multiplexor channel. Another type of channel, the se­
lector channel accommodates higher data rates, but
can be involved in only one data transfer operation at
a time.

In every case, the amount of data that comes into the
channel in parallel from an I/O device is a byte (i.e.,
eight bits). All channels or sub channels perform the
same functions and respond to a common set of I/O in­
structions and commands.

Each I/O device is connected to one or more chan­
nels by an I/O interface. This I/O interface allows at­
tachment of present and future I/O devices without
alteration of the I/O instruction set or of channel func­
tions. Control units are used where necessary to match
the internal connections of the I/O device to the inter­
face. Flexibility is enhanced by optional access to a
control unit or device from either of two channels.

Technology
System/360 employs solid-logic integrated compo­
nents, which in themselves provide advanced equip­
ment reliability. These components are smaller than
previous components, operate faster, and lend them­
selves to automated fabrication. The design of Sys­
tem/360, however, is ,not dependent upon, or limited
to, any particular type of technology. System/360 is
free to take continuing advantage of new advances in
technology.

The basic structure of a System/360 consists of main
storage, a central processing unit (cpu), the selector
and multiplexor channels, and th~ input/output de­
vices attached to the channels through control units.
It is possible for systems to communicate with each
other by means of shared I/O devices, a channel, or
shared storage. Figure 1 shows the basic organization
of a single system.

Main Storage
Storage units may be either physically integrated with
the CPU or constructed as stand-alone units. The stor­
age cycle speed is not directly related to the internal
cycling of the CPU, thereby permitting an efficient re­
lationship of CPU speed to storage width. The physical
differences in the various main-storage units do not
affect the logical structure of the system.

Main storage may be shared by cpu's. Fetching and
storing of data by the CPU are not affected by any con­
current I/O data transfer or by reference to the same
storage location by another CPU. If a CPU and a channel
concurrently refer to the same storage location, the ac­
cesses normally are granted in a sequence that assigns
higher priority to references by channels. If the first
reference changes the contents of the location, any
subsequent storage fetches obtain the new contents.

Instructions that involve fetching and subsequently
storing of data do not necessarily take the storage

Main
Storage

Channels

System Structure

cycles contiguously, and it is possible for a channel or
another CPU to take one or more intervening cycles.
When two cpu's concurrently cause the contents of the
same location to be updated, such interleaving may
cause the information stored in one of the accesses to
he lost or the results to be meaningless.

For example, if two cpu's attempt to update infor­
mation at the same location by an instruction that
causes fetching and subsequently storing of the up­
dated data at the same location, it is possible for both
CPu's to fetch the data and subsequently for both cpu's
to take the store cycles. The change made by the first
CPU to store the result in such case is lost. Only the in­
struction TEST AND SET takes the fetch and store cycles
without permitting a channel or another CPU to inter­
leave a cycle.

The contents of main storage are preserved when
power is turned on. Turning power, off does not affect
the contents of main storage if the CPU is in the
stopped state. The contents of the keys in storage as­
sociated with the protection feature are not necessarily
preserved when the main-storage power is turned off.

Information Formats

The system transmits information between main stor­
age and the CPU in units of eight bits, or a multiple
of eight bits at a time. Each eight-bit unit of informa­
tion is called a byte, the basic building block of all
formats. A ninth bit, the parity or check bit, is trans-

I/O Devices

Control Units

J---+----IMul tiplexor I--_----J~ __ ----J~ __ ___.JL.....-___(\----'-___ --J

Central
Processing

Unit

Selector
J------I

Figure 1. IBM System/360 Basic Logical Structure

Control Units

I/O Devices

System Structure 7

mitted with each byte and carries odd parity on the
hyte. The parity bit cannot be affected by the pro­
gram; its only purpose is to cause an interruption when
a parity error is detected. References in this manual to
the size of data fields and registers exclude the men­
tion of the associated parity bits. All storage capacities
are expressed in number of bytes provided, without
regard to storage width.

Bytes may be handled separately or grouped to­
gether in fields. A halfword is a group of two consecu­
tive bytes and is the basic building block of instruc­
tions. A word is a group of four consecutive bytes; a
double word is a ficld consisting of two words (Figure
2). The location of any field or group of bytes is spe­
cified by the address of its leftmost byte.

The length of fields is either implied by the oper­
ation to be performed or stated explicitly as part of
the instruction. When the length is implied, the in­
formation is said to have a fixed length, which can be
either one, two, four, or eight bytes.

'''hen the length of a field is not implied by the
operation code, but is stated explicitly, the informa­
tion is said to have variable field length. This length
can be varied in one-byte increments.

Within any program format or any fixed-length op­
erand format, the bits making up the format are con­
secutively numbered from left to right starting with
the number O.

Byte

Halfword

7 8 15

Word

Figure 2. Sample Information Formats

Addressing

Byte locations in storage are consecutively numbered
starting with 0; each number is considered the ad­
dress of the corresponding byte. A group of bytes in
storage is addressed by the leftmost byte of the group.
The number of bytes in the group is either implied or
explicitly defined by the operation. The addressing ar­
rangement uses a 24-bit binary address to accommo­
date a maximum of 16,777,216 byte addresses. This

8

set of main-storage addresses includes some locations
reserved for special purposes.

Storage addressing wraps around from the maximum
byte address, 16,777,215, to address O. Variable-length
operands may be located partially in the last and par­
tially in the first location of storage, and are processed
without any special indication of crossing the maxi­
mum address boundary.

When only a part of the maximum storage capacity
is available in a given installation, the available stor­
age is normally contiguously addressable, starting at
address O. An addressing exception is recognized
when any part of an operand is located beyond the
maximum avaiJable capacity of an installation. Except
for a few instructions, the addressing exception is
recognized only when the data are actually used and
not when the operation is completed before using the
data. The addressing exception causes a program inter­
ruption.

In some models main storage may be shared by
more than one CPU. In that case, the address of a byte
location is normally the same for each CPU.

Information Positioning

Fixed-length fields, such as halfwords and double
words, must be located in main storage on an integral
boundary for that unit of information. A boundary is
called integral for a unit of information when its stor­
age address is a multiple of the length of the unit in
bytes. For example, words (four bytes) must be lo­
cated in storage so that their address is a multiple of
the number 4. A halfword (two bytes) must have an
address that is a multiple of the number 2, and double
words (eight bytes) must have an address that is a
multiple of the number 8.

Storage addresses are expressed in binary form. In
binary, integral boundaries for halfwords, words, and
double words can be specified only by the binary ad­
dresses in which one, two, or three of the low-order
bits, respectively, are zero (Figure 3). For example,
the integral boundary for a word is a binary address
in which the two low-order positions are zero.

Variable-length fields are not limited to integral
houndaries, and may start on any byte-location.

Note: 'Vhen the byte-oriented operand feature is
installed, certain boundary alignment restrictions do
not apply. Refer to the description of the feature else­
where in this section.

Central Processing Unit
The central processing unit (Figure 4) contains the
facilities for addressing main storage, for fetching or
storing information, for arithmetic and logical proc·

Low-order Four Bits of Binary Address

O@ 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010

Byte Byte Byte Byte Byte Byte Byte Byte Byte Byte Byte

Halfword Halfword Halfword Halfword Halfword ,
l ..

Word Word Word ,
l

L-. Double Word Double Word ,
(

Figure 3. Integral Boundaries for Halfwords, Words, and
Double Words

,
l

essing of data, for sequencing instructions in the de­
sired order, and for initiating the communication be­
tween storage and external devices.

The system control section provides. the normal CPU

control that guides the CPU through the functions
necessary to execute the instructions. While the
physical make-up of the control section in the various
models of the System/360 may be different, the
logical function remains the same. The result of exe­
cuting a valid instruction is the same for each model.

The CPU provides 16 general registers for fixed-point
operands and four floating-point registers for Hoating-

Storage Address

r­
I

mputer I Co
I Sys
I Co
I

tem
ntrol

I

-...
I
I
I -r~·
I
I
I I

L_ ---'

Instructions

Generated
Address

" MAIN STORAGE ,.

J

t

Variable-
Fixed-Point Field-Length
Operations Operations

J~

if

point operands. Implementation of these registers may
be in special circuitry, in a local storage unit, or in a
separate area of main storage. In each case, the ad­
dress and functions of these registers are identical.

General Registers

The CPU can address information in 16 general regis­
ters. The general registers can be used as index regis­
ters, in address arithmetic and indexing, and as ac­
cumulators in fixed-point arithmetic and logical oper­
ations. The registers have a capacity of one word (32
bits). The general registers are identified by numbers
0-15 and are specified by a four-bit R field in an in­
struction (Figure 5). Some instructions provide for
addressing multiple general registers by having several
R fields.

For some operations, two adjacent general registers
are coupled together, providing a two-word capacity.
In these operations, the addressed register contains
the high-order operand bits and must have an even
address, and the implied register, containing the low­
order operand bits, has the next higher address.

Floating-Point Registers

Four Hoating-point registers are available for Hoating­
point operations. They are identified by the numbers
0, 2, 4, and 6 (Figure 5). These Hoating-point registers

Floating-Point
Operations

J~

!,

4

16 I Floating-Point Registers

General
Registers

Figure 4. Basic Concept of Central Processing Unit Functions

System Structure 9

R Field Reg No.

0000 a
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 10
1011 11
1100 12
1101 13
1110 14
1111 15

General Registers

.32 Bits.
t:~:~:t'fg~::;:~:~jt::":i::':'::::wmJ

M:'+i''''''''~'{'':'':''':::::':'':i::'::::::::~:rl
n::::)~:':::: :t~t:':~:':~:#::{:~ :{j

[r:::::}':~ :::t:~:~:r}'to:::~:'{1

M~" ".;"":': }\:::::~:{'h}d

[::{:~:ti':::: :':':::'::':':'::"::'::::::::~::':::!

fi ~:::':::{::g:'t':r::~:;~:'f'~:::::':":1
li::t::::~t:~:~:~:~: :':":':'rMf~{t:1

W:u;:#%#rim:~:J':Kt:l

n':':i':i'f't~::::~:{t'~"ktf:1

W":'!f~t,:::,:,:;'~:t::H:::~::{'}f""

tnW'\h~::~'iiI!tmt:~:t:}d
I~:'{;~:';{;';;;'t'(.'t;~nm.ml

1:~t'~'):'~ttK't(hf:H
rmt:~:::;:~t;::::£f~k~::t:td

Floating-Point Registers

I.'u ::;,~:,.::.: .. 64 Bits ::-:-(·:::::tllj

Figure 5. General and Floating-Point Registers

are two words (64 bits) in length and can contain
either a short (one word) or a long (two words) float­
ing-point operand. A short operand occupies the high­
order bits of a floating-point register. The low-order
portion of the register is ignored and remains un­
changed in short-precision arithmetic. The instruction
operation code determines which type of register
(general or floating-point) is to be used in an opera­
tion.

Arithmetic and Logical Unit
The arithmetic and logical unit can process binary in­
tegers and floating-point fractions of fixed length, deci­
mal integers of variable length, and logical information
of either fixed or variable length. Processing may be in
parallel or in series; the width of the arithmetic unit,
the multiplicity of the shifting paths, and the degree
of simultaneity in performing the different types of
arithmetic differ from one CPU to another without af­
fecting the logical results.

Arithmetic and logical operations performed by the
CPU fall into four classes: fixed-point arithmetic, deci­
mal arithmetic, floating-point arithmetic, and logical
operations. These classes differ in the data formats
used, the registers involved, the operations provided,
and the way the field length is stated.

Fixed-Point Arithmetic

The basic arithmetic operand is the 32-bit fixed-point
binary word. Sixteen-bit halfword operands may be
specified in most operations for improved performance
or storage utilization. See Figure 6. To preserve

10

Holfword

lsi Integer

o 1 15

Full Word

lsi Integer

o 1 31

Figure 6. Fixed-Point Number Formats

precision, some products and all dividends are 64 bits
long.

Because the 32-bit word size readily accom­
modates a 24-bit address, fixed-point arithmetic can
be used both for integer operand arithmetic and for
address arithmetic. This combined usage provides
economy and permits the entire fixed-point instruction
set and several logical operations to be used in ad­
dress computation. Thus, multiplication, shifting, and
logical manipulation of address components are pos­
sible.

Additions, subtractions, multiplications, divisions,
and comparisons are performed upon one operand in
a register and another operand either in a register or
from storage. Multiple-precision operation is made
convenient by the two's-complement notation and by
recognition of the carry from one word to another. A
word in one register or a double word in a pair of
adjacent registers may be shifted left or right. A pair
of conversion instructions - CONVERT TO BINARY and
CONVERT TO DECIMAL - provides transition between
decimal and binary radix (number base) without the
use of tables. Multiple-register loading and storing in­
structions facilitate subroutine switching.

Decimal Arithmetic

Decimal arithmetic lends itself to data processing pro­
cedures that require few computational steps between
the source input and the documented output. This type
of processing is frequently found in commercial appli­
cations, particularly when use is made of problem­
oriented languages. Because of the limited number of
arithmetic operations performed on each item of data,
radix conversion from decimal to binary and back to
decimal is not justified, and the use of registers for in­
termediate results yields no advantage over storage-to­
storage processing. Hence, decimal arithmetic is pro­
vided, and both operands and results are located in
storage. Decimal arithmetic includes addition, subtrac­
tion, multiplication, division, and comparison.

Decimal numbers are treated as signed integers with
a variable-field-length format from one to 16 bytes
long. Negative numbers are carried in true form.

The decimal digits- 0-9 are represented in the four­
bit binary-coded-decimal form by 0000-1001, respec­
tively (Figure 7). The codes 1010-1111 are not valid
as digits and are reserved for sign codes; 1011 and 1101
represent a minus; the other 'four codes are interpreted
as plus. The sign codes generated in decimal arithme­
tic depend upon the character set preferred (Figure 7) .
When the extended binary-coded-decimal interchange
code (EBCDIC) is preferred, the codes are 1100 and
1101. When the USASCII set, expanded to eight bits, is
preferred, the codes are 1010 and 1011. The choice
between the two code sets is determined by a mode
bit.

Decimal operands and results are represented by
four-bit binary-coded-decimal digits packed two to a
byte. They appear in fields of variable length and are
accompanied by a sign in the rightmost four bits of the

Digit Code

o 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

Sign Code

+ 1010
1011

+ 1100
1101

+ 1110
+ 1111

Figure 7. Bit Codes for Digits and Signs

low-order byte. Operand fields may be located on any
byte boundary, and may have length up to 31 digits
and sign. Operands participating in an operation may
have different lengths. Packing of digits within a byte
(Figure 8) and of variable-length fields within stor­
age results in efficient use of storage, in increased
arithmetic performance, and in an improved rate of
data transmission between storage and files.

High-order Byte Low-order Byte

I Digit I Digit I Digit [~~ ~.J Digit I Digit I Digit I Digit I Sign I

Figure 8. Packed Decimal Number Format

Decimal numbers may also appear in a zoned for­
mat as a subset of the eight-bit alphameric character
set (Figure 9). This representation is required for
character-set sensitive 110 devices. A zoned format
number carries its sign in the leftmost four bits of the
low-order byte. The zoned formht is not used in deci-

mal arithmetic operations. Instructions are provided
for packing and u,npacking decimal numbers so that
they may be changed from the zoned to the packed
format and vice versa.

High-order Byte low-order Byte

I Zone i Digit I Zone [~. ~~] Digit I Zone I Digit I Sign I Digit I

Figure 9. Zoned Decimal Number Format

Floating-Point Arithmetic

Floating-point numbers occur in either of two fixed­
length formats - short or long. These formats differ
only in the length of the fractions (Figure 10).

Short Floating-Point Number (One Word)

IS I Characteristic I Fraction.
o 1 78 31

Long Floating-Point Number (Double Word)

IS I Characteristic I Fraction
o 1 78 63

Figure 10. Short and Long Floating-Point Number Formats

Floating-point operands are either 32 or 64 bits long.
The short length, equivalent to seven decimal places of
precision, permits a maximum number of operands to
be placed in storage and gives the shortest execution
times. The long length, used when higher precision is
desired, gives up to 17 decimal places of precision,
thus eliminating most requirements for double-pre­
cision arithmetic.

The operand lengths, being powers of two, permit
maximum efficiency in the use of binary addressing
and in matching the physical word sizes of the differ­
ent models. Floating-point arithmetic is designed to
allow easy transition between the two formats.

The fraction of a floating-point number is expressed
in hexadecimal (base 16) digits, each consisting of
four binary bits and having the values 0-15. In the
short format, the fraction consists of six hexadecimal
digits occupying bits 8-31. In the long format the
fraction has 14 hexadecimal digits occupying bits 8-63.

The radix point of the fraction is. assumed to be im­
mediately to the left of the high-order fraction digit.
To provide the proper magnitude for the floating­
point number, the fraction is considered to be mul­
tiplied by a powe~ of 16. The characteristic portion,
bits 1-7 of both formats, i~ used to indicate this power.
The characteristic is treated as an excess 64 number

System Structure 11

with a range from -64 through +63, and permits
representation of decimal numbers with magnitudes
in the range of 10-78 to 1075•

Bit position 0 in either format is the sign (S) of the
fraction. The fraction of negative numbers is carried
in true form.

Four 64-bit floating-point registers are provided.
Arithmetic operations are performed with one oper­
and in a register and another either in a register or
from storage. The result, developed in a register, is
generally of the same length as the operands. The
availability of several floating-point registers elimi­
nates much storing and loading of intermediate re­
sults.

Logical Operations

Logical information is handled as fixed- or variable­
length data. It is subject to such operations as com­
parison, translation, editing, bit testing, and bit setting.

When used as a fixed-length operand, logical in­
formation can consist of either one, four, or eight
bytes and is processed in the general registers (Fig­
ure 11).

A large portion of logical information consists of
alphabetic or numeric character codes, called alpha­
meric data, and is used for communication with char­
acter-set sensitive 110 devices. This information has
the variable-field-length format and can consist of up
to 256 bytes (Figure 12). It is processed storage to
storage, left to right, an eight-bit byte at a time.

Fixed-length logical Operand (One, Four, or Eight Bytes)

I logi cal Data

Figure 11. Fixed-Length Logical Information

Variable-length logical Operand (Up to 256 Bytes)

I Character I Character I ~~ ~~ ~r-I-C-h-ar-a-ct-e-r--'"
16

Figure 12. Variable-Length Logical Information

The CPU can handle any eight-bit character set, al­
though certain restrictions are assumed in the decimal
arithmetic and editing operations. However, all char­
acter-set sensitive I/O equipment will assume either
the extended binary-coded-decimal interchange code
(EBCDIC) or the USA Standard Code for Information
Interchange (USASCII) extended to eight bits, referred
to as USASCII-8 in this manual. The numbering con­
vention for the bit positions within a character differ
for each of the codes. The conventions are as follows:

12

BIT POSITIONS

EBCDIC 01234567
USASCII-8 87654321

The preferred codes do not have a graphic defined
for all 256 eight-bit codes. When it is desirable to rep­
resent all possible bit patterns, a hexadecimal repre­
sentation may be used instead of the preferred eight­
bit code. The hexadecimal representation uses one
graphic for a four-bit code, and therefore, two graph­
ics for an eight-bit byte. The graphics 0-9 are used
for codes 0000-1001; the graphics A-F are used for
codes 1010-1111. The code tables are in Appendix F.

Program Execution
The CPU program consists of instructions, index words,
and control words specifying the operations to be per­
formed. This information resides in main storage and
general registers, and may be operated upon as data.

Instruction Format

The length of an instruction format can be one, two,
or three halfwords. It is related to the number of stor­
.age addresses necessary for the operation. An instruc­
tion consisting of only one halfword causes no refer­
ence to main storage. A two-halfword instruction pro­
vides one storage-address specification; a three-haIf­
word instruction provides two storage-address specifi­
cations. All instructions must be located in storage on
integral boundaries for halfwords. Figure 13 shows
five basic instruction formats.

The five basic instruction formats are denoted by
the format codes RR, RX, RS, SI, and SS. The format
codes express, in general terms, the operation to be
performed. RR denotes a register-to-register operation;
RX, a register-and-indexed-storage operation; RS, a reg­
ister-and-storage operation; SI, a storage and immedi­
ate-operand operation; and SS, a storage-to-storage
operation. An immediate operand is one contained
within the instruction.

For purposes of describing the execution of instruc­
tions, operands are designated as first and second op­
erands and, in the case of branch-on-index instructions,
third operands. These names refer to the manner in
which the operands participate. The operand to which
a field in an instruction format applies is generally de­
noted by the number following the code name of the
field, for example, HI, Bl, L2, O2•

In each format, the first instruction halfword con­
sists of two parts. The first byte contains the oper­
ation code (op code). The length and format of an
instruction are specified by the first two bits of the
operation code.

Second Halfword 2 Third Halfword 3

I

Register Register
Operand 1 Operand 2

I ~

I Op Code I R] I R2 I ,RR Format

10 78 " 12 15

1 1 I

I I I

I Register Address
I

Operand]
,..---A----.,

Oper~nd 2

I Op Code I R] I X
2 I B2 D2 RX Format

10 78 11 12 1516 1920 31
I I 1
I I I

I Register Register Address 1
I 1 I Operon?] Operand 3 Operand 2 I
I ,...-- ~

I Op Code I R] I R3 I B2 D2 RS Format

:0 78 1112 1516 1920 31
1

I I 1
I 1

Immediate Address I 1
1

Operand Oper?nd] 1
1

i i I Op Code 12 B] I D] 51 Format

10 78 1516 1920 31
I 1 1
I I
1 I Length Address Address
I
I Operand 1 Operand 2 Oper~nd 1 Operand 2
I ~ ,

Op Code I L] I L2 I B] I D] I B2
78 11 12 1516 1920 31

Figure 13. Five Basic Instruction Formats

INSTRUCTION LENGTH RECORDING

BIT POSITIONS INSTRUCTION INSTRUCTION

<0-1> LENGTH FORMAT

00 OnehaHword RR
01 Two haHwords RX
10 Two haHwords RS or SI
11 Three haHwords SS

The second byte is used either as two 4-bit fields
or as a single eight-bit field. This byte can contain the
following information:

Four-bit operand register specification (Rl, R2, or
R3)

Four-bit index register specification (X2)

Four-bit mask (M1)

Four-bit operand length specification (Ll or L2)

Eight-bit operand length specification (L)
Eight-bit byte of immediate data (12)

In some instructions a four-bit field or the whole sec­
ond byte of the first halfword is ignored.

The second and third halfwords always have the
same format:

Four-bit base register designator (Bl or B2), fol­
lowed by a 12-bit displacement (Dl or D2)'

D2 I 55 Format

47

Address Generation

For addressing purposes, operands can be grouped
in three classes: explicitly addressed operands in main
storage, immediate operands placed as part of the in­
struction stream in main storage, and operands lo­
cated in the general or floating-point registers.

To permit the ready relocation of program seg­
ments and to provide for the flexible specifications of
input, output, and working areas, all instructions re­
ferring to main storage have been given the capacity
of employing a full address.

The address used to refer to main storage is gen­
erated from the following three binary numbers:

Base Address (B) is a 24-bit number contained in a
general register specified by the program in the B
field of the instruction. The B field is included in
every address specification. The base address can be
used as a means of static relocation of programs and
data. In array-type calculations, it can specify the lo­
cation of an array and, in record-type processing, it
can identify the record. The base address provides for
addressing the entire main storage. The base address
may also be used for indexing purposes.

System Structure 13

Index (X) is a 24-bit number contained in a general
register specified by the program in the X field of the
instruction. It is included only in the address speci­
fied by the RX instruction format. The RX format in­
structions permit double indexing; i.e., the index can
be used to provide the address of an element within
an array.

Displacement (D) is a 12-bit number contained in
the instruction format. It is included in every address
computation. The displacement provides for relative
addressing up to 4095 bytes beyond the element or
base address. In array-type calculations the displace­
ment can be used to specify one of many items as­
sociated with an element. In the processing of records,
the displacement can be used to identify items within
a record.

In forming the address, the base address and index
are treated as unsigned 24-bit positive binary integers.
The displacement is similarly treated as a 12-bit posi­
tive binary integer. The three are added as 24-bit
binary numbers, ignoring overHow. Since every ad­
dress includes a base, the sum is always 24 bits long.
The address bits are numbered 8-31 corresponding to
the numbering of the base address and index bits in
the general register.

The program may have zeros in the base address,
index, or displacement nelds. A zero is used to indi­
cate the absence of the corresponding address com­
ponent. A base or index of zero implies that a zero
quantity is to be used in forming the address, regard­
less of the contents of general register O. A displace­
ment of zero has no special significance. Initialization,
modincation, and testing of base addresses and in­
dexes can be carried out by nxed-point instructions,
or by BRANCH AND LINK, BRANCH ON COUNT, or BRANCH­

ON-INDEX instructions.
As an aid in describing the logic of the instruction

format, examples of two instructions and their related
instruction formats follow.

RR Format

Add 7 9
78 1112 15

Execution of the ADD instruction adds the contents of
general register 9 to the contents of general register
7 and the sum of the addition is placed in general
register 7.

RX Format

Store 3 10 14 300
7 8 11 1 2 1 5 16 19 20 31

14

Execution of the STORE instruction stores the contents
of general register 3 at a main-storage location ad­
dressed by the sum of 300 and the low-order 24 bits
of general registers 14 and 10.

Sequential Instruction Execution

Normally, the operation of the CPU is controlled by
instructions taken in sequence. An instruction is
fetchcd from a location specined by the instruction
addrcss in the current psw. The instruction address is
then increased by the number of bytes in the instruc­
tion fetched to address the next instruction in se­
quence. The instruction is then executed and the same
steps are repeated using the new value of the instruc­
tion address.

Conceptually, all halfwords of an instruction are
fetched from storage after the preceding operation is
completed and before execution of the current oper­
ation, even though physical storage word size and
overlap of instruction execution with storage access
may cause actual instruction fetching to be different.
Thus, it is possible to modify an instruction in storage
by the immediately preceding instruction.

A change from sequential operation may be caused
by branching, status switching, interruptions, or man­
ual intervention.

Branching

Thc normal sequential execution of instructions is
changcd when reference is made to a subroutine, when
a two-way choice is encountered, or when a segment
of coding, such as a loop, is to be repeated. All these
tasks can be accomplished with branching instruc­
tions. Provision is made for subroutine linkage, permit­
ting not only the introduction of a new instruction
address but also the preservation of the return address
and associated information.

Decision-making is generally and symmetrically
provided by the BRANCH ON CONDITION instruction.
This instruction inspects a two-bit condition code that
reHects the result of a majority of the arithmetic, logi­
cal, and I/O operations. Each of these operations can
set the code in anyone of four states, and the' con­
ditional branch can specify any selection of these four
states as the criterion for branching. For example, the
condition code reHects such conditions as nonzero,
first operand high, equal, overHow, channel busy, zero,
etc. Once set, the condition code remains unchanged
until modined by an instruction that reHects a dif­
ferent condition code.

The two bits of the condition code provide for four
possible condition code settings: 0, 1, 2, and 3. The
specinc meaning of any setting is signincant only to
the operation setting the condition code.

Loop control can be performed by the conditional
branch when it tests the outcome of address arith­
metic and counting operations. For some particularly
frequent combinations of arithmetic and tests, the in­
structions BRANCH ON COUNT and BRANCH ON INDEX are
provided. These branches, being specialized, provide
increased performance for these tasks.

Program Status Word

A double word, the program status word (psw), con­
tains the information required for proper program
execution. The psw includes the instruction address,
condition code, and other fields to be discussed. In
general, the psw is used to control instruction se­
quencing and to hold and indicate the status of the
system in relation to the program currently being exe­
cuted. The active or controlling psw is called the "cur­
rent psw." By storing the current psw during an inter­
ruption, the status of the CPU can be preserved for
subsequent inspection. By loading a new psw or part
of a psw, the state of the CPU can be initialized or
changed. Figure 14 shows the psw format.

I System Mask I Key I AMWP I Interruption Code I
o 78 11 12 1516 31

32 3334 3536

Program
Mask

0-7 System mask

3940

o Channel 0 mask
1 Channell mask
2 Channe I 2 mask
3 Channel 3 mask
4 Channel 4 mask
5 Channel 5 mask
6 Channel 6 mask
7 External mask

8-11 Protection key
12 ASCII (A)
13 Machine-check mask (M)

Instruction Address

63

14 Wait state (W)
15 Problem state (P)

16-31 Interruption code
32-33 Instru~tion length code (llC)
34-35 Condition code (CC)
36-39 Program mask

36 Fixed-point overflow mask
37 Decimal overflow mask
38 Exponent underflow mask
39 Significance mask

40-63 Instruction address

Figure 14. Program Status Word Format

Interruption

The interruption system permits the CPU to change
state as a result of conditions external to the system,
in input/output (I/O) units, or in the CPU itself. Five
classes of interruption conditions are possible: I/O,
program, supervisor call, external, and machine check.

Each class has two related PSw's called "old" and
"new" in unique main-storage locations (Figure 15).
In all classes, an interruption involves merely storing
the current psw in its "old" position and making the
psw at the "new" position the current psw. The "old"
psw holds all necessary status information of the sys­
tem existing at the time of the interruption. If, at the
conclusion of the interruption routine, there is an in­
struction to make the old psw the current PSW, the

system is restored to the state prior to the interruption
and the interrupted routine continues.

Address length Purpose

a 0000 0000 double word Initial program loading PSW
8 0000 1000 double word Initial program loading CCWI

16 0001 0000 double word Initial program loading CCW2
24 0001 1000 double word External old PSW
32 0010 0000 double word Supervisor call old PSW
40 0010 1000 double word Program 01 d PSW
48 0011 0000 double word Machine check old PSW
56 0011 1000 double word Input/output old PSW
64 0100 0000 double word Channel status word
72 0100 1000 word Channel address word
76 0100 1100 word Unused
80 0101 0000 word Timer
84 0101 0100 word Unused
88 0101 1000 double word External new PSW
96 0110 0000 double word Supervisor call new PSW

104 0110 1000 double word Program new PSW
112 0111 0000 double word Machine check new PSW
120 0111 1000 double word Input/output new PSW
128 1000 0000 Diagnostic scan-out area *

* The size of the diagnostic scan-out area depends upon the
particular system's CPU and I/O channels.

Figure 15. Permanent Storage Assignments

Interruptions are taken only when the CPU is inter­
ruptable for the interruption source. The system mask,
program mask, and machine check mask bits in the
psw may be used to mask certain interruptions. When
masked off, an interruption either remains pending or
is ignored. The system mask may keep I/O and ex­
ternal interruptions pending, the program mask may
cause four of the 15 program interruptions to be ig­
nored, and the machine-check mask may cause ma­
chine-check interruptions to remain pending. Other
interruptions cannot be masked off.
A~ interruption always takes place after one in­

struction, execution is finished and before a new in­
struction execution is started. However, the occurrence
of an interruption may affect the execution of the cur­
rent instruction. To permit proper programmed action
following an interruption, the cause of the interrup­
tion is identified and provision is made to locate the
last executed instruction.

Input/Output Interruption

An I/O interruption provides a means by which the
CPU responds to conditions in the channels and I/O
units.

An I/O interruption can occur only when the mask
hit associated with the channel is set to one. The ad­
dress of the channel and I/O unit involved are recorded
in bits 16-31 of the old psw. Further information con­
cerning the I/O action is preserved in the channel sta­
tus word (csw) that is stored during the interruption.

System Structure 15

Program Interruption

Unusual conditions encountered in a program create
program interruptions. These conditions include in­
correct operands and operand specifications, as well
as exceptional results. The interruption code identines
the interruption cause. Figure 16 shows the different
causes that may occur.

Interruption
Code

1 00000001
2 00000010
3 00000011
4 00000100
5 00000101
6 00000110
7 00000111
8 00001000
9 00001001

10 00001010
11 00001011
12 00001100
13 00001101
14 00001110
15 00001111

Program Interruption
Cause

Operation
Privileged operation
Execute
Protection
Addressing
Specification
Data
Fixed-point overflow
Fixed-point divide
Decimal overflow
Decimal divide
Exponent overfl ow
Exponent underflow
Signifi cance
Floating-point divide

Figure 16. Interruption Code for Program Interruption

Supervisor-Call Interruption

This interruption occurs as a result of execution of the
instruction SUPERVISOR CALL. Eight bits from the in­
struction format are placed in the interruption code
of the old psw, permitting an identincation to be asso­
ciated with the interruptions. A major use for the in­
struction SUPERVISOR CALL is to switch from the prob­
lem-state to the supervisor state. This interruption may
also be used for other modes of status-switching.

External Interruption

The external interruption provides the means by
which the CPU responds to signals from the interrup­
tion key on the system control panel, the timer, and
the external signals of the direct control feature.

An external interruption can occur only when sys­
tem mask bit 7 in the psw is one.

The source of the interruption is identined by the
interruption code in bits 24-31 of the psw (Figure 17).
Bits 16-23 of the interruption code are made zero.

Interruption External
Code Bit Interruption Cause Mask Bit

24 Timer 7
25 Interrupt key 7
26 External signal 2 7
27 External signal 3 7
28 External signal 4 7
29 External signal 5 7
30 External signal 6 7
31 External signal 7 7

Figure 17. Interruption Code for External Interruption

16

Machine-Check Interruption

The occurrence of a machine check (if not masked
off) terminates the current instruction, initiates a diag­
nostic procedure, and subsequently causes the ma­
chine-check interruption. A machine check cannot be
caused by invalid data or instructions. The diagnostic
scan is performed into the scan area starting at lo­
cation 128. Proper execution of these steps depends
on the nature of the machine check.

Priority of Interruptions

During execution of an instruction, several interrup­
tion requests may occur. Simultaneous interruption re­
quests are honored in the following predetermined
order:

Machine Check
Program or Supervisor Call
External
Input/Output

The program and supervisor-call interruptions are
mutually exclusive and cannot occur at the same time.

When more than one interruption cause requests
service, the action consists of storing the old psw and
fetching the new psw belonging to the interruption
which is taken first. This new psw. subsequently is
stored without any instruction execution and the n~xt
interruption psw is fetched. This process continues
until no more interruptions are to be serviced. When
the last interruption request has been serviced, in­
struction execution is resumed using the psw last
fetched. The order of execution of the interruption
subroutines is, therefore, the reverse of the order in
which the psw's are fetched.

Thus, the most important interruptions - I/O, ex­
ternal, program or supervisor call - are actually serv­
iced first. Machine check, when it occurs, does not al­
low any other interruptions to be taken.

Program States

Over-all CPU status is determined by four types of pro­
gram-state alternatives, each of which can be changed
independently to its opposite and most of which are
indicated by a bit or bits in the psw. The program­
state alternatives are named stopped or operating,
running or waiting, masked or interruptible, and sup­
ervisor or problem state. These states differ in the way
they affect the CPU functions and the manner in which
their status is indicated and switched. All program
states are independent of each other in their functions,
indication, and status-switching.

Stopped 01' Operating States: The stopped state is
entered and left by manual procedure. Instructions are
not executed, interruptions are not accepted, and the
timer is not updated. In the operating state, the CPU

is capable of executing instructions and being inter­
rupted.

Running or Waiting State: In the running state, in­
struction fetching and execution proceed in the normal
manner. The wait state is normally entered by the
program to await an interruption, for example, an I/O

interruption or operator intervention from the console.
In the wait state, no instructions are processed, the
timer is updated, and I/O and external interruptions
are accepted, unless. masked. Running or waiting state
is determined by the setting of bit 14 in the psw.

"AJaskcd or Interruptible State: The CPU may be in­
terruptible or masked for I/O, external, machine-check,
and some program interruptions. When the CPU is in­
terruptible for a class of interruptions, these interrup­
tions are accepted. When the CPU is masked, the I/O,

external, and machine-check interruptions remain
pending, whereas program interruptions are ignored.
The interruptible states of the CPU are changed by
changing the mask bits of the psw.

Supe1'visor 01' Problem State: In the problem state,
all I/O instructions and a group of control instructions
are invalid. In the supervisor state, all instructions
are valid. The choice of problem or supervisor state is
determined by bit 15 of the psw.

Byte-Oriented Operand Feature
When the byte-oriented operand feature is installed,
the restriction that all halfword, word, and double­
word operands in main storage must be located at
addresses that are integral multiples of the operand
length is changed to the extent that all storage oper­
ands of unprivileged operations can appear on any
byte boundary. The change affects storage references
made by the CPU with RX and RS format instructions
and applies to fixed-point, floating-point, and logical
operands.

The feature does not pertain to instruction ad­
dresses. Instructions still must appear on even-byte
boundaries. The low-order bit of a branch address
must be zero, and the instruction EXECUTE still must
designate the subject instruction on an even byte
address.

The feature does not apply to the operands desig­
nated by privileged instructions. The instruction LOAD

psw still must designate an operand located on a
double-word boundary. Similarly, SET STORAGE KEY and
INSERT STORAGE KEY must still designate operands that
start at a quadruple-word boundary, and DIAGNOSE

may, depending upon the model, require a number of
low-order bit positions of the operand address to con­
tain zeros.

The feature does not affect channel operation. A
channel command word (ccw) still must be located
on a double-word boundary, and the constraints on
address resolution in the channel address word (CAW)

and transfer in channel are maintained.
When the feature is installed, a number of instruc­

tions that ordinarily could cause a specification excep­
tion cannot cause this exception. Also, the halfword,
word, and double-word store-type operations that or­
dinarily are suppressed upon a protection or address­
ing exception (CONVERT TO DECIMAL, STORE HALFWORD,

and the three store instructions ST, STD, and STE) now
are terminated when a protection or addressing ex­
ception is recognized.

Programming Note

Significant performance degradation is possible when
storage operands are not positioned at addresses that
'lfe integral multiples of the operand length. To en­
sure optimum performance, storage operands should
be aligned on integral boundaries, and use of un­
aligned operands should be rescrved for exceptional
cases.

Protection Features
Two protection features are available. These features
make it possible to protect the contents of main stor­
age from destruction or misuse. When the store-protec­
tion feature is installed, attempts to modify storage are
monitored. The addition of the fetch-protection feature
to the store-protection feature provides for monitoring
of all accesses to storage.

Protection is achieved by dividing main storage into
blocks of 2,048 bytes, and by associating a five-bit key
with each block. Two instructions - SET STORAGE KEY

and INSERT STORAGE KEY - are provided for assigning
and inspecting the code in a key. The same code may
he used in many keys.

A user's right of access to storage is identified by a
four-bit p1'otection key. For references caused by the
CPU, the protection key in the current psw is used; ac­
cesses by channels are controlled by the protection key
assigned to the associated I/O operation.

When protection applies to a main-storage reference,
the key in storage is compared with the protection key
associated with the reference. Access to the location,
for both operands and instructions, is granted only
when the two keys match. The keys are said to match
when the four high-order bits of the key in storage are
equal to the protection key or when the protection key
is zero. When store-and-fetch protection is installed,
the low-order bit of the key in storage is used to speci­
fy whether or not fetching is to be monitored.

System Structure 17

When a protection mismatch is detected, the con­
tent of the protected main-storage location remains un­
altered. A protection violation due to a CPU reference
causes the instruction to be suppressed or terminated
and program execution to be altered by an interrup­
tion. A violation due to an I/O operation causes the I/O

operation to be terminated, with the protection mis­
match indicated in 'the channel status word stored at
the C'nd of an I/O operation.

Timer Feature
The timer is provided as an interval timer and may
be programmed to maintain the time of day. The
timer consists of a full word in main-storage location
80. The timer word is counted down at a rate of 50
or 60 cycles per second, depending on line frequency.
The timer word is treated as a signed integer follow­
ing the rules of fixed-point arithmetic. An external in­
terruption condition is signaled when the value of the
timer word goes from positive to negative. The full
cycle time of the timer is 15.5 hours.

An updated timer value is available at the end of
each instruction execution but is not updated in the
stopped state. The timer is changed by addressing

storage location 80. As an interval timer, the timer is
used to measure elapsed time over relatively short in­
tervals. It can be set to any value at any time.

Direct Control Feature
The direct control feature provides two instructions,
READ DIRECT and WRITE DIRECf, and six external inter­
ruption lines. The read and write instructions provide
for the transfer of a single byte of information be­
tween an external device and the main storage of the
system. It is usually most desirable to use the data
channels of the system to handle the transfer of any
volume of information and use the direct data control
feature to pass controlling and synchronizing informa­
tion between the CPU and special external devices.

Each of the six external signal lines, when pulsed,
sets up the conditions for an external interruption.

Multisystem Operation
The design of System/360 permits communication be­
tween individual cpu's at several transmission rates.

System Structure 17.1

The communication is possible through shared con­
trol units, through a channel-to-channel adapter, and
through shared storage. Interconnection of cpu's is
further enhanced by the direct control feature (de­
scribed in the previous section), which can be used to
signal from one cpu to another, and by facilities for
direct address relocation, malfunction indication, and
external cpu initialization.

The relocation procedure applies to the first 4,096
bytes of storage. This area contains all permanent
storage assignments and, generally, has special signifi­
cance to supervisory programs. The relocation is ac­
complished by inserting a 12-bit prefix in each address
which has the high-order 12 bits set to zero and hence,
pertains to location 0-4095. Two manually set prefixes
are available to permit the use of an alternative area
when storage malfunction occurs. The choice between
the prefixes is determined by a prefix trigger set dur­
ing initial program loading.

To alert one cpu to the possible malfunction of an­
other cpu, a machine check-out signal is provided,
which can serve as· an external interruption to another
cpu.

Finally, provision is made for starting one cpu by a
signal from another cpu.

Input and Output
The following information is introductory in nature.
For thorough definition of the input/output system,
see "Input/Output Operations."

Input / Output Devices and Control Units

Input/output operations involve the transfer of infor­
mation to or from main storage and an I/O device.
Input/output devices include such equipment as card
readers and punches, magnetic tape units, disk storage,
drum storage, typewriter-keyboard devices, printers,
teleprocessing devices, and process control equipment.

Many I/O devices function with an external docu­
ment, such as a punched card or a reel of magnetic
tape. Some I/O devices handle only electrical signals,
such as those found in process-control networks. In
either case, I/O device operation is regulated by a
control unit. The control-unit function may be housed
with the I/O device, as is the case with a printer, or a
separate control unit may be used. In all cases, the
control-unit function provides the logical and buffer­
ing capabilities necessary to operate the associated

18

I/O device. From the programming point of view,
most control-unit functions merge with I/O device
functions.

Input / Output Interface

All communication between the control unit and the
channel takes place over a connection called the I/O

interface. The I/O interface provides an information
format and control signal sequences that are independ­
ent of the type of control unit and channel and provide
a uniform means of attaching and controlling various
types of I/O devices.

Channels

The channel controls transfer of data between I/O de­
vices and main storage. It connects with the cpu and
main storage and, via the I/O interface, with control
units. The channel relieves the cpu of the burden of
communicating directly with I/O devices and permits
data processing to proceed concurrently with I/O

operations.
A channel may be an independent unit, complete

with necessary logical and storage capabilities, or it
may time-share cpu facilities and be physically inte­
grated with the cpu. In either case, channel functions
are identical. Channels may be implemented, however,
to have different maximum data transfer capabilities.

The System/360 has two types of channels: multi­
plexor and selector. The channel facility necessary to
sustain an operation with an I/O device is called a
sub channel. The selector channel has one subehannel;
the multiplexor channel has multiple subchannels.

Channels have two modes of operation: burst and
multiplex.

In the burst mode, the data transfer facilities of the
channel are monopolized for the duration of transfer
of a burst of data. Other devices attached to the
channel cannot transfer data until the burst ceases.
The selector channel functions only in the burst mode.

The multiplexor channel functions in either the
burst mode or in the multiplex mode. In the multiplex
mode, the multiplexor channel can sustain concurrent
I/O opcrations on several subchannels. Bytes of data
associated with different I/O devices are interleaved
and routed to or from the desired locations in main
storage. The I/O interface is time-shared by a number
of concurrently operating I/O devices, each of which
uses its own subchannel.

Some I/O devices can operate only in burst mode.
Other I/O devices have a manual switch in the control
unit that may be set to a burst-mode or to a multiplex­
mode position, when attached to a multiplexor chan-

nel. When attached to a selector channel, an I/O de­
vice can operate only in burst mode.

Input / Output Instructions

The System/360 uses only four I/O instructions:
START I/O

TEST I/O

HALT I/O

TEST CHANNEL

Input/output instructions can be executed only
while the CPU is in the supervisor state.

Start I/O

The START I/O instruction is used to initiate an I/O

operation. The address part of the instruction specifies
the channel and I/O device.

Test I/O

Execution of the TEST I/O instruction sets the con­
dition code in the psw to indicate the state of the ad­
dressed channel, subchannel, and I/O device, and may
cause a csw to be stored. The instruction may be used
to clear r/o interruption conditions, selectively by
device.

Halt I/O

The HALT I/O instruction terminates a channel opera­
tion.

Test Channel

Execution of the TEST CHANNEL instruction sets the
condition code in the psw to indicate the state of the
channel addressed by the instruction. The resulting
condition code indicates one of the following: chan­
nel available, interruption condition in channel, chan­
nel working, or channel not operational.

Input/Output Operation Initiation

An I/O operation is initiated by a START r/o instruction.
If the necessary channel and device facilities are avail­
able, START I/O is accepted and the CPU continues its
program. The channel independently governs the I/O

device specified by the instruction.

Channel Address Word

Successful execution of START I/O causes the channel
to fetch a channel address word (CAW) from the
main-storage location 72. The CAW specifies the byte
location in main storage where the channel program
begilIls.

Figure 18 shows the format for the CAW. Bits 0-3
specify the storage-protection key that will govern the
r/o operation. Bits 4-7 must contain zeros. Bits 8-31
specify the location of the first channel command
word (ccw).

Key 100001 Command Address]
3 <4 78 31

Figure 18. Channel Address Word Format

Channel Command Word

The byte location specified by the CAW is the first of
eight bytes of information that the channel fetches
from main storage. These 64 bits of information are
called a channel command word (ccw). Only the
START I/O instruction may cause the channel to fetch
ccw's.

One or more ccw's make up the channel program
that directs channel operations.

A channel command word can specify one of six
commands:

Read
Write
Read Backward
Control
Sense
Transfer In Channel
If more than one ccw is to be fetched, the ccw's are

to be fetched sequentially, except when transfer in
channel is encountered. Figure 19 shows the format
for ccw's.

Command I
Code . Data Address

78 31

The command code specifies the operation to be performed (read, write,
rewind, etc.).

The data address specifies the first byte location in main storage for a
data transfer type of operation.

The flag bits may specify chaining to another CCW, suppression of a
possible incorrect-length indication, etc.

The count specifies the number of bytes for a data transfer operation.

Figure 19. Channel Command Word Format

Input/Output Commands

Read

The read command causes data to be read from the
selected I/O device and defines the area in main
storage to be used.

Write

The write command causes a write operation on the
selected I/O device and defines the data in main stor­
age to be written.

System Structure 19

Read Backward

The read-backward command causes a read operation
in which the characters are read from the external
document in reverse order by the I/O device. Bytes
read backward are placed in descending main storage
locations.

Control

The control command contains information used to
control the selected I/O device. This control informa­
tion is called an order. Order information may be en­
tirely contained in the command code, or the control
command may provide a data address and byte count
for additional order information in main storage to be
fetched by the channel. Also, a control command may
specify information in main storage such as the address
of a particular disk storage track.

Orders are peculiar to the particular I/O device in
use; orders can specify such functions as rewinding a
tape unit, loading a tape cartridge, or line skipping on
a printer. A control command may cause mechanical
motion by an I/O device, or it may specify a function
altogether electronic in nature, such as setting the re­
cording density for a tape unit operation.

The general relationship of I/O instructions, com­
mands, and orders is shown in Figure 20.

CPU Channels Control Unit
and/or

(Decodes I/O Device
I/O (Decodes i----

Instructions) Commands) (Decodes
Orders)

Figure 20. Relationship of I/O Instructions, Commands, and
Orders

Sense

The sense command specifies the beginning main
storage location to which sense information is trans­
ferred from the selected control unit. One or more
bytes of sense data may be specified, depending upon
the type of I/O device. The sense data provides de­
tailed information concerning the selected I/O device,
such as a stacker-full condition of a card reader or a
file-protected condition of a reel of magnetic tape on a
tape unit. Sense data have significance peculiar to
the type of I/O device involved.

Transfer In Channel

The transfer-in-channel (TIc) command specifies the
location of the next ccw to be fetched and used by the
channel. The TIC command is used whenever the pro­
grammer wants to specify a ccw that is not located at

20

the next higher double word location in main storage.
The TIC command permits a programmer to cause exe­
cution of any ccw, including a ccw immediately pre­
ceding a TIC command, except that the channel will not
permit a TIC command to specify execution of another
TIC command. Also, the CAW may not address a TIC
command.

Input/Output Termination

Input/output operations terminate with the device and
channel signaling end of operation and a request for an
I/O interruption.

A command can be rejected during an attempt to
execute a START I/O, however, by a busy condition, by
a channel programming error, etc. The condition code
set in the psw by an unsuccessful START I/O instruction
will indicate one of the following: that a channel status
word (csw) has been stored to detail the conditions
that precluded initiation of the I/O operation, that the
equipment is busy, or that the addressed equipment is
not operational.

Channel Status Word

The channel status word (csw) provides information
about the termination of an I/O operation. It can be
formed or reformed by START I/O, TEST I/O, HALT I/O,

or by an I/O interruption. The instruction TEST CHAN­
NEL does not affect the csw. Figure 21 shows the csw
format.

I Key I 0000 I Command Address

0 34 78 31

Status I Count
32 4748 63

The key field contains the protection key used in the last operation.
The command address specifies the location plus 8 of the last CON

used.
The status field contains a unit status byte and a channel status byte.

The unit status byte may indicate one or more conditions, such as control
unit end, device end, busy, etc. The channel status byte may indicate a
channel programming error, a channel data check, etc.

The count field specifies the residual count of the last CON used.

Figure 2l. Channel Status Word Format

Input I Output Interruptions

Input/output interruptions are caused by termination
of an I/O operation or by operator intervention at the
I/O device. An I/O interruption stores the current psw
in the I/O old psw location, and places the I/O new
psw in control of the system. The I/O new psw, when

made current by an I/O interruption, may cause CPU
interrogation of the channel status word, or take what­
ever action is considered appropriate by the pro­
grammer.

An I/O interruption request may be initiated by an
I/O interruption condition in a device, a control unit,
or a channel. When a channel has multiple I/O inter­
ruption requests pending, it establishes a priority se­
quence for them before initiating an I/O interruption
request to the CPU. Conditions responsible for I/O inter­
ruption requests remain pending in the I/O devices or
channels until they are accepted by the CPU.

Sasic Procedure for a Data-Transfer Operation

A START I/O instruction is used to initiate data transfer
to or from an I/O device. To perform such an opera-

, tion, it is necessary for the programmer to:
1. Establish a channel command word (ccw) or a

list of ccw's in main storage.
2. Load the channel address word (CAW) with the

address of the first byte of the first ccw in the channel
program.

3. Load the channel and device address in the START
I/O instruction to be used for the operation.

4. Set the system mask to disable all channels for I/O

interruptions.
5. Issue the START I/O instruction.
6. Test the condition code established in the current

psw by termination of the START I/O.

Condition code 0 indicates that the I/O operation
has been initiated and that the channel is proceeding
with its execution. If an I/O interruption is desired
upon termination of the operation, the pertinent chan­
nel mask bit must be set to one (an appropriate I/O

new PSW must have been established previously).
Condition code 1 indicates that a channel status

word (csw) has been stored; its status bytes should be
examined to determine why the desired operation was
not initiated.

Condition code 2 indicates that the channel or sub­
channel addressed by the START I/O instruction was
found to be busy with a previously initiated operation.
If an I/O interruption from the operation already in
progress is _ desired, the channel mask bit must be set
to one.

Condition code 3 indicates that the addressed equip­
ment is not operational; a message to the operator may
be initiated.

Between the time a START I/O instruction is decoded
by the CPU, and the time the CPU is released by the
channel with condition code 0 set in the current PSW,
the channel performs many functions. The CAW must
be fetched, the first CCW must be fetched, the CAW and
ccw must be tested for validity, etc. After a START I/O

results in condition code 0, the operation continues un­
til terminated. Termination of an I/O operation causes
a request for an I/O interruption. Some of the relation­
ships of CPU and channel functions are illustrated in
Figure 22. The example covers the time span from
initation of a START I/O instruction to a resulting I/O

interruption.
The example illustrates a simple read operation. The

START I/O used in Figure 22 addresses an IBM 2403
Magnetic Tape Unit and Control. The CAW addresses
a ccw specifying a read operation. The ccw does not,
however, specify command chaining or data chaining.
Therefore, the single read ccw constitutes the entire
channel program for the example.

The example is limited to the START I/O considera­
tions shown in Figure 22; a successful read operation
is assumed, and many machine functions, such as chan­
nel testing of CAW and ccw for validity, device selec­
tion, etc., are not represented. Similarly, other system
operations, such as concurrent I/O operations, multi­
programming, etc., are not considered.

The purpose of this part of the manual has been to
illustrate a data transfer operation, with major empha­
sis given to the point-in-time relationships of CPU and
channel functions. The START I/O example provided
does not purport to show how data-transfer program­
ming should be done; a programmer familiar with the
I/O system may generate considerably more compre­
hensive I/O routines.

See the "Input/Output Operations" section of this
manual for thorough, detailed description of I/O opera­
tions.

System Control Panel
The system control panel provides the switches, keys,
and lights necessary to operate and control the system.
The need for operator manipulation of manual con­
trols is held to a minimum by the system design and
the governing supervisory program. The result is few­
er and less serious operator errors.

System Control Panel Functions

The main functions provided by the system control
panel are the ability to: reset the system; store and
display information in main storage, in registers, and
in the pSW; and load initial program information.

System Reset

The system-reset function resets the CPU, the channels,
and on-line control units and I/O devices. In general,
the system is placed in such a state that processing
can be initiated without the occurrence of machine
checks, except those caused by subsequent machine
malfunction.

System Structure 21

8Time-------.~

CPU Instruction Execution

System Mask Bit for Addressed
Channel

CAW Fetch by Channel

CCW Fetch by Channel

Condition Code Set in
Current PSW

Operation Executed by Device

Channel End

Device End

I/O Interruption

CSW Stored

...-----------------CPU released by channel; next sequential instruction is

j

executed. (The BRANCH ON CONDITION instruction
should now be used to branch on the condition code just
established in the current PSW.)

r I/O new PSW becomes the current PSW; it specifies address
of next instruction to be executed. (TEST UNDER MASK

CPU Program instructions should be used to examine the status field in
r-ST ART I/O ~~+oI1(f---I-*-- Resumed ~ \r-Ij ---*-,111-- the CSW just stored.)

I
I r--- ... Is Zero +-----,.~I Cf-- Is One~ I,-~ --~.~,._ ••• Is Zero. A mask of zero inhibits I/O interruptions; a

mask of one permits them.

----11'--__ --!-__________ --'I~ 'r~ ___ -:---_ CAW, fetched from location 72, specifies address of first
CCW.

___ ---'n ... _+--________ ~-\~ ~'r----;-- CCW provides read command code, storage address for
fi rst byte, and number of bytes to be read.

_____ -JnL... _________ -\~ ~'r----+- Operation specified by first CCW initiated successfully.

_____ !------------'l; 1j ... _---;-_ Read operation specified by first CCW is performed.

(- m ! Completion of data-transfer part of operation is indicated ------------------\, ~!~ by setting channel-end status bit to one.

(- m ! Completion of operation at device is indicated by setting
------------------\) ~i~ device-end status bit to one.

((~ Termination of operation causes I/O interruption; I/O
------------------\) J : new PSW is made current PSW •

((~ Status transferred from channel to CSW (location 64);
------------------\J J unit status byte contains device-end and channel-end

bits set to one.

[) Timing relationships shown here are only relative. The purpose of this chart is limited to illustration of the relationship of CPU and channel actions; this
chart is not intended to illustrate signal lines, timing pulses, voltage levels, etc.

* Dotted lines link concurrent actions.

Channel end and device end are concurrent for tape read or write operations, but other devices or operations cause channel-end and device-end signals
to be separated by time, which may result in two I/O interruptions.

SIO: ST ART I/O
CAW: Channel Address Word
CCW: Channel Command Word
CSW: Channel Status Word
PSW: Program Status Word

Figure 22. Basic Timing Chart for IBM 2403 Tape Read Operation

Store and Display

The store-and-display function permits manual inter­
vention in the progress of a program. The function
may be provided by a supervisory program in con­
junction with proper I/O equipment and the interrupt
key. Or, the system-control-panel facilities may be
used to place the CPU in the stopped state, and then
to store and display information in main storage, in
general and floating-point registers, and in the instruc­
tion-address portion of the psw.

Initial Program Loading

The initial-program-Ioading (IPL) procedure is used
to begin or renew system operation. The load key is
pressed after an input device is selected with the load-

22

unit switches. This causes a read operation at the
selected input device. Six words of information are
read into main storage and may be used for reading
more information into any part of main storage. Upon
completion of the IPL read operation, the double word
from location 0 is made the current psw for subsequent
control of the system.

The system controls are divided into three sections:
operator control, operator intervention, and customer
engineering control.

Operator Control Section

This section of the system control panel contains the
operator controls required when the CPU is operating
under supervisory program control.

The main functions provided are the control and
indication of power, the indication of system status,
and operator-to-machine communication. These in­
clude:

Emergency power-off pull switch
Power-on back-lighted key
Power-off key
Interrupt key
Wait light
Manual light
System light
Test light
Load light
Load-unit switches
Load key

Operator Intervention Section

This section of the system control panel provides
controls required for operator intervention into normal
programmed operation. These include:

System reset key
Stop key
Start key
Rate switch (single cycle or normal processing)
Storage-select switches
Address switches
Data switches
Store key
Display key
Set Ie key
Address compare switches

Customer Engineering Section

This section of the system control panel provides the
controls intended only for customer engineering use.
Customer engineering controls are also available on
some storage, channel, and control-unit equipment.

System Structure 23

Fixed-Point Arithmetic

The fixed-point instruction set performs binary arith­
metic on operands serving as addresses, index quanti­
ties, and counts, as well as fixed-point data. In general,
both operands are signed and 32 bits long. Negative
quantities are held in two's-complement form. One
operand is always in one of the 16 general registers;
the other operand may be in main storage or in a
general register.

The instruction set provides for loading, adding,
subtracting, comparing, multiplying, dividing, and
storing, as well as for the sign control, radix conver­
sion, and shifting of fixed-point operands. The entire
instruction set is included in the standard instruction
set.

The condition code is set as a result of all sign­
control, add, subtract, compare, and shift operations.

Data Format
Fixed-point numbers occupy a fixed-length format
consisting of a one-bit sign followed by the integer
field. When held in one of the general registers, a
fixed-point quantity has a 31-bit integer field and oc­
cupies all 32 bits of the register. Some multiply, divide,
and shift operations use an operand consisting of 64
bits with a 63-bit integer field. These operands are
located in a pair of adjacent general registers and are
addressed by an even address referring to the left­
most register of the pair. The sign-bit position of the
rightmost register contains part of the integer. In reg­
ister-to-register operations the same register may be
specified for both operand locations.

Full Word Fixed-Point Number

lsi Integer

o 1 31

Hallword Fixed-Point Number

151 Integer
o 1 15

Fixed-point data in main storage occupy a 32-bit word
or a 16-bit halfword, with a binary integer field of 31
or 15 bits, respectively. The conversion instructions

24

use a 64-bit decimal field. These data must be located
on integral storage boundaries for these units of infor­
mation, that is, double word, fullword, or halfword
operands must be addressed with three, two, or one
low-order address bit(s) set to zero.

A halfword operand in main storage is extended to
a full word as the operand is fetched from storage.
Subsequently, the operand participates as a full word
operand.

In all discussions of fixed-point numbers in this pub­
lication, the expression "32-bit signed integer" denotes
a 31-bit integer with a sign bit, and the expression "64-
bit signed integer" denotes a 63-bit integer with a sign
bit.

Number Representation
All fixed-point operands are treated as signed integers.
Positive numbers are represented in true binary nota­
tion with the sign bit set to zero. Negative numbers
are represented in two's-complement notation with a
one in the sign bit. The two's-complement representa­
tion of a negative number may be considered the sum
of the integer part of the field, taken as a positive
number, and the maximum negative number. The
two's complement of a number is obtained by invert­
ing each bit of the number and adding a one in the
low-order bit position.

This type of number representation can be consider­
ed the low-order portion of an infinitely long represen­
tation of the number. When the number is positive, all
bits to the left of the most significant bit of the num­
ber, including the sign bit, are zeros. When the num­
ber is negative, all these bits, including the sign bit,
are ones. Therefore, when an operand must be ex­
tended with high-order bits, the expansion is achieved
by prefixing a field in which each bit is set equal to
the high-order bit of the operand.

Two's-complement notation does not include a nega­
tive zero. It has a number range in which the set of
negative numbers is one larger than the set of positive
numbers. The maximum positive number consists of
an all-one integer field with a sign bit of zero, whereas
the maximum negative number (the negative number
with the greatest absolute value) consists of an all­
zero integer field with a one-bit for sign.

The CPu cannot represent the complement of the
maximum negative number. When an operation, such
as a subtraction from zero, produces the complement
of the maximum negative number, the number remains
unchanged, and a fixed-point overflow exception is
recognized. An overflow does not result, however,
when the number is complemented and the final re­
sult is within the representable range. An example of
this case is a subtraction from minus one. The product
of two maximum negative numbers is representable as
a double-length positive number.

The sign bit is leftmost in a number. In an arithme­
tic operation, a carry out of the integer field changes
the sign. However, in algebraic left-shifting the sign
bit does not change even if significant high-order bits
are shifted out of the integer field.

Condition Code
The results of fixed-point sign-control, add, subtract,
compare, and shift operations are used to set the condi­
tion code in the program status word (psw). All other
fixed-point operations leave this code undisturbed.
The condition code can be used for decision-making
by subsequent branch-on-condition instructions.

The condition code can be set to reflect three types
of results for fixed-point arithmetic. For most opera­
tions, the states 0, 1, or 2 indicate a zero, less than
zero, or greater than zero content of the result reg­
ister while the state 3 is used when the result over-,
flows.

For a comparison, the states 0, 1, or 2 indicate that
the first operand is equal, low, or high.

For ADD LOGICAL and SUBTRACT LOGICAL, the codes ° and 1 indicate a zero or nonzero result register con­
tent in the absence of a logical carry out of the sign
position; the codes 2 and 3 indicate a zero or nonzero
result register content with a logical carry out of the
sign position.

CONDITION CODE SETTINGS FOR FIXED-POINT ARITHMETIC

o 1 2 3
Add H/F zero < zero > zero overflow
Add Logical zero not zero, zero, not zero,

no carry no carry carry carry
Compare H/F equal low high
Load and Test zero < zero > zero
Load Complement zero < zero > zero overflow
Load Negative zero < zero
Load Positive zero > zero overflow
Shift Left Double zero < zero > zero overflow
Shift Left Single zero < zero > zero overflow
Shift Right Double zero < zero > zero
Shift Right Single zero < zero > zero
Subtract H/F zero < zero > zero overflow
Subtract Logical not zero, zero, not zero,

no carry carry carry

Instruction format
Fixed-point instructions use the following three for­
mats:

RR Format

I Op Code Rl R2
o 78 1112 15

RX Format

I Op Code Rl X
2 B2

0 7 8 11 12 1516 1920 31

RS Format

I Op Code Rl R3 B2

0 78 11 12 1516 1920 31

In these formats, Rl specifies the general register con­
taining the first operand. The second operand loca­
tion, if any, is defined differently for each format.

In the RR format, the R2 field specifies the general
register containing the second operand. The same reg­
ister may be specified for the first and second operand.

In the RX format, the contents of the general reg­
isters specified by the X2 and B2 fields are added to
the content of the D2 field to form an address designat­
ing the storage location of the second operand.

In the RS format, the content of the general register
specified by the B2 field is added to the content of the
D2 field. This sum designates the storage location of
the second operand in LOAD MULTIPLE and STORE

MULTIPLE. In the shift operations, the sum specifies the
number of bits of the shift. The R3 field specifies the
address of a general register in LOAD MULTIPLE and
STORE MULTIPLE and is ignored in the shift operations.

A zero in an X2 or B2 field indicates the absence of
the corresponding address component.

An instruction can specify the same general register
both for address modification and for operand loca­
tion. Address modification is always completed before
operation execution.

Results replace the first operand, except for STORE

and CONVERT TO DECIMAL, where the result replaces
the second operand.

The contents of all general registers and storage
locations participating in the addressing or execution
part of an operation remain unchanged, except for the
storing of the final result.

NOTE: In the detailed descriptions of the individual
instructions, the mnemonic and the symbolic operand
designation for the IBM System/360 assembly language
are shown with each instruction. For LOAD AND TEST,

Fixed-Point Arithmetic 25

for example, LTR is the mnemonic and Ri, R2 the oper­
and designation.

Instructions

The fixed-point arithmetic instructions and their mne-
monics, formats, and operation codes are listed in the
following table. The table also indicates when the con-
dition code is set and the exceptional conditions in
operand designations, data, or results that cause a pro-
gram interruption.

NAME MNEMONIC TYPE EXCEPTIONS CODE

Load LR RR 18
Load L RX P,A,S 58
Load Halfword LH RX P,A,S 48
Load and Test LTR RR C 12
Load Complement LCR RR C IF 13
Load Positive LPR RR C IF 10
Load Negative LNR RR C 11
Load Multiple LM RS P,A,S 98
Add AR RR C IF lA
Add A RX C P,A,S, IF 5A
Add Halfword AH RX C P,A,S, IF 4A
Add Logical ALR RR C IE
Add Logical AL RX C P,A,S 5E
Subtract SR RR C IF IB
Subtract S RX C P,A,S, IF 5B
Subtract Halfword SH RX C P,A,S, IF 4B
Subtract Logical SLR RR C IF
Subtract Logical SL RX C P,A,S 5F
Compare CR RR C 19
Compare C RX C P,A,S 59
Compare Halfwol'd CH RX C P,A,S 49
Multiply MR RR S Ie
Multiply M RX P,A,S 5C
Multiply Halfword MH RX P,A,S 4C
Divide DR RR S, IK ID
Divide D RX P,A,S, lK 5D
Convert to Binary CVB RX P,A,S,D,IK 4F
Convert to Decimal CVD RX P,A,S 4E
Store ST RX P,A,S 50
Store Halfword STH RX P,A,S 40
Store Multiple STM RS P,A,S 90
Shift Left Single SLA RS C IF 8B
Shift Right Single SRA RS C 8A
Shift Left Double SLDA RS C S, IF 8F
Shift Right Double SRDA RS C S 8E

NOTES

A Addressing exception
C Condition code is set
D Data exception
IF Fixed-point overflow exception
IK Fixed-point divide exception
P Protection exception
S Specification exception

Programming Note

The logical comparisons, shifts, and connectives, as
well as LOAD ADDRESS, BRANCH ON COUNT, BRANCH ON

INDEX HIGH, and BRANCH ON INDEX LOW OR EQUAL, also
may be used in fixed-point calculations.

26

Load

[RR]

18

78 1112 15

58
7 8 11 12 15 16 19 20 31

The second operand is placed in the first operand lo­
cation. The second operand is not changed.

Condition Code: The code remains unchanged.
Program Interruptions:

Protection (fetch violation by L only)
Addressing (L only)
Specification (L only)

Load Halfword

LH Rl1 D2(X21 82) [RX]

48
7 8 11 12 15 16 19 20 31

The halfword second operand is placed in the first
operand location.

The halfword second operand is expanded to a full­
word by propagating the sign-bit value through the
16 high-order bit positions. Expansion occurs after the
operand is obtained from storage and before insertion
in the register.

Condition Code: The code remains unchanged.
Program Interruptions:

Protection (fetch violation)
Addressing
Specification

Load and Test

12
78 1112 15

The second operand is placed in the first operand loca­
tion' and the sign and magnitude of the second op­
erand determine the condition code. The second op­
erand is not changed.

Resulting Condition Code:
o Result is zero
1 Result is less than zero
2 Result is greater than zero
3

Program Interruptions: None.

Programming Note

When the same register is specified as first and second
operand location, the operation is equivalent to a test
without data movement.

Load Complement

LCR R1, R2 [RR]

78 1112 15

The two's complement of the second operand is placed
in the first operand location.

An overflow condition occurs when the maximum
negative number is complemented; the number re­
mains unchanged. The overflow causes a program in­
terruption when the fixed-point overflow mask bit is
one.

Resulting Condition Code:
o Result is zero
1 Result is less than zero
2 Result is greater than zero
3 Overflow

Program Interruptions:
Fixed-point overflow

Programming Note

Zero·remains invariant under complementation.

Load Positive

LPR R1, R2 [RR]

10

78 1112 15

The absolute value of the second operand is placed in
the first operand location.

The operation includes complementation of nega­
tive numbers; positive numbers remain unchanged.

An overflow condition occurs when the maximum
negative number is complemented; the number re­
mains unchanged. The overflow causes a program in­
terruption when the fixed-point overflow mask bit is
one.

Resulting Condition Code:
o Result is zero
1
2 Result is greater than zero
3 Overflow

Program Interruptions:
Fixed-point overflow

Load Negative

LNR R1, R2 [RR]

I 11 R1 R2
0 78 11 12 15

The two's complement of the absolute value of the
second operand is placed in the first operand location.
The operation complements positive numbers; nega­
tive numbers remain unchanged. The number zero
remains unchanged with positive sign.

Resulting Condition Code:
o Result is zero
1 Result is less than zero
2
3

Program Interruptions: None.

Load Multiple

98
78 1112 1516 1920 31

The set of general registers starting with the register
specified by Rl and ending with the register specified
by Ra is loaded from the locations designated by the
second operand address.

The storage area from which the contents of the
general registers are obtained starts at the location
designated by the second operand address and con­
tinues through as many words as needed. The general
registers are loaded in the ascending order of their
addresses, starting with the register specified by Rl
and continuing up to and including the register speci­
fied by Ra, with register 0 following register 15.

The second operand remains unchanged.
Condition Code: The code remains unchanged.
Program Interruptions:

Protection (fetch violation)
Addressing
Specification

Programming Note

All combinations of register addresses specified by Rl
and Ra are valid. When the register addresses are
equal, only one word is transmitted. When the address
specified by Ra is less than the address specified by R1,

the register addresses wrap around from 15 to O.

Fixed-Point Arithmetic 27

Add

AR Rlt R2 [RR]

I lA Rl R2
0 7 8 11 12 15

A Rlt DiX2t 8 2) [RX]

I 5A Rl I X
2 I B2 D2

0 7 8 11 12 1516 1920 31

The second operand is added to the first operand,
and the sum is placed in the first operand location.

Addition is performed by adding all 32 bits of both
operands. If the carries out of the sign-bit position and
the high-order numeric bit position agree, the sum is
satisfactory; if they disagree, an overflow occurs. The
sign bit is not changed after the overflow. A positive
overflow yields a negative final sum, and a negative
overflow results in a positive sum. The overflow causes
a program interruption when the fixed-point overflow
mask bit is one.

Resulting Condition Code:
o Sum is zero
1 Sum is less than zero
2 Sum is greater than zero
3 Overflow

Program Interruptions:
Protection (fetch viola~ion by A only)
Addressing (A only)
Specification (A only)
Fixed-point overflow

Programming Note

In two's-complement notation, a zero result is always
positive.

Add Halfword

4A
7 8 11 1 2 1 S 16 19 20 31

The halfword second operand is added to the first
operand and the sum is placed in the first operand
location.

The halfword second operand is expanded to a full­
word before the addition by- propagating the sign-bit
value through the 16 high-order bit positions.

Addition is performed by adding all 32 bits of both
operands. If the carries out of the sign-bit position
and the high-order numeric bit position agree, the
sum is satisfactory; if they disagree, an overflow oc­
curs. The sign bit is not changed after the overflow.
A positive overflow yields a negative final sum, and a

28

negative overflow results in a positive sum. The over­
flow causes a program interruption when the fixed­
point overflow mask bit is one.

Resulting Condition Code:
o Sum is zero
1 Sum is less than zero
2 Sum is greater than zero
3 Overflow

Program Interruptions:
Protection (fetch violation)
Addressing
Specification
Fixed-point overflow

Add Logical

ALR R1 , Rz [RR]

I 1 E Rl R2
0 7 8 11 12 15

5E
7 8 11 1 2 15 16 1 9 20 31

The second operand is added to the first operand, and
the sum is placed in the first operand location. The oc­
currence of a carry out of the sign position is recorded
in the condition code.

Logical addition is performed by adding all 32 bits
of both operands without further change to the result­
ing sign bit. The instruction differs from ADD in the
meaning of the condition code and in the absence of
the interruption. for overflow.

If a carry out of the sign position occurs, the leftmost
bit of the condition code (psw bit 34) is made one. In
the absence of a carry, bit 34 is made zero. When the
sum is zero, the rightmost bit of the condition code
(psw bit 35) is made zero. A nonzero sum is indicated
by a one in bit 35.

Resulting Condition Code:
o Sum is zero (no carry)
1 Sum is not zero (no carry)
2 Sum is zero (carry)
3 Sum is not zero (carry)

Program Interruptions:
Protection (fetch violation by AL only)
Addressing (AL only)
Specification (AL only)

Subtract

SR RJt R2 [RR]

I 18 Rl I R2 I
0 78 II 12 15

S RII D2(X21 82) [RX]

I 58 Rl X2 82 D2
0 78 II 12 1516 1920 31

The second operand is subtracted from the first op­
erand, and the difference is placed in the first operand
location.

Subtraction is performed by adding the two's com­
plement of the second operand to the first operand.
All 32 bits of both operands participate, as in ADD. If
the carries out of the sign-bit position and the high­
order numeric bit position agree, the difference is sat­
isfactory; if they disagree, an overflow occurs. The
overflow causes a program interruption when the fixed­
point overflow mask bit is one.

Resulting Condition Code:
o Difference is zero
1 Difference is less than zero
2 Difference is greater than zero
3 Overflow

Program Interruptions:
Protection (fetch violation by S only)
Addressing (S only)

. Specifications (S only)
Fixed-point overflow

Programming Note

When the same register is specified as first and second
operand location, subtracting is equivalent to clearing
the register.

Subtracting a maximum negative number from an­
other maximum negative number gives a zero result
and no overflow.

Subtract Halfword

SH RII DZ(X21 8 2) [RX]

48
o 78 1112 1516 1920 31

The halfword second operand is subtracted from the
first operand, and the difference is placed in the first
operand location.

The halfword second operand is expanded to a fuIl­
word before the subtraction by propagating the sign­
bit value through 16 high-order bit positions.

Subtraction is performed by adding the two's com-

plement of the expanded second operand to the first
operand. All 32 bits of both operands participate, as in
ADD. If the carries out of the sign-bit position and the
high-order numeric bit position agree, the difference
is satisfactory; if they disagree, an overflow occurs.
The overflow causes a program interruption when the
fixed-point overflow mask bit is one.

Resulting Condition Code:
o Difference is zero
1 Difference is less than zero
2 Difference is greater than zero
3 Overflow

Program Interruptions:
Protection (fetch violation)
Addressing
Specification
Fixed-point overflow

Subtract Logical

SLR RII R2 [RR]

IF
o 78 1112 15

5F
o 78 1112 1516 1920 31

The second operand is subtracted from the first op­
erand, and the difference is placed in the first operand
location. The occurrence of a carry out of the sign
position is recorded in the condition code.

Logical subtraction is performed by adding the two's
complement of the second operand to the first oper­
and. All 32 bits of both operands participate, without
further change to the resulting sign bit. The instruction
differs from SUBTRAcr in the meaning of the condition
code and in the absence of the interruption for over-
flow. l'

If a carry out of the sign position occurs, the left­
most bit of the condition code (psw bit 34) is made
one. In the absence of a carry, bit 34 is made zero.
When the sum is zero, the rightmost bit of the condi­
tion code (psw bit 35) is made zero. A nonzero sum
is indicated by a one in bit 35.

Resulting Condition Code:
o
1 Difference is not zero (no carry)
2 Difference is zero (carry)
3 Difference is not zero (carry)

Program Interruptions:
Protection (fetch violation by SL only)
Addressing (SL only)
Specification (SL only)

Fixed-Point Arithmetic 29

Programming Note

A zero difference cannot be obtained without a carry
out of the sign position.

Compare

[RR]

19
78 II 12 15

[RX]

59
o 78 1112 1516 1920 31

The first operand is compared with the second op­
erand, and the result determines the setting of the
condition code.

Comparison is algebraic, treating both comparands
as 32-bit signed integers. Operands in registers or
storage are not changed.

Resulting Condition Code:
o Operands are equal
1 First operand is low
2 First operand is high
3

Program Interruptions:
Protection (fetch violation by Conly)
Addressing (C only)
Specification (C only)

Compare Halfword

CH R1, D2(X2, 82) [RX]

49
o 7 8 11 12 1516 1920 31

The first operand is compared with the halfword sec­
ond operand, and the result determines the setting of
the condition code.

The halfword second operand is expanded to a full­
word before the comparison by propagating the sign­
bit value through the 16 high-order bit positions.

Comparison is algebraic, treating both comparands
as 32-bit signed integers. Operands in registers or
storage are not changed.

30

Resulting Condition Code:
o Operands are equal
1 First operand is low
2 First operand is high
3

Program Interruptions:
Protection (fetch violation)
Addressing
Specification

Multiply

[RR]

1C
o 78 1112 15

[RX]

5C
o 78 1112 1516 1920 31

The product of the multiplier (the second operand)
and the multiplicand (the first operand) replaces the
multiplicand.

Both multiplier and multiplicand are 32-bit signed
integers. The product is always a 64-bit signed integer
and occupies an even/odd register pair. Because the
multiplicand is replaced by the product, the Rl field
of the instruction must refer to an even-numbered reg­
ister. A specification exception occurs when Rl is odd.
The multiplicand is taken from the odd register of the
pair. The content of the even-numbered register re­
placed by the product is ignored, unless the register
contains the multiplier. An overflow cannot occur.

The sign of the product is determined by the rules
of algebra from the multiplier and multiplicand sign,
except that a zero result is always positive.

Condition Code: The code remains unchanged.
Program Interruptions:

Protection (fetch violation by M only)
Addressing (M only)
Specification

Programming Note

The significant part of the product usually occupies 62
bits or fewer. Only when two maximum negative
numbers are multiplied are 63 significant product bits
formed. Since two's-complement notation is used, the
sign bit is extended right until the first significant
product digit is encountered.

Multiply Halfword

MH R1, D2(X2, 82) [RX]

I 4C I R1 X
2 I B2 D2

0 78 11 12 1516 1920 31

The product of the halfword multiplier (second op­
erand) and multiplicand (first operand) replaces the
multiplicand.

Both multiplicand and product are 32-bit signed
integers and may be located in any general register.
The halfword multiplier is expanded to a fullword

before multiplication by propagating the sign-bit value
through the 16 high-order bit positions. The multi­
plicand is replaced by the low-order part of the prod­
uct. The bits to the left of the 32 low-order bits are
not tested for significance; no overflow indication is
given.

The sign of the product is determined by the rules
of algebra from the multiplier and multiplicand sign,
except that a zero result is always positive ..

Condition Cpde: The code remains unchanged.
Program Interruptions:

Protection (fetch violation)
Addressing
S pecifica tion

Programming Note

The significant part of the product usually occupies 46
bits or fewer, the exception being 47 bits when both
operands are maximum negative. Since the low-order
32 bits of the product are stored unchanged, ignoring
all bits to the left, the sign bit of the result may differ
from the true sign of the product in the case of over­
flow.

Divide

DR R1, R2 [RR]

I 10 Rl I R2 I
0 78 1112 15

50
7 8 1\ 12 15 16 1920 31

The dividend (first operand) is divided by the divisor
(second operand) and replaced by the quotient and
remainder.

The dividend is a 64-bit signed integer and occupies
the even/odd pair of registers specified by the RI field
of the instruction. A specification exception occurs
when RI is odd. A 32-bit signed remainder and a
32-bit signed quotient replace the dividend in the
even-numbered and odd-numbered registers, respec­
tively. The divisor is a 32-bit signed integer.

The sign of the quotient is determined by the rules
of algebra. The remainder has the same sign as the
dividend, except that a zero quotient or a zero re­
mainder is always positive. All operands and results
are treated as signed integers. When the relative
magnitude of dividend and divisor is such' that the
quotient cannot be expressed by a 32-bit signed integ­
er, a fixed-point divide exception is recognized (a

program interruption occurs, no division takes place,
and the dividend remains unchanged in the general
registers) .

Condition Code: The code remains unchanged.
Program Interruptions:

Protection (fetch violation by D only)
Addressing (D only)
Specification
Fixed-point divide

Programming Note

Division applies to fullword operands in storage only.

Convert to Binary

eV8 R1, D2(X2, 82) [RX]

I 4F Rl I X2 I 82 O2
0 78 1\ 12 1516 1920 31

The radix of the second operand is changed from deci­
mal to binary, and the result is placed in the first
operand location. The number is treated as a right­
aligned signed integer both before and after conver­
sion.

The second operand has the packed decimal data
format and is checked for valid sign and digit codes.
Improper codes are a data exception and cause a pro­
gram interruption. The decimal operand occupies a
double-word storage field, which must be located on
an integral boundary. The low-order four bits of the
field represent the sign. The remaining 60 bits contain
15 binary-coded-decimal digits in true notation. The
packed decimal data format is described under "Deci­
mal Arithmetic."

The result of the conversion is placed in the general
register specified by R1• The maximum number that
can be converted and still be contained in a 32-bit
register is 2,147,483,647; the minimum number is
-2,147,483,648. For any decimal number outside this
range, the operation is completed by placing the 32
low-order binary bits in the register; a fixed-pOint
divide exception exists, and a program interruption
follows. In the case of a negative second operand, the
low-order part is in two's-complement notation.

Condition Code: The code remains unchanged.
Program Interruptions:

Protection (fetch violation)
Addressing
Specification
Data
Fixed-point divide

Fixed-Point Arithmetic 31

Convert to Decimal

eVD RII D;:fX21 82) [RX]

I 4E Rl X2 I B2 °2
0 78 11 12 1516 1920 31

The radix of the first operand is changed from binary
to decimal, and the result is stored in the second op­
erand location. The number is treated as a right­
aligned signed integer both before and after con­
version.

The result is placed in the storage location desig­
nated by the second operand and has the packed
decimal format, as described in "Decimal Arithmetic."
The result occupies a double-word in storage and must
be located on an integral boundary. The low-order
four bits of the field represent the sign. A positive sign
is encoded as 1100 or 1010; a negative sign is encoded
as 1101 or 1011. The choice between the two sign
representations is determined by the state of psw bit
12. The remaining 60 bits contain 15 binary-coded­
decimal digits in true notation.

The number to be converted is obtained as a 32-bit
signed integer from a general register. Since 15 deci­
mal digits are available for the decimal equivalent of
31 bits, an overflow cannot occur.

Condition Code: The code remains unchanged.

Program Inte1'l'1Iptions:

Protection (store violation)
Aqdressing
Specification

Store

ST RII D2(}(..21 82) [RX]

I 50 Rl X2 I B2 °2
0 78 11 12 1516 1920 31

The first operand is stored at the second operand
location.

The 32 bits in the general register are placed un­
changed at the second operand location.

32

Condition Code: The code remains unchanged.

Program Interruptions:

Protection (store violation)
Addressing
Specification

Store Halfword

STH RII D;:fX21 82) [RX]

I 40 I Rl X2 I B2 °2
0 7 8 11 12 1516 1920 31

The first operand is stored at the halfword second
operand location.

The 16 low-order bits in the general register are
placed unchanged at the second operand location. The
16 high-order bits of the first operand do not partici­
pate and are not tested.

Condition Code: The code remains unchanged.
Program Interruptions:

Protection (store violation)
Addressing
Specification

Store Multiple

STM RII R.11 D;:(82) [RS]

I 90 I Rl R3 I B2
0 78 II 12 1516

°2
1920 31

The set of general registers starting with the register
specified by Rl and ending with the register specified
by Ra is stored at the locations designated by the
second operand address.

The storage area where the contents of the general
registers are placed starts at the location designated
by the second operand address and continues through
as many words as needed. The general registers are
stored in the ascending order of their addresses, start­
ing with the register specified by Rl and continuing
up to and including the register specified by Ra, with
register 0 following register 15. The contents of the
general registers remain unchanged.

Condition Code: The code remains unchanged.
Program Interruptions:

Protection (store violation)
Addressing
Specification

Shift Left Single

SLA RII D;:(82) [RS]

I 8B Rl ~ B2
0 78 II 12 1516

°2
1920 31

The integer part of the first operand is shifted left the
number of bits specified by the second operand ad­
dress.

The second operand address is not used to address
data; its low-order six bits indicate the number of bit
positions to be shifted. The remainder of the address
is ignored.

The sign of the first operand remains unchanged. All
31 integer bits of the operand participate in the left
shift. Zeros are supplied to the vacated low-order reg­
ister positions.

If a bit unlike the sign bit is shifted out of position
1, an overflow occurs. The overflow causes a program
interruption when the fixed-point overflow mask bit
is one.

Resulting Condition Code:
o Result is zero
1 Result is less than zero
2 Result is greater than zero
3 Overflow

Program Interruptions:
Fixed-point overflow

Programming Note

For numbers with an absolute value of less than 230,
a left shift of one bit position is equivalent to multi­
plying the number by 2.

Shift amounts from 31-63 cause the entire integer to
be shifted out of the register. When the entire integer
field for a positive number has been shifted out, the
register contains a value of zero. For a negative num­
ber, the register contains a value of _231.

The base register participating in the generation of
the second operand address permits indirect specifi­
cation of the shift amount. A zero in the B2 field indi­
cates the absence of indirect shift specification.

Shift Right Single

SRA Rv DlB2) [RS]

SA
7 8 11 12 15 16 19 20 31

The integer part of the first operand is shifted right
the number of bits specified by the second operand
address.

The second operand address is not used to address
data; its low-order six bits indicate the number of bit
positions to be shifted. The remainder of the address
is ignored.

The sign of the first operand remains unchanged.
All 31 integer bits of the operand participate in the
right shift. Bits equal to the sign are supplied to the
vacated high-order bit positions. Low-order bits are
shifted out without inspection and are lost.

Resulting Condition Code:
o Result is zero
1 Result is less than zero
2 Result is greater than zero
3

Program Interruptions:
None.

Programming Note

A right shift of one bit position is equivalent to divi­
sion by 2 with rounding downward. When an even
number is shifted right one position, the value of the
field is that obtained by dividing the value by 2. When
an odd number is shifted right one position, the value
of the field is that obtained by dividing the next lower
number by 2. For example, +5 shifted right by one
bit position yields +2, whereas -5 yields -3.

Shift amounts from 31-63 cause the entire integer to
be shifted out of the register. When the entire integer
field of a positive number has been shifted out, the
register contains a value of zero. For a negative num­
ber, the register contains a value of -l.

The base register participating in the generation of
the second operand address permits indirect specifica­
tion of the shift amount. A zero in the B2 field indicates
the absence of indirect shift specification.

Shift Left Double

SLDA R1I D2(B2) [RS]

SF]
78 11'12 1516 1920 31

The double-length integer part of the first operand is
shifted left the number of bits specified by the second
operand address.

The Rl field of the instruction specifies an even/odd
pair of registers and must contain an even register
address. A specification exception occurs when R1 is
odd.

The second operand address is not used to address
data; its low-order 6-bits indicate the number of bit
positions to be shifted. The remainder of the address
is ignored.

The operand is treated as a number with 63 integer
bits and a sign in the sign position of the even register.
The sign remains unchanged. The high-order position
of the odd register contains an integer bit, and the
content of the odd register participates in the shift in
the same manner as the other integer bits. Zeros are
supplied to the vacated positions of the registers.

If a bit unlike the sign bit is shifted out of bit posi­
tion 1 of the even register, an overflow occurs. The

Fixed-Point Arithmetic 33

overflow causes a program interruption when the fixed­
point overflow mask bit is one.

Resulting Condition Code:
o Result is zero
1 Result is less than zero
2 Result is greater than zero
3 Overflow

Program Interruptions:
Specification
Fixed-point overflow

Shift Right Double

SRDA Ru DAS:!) [RS]

BE R1 •
78 11 12 IS 16 1920 31

The double-length integer part of the first operand is
shifted right the number of places specified by the
second operand address.

The RI field of the instruction specifies an even/odd
pair of registers and must contain an even register
address. A specification exception occurs when RI is
odd.

The second operand address is not used to address
data; its low-order six bits indicate the number of bit
positions to be shifted. The remainder of the address
is ignored.

The operand is treated as a number with 63 integer
bits and a sign 'in the sign position of the even register.
The sign remains unchanged. The high-order position
of the odd register contains an integer bit, and the
content of thc odd register participates in the shift in
the same manner as the other integer bits. The low­
order bits are shifted out without inspection and are
lost. Bits equal to the sign are supplied to the vacated
positions of the registers.

Resulting Condition Code:
o Result is zero
1 Result is less than zero
2 Result is greater than zero
3

Program Interruptions:
Specification

Programming Note

A zero shift amount in the double-shift operations
provides a double-length sign and magnitude test.

fixed-Point Arithmetic Exceptions
Exceptional operand designations, data, or results cause
a program interruption. vVhen a program interruption
occurs, the current psw is stored as an old psw, and a

34

new psw is obtained. The interruption code in the old
psw identifies the cause of the interruption. The
following exceptions cause a program interruption in
fixed-point arithmetic.

Protection: The key of an operand in storage does
not match the protection key in the psw. The operation
is suppressed for a store violation. Therefore, the con­
dition code and data in registers and storage remain
unchanged. The only exception is STORE MULTIPLE,

which is terminated; the amount of data stored is un­
predictable and should not be used for further compu­
tation. The operation is terminated on any fetch viola­
tion.

Addressing: An address designates an operand loca­
tion outside the available storage for a particular in­
stallation. In most cases, the operation is terminated.
Therefore, the result data are unpredictable and
should not be used for further computation. The ex­
ceptions are STORE, STORE HALFWORD, and CONVERT TO

DECIMAL, which are suppressed. Operand addresses are
tested only when used to address storage. Addresses
used as a shift amount are not tested. The address re­
strictions do not apply to the components from which
an address is generated - the content of the Dz field
and the contents of the registers specified by Xz and B2•

Specification: A double-word operand is not located
on a 64-bit boundary, a fullword operand is not located
on a 32-bit boundary, a halfword operand is not lo­
cated on a I6-bit boundary, or an instruction specifies
an odd register address for a pair of general registers
containing a 64-bit operand. The operation is sup­
pressed. Therefore, the condition code and data in reg­
isters and storage remain unchanged.

Data: A sign or a digit code of the decimal operand
in CONVERT TO BINARY is incorrect. The operation is
suppressed. Therefore, the condition code and data in
registers and storage remain unchanged.

Fixed-Point Overflow: The result of a sign-control,
add, subtract, or shift operation overflows. The inter­
ruption occurs only when the fixed-point overflow
mask bit is one. The operation is completed by placing
the truncated low-order result in the register and set­
ting the condition code to 3. The overflow bits are lost.
In add-type operations the sign stored in the register
is the opposite of the sign of the sum or difference. In
shift operations the sign of the shifted number remains
unchanged. The state of the mask bit does not affect
the result.

Fixed-Point Divide: The quotient of a division ex­
ceeds the register size, including division by zero, or
the result in CONVERT TO BINARY exceeds 31 bits. Divi­
sion is suppressed. Therefore, data in the registers
remain unchanged. The conversion is completed by re­
cording the truncated low-order result in the register.

Decimal arithmetic operates on data in the packed
format. In this format, two decimal digits are placed
in one eight-bit byte. Since data are often communi­
cated to or from external devices in the zoned format
(which has one digit in an eight-bit byte), the neces­
sary format-conversion operations are also provided
in this instruction group.

Data are interpreted as integers, right-aligned in
their fields. They are kept in true notation with a sign
in the low-order eight-bit byte.

Processing takes place right to left between main­
storage locations. All decimal arithmetic instructions
use a two-address format. Each address specifies the
leftmost byte of an operand. Associated with this ad­
dress is a length field, indicating the number of addi­
tional bytes that the operand extends beyond the first
byte.

The decimal arithmetic instruction set provides for
adding, subtracting, comparing, multiplying, and di­
viding, as well as the format conversion of variable­
length operands. All of the instructions discussed in
this section except PACK, UNPACK, and MOVE WITH OFF­

SET are part of the decimal feature.
The condition code is set as a result of all add-type

and comparison operations.

Data format
Decimal operands reside in main storage only. They
occupy fields that may start at any byte address and
are composed of one to 16 eight-bit bytes.

Lengths of the two operands specified in an instruc­
tion need not be the same. If necessary they are con­
sidered to be extended with zeros to the left of the
high-order digits. Results never exceed the limits set
by address and length specification. Lost carries or
lost digits from arithmetic operations are signaled as
a decimal overflow exception.

Although decimal arithmetic is performed on data
in the packed format, decimal operands may be either
in the packed or zoned format.

Packed Decimal Number

I Digit I Digit I Digit [~~ ~-] Digit I Digit I Digit I Digit I Sign I
In the packed format, two decimal digits normally are
placed adjacent in a byte, except for the rightmost

Decimal Arithmetic I,

byte of the field. In the rightmost byte a sign is placed
to the right of decimal digit. Both digits and a sign
are encoded and occupy four bits each.

Zoned Decimal Number

I Zone I Digit I Zone [~- ~~] Digit I Zone I Digit I Sign I Digit I
In the zoned format the low-order four bits of a byte,
the numeric, are normally occupied by a decimal digit.
The four high-order bits of a byte are called the zone,
except for the rightmost byte of the field, where nor­
mally the sign occupies the zone position.

Arithmetic is performed with operands in the
packed format and results in the packed format. In. the
zoned format, the digits are represented as part of an
alphameric character set. A PACK instruction is pro­
vided to transform zoned data into packed data, and
an UNPACK instruction performs the reverse transforma­
tion. Moreover, the editing instructions may be used
to change data from packed to zoned.

The fields specified in decimal arithmetic other than
in PACK, UNPACK, and MOVE WITH OFFSET either should
not overlap at all or should have coincident rightmost
bytes. In ZERO AND ADD, the destination field may also
overlap to the right of the source field. Because the
code configurations for digits and sign are verified
during arithmetic, improper overlapping fields are
recognized as data exceptions. In move-type oper­
ations, the operand digits and signs are not checked,
and the operand fields may overlap without any re­
strictions.

The rules for overlapped fields are established for
the case where operands are fetched right to left from
storage, eight bits at a time, just before they are pro­
cessed. Similarly, the results are placed in storage,
eight bits at a time, as soon as they are generated.
Actual processing procedure may be considerably dif­
ferent because of the use of preferred storage for in­
termediate results. Nevertheless, the same rules are
observed.

Number Representation
Numbers are represented as right-aligned true integ­
ers with a plus or minus sign.

The digits 0-9 have the binary encoding 0000-100l.
The codes 1010-1111 are invalid as digits. This set of

Decimal Arithmetic 35

codes is interpreted as sign codes, with 1010, 1100,
1110, and 1111 recognized as plus and with lQll and
1101 recognized as minus. The codes 0000-1001 are
invalid as sign codes. The zones are not tested for
valid codes inasmuch as they are eliminated in chang­
ing data from the zoned to the packed format.

The sign an<;l zone codes generated for all decimal
arithmetic results differ for the extended binary-cod ed­

! decimal interchange code (EBCDIC) and the USA
! Standard Code for Information Interchange (USASCII-S).

The choice between the two codes is determined by
bit 12 of the psw. When bit 12 is zero, the preferred
EBCDIC codes are generated; these are plus, 1100;
minus, 1101; and zone, 1111. When bit 12 is one, the
preferred USASCII-S codes are generated; these are plus,
1010; minus, 1011; and zone, 0101.

Condition Code
The results of all add-type and comparison operations
are used to set the condition code. All other decimal
arithmetic operations leave the code unchanged. The
condition code can be used for decision-making by
subsequent branch-on-condition instructions.

The condition code can be set to reflect two types
of results for decimal arithmetic. For most operations
the states 0, 1, and 2 indicate a zero, less than zero,
and greater than zero content of the result field; the
state 3 is used when the result of the operation over­
Hows.

For the comparison operation, the states 0, 1, and 2
indicate that the first operand compared equal, low,
or high.

CONDITION CODE SETTING FOR DECIMAL ARITHMETIC

0 1 2 3
Add Decimal zero < zero > zero overflow
Compare Decimal equal low high
Subtract Decimal zero < zero > zero overflow
Zero and Add zero < zero > zero overflow

Instruction Format
Decimal instructions use the following format:

SS Format

Op Code Bl 1~?Dll B2 I}~
78 11 12 1516 19 20 31 32 35 36 47

For this format, the content of the general register
specified by Bl is added to the content of the Dl field
to form an address. This address specifies the leftmost
byte of the first operand field. The number of operand
bytes to the right of this byte is specified by the LI

36

field of the instruction. Therefore, the length in bytes
of the first operand field is 1-16, corresponding to a
length code in Ll of 0000-1111. The second operand
field is specified similarly by the L2, B2 , and D2 in­
struction fields.

A zero in the Bl or B2 field indicates the absence of
the corresponding address component.

Results of operations are always placed in the first
operand field. The result is never stored outside the

, field specified by the address and length. In the event
the first operand is longer than the second, the second
operand is extended with high-order zeros up to the
length of the first operand. Such extension never modi­
fies storage. The second operand field and the con­
tents of all general registers remain unchanged.

NOTE: In the detailed descriptions of the individual
instructions, the mnemonic and the symbolic operand
designation for the IBM System/360 assembly language
are shown with each instruction. For ADD DECIMAL, for
example, AP is the mnemonic and Dt (Lt, B1), D2 (L2,
Hz) the operand designation.

Instructions
The decimal arithmetic instructions and their mne­
monics and operation codes follow. All instructions
use the ss format and assume packed operands and
results. The only exceptions are PACK, which has a
zoned operand, and UNPACK, which has a zoned result.
The table indicates when the condition code is set and
the exceptions in operand designations, data, or results
that cause a program interruption. .

NAME MNEMONIC TYPE EXCEPTIONS CODE

Add Decimal AP SS T,C P,A, D,DF FA
Subtract Decimal SP SS T,C P,A, D,DF FB
Zero and Add ZAP SS T,C P,A, D,DF F8
Compare Decimal CP SS T,C P,A, D F9
Multiply Decimal MP SS T P,A,S,D FC
Divide Decimal DP SS T P,A,S,D,DK FD
Pack PACK SS P,A F2
Unpack UNPK SS P,A F3
Move with Offset MVO SS P,A Fl

NOTES

A Addressing exception
C Condition code is set
D Data exception
DF Decimal-overflow exception
DK Decimal-divide exception
P Protection exception
S Specification exception
T Decimal feature

Programming Note

The moving, editing, and logical comparing instruc­
tions may also be used in decimal calculations.

Add Decimal

AP 01(L1, 8 1), 02(L2, 82) [SS]

FA I Ll I L2 Bl I~? Dl I B2 1113J
7 8 11 12 1516 1920 3132 3536 47

The second operand is added to the first operand, and
the sum is placed in the first operand location.

Addition is algebraic, taking into account sign and
all digits of both operands. All signs and digits are
checked for validity. If necessary, high-order zeros are
supplied for either operand. When the first operand
field is too short to contain all significant digits of the
sum, a decimal overflow occurs, and a program inter­
ruption is taken provided that the corresponding mask
bit is one.

Overflow has two possible causes. The first is the
loss of a carry out of the high-order digit position of
the result field. The second cause is an oversized re­
sult, which occurs when the second operand field is
larger than the first operand field and Significant result
digits are lost. The field sizes alone are not an indi­
cation of overflow.

The first and second operand fields may overlap
when their low-order bytes coincide; therefore, it is
possible to add a number to itself.

The sign of the sum is determined by the rul~s of
algebra. When the operation is completed without an
overflow, a zero sum has a positive sign, but when
high-order digits are lost because of an overflow, a
zero sum may be either positive or negative, as de­
termined by what the sign of the correct sum would
have been.

Resulting Condition Code:
o Sum is zero
1 Sum is less than zero
2 Sum is greater than zero
3 Overflow

Program Interruptions:
Operation (if decimal feature is not installed)
Protection (store or ffetch violation)
Addressing
Data
Decimal overflow

Subtract Decimal

FB I Ll I
78 11 12

The second operand is subtracted from the first oper­
and, and the difference is placed in the first operand
location.

Subtraction is algebraic, taking into account sign
and all digits of both operands. The SUBTRAGr DECIMAL

is similar to ADD DECIMAL, except that the sign of the
second operand is changed from positive to negative
or from negative to positive after the operand is ob­
tained from storage and before the arithmetic.

The sign of the difference is determined by the rules
of algebra. When the operation is completed without
an overflow, a zero difference has a positive sign, but
when high-order digits are lost because of an overflow,
a zero difference may be either positive or negative, as
determined by what the sign of the correct difference
would have been.

Resulting Condition Code:
o Difference is zero
1 Difference is less than ze:ro
2 Difference is greater than zero
3 Overflow

Program Interruptions:
Operation (if decimal feature is not installed)
Protection (store or fetch violation)
Addressing
Data
Decimal overflow

Programming Note

The operands of SUBTRAGr DECIMAL may overlap when
their low-order bytes coincide, even when their
lengths are unequal. This property may be used to set
to zero an entire field or the low-order part of a field.

Zero and Add

ZAP OdLz, 8 1), 02(L2, 82) [SS]

F8
o 78 11 12 1516

The second operand is placed in the first operand lo­
cation.

The operation is equivalent to an addition to zero.
A zero result is positive. When high-order digits are
lost because of overflow, a zero result has the sign of
the second operand.

Only the second operand is checked for valid sign
and digit codes. Extra high-order zeros are supplied
if needed. When the first operand field is too short to
contain all significant digits of the second operand, a
decimal overflow occurs and results in a program in­
terruption, provided that the decimal overflow mask
bit is one. The first and second operand fields may
overlap when the rightmost byte of the first operand
field is coincident with or to the right of the rightmost
byte of the second operand.

Decimal Arithmetic 37

Resulting Condition Code:
o Result is zero
1 Result is less than zero
2 Result is greater than zero
3 Overflow

Program Interruptions:
Operation (if decimal feature is not installed)
Protection (store or fetch violation)
Addressing
Data
Decimal overflow

Compare Decimal

F9 I L1 L2 B1 I~? D1 I B2 I~~
78 11 12 1516 1920 3132 35 36 47

The first operand is compared with the second, and
the condition code indicates the comparison result.

Comparison is right to left, taking into account the
sign and all digits of both operands. All signs and
digits are checked for validity, and any valid plus or
minus sign is considered equal to any other valid plus
or minus sign, respectively. If the fields are unequal
in length, the shorter is extended with high-order
zeros. A field with a zero value and positive sign is
considered equal to a. field with a zero value but nega­
tive sign. Neither operand is changed as a result of the
operation. Overflow cannot occur in this operation.

The first and second fields may overlap when their
low-order bytes coincide. It is possible, therefore, to
compare a number to itself.

Resulting Condition Code:
o Operands equal
1 First operand is low
2 First operand is high
3

Program Inte1'fuptions:
Operation (if decimal feature is not installed)
Protection (fetch violation)
Addressing
Data

Programming Note

The COMPARE DECIMAL is unique in processing from
right to left; taking signs, zeros, and invalid characters
into account; and extending variable-length fields
when they are unequal in length.

Multiply Decimal

MP D1(L1, 81), DlL2, 82) [55]

Fe L1 I
78 11 12

38

The product of the multiplier (the second operand)
and the multiplicand (the first operand) replaces the
multiplicand.

The multiplier size is limited to 15 digits and sign
and must be less than the multiplicand size. Length
code L2, larger than seven, or larger than or equal to
the length code L1, is recognized as a specification ex­
ception. The operation is suppressed and a program
interruption occurs.

Since the number of digits in the product is the sum
of the number of digits in the operands, the multi­
plicand must have high-order zero digits for at least
a field size that equals the multiplier field size; other­
wise, a data exception is recognized, and a program
interruption occurs. This definition of the multiplicand
field insures that no product overflow can occur. The
maximum product size is 31 digits. At least one high­
order digit of the product field is zero.

All operands and results are treated as signed in­
tegers, right-aligned in their field. The sign of the
product is determined by the rules of algebra from
the multiplier and· multiplicand signs, even if one or
both operands are zero.

The multiplier and product fields may overlap when
their low-order bytes coincide.

Condition Code: The code remains unchanged.
Program Interruptions:

Operation (if decimal feature is not installed)
Protection (store or fetch violation)
Addressing
Specification
Data

Programming Note

When the multiplicand does not have the desired
number of leading zeros, multiplication may be pre­
ceded by a ZERO AND ADD into a larger field.

Divide Decimal

FD
7 8 11 12 1516

The dividend (the first operand) is divided by the
divisor (the second operand) and replaced by the
quotient and remainder.

The quotient field is placed leftmost in the first op­
erand field. The remainder field is placed ribhtmost in
the first operand field and has a size equal to the di­
visor size. Together, the quotient and remainder oc­
cupy the entire dividend field; therefore, the address
of the quotient field is the address of the first oper-

and. The size of the quotient field in eight-bit bytes
is Ll - L2, and the length code for this field is one
less (Ll - L2 - 1). When the divisor length code
is larger than seven (15 digits and sign) or larger
than or equal to the dividend length code, a specifi­
cation exception is recognized. The operation is sup­
pressed, and a program interruption occurs.

The dividend, divisor, quotient, and remainder are
all signed integers, right-aligned in their fields. The
sign of the quotient is determined by the rules of al­
gebra from dividend and divisor signs. The sign of the
remainder has the same value as the dividend sign.
These rules are true even when quotient or remainder
is zero.

Overflow cannot occur. A quotient larger than the
number of digits allowed is recognized as a decimal­
divide exception. The operation is suppressed, and a
program interruption occurs. Divisor and dividend re­
main unchanged in their storage locations.

The divisor and dividend fields may overlap only if
their low-order bytes coincide.

Condition Code: The code remains unchanged.
Program Interruptions:

Operation (if decimal feature is not installed)
Protection (store or fetch violation)
Addressing
Specification
Data
Decimal divide

Programming Note

The maximum dividend size is 31 digits and sign.
Since the smallest remainder size is one digit and sign,
the maximum quotient size is 29 digits and sign.

The condition for a divide exception can be deter­
mined by a trial subtraction. The leftmost digit of the
divisor field is aligned with the leftmost-less-one digit
of the dividend field. When the divisor, so aligned, is
less than or equal to the dividend, a divide exception
is indicated.

A decimal-divide exception occurs if the dividend
does not have at least one leading zero.

Pack

I F2 I L1 I
o 7 8 11 12

The format of the second operand is changed from
zoned to packed, and the result is placed in the first
operand location.

The second operand is assumed to have the zoned
format. All zones are ignored, except the zone over the
low-order digit, which is assumed to represent a sign.
The sign is placed in the right four bits of the low­
order byte, and the digits are placed adjacent to the
sign and to each other in the remainder of the result
field. The sign and digits are moved unchanged to the
first operand field and are not checked for valid codes.

The fields are processed right to left. If necessary,
the second operand is extended with high-order zeras.
If the first operand field is too short to contain all
significant digits of the second operand field, the re­
maining high-order digits are ignored. Overlapping
fields may occur and are processed by storing one re­
sult byte immediately after the necessary operand
bytes are fetched. Except for the rightmost byte of
the result field, which is stored immediately upon
fetching the first operand byte, two operand bytes are
needed for each result byte.

Condition Code: The code remains unchanged.
Program Interruptions:

Protection (store or fetch violation)
Addressing

Programming Notes

The PACK instruction may be used to switch the two
digits in one byte by specifying a zero in the Ll and
L2 fields and the same address for both operands.

To remove the zones of all bytes of a field, including
the low-order byte, both operands must be extended
with a dummy byte in the low-order position, which
subsequently is ignored in the result field.

Unpack

UNPK DdLlt 8 1), DlL2 , 82) [55]

F3 L2 B1 I ~?D11 B2 I~~
1112 1516 1920 3132 3S 36 47

The format of the second operand is changed from
packed to zoned, and the result is placed in the first
operand location.

The digits and sign of the packed operand are
placed unchanged in the first operand location, using
the zoned format. Zones with coding 1111 in EBCDIC

and coding 0101 in USASCII-8 are supplied for all bytes,
except the low-order byte, which receives the sign of
the packed operand. The operand sign and digits are
not checked for valid codes.

The fields are processed right to left. The second
operand is extended with high-order zero digits before
unpacking, if necessary. If the first operand field is too
short to contain all significant digits of the second

Decimal Arithmetic 39

operand, the remaining high-order digits are ignored.
The first and second operand fields may overlap and
are processed by storing the first result byte immedi­
ately after the rightmost operand byte is fetched; for
the remaining operand bytes, two result bytes are
stored immediately after one byte is fetched.

Condition Code: The code remains unchanged.
Program Inte1'ruptions:

Addressing
Protection (store or fetch violation)

Programming Note

A field that is to be unpacked can be destroyed by
improper overlapping, If it is desired to save storage
space for unpacking by overlapping the operand fields,
the low-order position of the first operand must be to
the right of the low-order position of the second oper­
and by the number of bytes in the second operand
minus two. If only one or two bytes are to be un­
packed, the low-order positions of the two operands
may coincide.

Move with Offset

MVO DtfL u 8d, D2(L2, 8 2) [SS]

Fl
7 8 11 12 1516

The second operand is placed to the left of and ad­
jacent to the low-order four bits of the first operand.

The low-order four bits of the first operand are at­
tached as low-order bits to the second operand, the
second operand bits are offset by four bit positions,
and the result is placed in the first operand location.
The first and second operand bytes are not checked
for valid codes.

The fields are processed right to left. If necessary,
the second operand is extended with high-order zeros.
If the first operand field is too short to contain all
bytes of the second operand, the remaining informa­
tion is ignored. Overlapping fields may occur and are
processed by storing a result byte as soon as the neces­
sary operand bytes are fetched.

Condition Code: The code remains unchanged.
Program Interruptions:

Protection (store or fetch violation)
Addressing

Programming Note

The instruction set for decimal arithmetic includes no
shift instructions since the equivalent of a shift can be
obtained by programming. programs for right or left
shift and for an even or odd shift amount may be writ­
ten with MOVE WITH OFFSET and the logical move in­
structions.

40

Decimal Arithmetic Exceptions
Exceptional operation codes, operand designations,
data, or results cause a program interruption. When
the interruption occurs, the current psw is stored as an
old IJSW, and a new psw is obtained. The interruption
code in the old psw identifies the cause of the inter­
ruption. The following exceptions cause a program in­
terruption in decimal arithmetic.

Operation: The decimal feature is not installed and
the instruction is ADD DECIMAL, SUBTRACT DECIMAL,

ZERO AND ADD, COMPARE DECIMAL, MULTIPLY DECIMAL,

or DIVIDE DECIMAL. The instruction is suppressed.
Therefore, the condition code and data in storage and
registers remain unchanged.

Protection: The key of an operand in storage does
not match the protection key in the psw.

The operation is terminated for either a store or a
fetch violation by a decimal instruction; the result data
and condition code are unpredictable.

Addressing: An address designates an operand loca­
tion outside the available storage for the installation.

The operation is terminated. The result data and the
condition code are unpredictable and should not be
used for further computation.

These address exceptions do not apply to the com­
ponents from which an address is generated - the
contents of the Dl and D2 fields and the contents of
the registers specified by Bl and B2•

Specifications: A multiplier or a divisor size ex­
ceeds 15 digits and sign or exceeds the multiplicand
or dividend size. The instruction is suppressed;
therefore, the condition code and data in storage and
registers remain unchanged.

Data: A sign or digit code of an operand in ADD

DECIMAL, SUBTRACT DECIMAL, ZERO AND ADD, COMPARE

DECIMAL, MULTIPLY DECIMAL, or DIVIDE DECIMAL is in­
correct, a multiplicand has insufficient high-order
zeros, or the operand fields in these operations overlap
incorrectly. The operation is terminated. The result
data and the condition code are unpredictable and
should not be used for further computation.

Decimal Overflow: The result of ADD DECIMAL, SUB­

TRACT DECIMAL, or ZERO AND ADD overflows. The pro­
gram interruption occurs only when the decimal-over­
flow mask bit is one. The operation is completed by
placing the truncated low-order result in the result
field and setting the condition code to 3. The sign and
low-order digits contained in the result field are the
same as they would have been for an infinitely long
result field.

Decimal Divide: The quotient exceeds the specified
data field, including division by zero. Division is sup­
pressed. Therefore, the dividend and divisor remain
unchanged in storage.

The floating-point instruction set is used to perform
calculations on operands with a wide range of magni­
tude and yielding results scaled to preserve precision.

A floating-point number consists of a signed ex­
ponent and a signed fraction. The quantity expressed
by this number is the product of the fraction and the
number 16 raised to the power of the exponent. The
exponent is expressed in excess 64 binary notation; the
fraction is expressed as a hexadecimal number having
a radix point to the left of the high-order digit.

To avoid unnecessary storing and loading operations
for results and operands, four floating-point registers
are provided. The floating-point instruction set pro:­
vides for loading, adding, subtracting, comparing,
multiplying, dividing, and storing, as well as the sign
control of short or long operands. Short operands gen­
erally provide faster processing and require less stor­
age than long operands. On the other hand, long
operands provide greater preciseness in computation.
Operations may be either register to register or storage
to register. All floating-point instructions and registers
are part of the floating-point feature.

Maximum precision is preserved in addition, sub­
traction, multiplication, and division by producing
normalized results. For addition and subtraction, in­
structions are also provided that generate unnormal­
ized results. Normalized and unnormalized operands
may be used in any floating-point operation.

The condition code is set as a result of all sign con­
trol, add, subtract, and compare operations.

Data Format
Floating-point data occupy a fixed-length format,
which may be either a fullword short format or a
double-word long format. Both formats may be used
in main storage and in the floating-point registers. The
floating-point registers are numbered 0, 2, 4, and 6.

Short Floating-Point Number

Is I Characteristic I Fraction
o 1 78 31

Long Floating-Po;nt Number

Is I Characte.ristic I Fraction
o 1 78 63

Floating-Point Arithmetic

The first bit in either format is the sign bit (S). The
subsequent seven bit positions are occupied by the
characteristic. The fraction field may have either six
or 14 hexadecimal digits.

The entire set of floating-point instructions is avail­
able for both short and long operands. When short­
precision is specified, all operands and results are 32-
bit floating-point words, and the rightmost 32 bits of
the floating-point registers do not participate in the
operations and remain unchanged. An exception is the
product in MULTIPLY, which is a 64-bit word and oc­
cupies a full register. When long-precision is specified,
all operands and results are 64-bit floating-point words.

Although final results have six fraction digits in
short-precision and 14 fraction digits in long-precision,
intermediate results in ADD NORMALIZED, SUBTRACf NOR..,

MALIZED, ADD UN NORMALIZED, SUBTRACf UN NORMAL­

IZED, COMPARE, HALVE, and MULTIPLY may have one
additional low-order digit. This low-order digit, the
guard digit, increases the precision of the final result.

Number Representation
T1)e fraction of a floating-point number is expressed in
hexadecimal digits. The radix point of the fraction is
assumed to be immediately to the left of the high­
order fraction digit. To provide the proper magnitude
for the floating-point number, the fraction is consid­
ered to be multiplied by a power of 16. The character­
istic portion, bits 1-7 of both floating-point formats, in­
dicates this power. The bits within the characteristic
field can represent numbers from 0 through 127. To
accommodate large and small magnitudes, the charac­
teristic is formed by adding 64 to the actual exponent.
The range of· the exponent is thus -64 through +63.
This technique produces a characteristic in excess 64
notation.

Both positive and negative quantities have a true
fraction, the difference in sign being indicated by the
sign bit. The number is positive or negative according­
ly as the sign bit is zero or one.

The range covered by the magnitude (M) of a
normalized floating-point number is
in short precision 16- 65 L. M L. (1 -16-6) • 1663, and
in long precision 16-65 L. M L. (1 -16-14) • 1663,

or approximately 5.4.10- 79 L. M L. 7.2.1075

in either precision.

Floating-Point Arithmetic 41

A number with zero characteristic, zero fraction, and
pl~s sign is called a true zero. A true zero may arise
as the result of an arithmetic operation because of the
particular magnitude of the operands. A result is
forced to be true zero when (1) an exponent under­
flow occurs and the exponent-underflow mask (psw
bit 38) is zero, (2) a result fraction of an addition or
subtraction operation is zero and the significance mask
(psw bit 39) is zero, or (3) the operand of HALVE,

one or both operands of MULTIPLY, or the dividend in
DIVIDE has a zero fraction. When a program interrup­
tion due to exponent underflow occurs, a true zero
fraction is not forced; instead, the fraction and sign
remain correct, and the characteristic is 128 too large.
When a program interruption due to lost significance
occurs, the fraction remains zero, and the fraction
sign and characteristic remain correct. Whenever a
result has a zero fraction, the exponent overflow and
underflow exceptions do not cause a program inter­
ruption. When a divisor has a zero fraction, division is
omitted, a floating-point divide exception exists, and
a program interruption occurs. In addition and sub­
traction, an operand with a zero fraction or character­
istic participates as a normal number.

The sign of a sum, difference, product, or quotient
with zero fraction is positive. The sign of a zero
fraction resulting from other operations is established
hy the rules of algebra from the operand signs.

Normalization
A quantity can be represented with the greatest pre­
cision by a floating-point number of given fraction
length when that number is normalized. A normalized
floating-point number has a nonzero high-order hex­
adecimal fraction digit. If one or more high-order
fraction digits are zero, the number is said to be un­
normalized. The process of normalization consists of
shifting the fraction left until the high-order hexadeci­
mal digit is nonzero and reducing the characteristic by
the number of hexadecimal digits shifted. A zero frac­
tion can not be normalized, and its associated char­
acteristic therefore remains unchanged when normal­
ization is called for.

Normalization usually takes place when the inter­
mediate arithmetic result is changed to the final result.
This function is called lJOstnormalization. In perform­
ing multiplication and division, the operands are
normalized prior to the arithmetic process. This func­
tion is called prenormalization.

42

Floating-point operations may be performed with
or without normalization. Most operations are per­
formed in only one of these two ways. Addition and
subtraction may be specified either way.

When an operation is performed without normaliza­
tion, high-order zeros in the result fraction are not
eliminated. The result mayor may not be normalized,
depending upon the original operands.

In both normalized and unnormalized operations,
the initial operands need not be in normalized form.
Also, intermediate fraction results are shifted right
when an overflow occurs, and the intermediate fraction
result is truncated to the final result length after the
shifting, if any.

Programming Note

Since normalization applies to hexadecimal digits, the
three high-order bits of a normalized number may be
zero.

Condition Code
The results of floating-point sign-control, add, sub­
tract, and compare operations are used to set the con­
dition code. Multiplication, division, loading, and
storing leave the code unchanged. The condition code
can be used for decision-making by subsequent
branch-on-condition instructions.

The condition code can be set to reflect two types
of results for floating-point arithmetic. For most opera­
tions, the states 0, 1, or 2 indicate that the result is
zero, less than zero, or greater than zero. A zero .re­
sult is indicated whenever the result fraction is zero,
including a forced zero. State 3 is never set by floating­
point operations.

For comparison, the states 0, 1, or 2 indicate that the
first operand is equal, low, or high.

CONDITION CODE SETTING FOR FLOATING-POINT ARITHMETIC

0 1 2 3
Add Normalized s/L zero < zero > zero
Add Unnormalized s/L zero < zero > zero
Compare S/L equal low high
Load and Test s/L zero < zero > zero
Load Complement s/L zero < zero > zero
Load Negative S/L zero < zero
Load Positive S/I. zero > zero
Subtract

Normalized S/L zero < zero > zero
Subtract

Unnormalizcd S/L zero < zero > zero

Instruction Format
Floating-point instructions use the following two
formats:

RR Format

I Op Code R] R2
o 78 1112 15

RX Format

o 7 8 11 12 15 16 19 20 31

In these formats, Hl designates the address of a float­
ing-point register. The contents of this register will be

Floating-Point Arithmetic 42.1

called the first operand. The second operand location
is defined differently for two formats.

In the RR format, the R2 field specifies the address
of a floating-point register containing the second op­
erand. The same register may be specified for the first
and second operand.

In the RX format, the contents of the general register
specified by X2 and B2 are added to the content -of the
D2 field to form an address designating the location of
the second operand.

A zero in an X2 or B2 field indicates the absence of
the corresponding address component.

The register address specified by the Rl and R2
fields should be 0, 2, 4 or 6. Otherwise, a specification
exeception is recognized, and a program interruption
is caused.

The storage address of the second operand should
designate word boundaries for short operands and
double-word boundaries for long operands. Otherwise,
a specification exception is recognized, and a program
interruption is caused.

Results replace the first operand, except for the stor­
ing operations, where the second operand is replaced.

Except for the storing of the final result, the contents
of all floating-point or general registers and storage
locations participating in the addressing or execution
part of an operation, remain unchanged.

The floating-point instructions are the only instruc­
tions using the floating-point registers.

NOTE: In the detailed descriptions of the individual
instructions, the mnemonic and the symbolic operand
designation for the IBM System/360 assembly language
are shown with each instruction. For a register-to­
register operation using LOAD (short), for example,
LER is the mnemonic and R1, R2 the operand desig­
nation.

Instructions
The floating-point arithmetic instructions and their
mnemonics, formats, and operation codes follow. All
operations can be specified in short and long precision
and are part of the floating-point feature. The follow­
ing table indicates when normalization occurs, when
the condition code is set, and the exceptions in oper­
and designations, data, or results that cause a program
interruption.

NAME

Load (Long)
Load (Long)
Load (Short)
Load (Short)
Load and Test

(Long)

MNEMONIC

LDR
LD
LER
LE

LTDR

TYPE

RR F
RX F
RR F
RX F

RR F,C

EXCEPTIONS

S
P,A,S

S
P,A,S

S

CODE

28
68
38
78

22

NAME

Load and Test
(Short)

Load Complement
(Long)

Load Complement

MNEMONIC

LTER

LCDR

(Short) LCER
Load Positive (Long) LPDR
Load Positive (Short) LPER
Load Negative (Long) LNDR
Load Negative (Short) LNER
Add Normalized

(Long)
Add Normalized

(Long)
Add Normalized

(Short) ,
Add Normalized

(Short)
Add Unnormalized

(Long)
Add Unnormalized

(Long)
Add Unnormalized

(Short)
Add U nnormalized

(Short)
Subtract Normalized

(Long)
Subtract Normalized

(Long)
Subtract Normalized

(Short)
Subtract Normalized

(Short)
Subtract Unnorm­

alized (Long)
Subtract Unnorm­

alized (Long)
Subtract Unnorm­

alized (Short)
Subtract Unnorm-

alized (Short)
Compare (Long)
Compare (Long)
Compare (Short)
Compare (Short)
Halve (Long)
Halve (Short)
Multiply (Long)
Multiply (Long)
Multiply (Short)
Multiply (Short)
Divide (Long)
Divide (Long)
Divide (Short)
Divide (Short)
Store (Long)
Store (Short)

NOTES

ADR

AD

AER

AE

AWR

AW

AUR

AU

SDR

SD

SER

SE

SWR

SW

SUR

SU
CDR
CD
CER
CE
HDR
HER
MDR
MD
MER
ME
DDR
DD
DER
DE
STD
STE

A Addressing exception
C Condition code is set

TYPE

RR F,C

RR F,C

RR F,C
RR F,C
RR F,C
RR F,C
RR F,C

RR F,C

RX F,C

RR F,C

RX F,C

RR F,C

RX F,C

RR F,C

RX F,C

RR F,C

RX F,C

RR F,C

RX F,C

RR F,C

RX F,C

RR F,C

RX F,C
RR F,C
RX F,C
RR F,C
RX F,C
RR F
RR F
RR F
RX F
RR F
RX F
RR F
RX F
RR F
RX F
RX F
RX F

E Exponent-overflow exception
F Floating-point feature
FK Floating-point divide exception
LS Significance exception
P Protection exception
S Specification exception
U Exponent-underflow exception

EXCEPTIONS CODE

S 32

S 23

S 33
S 20
S 30
S 21
S 31

S,U,E,LS 2A

P,A,S,U,E,LS 6A

S,U,E,LS 3A

P ,A,S, U ,E,LS 7 A

S, E,LS 2E

P,A,S, E,LS 6E

S, E,LS 3E

P,A,S, E,LS 7E

S,U,E,LS 2B

P,A,S,U,E,LS 6B

S,U,E,LS 3B

P,A,S,U,E,LS 7B

S, E,LS 2F

P,A,S, E,LS 6F

S, E,LS 3F

P,A,S, E,LS 7F
S 29

P,A,S 69
S 39

P,A,S 79
S,U 24
S,U 34
S,U,E 2C

P,A,S,U,E 6C
S,U,E 3C

P,A,S,U,E 7C
S,U,E,FK 2D

P,A,S,U,E,FK 6D
S,U,E,FK 3D

P,A,S,U,E,FK 7D
P,A,S 60
P,A,S 70

Floating-Point Arithmetic 43

L(~ad

LER R1, R2

I 38
0 78

LE Rlt 0iX2, S2}

[RR, Short Operands]

Rl I R2 I
11 12 15

[RX, Short Operands]

Program Interruptions:
Operation (if floating-point feature is not in­

stalled)
Specification

Programming Note

I 78 Rl X2 I B2 I D2
0 78 11 12 1516 1920

When the same register is specified as first and second
operand location, the operation is equivalent to a test

L----...L-~L:--.::_:_:ll:_:_-=-~:_------_;731 without data movement.

LOR R1, R2 [RR, Long Operands]

I 28 Rl I R2 I
0 7 8 11 12 15

LO Rlt 0iX2, S2} [RX, Long Operands]

I 68 Rl X2 I B2 I D2
0 78 11 12 1516 1920 31

The second operand is placed in the first operand
location.

The second operand is not changed. In short-preci­
sion the low-order half of the result register remains
unchanged. Exponent overflow, exponent underflow,
or lost significance cannot occur.

Condition Code: The code remains unchanged.
Program Interruptions:

Operation (if floating-point feature is not in-
stalled)

Protection (fetch violation by LE and LD only)
Addressing (LE, LD only)
Specification

Load and Test

LTER Rz, R2 [RR, Short Operands]

I 32 Rl I R2 I
0 78 11 12 15

LTOR Rz, R2 [RR, Long Operands]

I 22 Rl I R2 I
0 78 11 12 15

The second operand is placed in the first operand
location, and its sign and magnitude determine the
condition code.

The second operand is not changed. In short-preci­
sion the low-order half of the result register remains
unchanged and is not tested.

44

Resulting Condition Code:
o Result fraction is zero
1 Result is less than zero
2 Result is greater than zero
3

Load Complement

[RR, Short Operands]

33
7 8 11 12 15

[RR, Long Operands]

23
78 II 12 15

The second operand is placed in the first operand
location with the sign changed to the opposite value.

The sign bit of the second operand is inverted, while
characteristic and fraction are not changed. In short­
precision the low-order half of the result register re­
mains unchanged and is not tested.

Resulting Condition Code:
o Result fraction is zero
1 Result is less than zero
2 Result is greater than zero
3

Program Interruptions:
Operation (if floating-point feature is not in­

stalled)
Specification

Load Positive

[RR, Short Operands]

I 30 Rl I R2 I
0 78 11 12 15

LPOR Rl, R2 [RR, Long Operands]

I 20 Rl I R2 I
0 78 11 12 15

The second operand is placed in the first operand
location with the sign made plus.

The sign bit of the second operand is made zero,
while characteristic and fraction are not changed. In
short-precision, the low-order half of the result register
remains unchanged and is not tested.

Resulting Condition Code:
o Result fraction is zero
1
2 Result is greater than zero
3

Progmm Interruptions:
Operation (if floating-point feature is not in­

stalled)
Specification

Load Negative

lNER Rt , R'l

31

[RR, Short Operands]

R1 I R2
78 1112 15

[RR, Long Operands]

21 R1 I R2 I
78 11 12 15

The second operand is placed in the first operand
location with the sign made minus.

The sign bit of the second operand is made one,
even if the fraction is zero. Characteristic and fraction
are not changed. In short-precision, the low-order half
of the result register remains unchanged and is not
tested.

Resulting Condition Code:
o Result fraction is zero
1 Result is less than zero
2
3

Program Interruptions:
Operation (if floating-point

stalled)
Specification

Add Normalized

feature

AER Rlt R2 [RR, Short Operands]

I 3A R1 I R2 I
0 7 8 11 12 15

AE R1, D2(X2, 82) [RX, Short Operands]

I 7A Rl X
2 I B2 I

0 7 8 11 12 1516 1920

is not in-

D2
31

ADR Rlt Rz [RR, Long Operands]

I 2A Rl I R2 I
0 7 8 11 12 15

AD Rlt DAXz, 82) [RX, long Operands]

I 6A Rl X2 I B2 I D2
0 7 8 11 12 1516 1920 31

The second operand is added to the first operand, and
the normalized sum is placed in the first operand
location.

In short-precision the low-order halves of the float­
ing-point registers are ignored and remain unchanged.

Addition of two floating-point numbers consists of a
characteristic comparison and a fraction addition. The
characteristics of the two operands are compared, and
the fraction with the smaller characteristic is right­
shifted; its characteristic is increased by one for each
hexadecimal digit of shift, until the two characteristics
agree. The fractions are then added algebraically to
form an intermediate sum. If an overflow carry occurs,
the intermediate sum is right-shifted one digit, and the
characteristic is increased by one. If this increase
causes a characteristic overflow, an exponent-overflow
exception is signaled, and a program interruption
occurs. The fraction is normalized and correct, the sign
is correct, and the characteristic is 128 smaller than the
correct characteristic.

The short intermediate sum consists of 7 hexadeci­
mal digits and a possible carry. The long intermediate
sum consists of 15 hexadecimal digits and a possible
carry. The low-order digit is a guard digit obtained
from the fraction which is shifted right. Only one
guard digit position participates in the fraction addi­
tion. The guard digit is zero if no shift occurs.

After the addition, the intermediate sum is left­
shifted as necessary to form a normalized fraction;
vacated low-order digit positions are filled with zeros;
the characteristic is, reduced by the amount of shift.

If normalization causes the characteristic to under­
flow and if the corresponding mask bit is one, a pro­
gram interruption occurs. The fraction is correct and
normalized, the sign is correct, and the characteristic
is 128 larger than the correct one. If the corresponding
mask bit is zero, the result is made a true zero. If no
left shift takes place, the intermediate sum is truncated
to the proper fraction length.

When the intermediate sum is zero and the signifl­
cance mask bit is one, a significance exception exists,
and a program interruption takes place. No normal­
ization occurs; the intermediate sum characteristic
remains unchanged. When the intermediate sum is
zero and the significance mask bit is zero, the program

Floating-Point Arithmetic 45

interruption for the significance exception does not
occur; rather, the characteristic is made zero, yielding
a true zero result. Exponent underRow does not occur
for a zero fraction.

The sign of the sum is derived by the rules of
algebra. The sign of a sum with zero result fraction
is always positive.

Resulting Condition Code:
o Result fraction is zero
1 Result is less than zero
2 Result is greater than zero
3

Program Interruptions:
Operation (if Hoating-point feature is not in-

stalled)
Protection (fetch violation by AE and AD only)
Addressing (AE and AD only)
Specification
Significance
Exponent overflow
Exponent underHow

Programming Note

Interchanging the two operands in a Roating-point
addition does not affect the value of the sum.

Add Unnormalized

[RR, Short Operands]

3E

78 11 12 lS

AU Rt , 02(X:?, B:d [RX, Short Operands]

I 7E Rl X2 I B2 I D2
0 7 8 11 12 1516 1920 31

AWR R/, R2 [RR, Long Operands]

I 2E Rl I R2 I
0 78 1112 lS

AW Rlt 0;zfX:?, B:!) IRX, Long Operands]

I 6E Rl X2 I B2 I D2
0 7 8 11 12 lS 16 1920 31

The second operand is added to the first operand, and
the unnormalized sum is placed in the first operand
location.

In short-precision, the low-order halves of the Hoat­
ing-point registers are ignored and remain unchanged.

46

After the addition the intermediate sum is truncated
to the proper fraction length.

When the resulting fraction is zero and the signifi­
cance mask bit is one, a significance exception exists
and a program interruption takes place. When the
resulting fraction is zero and the significance mask
bit is zero, the program interruption for the signifi­
cance exception does not occur; rather, the character­
istic is made zero, yielding a true zero result.

Leading zeros in the result are not eliminated by
normalization, and an exponent underRow cannot
occur.

The sign of the sum is derived by the rules of
algebra. The sign of a sum with zero result fraction is
always positive.

Resulting Condition Code:
o Result fraction is zero
1 Result is less than zero
2 Result is greater than zero
3

Program Interruptions:
Operation (if Hoating-point feature is not in-

stalled)
Protection (fetch violation by AU and A w only)
Addressing (AU and A w only)
Specification
Significance
Exponent overHow

Subtract Normalized

SER [RR, Short Operands]

3B

7 8 11 12 15

SE R/t 0AX2, B:!) [RX, Short Operands]

I 7B Rl
0 7 8 11 12 lS 16 1920

[RR, Long Operands]

2B
7 8 11 12 lS

SO Rlt 0AX;2, B2) RX, Long Operands]

I 6B Rl
0 7 8 11 12 lS 16 1920

31

31

The second operand is subtracted from the first op­
erand, and the normalized difference is placed in the
first operand location.

In short-precision, the low-order halves of the Roat­
ing-point registers are ignored and remain unchanged.

The SUBTRACT NORMALIZED is similar to ADD NORMAL­

IZED, except that the sign of the second operand is
inverted before addition.

The sign of the difference is derived by the rules of
algebra. The sign of a difference with zero result
fraction is always positive.

Resulting Condition Code:
o Result fraction is zero
1 Result is less than zero
2 Result is greater than zero
3

Program Interruptions:
Operation (if floating-point feature is not in-

stalled)
Protection (fetch violation by SE and SD only)
Addressing (SD and SE only)
Specification
Significance
Exponent overflow
Exponent underflow

Subtract Unnormalized

SUR R1, R2 [RR, Short Operands]

I 3F Rl I R2 I
0 78 11 12 15

SU Rlt DAXz, 82) [RX, Short Operands]

I 7F Rl X2 I 82 I °2
0 78 1112 1516 1920 31

SWR R1, Rz [RR, Long Operands]

I 2F Rl I R2 I
0 78 11 12 15

SW R1, D·lX;z, 82) [RX, Long Operands]

I 6F Rl X2 I 82 I °2
0 7 8 11 12 1516 1920 31

The second operand is subtracted from the first op­
erand, and the unnormalized difference is placed in
the first operand location.

In short-precision, the low-order halves of the float­
ing-point register are ignored and remain unchanged.

The SUBTRACT UNNORMALIZED is similar to ADD UN­

NORMALIZED, except for the inversion of the sign of the
second operand before addition.

The sign of the difference is derived by the rules of
algebra. The sign of a difference with zero result
fraction is always positive.

Resulting Condition Code:
o Result fraction is zero
1 Result is less than zero
2 Result is greater than zero
3

Program Intermptions:
Operation (if floating-point feature is not in-

stalled)
Protection (fetch violation by su and sw only)
Addressing (sw and su only)
Specification
Significance
Exponent overflow

Compare

[RR, Short Operands]

39
78 1112 15

CE Rlt DAX2, 82) [RX, Short Operands]

I 79 Rl X2 I 82 I °2
0 7 8 11 12 1516 1920 31

CDR R l , Rz [RR, Long Operands]

I 29 Rl I R2 I
0 7 8 11 12 15

CD R1, Dz(Xz, 82) [RX, Long Operands]

I 69 Rl X2 I 82 I °2
0 7 8 11 12 1516 1920 31

The first operand is compared with the second op­
erand, and the condition code indicates the result.

In short-precision, the low-order halves of the float­
ing-point registers are ignored.

Comparison is algebraic, taking into account the
sign, fraction, and exponent of each number. An expo­
nent inequality is not decisive for magnitude determi­
nation since the fractions may have different numbers
of leading zeros. An equality is established by follow­
ing the rules for normalized floating-point subtraction.
When the intermediate sum, including the guard digit,

Floating-Point Arithmetic 47

is zero, the operands are equal. Neither operand is
changed as a result of the operation.

An exponent-overflow, exponent-underflow, or lost­
significance exception cannot occur.

Resulting Condition Code:
o Operands are equal
1 First operand is low
2 First operand is high
3

Program Interruptions:
Operation (if floating-point feature is not in-

stalled)
Protection (fetch violation by CE and CD only)
Addressing (CD and CE only)
Specification

Programming Note

Numbers with zero fraction compare equal even ,,,hen
they differ in sign or characteristic.

Halve

34

24

[RR, Short Operands]

Rl I R2
78 1112 15

[RR, Long Operands]

Rl I R2
7 8 11 12 15

The second operand is divided by two, and the nor­
malized quotient is placed in the first-operand location.

The second operand remains unchanged. In short­
precision, the low-order halves of the floating-point
registers remain unchanged.

The fraction of the second operand is shifted right
one bit position, placing the contents of the low-order
bit position into the high-order bit position of the
guard digit and introducing a zero into the high-order
bit position of the fraction. The intermediate result is
subsequently normalized, and the normalized quotient
is placed in the first-operand location. The guard digit
participates in the normalization.

\Vhen normalization causes the characteristic to be­
come less than zero, exponent underflow occurs. If the
exponent-underflow mask is zero, the sign, character­
istic, and fraction are set to zero, thus making the
result a true zero. If the exponent-underflow mask is
one, a program interruption occurs. The result is nor­
malized, its sign and fraction remain correct, and the
characteristic is made 128 larger than the correct
characteristic.

48

When the fraction of the second operand is zero,
the sign, characteristic, and fraction of the result are
made zero. No normalization is attempted, and a sig­
nificance exception is not recognized.

Condition Code: The code remains unchanged.
Program Interruptions:

Operation (if floating-point feature is not installed)
Specification
Exponent Underflow

Programming Notes

In short- and long-precision, the halve operation is
identical to a divide operation with the number two
as divisor. In long-precision, the halve operation is
identical to a multiply operation with one-half as a
multiplier. In short-precision, HALVE differs from mul­
tiplication with one-half as the multiplier to the extent
that halving preserves the contents of the low-order
half of the register.

The result of HALVE is replaced by a true zero only
when the second-operand fraction is zero, or when
exponent underflow occurs with the exponent-under­
flow mask sct to zero. When the fraction of the second
operand is zero, except for the low-order bit position,
the low-order one is shifted into the guard digit posi­
tion and participates in the postnormalization.

Multiply

MER R1, R2 [RR, Short Operands]

I 3C Rl I R2
0 7 8 11 12 15

ME Rv DiXz, 8z) [RX, Short Operands]

I 7C Rl X
2 I B2 D2

0 7 8 11 12 1516 1920 31

MDR R1, Rz [RR, Long Operands]

I 2C Rl R2
0 7 8 11 12 15

MD R1, DiX2' 82) [RX, Long Operands]

I 6C Rl X
2 I B2 I D2

0 7 8 11 12 1516 1920 31

The normalized product of multiplier (the second op­
erand) and multiplicand (the first operand) replaces
the multiplicand.

The multiplication of two floating-point numbers
consists of a characteristic addition and a fraction
multiplication. The sum of the characteristics less 64 is
used as the characteristic of an intermediate product.

The sign of the product is determined by the rules of
algebra.

The product fraction is normalized by prenormaliz­
ing the operands and postnormalizing the intermediate
product, if necessary. The intermediate product char­
acteristic is reduced by the number of left-shifts. For
long operands, the intermediate product fraction is
truncated to 15 digits before the left-shifting, if any.
For short operands (six-digit fractions), the product
fraction has the full 14 digits of the long format, and
the two low-order fraction digits are accordingly al­
ways zero.

Exponent overflow occurs if the final product char­
acteristic exceeds 127. The operation is completed, and
a program interruption occurs. The fraction is normal­
ized and correct, the sign is correct, and the character­
istic is 128 smaller than the correct characteristic. The
overflow exception does not occur for an intermediate
product characteristic exceeding 127 when the final
characteristic is brought within range because of nor­
malization.

Exponent underflow occurs if the final product char­
acteristic is less than zero. If the corresponding mask
bit is one, a program interruption occurs. The fraction
is normalized and correct, the sign is correct, and the
characteristic is 128 larger than the correct character­
istic. If the corresponding mask bit is not one, the
result is made a true zero. Underflow is not signaled
when an operand's characteristic becomes less than
zero during prenormalization, and the correct char­
acteristic and fraction value are used in the multi­
plication.

When all 15 digits of the intermediate product frac­
tion are zero, the product sign and characteristic are
made zero, yielding a true zero result. No interrup­
tion for exponent underflow or exponent overflow can
occur when the result fraction is zero. The program
interruption for lost significance is never taken for
multiplication.

Condition Code: The code remains unchanged.
Program Interruptions:

Operation (if floating-point feature is not in-
stalled)

Protection (fetch violation by l\1E and MD only)
Addressing (MD and ME only)
Speciflca tion
Exponent overflow
Exponent underflow

Programming Note

Interchanging the two operands in a floating-point
multiplication does not affect the value of the product.

Divide

OER Rlt R2 [RR, Short Operands]

I 30 R, I R2 I
0 7 8 11 12 15

DE Rl, OZ(X2, 82) [RX, Short Operands]

I 70 R, X2 I B2 I O2
0 7 8 11 12 1516 1920

OOR R1, R2 [RR, Long Operands]

I 20 R, I R2 I
0 78 11 12 15

DO R1, Oz(Xz, 82) [RX, Long Operands]

I 60 R, X2 I B2 I O2
0 7 8 11 12 1516 1920 31

The dividend (the first operand) is divided by the
divisor (the second operand) and replaced by the
quotient. No remainder is preserved.

In short-precision, the low-order halves of the float­
ing-point register are ignored and remain unchanged.

A floating-point division consists of a characteristic
subtraction and a fraction division. The difference be­
tween the dividend and divisor characteristics plus
64 is used as an intermediate quotient characteristic.
The sign of the quotient is determined by the rules of
algebra.

The quotient fraction is normalized by prenormaliz­
ing the operands. Postnormalizing the intermediate
quotient is never necessary, but a right-shift may be
called for. The intermediate-quotient characteristic is
adjusted for the shifts. All dividend fraction digits
participate in forming the quotient, even if the normal­
ized dividend fraction is larger than the normalized
divisor fraction. The quotient fraction is truncated to
the desired number of digits.

A program interruption for exponent overflow oc­
curs when the final-quotient characteristic exceeds 127.
The operation is completed. The fraction is correct
and normalized, the sign is correct, and the character­
istic is 128 smaller than the correct characteristic.

If the final quotient characteristic is less than zero
and the mask bit is one, a program interruption for
exponent underflow occurs. The fraction is correct and
normalized, the sign is correct, and the characteristic
is 128 larger than the correct characteristic. If the cor­
responding mask bit is not one, the result is made a
trne zero. Underflow is not signaled for the inter-

Floating-Point Arithmetic 49

mediate quotient or for the operand characteristics
during prenormalization.

When division by a divisor with zero fraction is at­
tempted, the operation is suppressed. The dividend
remains unchanged, and a program interruption for
floating-point divide occurs. When the dividend frac­
tion is zero, the quotient fraction will be zero. The
quotient sign and characteristic are made zero, yield­
ing t a true zero result without taking the program
interruption for exponent underflow and exponent
overflow. The program interruption for significance is
never taken for division.

Condition Code: The code remains unchanged.
Program Interruptions:

Operation (if floating-point feature is not in-
stalled)

Protection (fetch violation by DE and DD only)
Addressing (DD and DE only)
Specification
Exponent overflow
Exponent underflow
Floating-point divide

Store

STE Rjt D2(X21 82) [RX, Short Operands]

I 70 Rl X2 I B2 I D2
0 7 8 11 12 1516 1920

STO Rjt 0AX2 , 82) [RX, Long Operands]

I 60 Rl X2 I B2 I D2
0 7 8 11 12 1516 1920

31

]
31

The first operand is stored at the second operand
location.

In short-precision, the low-order half of the first op­
erand register is ignored. The first operand remains
unchanged.

Condition Code: The code remains unchanged.
Program Interruptions:

Operation (if floating-point feature is not in-
stalled)

Addressing
Protection (store violation)
Specification

f/oating.Point Arithmetic Exceptions
Exceptional operation codes, operand designations,
data, or results cause a program interruption. When
the interruption occurs, the current psw is stored as
an old psw, and a new psw is obtained. The interrup­
tion code in the old psw identifies the cause of the

50

interruption. The following exceptions cause a pro­
gram interruption in floating-point arithmetic.

Operation: The floating-point feature is not installed,
and an attempt is made to execute a floating-point in­
struction. The instruction is suppressed. The condition
code and data in registers and storage remain un­
changed.

Protection: The key of an operand in storage does
not match the protection key in the psw. The opera­
tion is suppressed on a store violation. Therefore, the
condition code and data in registers remain un­
changed. On a fetch violation, the operation is ter­
minated; result data and the condition code are un­
predictable.

Addressing: An address designates an operand loca­
tion outside the available storage for the installed sys­
tem. In most cases, the operation is terminated. The
result data and the condition code, if affected, are un­
predictable and should not be used for further com­
putation. The exception is STORE (STE and STD), which
is suppressed.

Specification: A short operand is not located on a
32-bit boundary or a long operand is not located on a
64-bit boundary; or, a floating-point register address
other than 0, 2, 4, or 6 is specified. The instruction is
suppressed. Therefore, the condition code and data
in registers and storage remain unchanged. The ad­
drcss restrictions do not apply to the components from
which an address is generated - the content of the
D2 field and the contents of the registers specified by
X2 and B2 •

Exponent Overflow: The result characteristic in ad­
dition, subtraction, multiplication, or division exceeds
127, and the result fraction is not zero. The operation
is completed, and a program interruption occurs. The
fraction is normalized, and the sign and fraction of
the result remain correct. The result characteristic is
made 128 smaller than the correct characteristic. For
addition and subtraction, the condition code is set to
1 when the result is less than zero, and the condition
code is set to 2 when the result is greater than zero.
For multiplication and division, the condition code
remains unchanged.

Exponent Underflow: The result characteristic in
addition, subtraction, multiplication, halving, or divi­
sion is less than zero, and the result fraction is not
zero. The operation is completed, and a program inter­
ruption occurs if the exponent-underflow mask bit
(psw bit 38) is one.

The setting of the exponent-underflow mask also
affects the result of the operation. When the mask bit
is zero, the sign, characteristic, and fraction are set to
zcro, thus making the result a true zero. When the
mask bit is one, the fraction is normalized, the char-

acteristic is made 128 larger than the correct char­
acteristic, and the sign and fraction remain correct.

For addition and subtraction, the condition code is
set to ° when the exponent-underflow mask bit is zero.
With the mask bit one, the condition code for addition
and subtraction is set to 1 when the result is less than
zero, and the condition code is set to 2 when the result
is grqltcr than zero. For multiplication, halving, and
division, the condition code is IMt unchanged.

Significance: The result fraction of an addition or
subtraction is zero. A program interruption occurs if
the significance mask bit (psw bit 39) is one. The mask
bit affects also the result of the operation. When the
significance mask bit is a zero, the operation is com­
pleted by replacing the result with a true zero. When
the significance mask bit is one, the operation is com­
pleted without further change to the characteristic of
the result. In either case, the condition code is set to 0.

Floating-Point Divide: Division by a number with
zero fraction is attempted. The division is suppressed;
therefore, the condition code and data in registers and
storage remain unchang((d.

• Extended Precision and Rounding

Data Format

An extended-precision Roating-point number has a
28-digit fraction and consists of two long-precision
Roating-point numbers in consecutive floating-point
registers. Two pairs of adjacent floating-point registers
can be used as sources of extended-precision operands
or destinations of extended-precision results: registers
0, 2 and registers 4, 6. The designation of any other
register pair causes a program interruption for a speci­
fication exception.

The two long-precision numbers comprised in an
extended-precision number are callcd the hig~-order
and the low-order parts. The high-order part may be
any long-precision floating-point number. If it is nor­
malized, the extended-precision number is considered
normalized. The characteristic of the high-order part
is called the characteristic of the extended-precision
number, and the sign of the high-order part is the
sign of the extended-precision number.

The fraction field of the low-order part contains the
14 low-order hexadecimal digits of the 28-digit ex­
tended-precision fraction. The sign and characteristic
of the low-order part of an extended-precision operand
are ignored, the value of the number being assumed
such as if the sign of the low-order part were the same
as that of the high-order part, and the characteristic
of the low-order part were 14 less than that of the
high-order part. In extended-precision results, the sign
of the low-order part is made the same as that of the

high-order part, and the low-order characteristic is
made 14 less than the high-order characteristic. When
the subtraction of 14 causes the low-order character­
istic to bccome less than zero, it is made 128 larger
than its correct value. Exponent-underRow is indicated
only when the high-order characteristic underflows.

Programming Note
A long-precision number can be extended to the ex­
tended-precision format by appending any long-pre­
cision number having a zero fraction, including a true
zero. Conversion from extended to long precision can
be accomplished by truncation or by means of the
long-precision LOAD ROUNDED.

In the absence of an exponent overflow or exponent
underflow, the long-precision number constituting the
low-order part of an extended-precision result cor­
rectly expresses the value of the low-order part of the
extended-precision result wh~n the characteristic of
the high-order part is 14 or nigher. When the high­
order characteristic is less than 14, the low-order part,
when addressed as a long-precision number, does not
have the correct value.

The low-order part of an extended-precision result
is not necessarily normalized .

Instructions

Five arithmetic instructions are provided that utilize
extended-precision operand or result formats, and two
instructions are provided for rounding from extended
to long and from long to short formats. A list of these
instructions and their mnemonics, formats, and oper­
ation codes follows. The table indicates also when the
condition code is set and the exceptions in operand
designation, data, or results that cause a program in­
terruption.

NAME MNEMONIC TYPE

Load Rounded
(Extended to
Long) LRDR RR X

Load Rounded
(Long to Short) LRER RR X

Add Normalized
(Extended) AXR RR X,C

Subtract Normalized
(Extended) SXR RR X,C

Multiply
(Extended) MXR RR X

Multiply
(Long/Extended) MXDR RR X

Multiply
(Long/Extended) MXD RX X

NOTES

A
C
E
LS
P
S
U
X

Addressing exception
Condition code is set
Exponent-overflow exception
Significance exception
Protection exception
Specifiication exception
Exponent-underflow exception
Extended-precision feature

EXCEPTIONS CODE

S, E 25

S, E 35

S,U,E,LS 36

S,U,E,LS 37

S,U,E 26

S,U,E 27

P,A,S,U,E 67

Floating-Point Arithmetic 50.1

Load Rounded

[RR, Long Operand, Short Result]

35
78 11 12 15

[RR, Extended Operand, Long Result]

25
78 11 12 15

The second operand is rounded to the next smaller
format, and the result is placed in the first-operand
location.

The second operand remains unchanged unless it
appears in the first-operand location. For short results,
the low-order half of the result register remains un­
changed.

Rounding is predicated on the first fraction bit of
the next longer floating-point format that includes the
format of the rounded result. When the rounded result
is in short precision, rounding consisits of adding one
in absolute sense to the contents of bit position 32
of the designated floating-point register and propagat­
ing the carry, if any, to the left. For long results, bit 8
of the next-higher addressed register is inspected. If
this bit is one, one is added in absolute sense into bit
position 63 of the designated register; if this bit is
zero, no change is made.

If rounding causes a carry out· of the high-order
digit position of the fraction, the fraction is shifted
right one digit position and the characteristic is in­
creased by one. No normalization takes place.

An exponent-overflow exception is recognized when
shifting the fraction right causes the characteristic to
exceed 127. The operation is completed by loading a
number whose characteristic is 128 smaller than the
correct value, and a program interruption for exponent
overflow subsequently occurs. The result fraction and
sign remain unchanged.

Exponent underflow and significance exceptions can­
not occur.

Condition Code: The code remains unchanged.
Program Interruptions:

50.2

Operation: The instruction is not installed. The
operation is suppressed.

Specification: The R 1 field designates a register
other than 0, 2, 4, or 6, the R2 field of LRER

designates a register other than 0, 2, 4, or 6, or
the R2 field of LRDR designates a register other
than ° or 4. The operation is suppressed.

Exponent Overflow: The characteristic of the
rounded result exceeds 127. The operation is
completed.

Add Normalized

[RR, Extended Operands]

36
78 11 12 15

The normalized extended sum of the extended second
operand and the extended first operand is placed in
the first-operand location.

Addition of two floating-point numbers consists of
characteristic comparison and fraction addition. The
characteristics of the two operands are compared, and
the fraction accompanying the smaller characteristic
is shifted right with its characteristic increased by one
for each hexadecimal digit of shift until the two char­
acteristics agree.

When an operand is shifted right during alignment,
the leftmost hexadecimal digit of the field shifted out
is retained as a guard digit, thus forming an inter­
mediate operand consisting of 29 digits. The operand
that is not shifted is considered to be extended with a
low-order zero. Both operands are considered to be
extendcd with low-order zeros when no alignment
shift occurs. The 29-digit fractions are then added
algebraically to form an intermediate sum.

The intermediate-sum fraction consists of 29 hexa­
decimal digits and a possible carry. If a carry is
present, the sum is shifted right one digit position and
the characteristic is increased by one. If high-order
zeros are present, the 29-digit fraction is shifted left
to form a normalized number, provided the fraction
is not zero. Vacated low-order digit positions are filled
with zeros, and the characteristic is reduced by the
number of hexadecimal digits of shift. The intermedi­
ate-sum fraction is subsequently truncated to 28 hexa­
decimal digits.

The sign of the sum is derived by the rules of
algebra. When all digits of the intermediate-sum frac­
tion are zero, the sign is made plus.

Unless the result is made a true zero, the character­
istic, sign, and high-order 14 hexadecimal digits of the
normalized and truncated sum fraction, the high-order
sum, replace the high-order part of the first operand.
The low-order 14 hexadecimal digits of the sum frac­
tion replace the low-order fraction of the first operand.
The low-order sign is made equal to the high-order
sign. The low-order characteristic is made 14 less than
the high-order characteristic unless subtraction of 14
causes it to become less than zero, in which case it is
made 128 greater than its correct value.

An exponent-overflow exception is recognized when

a carry from the high-order position of the intermedi­
ate-sum fraction causes the characteristic of the nor­
malized sum to exceed 127. The operation is completed
by making the high-order characteristic 128 less than
the correct value, and a program interruption for ex­
ponent overflow occurs. The sum fraction and sign re­
main unchanged.

An exponent-underflow exception exists when the
characteristic of the normalized sum is less than zero
and the intermediate-sum fraction, including the guard
digit, is not zero. If the exponent-underflow mask bit
is one, the operation is completed by making hoth
characteristics 128 greater than their correct values.
The sum fraction and sign remain unchanged .. A pro­
gram interruption for exponent underflow then takes
place. When exponent underflow occurs and the ex­
ponent-underflow mask bit is zero, program interrup­
tion does not take place; instead, the operation is
completed by making both the high-order and the
low-order parts of the sum a true zero. Exponent
underflow is not recognized when the low-order char­
acteristic is less than zero, but the high-order charac­
teristic is zero or above.

A significance exception exists when the interme­
diate-sum fraction, including the guard digit, is zero.
If the significance mask bit is one, the intermediate­
sum characteristic remains unchanged and becomes
the characteristic of the result. No normalization oc­
curs, and a program interruption for significance takes
place. If the significance mask bit is zero, the program
interruption does not occur; rather, both the high­
order and the low-order parts of the sum are made a
true zero.

Resulting Condition Code:
o Sum fractions are zero
1 High-order sum is less than zero
2 High-order sum is greater than zero
3 --

Program Interruptions:
Operation: The instruction is not installed. The

operation is suppressed.
Specification: The Rl or R2 field designates a

register other than 0 or 4. The operation is sup­
pressed.

Exponent Overflow: The characteristic of the nor­
malized sum exceeds 127. The operation is com­

pleted.
Exponent Underflow: The characteristic of the

normalized sum is less than zero, the sum frac­
tion is not zero, and the exponent underflow
mask bit is one. The operation is completed.

Significance: The intermediate-sum fraction is
zero, and the significance mask bit is one. The
operation is completed.

Subtract Normalized

[RR, Extended Operands]

37
78 1112 15

The extended second operand is subtract6d from the
extended first operand, and the normalized extended
difference is placed in the first-operand location.

The execution of SUBTRACT NORMALIZED is identical
to that of ADD NORMALIZED, except that the sign of the
second operand is inverted before the addition.

Resulting Condition Code:
o Difference fractions are zero
1 High-order difference is less than zero
2 High-order difference is greater than zero
3

Program Interruptions:
Operation: The instruction is not- installed. The

operation is suppressed.
Specification: The Rl or R2 field designates a

register other than 0 or 4. The operation is
suppressed.

Exponent Overflow: The characteristic of the nor­
malized difference exceeds 127. The operation
is completed.

Exponent Underflow: The characteristic of the
normalized difference is less than zero, the dif­
ference fraction is not zero, and the exponent
underflow mask bit is one. The operation is
completed.

Significance: The intermediate-sum fraction is
zero, and the significance mask bit is one. The
operation is completed.

Multiply

[RR, Extended Operands]

I 26 I Rl I R2 I
o 78 1112 15

The normalized extended product of the extended sec­
ond operand (the multiplier) and the extended first
operand (the multiplicand) is placed in the first­
operand location.

Multiplication of two floating-point numbers consists
of exponent addition and fraction multiplication. The
operands are normalized, and the sum of the charac­
teristics of the normalized operands, less 64, is used
as the characteristic of the intermediate product.

The product of the fractions is developed such that
the result has the exact fraction product truncated to

Floating-Point Arithmetic 50.3

28 hexadecimal digits. When the result is normalized
without requiring any postshifting, the intermediatc­
product fraction is truncated to 28 digits, and the
intermediate-product characteristic becomes the final
product characteristic. When the intermediate-product
fraction has one leading zero digit, it is shifted left one
digit position, bringing the contents of the guard digit
position into the low-order position of the result frac­
tion, and the intermediate-product characteristic is
reduced by one. The intermediate-product fraction is
subsequently truncated to 28 digits.

The sign of the product is determined by the rules
of algebra. When all digits of the product fraction are
zero, the sign is made plus.

Unless the result is made a true zero, the character­
istic, sign, and high-order 14 hexadecimal digits of the
normalized and truncated product fraction (the high­
order product) replace the high-order part of the first
operand. The low-order 14 hexadecimal digits of the
product fraction replace the low-order fraction of the
first operand. The low-order sign is made equal to the
high-order sign. The low-order characteristic is made
14 less than the high-order characteristic unless sub­
traction of 14 causes it to become less than zero, in
which case it is made 128 greater than its correct
value.

An exponent -overflow exception is recognized when
the characteristic of the normalized product exceeds
127 and the fraction of the product is not zero. The
operation is completed by m,aking the high-order char­
acteristic 128 less than the correct value. If the low­
order characteristic also exceeds 127, it, too, is de­
creased by 128. The product fraction and sign remain
unchanged. A program interruption for exponent over­
flow then occurs. Exponent overflow is not recognized
if the intermediate-product characteristic exceeds 127
but is brought within range by normalization.

An exponent-underflow exception exists when the
characteristic of the normalized product is less than
zero and the fraction of the product is not zero. If the
exponent-underflow mask bit is one, the operation is
completed by making the characteristics of both parts
128 greater than their correct values, and a program
interruption for exponent underflow occurs. The prod­
uct fraction and its sign remain unchanged. If the
exponent-underflow mask bit is zero, program inter­
ruption does not take place; instead the operation is
completed by making both the high-order and low­
order parts of the product a true zero. Exponent
underflow is not recognized when the low-order char­
acteristic is less than zero, but the high-order charac­
teristic is zero or above.

If either or both operand fractions are zero, both

50.4

parts of the result are made a true zero, and no excep­
tions are recognized.

Condition Code: The code remains unchanged,
Program Interruptions:

Operation: The instruction is not installed. The
operation is suppressed.

Specification: The Rl or R2 field designates a
register other than 0 or 4 . The operation is
suppressed.

Exponent Overflow: The characteristic of the nor­
malized product exceeds 127, and the product
fraction is not zero. The operation is completed.

Exponent Underflow: The characteristic of the
norma1ized product is less than zero, the prod­
uct fraction is not zero, and the exponent under­
flow mask bit is one. The operation is com­
pleted.

Multiply

[RR, Long Operands, Extended Result]

27
7 8 11 12 15

[RX, Long Operands, Extended Result]

67 I Rl I
78 11 12 1516 1920 31

The normalized extended product of the long second
operand (the multiplier) and the long first operand
(the multiplicand) is placed in the first-operand loca­
tion and the next-higher-addressed register.

Multiplication of two floating-point numbers con­
sists of exponent addition and fraction multiplication.
The sum of the characteristics, less 64, is used as the
characteristic of the intermediate product. The inter­
mediate-product fraction consists of 28 hexadecimal
digits and is an cxact product of the operand fractions.
This fraction is shifted left as necessary to form a nor­
malized result, and the characteristic is reduced by
the number of hexadecimal digits of shift. Zeros are
provided for the vacated low-order digit positions.

The sign of the product is determined by the rules
of algebra. When all digits of the product fraction are
zero, the sign is made plus.

Unless the result is made a true zero, the character­
istic, sign, and high-order 14 hexadecimal digits of
the normalized product fraction (the high-order prod­
uct) replace the first operand. The low-order 14 hexa-

decimal digits of the product fraction are placed in
bit positions 8-63 of the next-higher addressed register.
Bit 0 of this register, the low-order sign, is made equal
to the high-order sign. The contents of bit positions
1-7 of this register, the low-order characteristic, are
made 14 less than the high-order characteristic, unless
subtraction of 14 causes it to become less than zero,
in which case it is made 128 greater than its correct
value. The original contents of the register receiving
the low-order product are ignored.

An exponent-overflow exception is recognized when
the characteristic of the normalized product exceeds
127 and the fraction of the product is not zero. The
operation is completed by making the high-order
characteristic 128 less than the correct value. If the
low-order characteristic also exceeds 127, it, too, is
decreased by 128. The product fraction and sign re­
main unchanged. A program interruption for exponent
overflow then occurs. Exponent overflow is not recog­
nized if the intermediate-product characteristic ex­
ceeds 127 but is brought within range by normali­
zation.

An exponent-underflow exception exists when the
characteristic of the normalized product is less than
zero and the fraction of the product is not zero. If the
exponent-underflow mask bit is one, the operation is
completed by making the characteristics of both parts
128 greater than their correct values, and a program
interruption for exponent underflow occurs. The prod­
uct fraction and its sign remain unchanged. If thc
exponent-underflow mask bit is zero, program inter­
ruption does not take place; instead the operation is
completed by making both the high-order and low-

order parts of the product a true zero. Exponent
underflow is not recognized when the low-order char­
acteristic is less than zero, but the high-order charac­
teristic is zero or above.

If either or both operand fractions are zero, both
parts of the result are made a true zero, and no ex­
ceptions are recognized.

Condition Code: The code remains unchanged.
Program Interruptions:

Operation: The instruction is not installed. The
operation is suppressed.

Protection: The location of the second operand of
MXD is protected for fetching, and the key in
storage associated with the operand does not
match the protection key in the psw. The oper­
ation is terminated.

Addressing: The location of the second operand
of MXD is outside the available main storage of
the installation. The operation is terminated.

Specification: The H.l field designates a register
other than 0 or 4, the R2 field of MXDR desig­
nates a register other than 0,2,4, or 6, or, in the
MXD format, the second operand is not located
on a 64-bit boundary of main storage. The
operand is suppressed.

Exponent Overflow: The characteristic of the nor­
malized product exceeds 127, and the product
fraction is not zero. The operation is completed.

Exponent Underflow: The characteristic of the
normalized product is less than zero, the prod­
uct fraction is not zero, and the exponent under­
flow mask bit is one. The operation is com­
pleted.

Floating-Point Arithmetic 50.5

A set of instructions is provided for the logical ma­
nipulation of data. Generally, the operands are treated
as eight-bit bytes. In a few cases the left or right four
bits of a byte are treated separately or operands are
shifted a bit at a time. The operands are either in
storage or in general registers. Some operands are in­
troduced from the instruction stream.

Processing of data in storage proceeds left to right
through fields which may start at any byte position. In
the general registers, the processing, as a rule, in­
volves the entire register contents.

Except for the editing instructions, data are not
treated as numbers. Editing provides a transformation
from packed decimal digits to alphanumeric charac­
ters.

The set of logical operations includes moving, com­
paring, bit connecting, bit testing, translating, editing,
and shift operations. All logical operations other than
editing are part of the standard instruction set. Edit­
ing instructions are part of the decimal feature.

The condition code is set as a result of all logical
comparing, connecting, testing, and editing operations.

Data format

Data reside in general registers or in storage or are
introduced from the instruction stream. The data size
may be a single or double word, a single character, or
variable in length. When two operands participate
they have equal length, except in the editing instruc­
tions.

Fixed-Length Logical Information

Logical Data

o 31

Data in general registers normally occupy all 32 _ bits.
Bits are treated uniformly, and no distinction is made
between sign and numeric bits. In a few operations,
only the low-order eight bits of a register participate,
leaving the remaining 24 bits unchanged. In some
shift operations, 64 bits of an even/odd pair of regis­
ters participate.

Logical Operations

The LOAD ADDRESS introduces a 24-bit address into
a general register. The high-order eight bits of the
register are made zero.

In storage-to-register operations, the storage data
occupy either a word of 32 bits or a byte of eight bits.
The word must be located on word boundaries, that
is, its address must have the two low-order bits zero.

Variable-Length Logical Infor.mation

,--_C_h_o_ro_c_te_r_..L-_C_ho_r_o_ct_e_r ~I ~ ~ = ~] Cho rocte r
16

In storage-to-storage operations, data have a variahle
field-length format, starting at any byte address and
continuing for up to a total of 256 bytes. Processing
is left to right.

Operations introducing data from the instruction
stream into storage, as immediate data, are restricted
to an eight-bit byte. Only one byte is introduced from
the instruction stream, and only one byte in storage
participates.

Use of general register 1 is implied in TRANSLATE

AND TEST and EDIT AND MARK. A 24-bit address may be
placed in this register during these operations. The
TRANSLATE AND TEST also implies general register 2.
The low-order eight bits of register 2 may be replaced
hy a function byte during a translate-and-test oper­
ation.

Editing requires a packed decimal field and gen­
erates zoned decimal digits. The digits, signs, and
zones are recognized and generated as for decimal
arithmetic. Otherwise, no internal data structure is re­
quired, and all bit configurations are considered valid.

The translating operations use a list of arbitrary
values. A list provides a relation between an argument
(the quantity used to reference the list) and the
function (the content of the location related to the
argument). The purpose of the translation may be to
convert data from one code to another code or to per­
form a control function.

A list is specified by an initial address - the address
designating the leftmost byte location of the list. The
byte from the operand to be translated is the argu­
ment. The actual address used to address the list is
obtained by adding the argument to the low-order po-

Logical Operations 51

sitions of the initial address. As a consequence, the list
contains 256 eight-bit function bytes. In cases where
it is known that not all eight-bit argument values will
occur, it may be possible to reduce the size of the list.

In a storage-to-storage operation, the operand fields
may be defined in such a way that they overlap. The
effect of this overlap depends upon the operation.
When the operands remain unchanged, as in COMPARE

or TRANSLATE AND TEST, overlapping does not affect
the execution of the operation. In the case of MOVE,

EDIT, and TRANSLATE, one operand is replaced by new
data, and the execution of the operation may be af­
fected by the amount of overlap and the manner in
which data are fetched or stored. For purposes of
evaluating the effect of overlapped operands, consider
that data are handled one eight-bit byte at a time. All
overlapping fields are considered valid but, in editing,
overlapping fields give unpredictable results.

Condition Code
The results of most logical operations are used to set
the condition code in the psw. The LOAD ADDRESS, IN­

SERT CHARACTERS, STORE CHARACTER, TRANSLATE, and
the moving and shift operations leave this code un­
changed. The condition code can be used for decision­
making by subsequent branch-on-condition instruc­
tions.

The condition code can be set to reflect five types
of results for logical operations: For COMPARE LOGICAL

the states 0, 1, or 2 indicate that the first operand is
equal, low, or high.

For the logical-connectives, the states ° or 1 indi­
cate a zero or nonzero result field.

For TEST UNDER MASK, the states 0, 1, or 3 indicate
that the selected bits are all-zero, mixed zero and one,
or all-one.

For TRANSLATE AND TEST, the states 0, 1, or 2 indi­
cate an all-zero function byte, a nonzero function byte
with the operand incompletely tested, or a last func­
tion byte nonzero.

For editing the states 0, 1, or 2 indicate a zero, less
than zero, or greater than zero content of the last re­
sult field.

CONDITION CODE SETTING FOR LOGICAL OPERATIONS

0 1 2 3
And zero not zero
Compare Logical equal low high
Edit zero < zero > zero
Edit and Mark zero < zero > zero
Exclusive Or zero not zero
Or zero not zero
Test Under Mask zero mixed one
Translate and Test zero incomplete complete

52

Instruction Format
Logical instructions use the following five formats:

RR Format

I Op Code Rl R2

o 78 1112 15

RX Format

I Op Code Rl X
2 B2

0 78 11 12 1516 1920 31

R5 Format

I Op Code Rl R3 B2

0 7 8 11 12 lS 16 1920 31

51 Format

Op Code 12 Bl

7 8 lS 16 1920 31

55 Format

Op Code L Bl I ~~Dli B2 11m
78 lS 16 1920 3132 3S 36 47

In the RR, RX, and RS formats, the content of the regis­
ter specified by Rl is called the first operand.

In the SI and ss formats, the content of the general
register specified by Bl is added to the content of the
Dl field to form an address. This address designates
the leftmost byte of the first operand field. The num­
ber of bytes to the right of this first byte is specified
by the L field in the ss format. In the SI format the
operand size is one byte.

In the RR format, the R2 field specifies the register
containing the second operand. The same register may
be specified for the first and second operand.

In the RX format, the contents of the general regis­
ters specified by the X2 and B2 fields are added to the
content of the D2 field to form the address of the sec­
ond operand.

In the RS format, used for shift operations, the con­
tent of the general register specified by the B2 field
is added to the content of the D2 field. This sum is not
used as an address but specifies the number of bits of
the shift. The Rs field is ignored in the shift oper­
ations.

In the SI format, the second operand is the eight-bit
immediate data field, 12, of the instruction.

In the ss format, the content of the general register
specified by B2 is added to the content of the D2 field
to form the address of the second operand. The sec­
ond operand field has the same length as the first op­
erand field.

A zero in any of the X2, Bl, or B2 fields indicates
the absence of the corresponding address or shift­
amount component. An instruction can specify the
same general register both for address modification
and for operand location. Address modification is al­
ways completed prior to operation execution.

Results replace the first operand, except in STORE

CHARACTER, where the result replaces the second op­
erand. A variable-length result is never stored outside
the field specified by the address and length.

The contents of all general registers and storage lo­
cations participating in the addressing or execution of
an operation generally remain unchanged. Exceptions
are the result locations, general register 1 in EDIT AND

MARK, and general registers 1 and 2 in TRANSLATE AND

TEST.

NOTE: In the detailed descriptions of the individual
instructions, the mnemonic and the symbolic operand
designation for the IBM System/360 assembly language
are shown with each instruction: For MOVE NUMERICS,

for example, MVN is the mnemonic and Dl (L, B1),

D2 (B2) the operand designation.

Instructions
The logical instructions, their mnemonics, formats, and
operation codes follow. The table also indicates when
the condition code is set and the exceptions in operand
designations, data, or results that cause a program in-
terruption.

NAME MNEMONIC TYPE EXCEPTIONS CODE

Move MVI SI P,A 92
Move MVC SS P,A D2
Move Numerics MVN SS P,A Dl
Move Zones MVZ SS P,A D3
Compare Logical CLR RR C 15
Compare Logical CL RX C P,A,S 55
Compare Logical CLI SI C P,A 95
Compare Logical CLC SS C P,A D5
AND NR RR C 14
AND N RX C P,A,S 54
AND NI SI C P,A 94
AND NC SS C P,A D4
OR OR RR C 16
OR 0 RX C P,A,S 56
OR 01 SI C P,A 96
OR OC SS C P,A D6
Exclusive OR XR RR C 17
Exclusive OR X RX C P,A,S 57
Exclusive OR XI SI C P,A 97

NAME

Exclusive OR
Test Under Mask
Insert Character
Store Character
Load Address
Translate
Translate and Test
Edit
Edit and Mark
Shift Left Single

Logical
Shift Right Single

Logical
Shift Left Double

Logical
Shift Right Double

Logical

NOTES

MNEMONIC

XC
TM
IC
STC
LA
TR
TRT
ED
EDMK

SLL

SRL

SLDL

SRDL

A Addressing exception
C Condition code is set
D Data exception
P Protection exception
S Specification exception
T Decimal feature

Programming Note

TYPE

SS C
SI C
RX
RX
RX
SS
SS C
SS T,C
SS T,C

RS

RS

RS

RS

EXCEPTIONS CODE

P,A D7
P,A 91
P,A 43
P,A 42

41
P,A DC
P,A DD
P,A, D DE
P,A, D DF

89

88

S 8D

S 8C

The fixed-point loading and storing instructions also
may be used for logical operations.

Move

92
78 IS 16 1920 31

D2 l B1 I ~? D1 I B2 1~[3J
78 IS 16 1920 31 32 3S 36 47

The second operand is placed in the first operand lo­
cation.

The ss format is used for a storage-to-storage move.
The SI format introduces one 8-bit byte from the
instruction stream.

In storage-to-storage movement the fields may over­
lap in any desired way. Movement is left to right
through each field a byte at a time.

The bytes to be moved are not changed or in­
spected.

Condition Code: The code remains unchanged.
Program Interruptions:

Protection (store violation for MVI; store or fetch
violation for MVC)

Addressing

Logical Operations 53

Programming Note

It is possible to propagate one character through an
entire field by having the first operand field start one
character to the right of the second operand field.

Move Numerics

MVN 01(L, 81), °2(82) [55]

D1 L B1 I ~~ Dl I B2 I~~
78 1516 1920 3132 35 36 47

The low-order four bits of each byte in the second op­
erand field, the numerics, are placed in the low-order
bit positions of the corresponding bytes in the first
operand fields.

The instruction is storage to storage. Movement is
left to right through each field one byte at a time, and
the fields may overlap in any desired way.

The numerics are not changed or checked for validi­
ty. The high-order four bits of each byte, the zones,
remain unchanged in both operand fields.

Condition Code: The code remains unchanged.
Program Interruptions:

Protection (store or fetch violation)
Addressing

Move Zones

D3 L B1 I ~~D11 B2 11~
7 8 15 16 1920 31 32 35 36 47

The high-order four bits of each byte in the second
operand field, the zones, are placed in the high-order
four bit positions of the corresponding bytes in the
first operand field.

The instruction is storage to storage. Movement is
left to right through each field one byte at a time, and
the fields may overlap in any desired way.

The zones are not changed or checked for validity.
The low-order four bits of each byte, the numerics,
remain unchanged in both operand fields.

54

Condition Code: The code remains unchanged.
Program Interruptions:

Protection (store or fetch violation)
Addressing

Compare Logical

CLR Rlt R2 [RR]

I 15 R1 R2
0 78 11 12 15

CL R1, 02(X2, 82) [RX]

I 55 R1 X2 I B2
0 78 11 12 1516 1920 31

CLI °1(81), '2 [51]

I 95 '2 B1
0 78 1516 1920 31

D5 L B1 I ~~D11 B2 I~~
78 1516 1920 3132 35 36 47

The first operand is compared with the second oper­
and, and the result is indicated in the condition code.

The instructions allow comparisons that are register
to register, storage to register, instruction to storage,
and storage to storage.

Comparison is binary, and all codes are valid. The
operation proceeds left to right and ends as soon as an
inequality is found or the end of the fields is reached.
However, when part of an operand in CLC is specified
in an unavailable location, the operation may be termi­
nated by the addressing exception, even though an
inequality could have been found in a comparison of
the available operand parts.

Resulting Condition Code:
o Operands are equal
1 First operand is low
2 First operand is high
3

Program Interruptions:
Protection (fetch violation for CL, CLI, and CLC

only)
Addressing (CL, CLI, CLC only)
Specification (CL only)

Programming Note

The COMPARE LOGICAL is unique in treating all bits
alike as part of an unsigned binary quantity. In vari­
able-length operation, comparison is left to right and
may extend to field lengths of 256 bytes. The operation
may be used to compare unsigned packed decimal
fields or alphameric information in any code that has
a collating sequence based on ascending or descending
binary values. For example, EBCDIC has a collating se­
quence based on ascending binary values.

AND

NR R1, R2 [RR]

I 14 R1 R2 I
0 78 11 12 15

N R1, 02(X2, 8 2) [RX]

I 54 R1 I X2 I B2
0 78 11 12 1516 1920 31

N. 0d81), '2 [5']

I 94 '2 B1
0 78 1516 1920 31

04 I L B1 I ~~ °1 I B2 IJL3J
78 1516 1920 31 32 35 36 47

The logical product (AND) of the bits of the first and
second operand is placed in the first operand location.

Operands are treated as unstructured logical quan­
tities, and the connective AND is applied bit by bit. A
bit position in the result is set to one if the correspond­
ing bit positions in both operands contain a one; other­
wise, the result bit is set to zero. All operands and
results are valid.

Resulting Condition Code:
o Result is zero
1 Result not zero
2
3

Program Interruptions:
Protection (fetch violation only for N; store vio­

lation only for NI; store or fetch violation for
NC)

Addressing (N, NI, NC only)
Specification (N only)

Programming Note

The AND may be used to set a bit to zero.

OR

OR Rlt R2 [RR]

16
78 1112 15

0 Rlt 02(X2, 82) [RX]

I 56 R1 I X2 I B2 °2 I
0 78 11 12 1516 1920 31

o' °1(81), '2 [5']

I 96 '2 B1 °1
0 7 8 1516 1920 31

[55]

I 06 I L B1 I ~{ °1 I B2 11L3J
o 78 1516 1920 31 32 35 36 47

The logical sum (OR) of the bits of the first and sec­
ond operand is placed in the first operand location.

Operands are treated as unstructured logical quan­
tities, and the connective inclusive OR is applied bit by
bit. A bit position in the result is set to one if the cor­
responding bit position in one or both operands con­
tains a one; otherwise, the result bit is set to zero. All
operands and results are valid.

Resulting Condition Code:
o Result is zero
1 Result not zero
2
3

Program Interruptions:
Protection (fetch violation only for 0; store vio­

lation only for 01; store or fetch violation for oc)
Addressing (0, 01, oc only)
Specification (0 only)

Programming Note

The OR may be used to set a bit to one.

Exclusive OR

17
78 1112 15

X R1, 02(X2, 8 2) [RX]

I 57 Rl I X2 I B2 °2
0 7 8 11 12 1516 1920 31

X. 0d81), '2 [5']

I 97 '2 B1 °1
0 78 1516 1920 31

XC Ol(L, 8 1), O2(82) [55]

07 I L B1 I ~{01 I B2 IjL3J
78 1516 1920 3132 35 36 47

Logical Operations 55

The modulo-two sum (exclusive OR) of the bits of the
first and second operand is placed in the first operand
location.

Operands are treated as unstructured logical quanti­
ties, and the connective exclusive OR is applied bit by
bit. A bit position in the result is set to one if the cor­
responding bit positions in the two operands are un­
like; otherwise, the result bit is set to zero.

The instruction differs from AND and OR only in the
connective applied.

Resulting Condition Code:
o Result is zero
1 Result not zero
2
3

Program Interruptions:
Protection (fetch violation only for X; store vio­

lation only for XI; store or fetch violation for xc)
Addressing (x, XI, xc only)
Specification (x only)

Programming Notes

The exclusive OR may be used to invert a bit, an opera­
tion particularly useful in testing and setting pro­
grammed binary bit switches.

Any field exclusive OR' ed with itself becomes all
zeros.

The sequence A exclusive OR' ed B, B exclusive OR' ed
A, A exclusive OR' ed B results in the exchange of the
contents of A and B without the use of an auxiliary
buffer area.

Test Under Mask

1M Dtl81), '2 [51]

I 91 12 B1 D1
0 78 1516 1920 31

The state of the first operand bits selected by a mask
is used to set the condition code.

The byte of immediate data, 12, is used as an eight­
bit mask. The bits of the mask are made to correspond
one for one with the bits of the character in storage
specified by the first operand address.·

A mask bit of one indicates that the storage bit is
to be tested. When the mask bit is zero, the storage bit
is ignored. When all storage bits thus selected are zero,
the condition code is made O. The code is also made
o when the mask is all-zero. When the selected bits
are all-one, the code is made 3; otherwise, the code is
made 1. The character in storage is not changed.

56

Resulting Condition Code:
o Selected bits all-zero; mask is all-zero
1 Selected bits mixed zero and one
2
3 Selected bits all-one

Program Interruptions:
Protection (fetch violation)
Addressing

Insert Character

43
78 1112 1516 1920 31

The eight-bit character at the second operand address
is inserted into bit positions 24-31 of the register spe­

. cified as the first operand location. The remaining bits
of the register remain unchanged.
Th~ instruction is storage to general register. The

byte to be inserted is not changed or inspected.
Condition Code: The code remains unchanged.
Program Interruptions:

Protection (fetch violation)
Addressing

Store Character

S1C Rjt DlX2, 82) [RX]

I 42 Rl X2 I B2 D2
0 78 1112 1516 1920 31

Bit positions 24-31 of the register designated as the
first operand are placed at the second operand ad­
dress.

The instruction is general register to storage. The
byte to be stored is not changed or inspected.

Condition Code: The code remains unchanged.
Program Interruptions:

Protection (store violation)
Addressing

Load Address

LA Rv D2(X2, 82) [RX]

41
78 1112 1516 1920 31

The address of the second operand is inserted in the
low-order 24 bits of the general register specified by
RI . The remaining bits of the general register are
made zero. No storage references for operands take
place.

The address specified by the X2, B2, and D2 fields is
inserted in bits 8-31 of the general register specified
by Rl • Bits 0-7 are set to zero. The address is not in­
spected for availability, protection, or resolution.

The address computation follows the rules for ad­
dress arithmetic. Any carries beyond the 24th bit are
ignored.

Condition Code: The code remains unchanged.
Program Interruptions: None.

Programming Note

The same general register may be specified by the R1,

X2, and B2 instruction field, except that general regis­
ter 0 can be specified only by the Rl field. In this
manner, it is possible to increment the low-order 24
bits of a general register, other than 0, by the con­
tents of the D2 field of the instruction. The register
to be incremented should be specified by Rl and by
either X2 (with B2 set to zero) or B2 (with X2 set to
zero).

Logical Operations .56.1

Translate

DC L B1 I ~~D11 B2 I~~
78 1516 1920 3132 35 36 47

The eight-bit bytes of the first operand are used as
arguments to reference the list designated by the sec­
ond operand address. Each eight-bit function byte se­
lected from the list replaces the corresponding argu­
ment in the first operand.

The bytes of the first operand are selected one by
one for translation, proceeding left to right. Each
argument byte is added to the entire initial address,
the second operand address, in the low-order bit po­
sitions. The sum is used as the address of the function
byte, which then replaces the original argument byte.

All data are valid. The operation proceeds until the
first operand field is exhausted. The list is not altered
unless an overlap occurs.

Condition Code: The code remains unchanged.
Program Interruptions:

Proteotion (store or fetch violation)
Addressing

Translate and Test

I DD I l
o 78

The eight-bit bytes of the first operand are used as
arguments to reference the list designated by the sec­
ond operand address. Each eight-bit function byte
thus selected from the list is used to determine the
continuation of the operation. When the,{unction byte
is a zero, the operation proceeds by fetching and
translating the next argument byte. When the function
byte is nonzero, the operation is completed by insert­
ing the related argument address in general register
1, and by inserting the function byte in general regis­
ter 2.

The bytes of the first operand are selected one by
one for translation, proceeding· from left to right. The
first operand remains unchanged in storage. Fetching
of the function byte from the list is performed as in
TRANSLATE. The fun:ction byte retrieved from the list
is inspected for the all-zero combination.

When the function byte is zero, the operation pro­
ceeds with the next operand byte. When the first op­
erand field is exhausted before a nonzero function byte
is encountered, the operation is completed by setting
the condition code to O. The contents of general regis­
ters 1 and 2 remain unchanged.

When the function byte is nonzero, the related ar­
gument address is inserted in the low-order 24 bits of
general register 1. This address points to the argument
last translated. The high-order eight bits of register 1
remain unchanged. The function byte is inserted in
the low-order eight bits of general register 2. Bits 0-23
of register 2 remain unchanged. The condition code
is set to 1 when the one or more argument bytes have
not been translated. The condition code is set to 2 if
the last function byte is nonzero.

Resulting Condition Code:
o All function bytes are zero
1 Nonzero function byte before the first operand

field is exhausted
2 Last function byte is nonzero
3

Program Interruptions:
Protection (fetch violation)
Addressing

Programming Note

The TRANSLATE AND TEST is useful for scanning an in­
put stream and locating delimiters. The stream can
thus be rapidly· broken into statements or data fields
for further processing.

Edit

[SS]

DE I l
78

The format of the Source (the second operand) is
changed from packed to zoned and is modified under
control of the pattern (the first operand). The edited
result replaces the pattern.

Editing includes sign and punctuation control and
the suppressing and protecting of leading zeros. It
also facilitates programmed blanking for all-zero fields.
Several fields may be edited in one operation, and
numeric information may be combined with text.

The length field applies to the pattern (the first
operand) . The pattern has the zoned format and
may contain any character. The source (the second
operand) has the packed format and must contain valid
decimal-digit and sign codes. The leftmost four bits
of a source byte must contain only the codes 0000-
1001; the codes 1010-1111 are recognized as a data
exception and cause a program interruption. The
rightmost four bits are recognized as either a sign or
a decimal digit.

Both operands are processed left to right one byte
at a time. Overlapping pattern and source fields give
unpredictable results.

Logical Operations 57

During the editing process, each character of the
pattern is affected in one of three ways:

l. It is left unchanged.
2. It is replaced by a source digit expanded to

zoned format.
3. It is replaced by the first character in the pattern,

called the fill character.
Which of the three actions takes place is determined

by one or more of the following: the type of the pat­
tern character, the state of the significance indicator,
and whether the source digit examined is zero.

Pattern Characters: There are four types of pattern
characters: digit selector, significance starter, field
separator, and message character. Their coding is as
follows:

N~E CODE

Digit selector 0010 0000
Significance starter 0010 0001
Field separator 0010 0010
Message character Any other

The detection of either a digit selector or a signifi­
cance starter in the pattern causes an examination to
be made of the significance indicator and of a source
digit. As a result, either the expanded source digit
or the fill character, as appropriate, is selected to re­
place the pattern character. Additionally, encounter­
ing a digit selector or a significance starter may cause
the significance indicator to be changed.

The field separator identifies individual fields in a
multiple-field editing operation. It is always replaced
in the result by the fill character, and the significance
indicator is always off after the field separator is en­
countered.

Message characters in the pattern are either re­
placed by the fill character or remain unchanged in
the result, depending on the state of the significance
indicator. They may thus be used for padding, punc­
tuation, or text in the significant portion of a field or
for the insertion of sign-dependent symbols.

Fill Character: The fill character is obtained from
the pattern as part of the editing operation: The first
character of the pattern is used as the fill character.
The choice of the fill character is not dependent on
the code of the first pattern character and on the edit­
ing function, if any, initiated upon recognition of the
code. If this character is a digit selector or significance
starter, the indicated editing action is taken after the
code has been assigned to the fill character.

Source Digits: Each time a digit selector or signifi­
cance starter is encountered in the pattern, a new
source digit is examined for placement in the pattern
field. The source digit either is zoned and replaces
the pattern character or is disregarded. When a sign
code is detected in the four high-order bit positions,
the operation is terminated.

58

The source digits are selected one byte at a time,
and a source byte is fetched for inspection only once
during an editing operation. Each source digit is ex­
amined only once for a zero value. The leftmost four
bits of each byte are examined first, and the rightmost
four bits, when they represent a decimal-digit code,
remain available for the next pattern character that
calls for a digit examination. At the time the high­
order digit of a source byte is examined, the low-order
four bits are checked for the existence of a sign code.
When a sign code is encountered in the four rightmost
bit positions, these bits are not treated as a decimal­
digit code, and a new source byte is fetched from
storage for the next pattern character that calls for a
source-digit examination.

When the source digit is stored in the result, its
code is expanded from the packed to the zoned for.:.
mat by attching a zone. When psw bit 12 is zero, the
preferred EBCDIC zone code 1111 is generated. When
psw bit 12 is one, the preferred USASCII-8 zone code
0101 is generated.

Significance Indicator.: The significance indicator, by
its on or off state, indicates the significance or non­
significance, respectively, of subsequent source digits
or message characters. Significant source digits replace
their corresponding digit selectors or significance
starters in the result. Significant message characters
remain unchanged in the result.

The significance indicator, by its on or off state, in­
dicates also the negative or positive value, respec­
tively, of the source and is used as one factor in the
setting of the condition code.

The indicator is set to the off state, if not already
so set, at the start of the editing operation, after a
field separator is encountered, or after a souroe byte
is examined that has a plus code in the four low-order
bit positions. Any of the codes 1010, 1100, 1110, and
1111 is considered a plus code.

The indicator is set to the on state, if not already
so set, when a significance starter is encountered
whose source digit is a valid decimal digit, or when a
digit selector is encountered whose source digit is a
nonzero decimal digit, and if in both instances the
source byte does not have a plus code in the four low­
order bit positions.

In all other situations, the indicator is not changed.
A minus sign code has no effect on the significance
indicator.

Result Characters: The field resulting from an edit­
ing operation replaces and is equal in length to the
pattern. It is composed from pattern characters, fill
characters, and zoned source digits.

If the pattern character is a message character and
the significance indicator is on, the message character

remains unchanged in the result. If the pattern
character is a field separator or if the significance in­
dicator is off when a message character is encountered
in the pattern, the fill character replaces the pattern
character in the result.

If a digit selector or significance starter is encoun­
tered in the pattern with the significance indicator off
and the source digit zero, the source digit is con­
sidered nonsignificant, and the fill character replaces
the pattern character. If a digit selector or significance
starter is encountered with either the significance in­
dicator on or with a nonzero decimal source digit, the
source digit is considered significant, is zoned, and re­
places the pattern character in the result.

Result Conditi(J)n: All digits examined are tested for
the code 0000. The sign of the last field edited and
whether all source digits in the field contain zeros are
recorded in the condition code at the completion of
the editing operation.

The condition code is made 0 when all source digits
examined in the last field are zeros. When the pattern
has no digit selectors or significance starters, the
source is not examined, and the condition code is
made O. Similarly, the condition' code is made 0 when
the last character in the pattern is a field separator
or when no digit selector or significance starter is en­
countered beyond the last field separator.

When the last field edited is nonzero and the signif­
icance indicator is on, the condition code is made 1 to
indicate a result field less than zero.

When the last field edited is nonzero and the signif­
icance indicator is off, the condition code is made 2
to indicate a result field greater than zero.

PATTERN

CHARACTER

Digit selector

Significance starter

Field separator
Message character

CONDITIONS

PREVIOUS STATE

OF SIGNIFICANCE

INDICATOR

off

on

off

on

o

off
on

SOURCE

DIGIT

0
1-9
1-9
0-9
0-9
0
0
1-9
1-9
0-9
0-9
00

00

00

(lNo effect on result character and new state of significance indicator.
(I(INot applicable because source digit not examined.

For multiple-field editing operations the condition
code reflects the sign and value only of the field fol­
lowing the last field separator.

Summary: The following table summarizes the func­
tions of the editing operation. The leftmost four col­
umns list all the significant combinations of the four
conditions that can be encountered in the execution of
an editing operation. The rightmost two columns list
the action taken for each case - the type of character
placed in the result field and the new setting of the
significance indicator. See Appendix A for an instruc­
tion-use example of EDIT.

Resulting Condition Code:
o Source inspected for last field is zero
1 Source inspected for last field is less than zero
2 Source inspected for last field is greater than

zero
3

Program Interruptions:
Operation (if decimal feature is not installed)
Protection (store or fetch violation)
Addressing
Data

Programming Notes

As . a rule the source is shorter than the pattern be­
cause for each source digit a zone and numeric are
inserted in the result.

The total number of digit selectors and significance
starters in the pattern must equal the number of
source digits to be edited.

If the fill character is a blank, if no significance
started appears in the pattern, and if the source is all
zeros, the editing operation blanks the result field.

RESULTS

STATE OF

SIGNIFICANCE

LOW-ORDER INDICATOR AT

SOURCE DIGIT RESULT END OF DIGIT

IS A PLUS SIGN CHARACTER EXAMINATION

0 fill character off
no source digit on
yes source digit off
no source digit on
yes source digit off
no fill character on
yes fill charact~r off
no source digit on
yes source digit off
no source digit on
yes source digit off
00 fill character off
.00 fill character off
.00 message character on

Logical Operations 59

Edit and Mark

EOMK OIL, 8 1), °2(82) [SS]

I DF L I Bl I ~~ Dl I B2 IU3J
0 78 1516 1920 3132 35 36 47

The format of the source (the second operand) is
changed from packed to zoned and is modified under
control of the pattern (the first operand). The address
of each first significant result character is recorded in
general register l. The edited result replaces the pat­
tern.

The instruction EDIT AND MARK is identical to EDIT

except for the additional function of inserting the ad­
dress of the result character in bit positions 8-31 of
general register 1 whenever the result character is a
zoned source digit and the significance indicator was
off before the examination. The use of general register
1 is implied. The contents of bit positions 0-7 of the
register are not changed.

Refer to Appendix A for an instruction-use example.
Resulting Condition Code:

o Source inspected for last field is zero
1 Source inspected for last field is less than zero
2 Source inspected for last field is greater than

zero
3

Program Interruptions:
Operation (if decimal feature is not installed)
Protection (store or fetch violation)
Addressing
Data

Programming Notes

The instruction EDIT AND MARK facilitates the program­
ming of floating currency-symbol insertion. The char­
acter address inserted in general register 1 is one
more than the address where a floating currency-sign
would be inserted. The BRANCH ON COUNT, with zero
in the R2 field, may be used to reduce the inserted
address by one.

The character address is not stored when signifi­
cance is forced. To ensure that general register 1 con­
tains a valid address when significance is forced, it is
necessary to place into the register beforehand the
address of the pattern character that immediately fol­
lows the significance starter.

When a single instruction is used to edit several
fields, the address of the first significant result charac­
ter of each field is inserted into bit positions 8-31 of
general register l. Only the address of the first signi­
ficant character of the last field is available after the
instruction is completed.

60

Shift Left Single

SLL R1, °2(82) [RS]

I 89 Rl ~ B2 D2
0 78 11 12 1516 1920 31

The first operand is shifted left the number of bits
specified by the second operand address.

The second operand address is not used to address
data; its low-order six bits indicate the number of bit
positions to be shifted. The remainder of the address
is ignored.

All 32 bits of the general register specified by Rl
participate in the shift. High-order bits are shifted out
without inspection and are lost. Zeros are supplied to
the vacated low-order register positions.

Condition Code: The code remains unchanged.
Program Interruptions: None.

Shift Right Single

SRL R1,02(82) [RS]

88
78 11 12 1516 1920 31

The first operand is shifted right the number of bits
specified by the second operand address.

The second operand address is not used to address
data; its low-order six bits indicate the number of bit
positions to be shifted. The remainder of the address
is ignored.

All 32 bits of the general register specified by Rl
participate in the shift. Low-order bits are shifted out
without inspection and are lost. Zeros are supplied to
the vacated high-order register positions.

Condition Code: The code remains unchanged.
Program Interruptions: None.

Shift Left Double

8D

7 8 11 12 1516 1920 31

The double-length first operand is shifted left the
number of bits specified by the second operand ad­
dress.

The Rl field of the instruction specifies an even/odd
pair of registers and must contain an even register
address. An odd value for Rl is a specification excep­
tion and causes a program interruption. The second
operand address is not used to address data; its low-

order six bits indicate the number of bit positions to
be shifted. The remainder of the address is ignored.

All 64 bits of the even/odd register pair specified
by Rl participate in the shift. High-order bits are
shifted out of the even-numbered register without in­
spection and are lost. Zeros are supplied to the vacated
positions of the registers.

Condition Code: The code remains unchanged.
Program Interruptions:

Specification

Shift Right Double

SRDL Rz, Di82) [RS]

8e
7 8 1112 1516 1920 31

The double-length first operand is shifted right the
number of bits specified by the second operand ad­
dress.

The Rl field of the instruction specifies an even/odd
pair of registers and must contain an even register ad­
dress. An odd value for Rl is a specification exception
and causes a program interruption. The second oper­
and address is not used to address data; its low-order
six bits indicate the number of bit positions to be
shifted. The remainder of the address is ignored.

All 64· bits of the even/odd register pair specified
by Rl participate in the shift. Low-order bits are
shifted out of the odd-numbered register without in­
spection and are lost. Zeros are supplied to the vacated
positions of the registers.

Condition Code: The code remains unchanged.
Program Interruptions:

Specification

Programming Note

The logical shifts differ from the arithmetic shifts in
that the high-order bit participates in the shift and is
not propagated, the condition code is not changed,
and no overflow occurs.

Logical Operation Exceptions
Exceptional operation codes, operand designations,
data, or results cause a program interruption. When

the interruption occurs, the current psw is stored as an
old psw and a new psw is obtained. The interruption
code in the old psw identifies the cause of the inter­
ruption. The following exceptions cause a program
interruption in logical operations.

Operation: The decimal feature is not installed, and
the instruction is EDIT or EDIT AND MARK. The instruc­
tion is suppressed. Therefore, the condition code and
data in registers and storage remain unchanged.

Protection: The key of an operand in storage does
not match the protection key in the psw. The opera­
tion is suppressed on a store violation. Therefore, the
condition code and data in registers and storage re­
main unchanged. The only exceptions are the variable­
length, storage-to-storage operations (those contain­
ing a length specification), which are terminated. The
operation is terminated on any fetch violation. For
terminated operations, the result data and condition
code, if affected, are unpredictable and should not be
llsed for further computation.

Addressing: An address designates an operand loca­
tion outside the available storage for the installation:
In most cases, the operation is terminated. The result
data and the condition code, if affected, are unpre­
dictable and should not be used for further compu­
tation. The exceptions are the immediate operations
AND (NI), EXCLUSIVE OR (XI), OR (01), MOVE (MVI) ,

and STORE CHARACTER, which are suppressed.
Specification: A fullword operand in a storage-to­

register operation is not located on a 32-bit boundary
or an odd register address is specified for a pair of
general registers containing a 64-bit operand. The op­
eration is suppressed. Therefore, the condition code
and data in registers and storage remain unchanged.

Data: A digit code of the second operand in EDIT or
EDIT AND MARK is invalid. The operation is terminated.
The result data and the condition code are unpredict­
able and should not be used for further computation.

Operand addresses are tested only when used to ad­
dress storage. Addresses used as a shift amount are
not tested. Similarly, the address generated by the use
of LOAD ADDRESS is not tested. The address restrictions
do not apply to the components from which an ad­
dress is generated - the contents of the Dl and D2
fields, and the contents of the registers specified by
X2, Bt, and B2 •

Branching 61

Branching

Instructions are performed by the central process­
ing unit primarily in the sequential order of their
locations. A departure from this normal sequential
operation may occur when branching is performed.
The branching instructions provide a means for mak­
ing a two-way choice, to reference a subroutine, or to
repeat a segment of coding, such as a loop.

Branching is performed by introducing a branch ad­
dress as a new instruction address.

The branch address may be obtained from one of
the general registers or it may be the address specified
by the instruction. The branch address is independent
of the updated instruction address.

The detailed operation of branching is determined
by the condition code which is part of the program
status word (psw) or by the results in the general reg­
isters which are specified in the loop-closing opera­
tions.

During a branching operation, the rightmost half of
the PSW, including the updated instruction address,
may be stored before the instruction address is re­
placed by the branch address. The stored information
may be used to link the new instruction sequence with
the preceding sequence.

The instruction EXECUTE is grouped with the branch­
ing instructions. The branch address of EXECUTE desig­
nates a single instruction to be inserted in the instruc­
tion sequence. The updated instruction address norm­
ally is not changed in this operation, and only the in­
struction located at the branch address is executed.

All branching operations are provided in the stand­
ard instruction set.

Normal Sequential Operation
Normally, operation of the CPU is controlled by in­
structions taken in sequence. An instruction is fetched
from a location specified by the instruction-address
field of the psw. The instruction address is increased
by the number of bytes of the instruction to address
the next instruction in sequence. This new instruction­
address value, called the updated instruction address,
replaces the previous contents of the instruction-ad­
dress field in the psw. The current instruction is exe­
cuted, and the same steps are repeated, using the up­
dated instruction address to fetch the next instruction.

Instructions occupy a halfword or a multiple there­
of. An instruction may have up to three halfwords.
The number of halfwords in an instruction is specified
by the first two instruction bits. A 00 code indicates a

62

halfword instruction, codes 01 and 10 indicate a two­
halfword instruction, and code 11 indicates a three­
halfword instruction.

Halfword Format

I Op Code
78 15

Two-Halfword Format

I Op Code
78 1516 1920 31

Three-Halfword Format

OpCode ~ B1 I D1
78 1516 1920 31

32 3536 47

Storage wraps around from the maximum address­
able storage . location, byte location 16,777,215, to byte
location O. An instruction having its last halfword at
the maximum storage location is followed by the in­
struction at address O. Also, a multiple-halfword in­
struction may straddle the upper storage boundary; no
special indication is given in these cases.

Conceptually, an instruction is fetched from storage
after the preceding operation is completed and before
execution of the current operation, even though physi­
cal storage width and overlap of instruction execu­
tion with storage access may cause actual instruction
fetching to be different.

A change in the sequential operation may be caused
by branching, status switching, interruption, or man­
ual intervention. Sequential operation is initiated and
terminated from the system control panel.

Programming Note

It is possible to modify an instruction in storage by
means of the immediately preceding instruction.

Sequential Operation Exceptions

Exceptional instruction addresses or operation codes
cause a program interruption. When the interruption
occurs, the current psw is stored as an old PSW, and a
new psw is obtained. The interruption code in the old
psw identifies the cause of the interruption. (In this
manual, part of the description of each class of instruc-

tions is a list of the program interruptions that may
occur for these instructions.) The new psw is not
checked for exceptions when it becomes current. These
checks occur when the next instruction is executed.
The following program interruptions may occur in
normal instruction sequencing, independently of the
instruction performed.

Operation: An operation exception occurs when the
CPU attempts to decode an operation code that is not
assigned. The operation exception can be accompanied
by an addressing or specification exception if the in­
struction class associated with the undefined operation
has uniform requirements for operand designation. An
instruction class is a group of instructions whose four
leftmost bits are identical.

Protection: A protection exception occurs when an
attempt is made to fetch an instruction halfword from
a fetch-protected location. This error can occur when
normal instruction sequencing goes from an unpro­
tected region into a protected region, or following
a branching or load-psw operation or an interruption.

Addressing: An addressing exception occurs when
an instruction halfword is located outside the avail­
able storage for the particular installation. This situa­
tion can occur when normal instruction sequencing
goes from a valid storage region into an unavailable
region, or following a branching or load-psw opera­
tion or an interruption. However, when the last loca­
tions in available storage contain an instruction that
again introduces a valid instruction address (i.e., a
branch), no program interruption is caused even
though the updated instruction address designates an
unavailable location.

Specification: A specification exception occurs when
the instruction address in the psw is odd. This odd­
address error can occur only after a branching or load­
psw operation or after an interruption.

A specification exception will occur when the pro­
tection key is nonzero and the protection feature is not
installed. This error can occur after a psw is loaded
or after an interruption.

In each case, the instruction is suppressed; therefore,
the condition code and data in storage and registers
remain unchanged. The instruction address stored as
part of the old psw has been updated by the number
of halfwords indicated by the instruction length code
in the old psw.

Programming Notes

When a program interruption occurs, the current psw
is stored in the old psw location. The instruction ad­
dress stored as part of this old psw is thus the updated
instruction address, having been updated by the num­
ber of halfwords indicated in the instruction-length

code of the same psw. The interruption code in this old
psw identifies the cause of the interruption and aids
in the programmed interpretation of the old psw.

If the new psw for a program interruption has an
unacceptable instruction address, another program in­
terruption occurs. Since this second program interrup­
tion introduces the same unacceptable instruction ad­
dress, a string of program interruptions is established
which may be broken only by an external or I/O inter­
ruption. If these interruptions also have an unaccept­
able new psw, new supervisor information must be
introduced by initial program loading or by manual
intervention.

Decision-Making
Branching may be conditional or unconditional. Un­
conditional branches replace the updated instruction
address with the branch address. Conditional branches
may use the branch address or may leave the updated
instruction address unchanged. When branching takes
place, the instruction is called successful; otherwise, it
is called unsuccessful.

Whether a conditional branch is successful depends
on the result of operations concurrent with the branch
or preceding the branch. The former case is repre­
sented by BRANCH ON COUNT and the branch-on-index
instructions. The latter case is represented by BRANCH

ON CONDITION, which inspects the condition code that
reflects the result of a previous arithmetic, logical, or
I/O operation.

The condition code provides a means for data-de­
pendent decision-making. The code is inspected to
qualify the execution of the conditional-branch instruc­
tions. The code is set by some operations to reflect the
result of the operation, independently of the previous
setting of the code. The code remains unchanged for
all other operations.

The condition code occupies bit positions 34 and 35
of the psw. When the psw is stored during status
switching, the condition code is preserved as part of
the psw. Similarly, the condition code is stored as part
o"f the rightmost half of the psw in a branch-and-link
operation. A new condition code is obtained by a LOAD

psw or SET PROGRAM MASK or by the new psw loaded
as a result of an interruption.

The condition code indicates the outcome of some
of the arithmetic, logical, or I/O operations. It is not
changed for any branching operation, except for EXE­

CUTE. In the case of EXECUTE, the condition code is set
or left unchanged by the subject instruction, as would
have been the case had the subject instruction been in
the normal instruction stream.

Branching 63

The table at the end of this section lists all instruc­
tions capable of altering the condition code and the
meaning of the codes for these instructions.

Instruction Formats
Branching instructions use the following three formats:

RR Format

I Op Code I Rl/Ml I R2 I
o 7 8 11 12 15

RX Format

I Op Code I R/Mll X2 B2
0 7 8 11 12 1516 1920 31

RS Format

Op Code Rl R3 B2
78 11 12 1516 1920 31

In these formats Rl specifies the address of a gen­
eral register. In BRANCH ON CONDITION a mask field
(M1) identifies the bit values of the condition code.
The branch address is defined differently for the three
formats.

In the RR format, the R2 field specifies the address of
a general register containing the branch address, ex­
cept when R2 is zero, which indicates no branching.
The same register may be specified by Rl and R2.

In the RX format, the contents of the general reg­
isters specified by the X2 and B2 fields are added to
the content of the D2 field to form the branch address.

In the RS format, the content of the general register
specified by the B2 field is added to the content of the
D2 field to form the branch address. The Ra field in
this format specifies the location of the second operand
and implies the location of the third operand. The first
operand is specified by the Rl field. The third operand
location is always odd. If the Ra field specifies an even
register, the third operand is obtained from the next
higher addressed register. If the Ra field specifies an
odd register, the third operand location coincides with
the second operand location.

A zero in a B2 or X2 field indicates the absence of
the corresponding address component.

An instruction can specify the same general register
for both address modification and operand location.
The order in which the contents of the general reg­
isters are used for the different parts of an operation
is:

1. Address computation.
2. Arithmetic or link information storage.

64

3. Replacement of the instruction address by the
branch address' obtained under step 1.

Results are placed in the general register specified
by Rl . Except for the storing of the final results, the
contents of all general registers and storage locations
participating in the addressing or execution part of an
operation remain unchanged.

NOTE: In the detailed descriptions of the individual
instructions, the mnemonic and the symbolic operand
designation for the IBM System/360 assembly language
are shown with each instruction. For BRANCH ON INDEX

HIGH, for example, BXH is the mnemonic and R1, Ra,
D2 (B2) the operand designation.

Programming Note

In several instructions the branch address may be
specified in two ways: in the RX format, the branch
address is the address specified by X2, B2, and D2; in
the RR format, the branch address is in the low-order
24 bits of the register specified by R2. Note that the
relation of the two formats in branch-address specifica­
tion is not the same as in operand-address specifica­
tion. For operands, the address specified by X2, B2,

and D2 is the operand address, but the register speci­
fied by R2 contains the operand itself.

Branching Instructions
The branching instructions and their mnemonics, for­
mats, and operation codes follow. The table also shows
the exceptions that cause a program interruption dur­
ing execution of EXECUTE. The subject instruction of
EXECUTE follows its own rules for interruptions. The
condition code is never changed for branching in­
structions.

NAME MNEMONIC

Branch on
Condition BCR

Branch on
Condition BC

Branch and Link BALR
Branch and Link BAL
Branch on Count BCTR
Branch on Count BCT
Branch on Index

High BXH
Branch on Index

Low or Equal BXLE
Execute EX

NOTES

A
EX
S
P

Addressing exception
Execute exception
Specification exception
Protection exception

TYPE EXCEPTIONS CODE

RR 07

RX 47
RR 05
RX 45
RR 06
RX 46

RS 86

RS 87
RX P,A,S, EX 44

Branch On Condition

BCR M1,Rz [RR]

I 07 Ml I R2
0 7 8 11 12 15

BC M1, DZ{Xz, Bz} [RX]

I 47 I Ml X
2 B2 D2

0 7 8 11 12 1516 1920 31

The updated instruction address is replaced by the
branch address if the state of the condition code is as
specified by M1 ; otherwise, normal instruction se­
quencing proceeds with the updated instructioI) ad­
dress.

The Ml field is used as a four-bit mask. The four bits
of the mask correspond, left to right, with the four
condition codes (0, 1, '2, and 3) as follows:

INSTRUCTION MASK POSITION CONDITION

BIT VALUE CODE

8 8 0
9 4 1
10 2 2
11 1 3

The branch is successful whenever the condition
code has a corresponding mask bit of one.

Condition Code: The code remains unchanged.
Program Interruptions: None.

Programming Note

When a branch is to be made on more than one condi­
tion code, the pertinent condition codes are specified
in the mask as the sum of their mask position values.
A mask of 12, for example, specifies that a branch is to
be made on condition codes 0 and 1.

When all four mask bits are ones, that is, the mask
position value is 15, the branch is unconditional. When
all four mask bits are zero or when the R2 field in the
nn format contains zero, the branch instruction is
equivalent to a no-operation.

Condition-Code Settings
CODE STATE

0 1 2 3
Fixed-foint Arithmetic

Add H/F zero < zero > zero overflow
Add Logical zero, not zero, zero, not zero,

no carry no carry carry carry
Compare H/F equal low high
Load and Test zero < zero > zero carry
Load Complement zero < zero > zero overflow
Load Negative zero < zero
Load Positive zero > zero overflow
Shift Left Double zero < zero > zero overflow
Shift Left Single zero < zero > zero overflow
Shift Right Double zero < zero > zero
Shift Right Single zero < zero > zero
Subtract H/F zero < zero > zero overflow
Subtract Logical not zero, zero, not zero,

no carry carry carry

CODE STATE

0 1 2 3
Decimal Arithmetic

Add Decimal zero < zero > zero overflow
Compare Decimal equal low high
Subtract Decimal zero < zero > zero overflow
Zero and Add zero < zero > zero overflow

Floating-Point Arithmetic
Add Normalized

S/L zero < zero > zero
Add Unnormalized

S/L zero < zero > zero
Compare S/L equal low high
Load and Test S/L zero < zero > zero
Load Complement

S/L zero < zero > zero
Load Negative S/L zero < zero
Load Positive S/L zero > zero
Subtract Normal-

ized S/L zero < zero > zero
Subtract Unnorm-

alized S/L zero < zero > zero

Logical Operations
And zero not zero
Compare Logical equal low high
Edit zero < zero > zero
Edit and Mark zero < zero > zero
Exclusive Or zero not zero
Or zero not zero
Test Under Mask zero mixed one
Translate and Test zero incomplete complete

Status Switching
Test and Set zero one

Input/Output Operations

Halt 110
interruption CSW burst op not oper-

pending stored stopped ational

Start 110 successful
CSW

busy
not oper-

stored ational

Test Channel available interruption burst not oper-
pending mode ational

Test 110 available
CSW

busy
not oper-

stored ational

NOTES

available Unit and channel available
burst op stopped Burst operation stopped
busy Unit or channel busy
carry A carryout of the sign position occurs
complete Last result byte nonzero
CSW stored Chanel status word stored
equal Operands compare equal
F Fullword
> zero Result is greater than zero
H Halfword
halted Data transmission stopped. Unit in halt-reset

high
incomplete
L
< zero
low
mixed
not operational
not zero
one
overflow
S
zero

mode
First operand compares high
Nonzero result byte; not last
Long precision
Result is less than zero
First operand compares low
Selected bits are both zero and one
Unit or channel not operational
Result is not all zero
Selected bits are one
Result overflows
Short precision
Result or selected bits are zero

Branching 65

NOTE: The condition code also may be changed by
LOAD PSW, SET PROGRAM MASK, and DIAGNOSE and by an
interruption.

Branch and Link

78 11 12 15

o 78 1112 1516 1920 31

The rightmost 32 bits of the PSW, including the up­
dated instruction address, are stored as link informa­
tion in the general register specified by R1 • Subse­
quently, the instruction address is replaced by the
branch address.

The branch address is determined before the link
information is stored. The link information contains
the instruction length code, the condition code, and
the program mask bits, as well as the updated instruc­
tion address. The instruction-length code is 1 or 2,
depending on the format of the BRANCH AND LINK.

Condition Code: The code remains unchanged.
Program Interruptions: None.

Programming Note

The link information is stored without branching when
in the RR format the R2 field contains zero.

When BRANCH AND LINK is the subject instruction of
EXECUTE, the instruction-length code is 2.

Branch On Count

8CTR Ru Rg [RR]

I 06 Rl I R2 I
0 78 11 12 15

8CT R/ t D2(Xgt 82) [RX]

I 46 Rl X2 I B2 D2
0 78 11 12 1516 1920 31

The content of the general register specified by Rl is
algebraically reduced by one. When the result is zero,
normal instruction sequencing proceeds with the up­
dated instruction address. When the result is not zero,
the instruction address is replaced by the branch ad­
dress.

66

The branch address is determined prior to the count­
ing operation. Counting does not change the condition
code. The overflow occurring on transition from the
maximum negative number to the maximum positive
number is ignored. Otherwise, the subtraction pro­
ceeds as in fixed-point arithmetic, and all 32 bits of the
general register participate in the operation.

Condition Code: The code remains unchanged.
Program Interruptions: None.

Programming Notes

An initial count of one results in zero, and no branch­
ing takes place. An initial count of zero results in
minus one and causes branching to be executed.

Counting is performed without branching when the
H2 field in the RR format contains zero.

Branch On Index High

8XH R/t Rat D2(82) [RS]

86
78 11 12 1516 1920 31

An inQrement is added to the first operand, and the
sum is compared algebraically with a comparand. Sub­
sequently, the sum is placed in the first operand loca­
tion, regardless of whether the branch is taken. When
the sum is high, the instruction address is replaced by
the branch address. When the sum is low or equal, in­
struction sequencing proceeds with the updated in­
struction address.

The first operand and the increment are in the
registers specified by Hl and Ra. The comparand
register address is odd and is either one larger than Ra
or equal to R3 • The branch address is determined prior
to the addition and comparison.

Overflow caused by the addition is ignored and does
not affect the comparison. Otherwise, the addition and
comparison proceed as in fixed-point arithmetic. All
32 bits of the general registers participate in the opera­
tions, and negative quantities are expressed in two's­
complement notation. When the first operand and
comparand locations coincide, the original register
(wntents are used as the comparand.

Condition Code: The code remains unchanged.
Program Interruptions: None.

Programming Note

The name "branch on index high" indicates that one
of the major purposes of this instruction is the incre­
menting and testing of an index value. The increment
may be algebraic and of any magnitude.

Branch On Index Low or Equal

8XLE RII R31 Dz(8z} [RS]

I 87 I Rl R3 I B2 D2
0 78 11 12 1.516 1920 31

An increment is added to the first operand, and the
sum is compared algebraically with a comparand.
Subsequently, the sum is placed in the first operand

Branching 66.1

location, regardless of whether the branch is taken.
When the sum is low or equal, the instruction address
is replaced by the branch address. When the sum is
high, normal instruction sequencing proceeds with the
updated instruction address.

The first operand and the increment are in the reg­
isters specified by Rl and R3• The comparand register
address is odd and is either one larger than R3 or equal
to Ra. The branch address is determined prior to the
addition and comparison.

This instruction is similar to BRANCH ON INDEX HIGH,
except that the branch is successful when the sum is
low or equal compared to the comparand.

Condition Code: The code remains unchanged.
Program Interruptions: None.

Execute

EX Rlf D2(X2f 82) [RX]

I 44 Rl X
2 I B2 D2

0 7 8 11 12 1516 1920 31

The single instruction at the branch address is modi­
fied by the content of the general register specified by
Rb and the resulting subject instruction is executed.

Bits 8-15 of the instruction designated by the branch
address are OR' ed :with bits 24-31 of the register speci­
fied by R1, except when register 0 is specified, which
indicates that no modification takes place. The sub­
ject instruction may be 16, 32, or 48 bits in length.
The oR'ing does not change either the content of the
register specified by Rl or the instruction in storage
and is effective only for the interpretation of the in­
struction to be executed.

The execution and exception handling of the sub­
ject instruction are exactly as if the subject instruction
were obtained in normal sequential operation, except
for instruction address and instruction-length record­
ing.

The instruction address ot the psw is increased by
the length of EXECUTE. This updated address and the
length code (2) of EXECUTE are stored in the psw in
the event of a branch-and-link subject instruction or
in the event of an interruption.

When the subject instruction is a successful branch­
ing instruction, the updated instruction address of the
psw is replaced by the branch address of the subject
instruction. When the subject instruction in turn is an
EXECUTE, an execute exception occurs and results in a
program -interruption. The effective address of EXE­
CUTE must be even; if not, a specification exception will
cause a program interruption.

Condition Code: The code may be set by the sub­
ject instruction.

Program Interruptions:
Execute
Protection (fetch violation)
Addressing
Specification

Programming Notes

The oR'ing of eight bits from the general register with
the designated instruction permits indirect length, in­
dex, mask, immediate data, and arithmetic-register
specifica tion.

If the subject instruction is a successful branch, the
length code still stands at 2.

An addressing or specification exception may be
caused by EXECUTE or by the subject instruction.

Execute Exceptions
Exceptional operand designations and a subject-in­
struction operation code specifying EXECUTE cause a
program interruption. When the interruption occurs,
the current PSW is stored as an old PSW, and a new
psw is obtained. The interruption code in the old psw
identifies the cause. Exceptions that cause a program
interruption in the use of EXECUTE are:

Execute: An EXECUTE instruction has as its subject
instruction another EXECUTE.

Protection: An EXECUTE specifies a subject instruc­
tion halfword in a fetch-protected area.

Addressing: The branch address of EXECUTE desig­
nates an instruction-halfword location outside the
available storage for the particular installation.

Specification: The branch address of EXECUTE is odd.
These four exceptions occur only for EXECUTE. The

instruction is suppressed. Therefore, the condition
code and data in registers and storage remain un­
changed.

Exceptions arising for the subject instruction of EXE­
CUTE are the same as would have arisen had the sub­
ject instruction been in the normal instruction stream.
However, the instruction address stored in the old
psw is the address of the instruction following EXECUTE.
Similarly, the instruction-length code in the old psw
is the instruction-length code (2) of EXECUTE.

The address restrictions do not apply to the com­
ponents from which an address is generated - the
content of the Dl field and the content of the register
specified by B1.

Programming Note

An unavailable or odd branch address of a successful
branch is detected during the execution of the next
instruction and not as part of the branch.

Branching 67

Status Switching

A set of operations is provided to switch the status of
the CPU, of storage, and of communication between
systems.

The over-all CPU status is determined by several
program-state alternatives, each of which can be
changed independently to its opposite and most of
which are indicated by a bit in the program status
word (psw). The CPU status is further defined by the
instruction address, the condition code, the instruction­
length code, the storage-protection key, and the inter­
ruption code. These all occupy fields in the psw.

Protection of main storage is achieved by matching
a key in storage with a protection key in the psw or
in a channel. The protection status of storage may be
changed by introducing new storage keys, using SET

STORAGE KEY. The storage keys may be inspected by
using INSERT STORAGE KEY.

Facilities are provided whereby a system formed by
CPU, storage, and I/O can communicate with other
systems. The instruction READ DIRECT makes signals
available to the CPU; WRITE DIRECT provides signals to
other systems.

All status-switching instructions, other than those of
the protection feature or direct control feature, are
provided in the standard instruction set.

Program States
The four types of program-state alternatives, which
determine the over-all CPU status, are named Problem/
Supervisor, Wait/Running, Masked/Interruptible, and
Stopped/Operating. These states differ in the way they
affect the CPU functions and in the way their status is
indicated and switched. The masked states have sev­
eral alternatives; all other states have only one alter­
native.

All program states are independent of each other in
their function, indication, and status switching. Status
switching does not affect the contents of the arith­
metic registers or the execution of I/O operations but
may affect the timer operation.

Problem State

The choice between supervisor and problem state de­
termines whether the full set of instructions is valid.
The names of these states reflect their normal use.

In the problem state all I/O, protection, and direct­
control instructions are invalid, as well as LOAD PSW,

68

SET SYSTEM MASK, and DIAGNOSE. These are called privi­
leged instructions. A privileged instruction encoun­
tered in the problem state qonstitutes a privileged-op­
eration exception and causes a program interruption.
In the supervisor state all instructions are valid.

When bit 15 of the psw is zero, the CPU is in the
supervisor state. When bit 15 is one, the CPU is in the
problem state. The supervisor state is not indicated on
the operator sections of the system control panel.

The CPU is switched between problem and super­
visor state by changing bit 15 of the psw. This bit can
be changed only by introducing a new psw. Thus
status switching may be performed by WAD PSW, using
a new psw with the desired value for bit 15. Since
LOAD PSW is a privileged instruction, the CPU must be
in the supervisor state prior to the switch. A new psw
is also introduced when the CPU is interrupted. The
SUPERVISOR CALL causes an interruption and thus may
change the CPU state. Similarly, initial program load­
ing introduces a new psw and with it a new CPU state.
The new psw may introduce the problem or supervisor
state regardless of the preceding state. No explicit op­
erator control is provided for changing the supervisor
state.

Timer updating is not affected by the choice be­
tween supervisor and problem state.

Programming Note

To allow return from an interruption-handling routine
to a preceding program by a LOAD psw, the psw for
the interruption routine should specify the supervisor
state.

Wait State

In the wait state no instructions are processed, and
storage is not addressed repeatedly for this purpose,
whereas in the running state, instruction fetching and
execution proceed in the normal manner.

When bit 14 of the psw is one, the CPU is waiting.
When bit 14 is zero, the CPU is in the running state.
The wait state is indicated on the operator control
section of the system control panel by the wait light.

The CPU is switched between wait and running state
by changing bit 14 of the psw. This bit can be changed
only by introducing an entire new PSW, as is the case
with the problem-state bit. Thus, SWitching from the
running state may be achieved by the privileged in­
struction LOAD psw, by an interruption such as for

SUPERVISOR CALL, or by initial program loading. Switch­
ing from the wait state may be achieved by an I/O or
external interruption or, again, by initial program
loading. The new psw may introduce the wait or run­
ning state regardless of the 'preceding state. No ex­
plicit operator control is provided for changing the
wait state.

Timer updating is not affected by the choice be­
tween running and wait state.

Programming Note

To leave the wait state without manual intervention,
the CPU should remain interruptible for some active
I/O or external interruption source.

Masked States

The CPU may be masked or interruptible for all I/O, ex­
ternal, and machine-check interruptions and for some
program interruptions. When the CPU is interruptible
for a class of interruptions, these interruptions are
accepted. When the CPU is masked, the system inter­
ruptions remain pending, while the program and ma­
chine-check interruptions are ignored.

The system mask bits (psw bits 0-7), the program
mask bits (psw bits 36-39), and the machine-check
mask bit (psw bit 13) indicate as a group the masked
state of the CPU. When a mask bit is one, the CPU is
interruptible for the corresponding interruptions.
When the mask bit is zero, these interruptions are
masked off. The system mask bits indicate the masked
state of the CPU for multiplexor and selector channels
and the external signals. The program mask bits indi­
cate the masked state for four of the 15 types of pro­
gram exceptions. The machine-check mask bit per­
tains to all machine checks. Program interruptions not
maskable, as well as the supervisor-call interruption,
are always taken. The masked states are not indicated
on the operator sections of the system control panel.

Most mask bits do not affect the execution of CPU

operations. The only exception is the significance mask
bit, which determines the manner in which a floating­
point operation is completed when a significance ex­
ception occurs.

The interruptible state of the CPU is switched by
changing the mask bits in the psw. The program mask
may be changed separately by SET PROGRAM MASK, and
the system mask may be changed separately by the
privileged instruction SET SYSTEM MASK. The machine­
check mask bit can be changed only by introducing an
entire new psw, as is the case with the problem-state
and wait-state bits. Thus, a change in the entire
masked status may be achieved by the privileged in­
struction LOAD psw, by an interruption such as for sup-

ERVISOR CALL, or by initial program loading. The new
psw may introduce a new masked state regardless of
the preceding state. No explicit operator control is
provided for changing the masked state.

Timer updating is not affected by the choice be­
tween masked or interruptible states.

Programming Note

To prevent an interruption-handling routine from be­
ing interrupted before necessary housekeeping steps
are performed, the new psw for that interruption
should mask the CPU for further interruptions of the
kind that caused the interruption.

Stopped State

When the CPU is in the stopped state, instructions and
interruptions are not executed. In the operating state,
the CPU executes instructions (if not waiting) and in­
terruptions (if not masked off).

The stopped state is indicated on the operator con­
trol section of the system control panel by the manual
light. The stopped state is not identified by a bit in
the psw.

A change in the stopped or operating state can be
effected only by manual intervention or by machine
malfunction. No instructions or interruptions can stop
or start the CPU. The CPU is commanded to stop when
the stop key on the operator intervention section of
the system control panel is pressed, when an address
comparison indicates equality, and when the rate
switch is set to INSTRUCTION STEP. In addition, the CPU

is placed in the stopped state after power is turned on
or following a system reset, except during initial pro­
gram loading. The CPU is placed in the operating state
when the start key on the operator intervention panel
is pressed. The CPU is also placed in the operating
state when initial program loading is commenced.

The transition from operating to stopped state oc­
curs at the end of instruction' execution and prior to
starting the next instruction execution. When the CPU

is in the wait state, the transition takes place immedi­
ately. All interruptions pending and not masked off
are taken while the CPU is still in the operating state.
They cause an old psw to be storyd and a new psw to
be fetched before entering the stopped state. When
the CPU is in the stopped state, interruptions are not
takeri and remain pending.

The timer is not updated in the stopped state.

Programming Notes

Except for timing considerations and response to
equipment errors, execution of a program is not af­
fected by stopping the CPU.

Status Switching 69

When because of machine malfunction the CPU is
unable to end an instruction, the stop key is not effect­
ive, and initial program loading or system reset should
be used.

Input/output operations continue to completion
while the CPU is in the problem, wait, masked, or
stopped state. However, no new I/O operations can be
initiated while the CPU is stopped, waiting, or in the
problem state. Also, the interruption caused by I/O

completion remains pending when masked off or when
the CPU is in the stopped state.

Protection
Protection is provided to protect the contents of cer­
tain areas of main storage from destruction (or mis­
use) caused by erroneous storing (or storing and
fetching) of information during the execution of a
program. Locations may be protected against store vio­
lations or against store and fetch violations but never
against fetch violations alone. This protection is
achieved by identifying blocks of storage with a key
and comparing this key with a protection key sup­
plied with the data to be stored. The detection of a
mismatch causes the access to be suppressed, and a
protection exception is recognized.

Area Identification

For protection purposes, main storage is divided into
blocks of 2,048 bytes, each block having an address
that is a multiple of 2,048.

Protection Action

A key is associated with each block of storage. The
key consists of five bit positions and may be used to
establish the right of access. When protection only
against destruction is provided, the low-order bit is
ignored. When both store and fetch protection is pro­
vided, the low-order bit of the five-bit key in storage
designates whether the block is protected against
fetch-type references. A zero in the low-order bit po­
sition indicates that only store-type references are
monitored; a one indicates that protection applies to
both fetching and storing. The same key setting may
be used in many blocks.

When protection applies to a storage reference, the
key in storage is compared with the protection key.
Access to storage is permitted only when the key in
storage matches the protection key in the psw or in
the channel. The keys are said to match when the four
high-order bits of the key in storage are equal to the
protection key or when the protection key is zero. The
protection key of the current psw is used as the com-

70

parand when the operation is specified by an instruc­
tion. When the reference is specified by a channel
operation, the protection key supplied to the channel
by the channel address word is used as the comparand.

The key in storage is not part of addressable stor­
age. The key is changed by SET STORAGE KEY and is
inspected by INSERT STORAGE KEY. The protection key
of the CPU occupies bits 8-11 of the psw. The protec­
tion key for I/O operations is specified in bit positions
0-3 of the channel address word and is recorded in
bits 0-3 of the channel status word stored as a result
of the I/O operation.

The protection system is always active. It is inde­
pendent of the problem, supervisor, or masked state
of the CPU and of the type of instruction or I/O com­
mand being executed.

When an instruction causes a protection mismatch,
the protected main-storage location remains un­
changed.

In general, a store violation by the CPU program
causes the instruction specifying this location to be
suppressed when possible, that is, to he omitted en­
tirely. The operation is terminated only when a pro­
tection exception is recognized after execution of the
instruction has progressed to the point that suppres­
sion is precluded. Fetch violations cause the operation
to be terminated.

Protection mismatch due to an I/O operation is in­
dicated in the channel status word stored as a result
of the operation.

Protection is optional on some models. The fetch­
protection feature requires the presence of the store­
protection feature.

Programming Note

When protection is not installed, the protection key in
the psw and the protection key of the channels must
be zero; otherwise, a program interruption or program­
check I/O termination occurs.

When the fetch-protection feature is not installed,
bit 28 of the register specified by the Rl field of SET

STORAGE KEY is ignored, and during execution of IN­

SERT STORAGE KEY, bit 28 of the register is set to zero.

locations Protected

All main-storage locations where information is stored
or fetched in the course of an operation are subject
to protection. A location not actually used does not
cause protection action.

Locations whose addresses are generated by the
CPU for updating or interruption purposes, such as the
timer, channel status word, or psw addresses, are not
protected. However, when the program specifies these
locations, they are subject to protection.

Program Status Word
The psw contains all information not contained in
storage or registers but required for proper program
execution. By storing the PSW, the program can pre­
serve the detailed status of the CPU for subsequent in­
spection. By loading a new psw or part of a PSW, the
state of the CPU may be changed.

In certain circumstances all of the psw is stored or
loaded; in others, only part of it. The entire psw is
stored, and a new psw is introduced when the CPU is
interrupted. The rightmost 32 bits are stored in
BRANCH AND LINK. The LOAD PSW introduces a new
PSW; SET PROGRAM mask introduces a new condition
code and program-mask field in the psw; SET SYSTEM

MASK introduces a new system-mask field.
The psw has the following format:

Program Status Word

System Mask Interruption Code
31

Instruction Address

63

The following is a summary of the purposes of the
psw fields:

System Mask: Bits 0-7 of the psw are associated with
I/O channels and external signals as specified in the
following table. When a mask bit is one, the source
can interrupt the CPU. When a mask bit is zero, the
corresponding source can not interrupt the CPU, and
interruptions remain pending.

SYSTEM

MASK BIT INTERRUPTION SOURCE

o Channel 0
I Channell
2 Channel 2
3 Channel 3
4 Channel 4
5 Channel 5
6 Channel 6
7 Timer
7 Interrupt key
7 External signal

Protection Key: Bits 8-11 of the psw form the CPU

protection key. The key is matched with a storage key
whenever a result is stored or whenever information
is fetched from a location that is protected against
fetching. When protection is not implemented, bits
8-11 must be zero when loaded; otherwise, a specifica­
tion exception is recognized when an attempt is made
to execute the instruction designated by the psw. The
protection ~ey is stored unchanged.

ASCII(A): When bit 12 of the psw is one, the codes
preferred for the USASCII-8 code are generated for
decimal results. When psw bit 12 is zero, the codes
preferred for the extended binary-coded-decimal in­
terchange code are generated.

The following instructions cause either the sign or
zone code to be generated in accordance with the
setting of psw bit 12:

Add Decimal
Subtract Decimal
Zero and Add
Muliply Decimal
Divide Decimal
Unpack
Convert to Decimal
Edit
Edit and Mark

(sign code)
(sign code)
(sign code)
(sign code)
(sign code)
(zone code only)
(sign code)
(zone code)
(zone code)

Machine-Check Mask (M): When bit 13 of the psw
is one, detection of a machine-check condition causes
a machine-check interruption, generation of the ma­
chine-cheek-out signal and logging of diagnostic in­
formation. When bit 13 of the psw is zero, the CPU

is disabled for machine-check interruptions, the asso­
ciated signal and any diagnostic procedures do not
take place, and the machine-check condition remains
pending.

Wait State (W): When bit 14 of the psw is one, the
CPU is in the wait state. When psw bit 14 is zero, the
CPU is in the running state.

Problem State (P): When bit 15 of the psw is one,
the CPU is in the problem state. When psw bit 15 is
zero, the CPU is in the supervisor state. .

Interruption Code: Bits 16-31 of the psw identify
the cause of an interruption. Use of the code for all
five interruption types is shown in a table appearing
in the "Interruptions" section.

Instruction Length Code (ILC): The code in PSW

bits 32 and 33 indicates the length, in halfwords, of the
last-interpreted instruction when a program or super­
visor-call interruption occurs. The code is unpredict­
able for I/O, external, or machine-check interruptions.
Encoding of these bits is summarized in a table ap­
pearing in the "Interruptions" sections.

Condition Code (CC): Bits 34 and 35 of the psw are
the two bits of the condition code. The condition
codes for all instructions are summarized in a table
appearing in the "Branching" section.

Program Mask: Bits 36-39 of the psw are the four
program mask bits. Each bit is associated with a pro­
gram exception, as specified in the following table.
When the mask bit is one, the exception results in an
interruption. When the mask bit is zero, no interrup­
tion occurs. The significance mask bit also determines
the manner in which floating-point addition and sub­
traction are completed.

PROGRAM

MASK BIT

36
37
38
39

PROGRAM EXCEPTION

Fixed-point overflow
Decimal overflow
Exponent underflow
Significance

Status Switching 71

Instruction Address: Bits 40-63 of the psw are the in­
struction address. This address specifies the leftmost
eight-bit byte position of the next instruction. Bit 63
must be zero when loaded; otherwise, a specification
exception is recognized when an attempt is made to
execute the instruction designated by the psw.

Programming Note

The new psw is not checked for exceptions when the
new psw becomes current. These checks are made
when the next instruction is executed.

Multisystem Operation
Various facilities are provided to permit communica­
tion between individual systems. Messages may be
transmitted by means of a shared I/O device, a chan­
nel-to-channel adapter, or a shared storage unit. Sig­
naling may be accomplished when the direct control
feature is installed by WRITE DmECT and READ DIRECT

and by the signal-in lines of the external interruption.
These facilities are augmented by the ability to re­

locate direct addressed locations, to signal the ma­
chine malfunction of one system to another, and to
initiate system operation from another system.

Direct Address Relocation

Addresses 0-4095 can be generated without a base
address or index. This property is important when the
psw and general register contents must be preserved
and restored during program switching. These ad­
dresses further include all addresses generated by the
CPU for fixed locations, such as old psw, new psw,
channel address word, channel status word, and timer.

This set of addresses can be relocated by means of a
main prefix to permit more than one CPU to use one
uniquely addressed storage. Furthermore, an alternate
prefix is provided to permit a change in relocation in
case storage malfunction occurs or reconfiguration be­
comes otherwise desirable.

A prefix is used whenever an address has the high­
order 12 bits all-zero. The use of the prefix is inde­
pendent of the manner in which the address is gener­
ated and does not apply to the components, such as the
base or index registers, from which the address is
generated. The use of the prefix applies both to ad­
dresses obtained from the program (cpu or I/O) and
to fixed addresses generated by the CPU or channel
for updating or interruption purposes.

Both the main prefix and alternate prefix occupy 12
bit positions. One or the other replaces the 12 high­
order bit positions of the address when these are
found to contain zero.

72

The choice of main or alternate prefix is determined
by the prefix trigger. This trigger is set during initial
program loading (IPL) and remains unchanged until
the next initial program loading occurs. Manual IPL

sets the prefix trigger to the state of the prefix-select
switch on the operator control section of the system
control panel. External start sets the prefix trigger to
the state indicated by the signal line used. The state
of the prefix is indicated by the alternate-prefix light
on the operator intervention section of the system con­
trol panel.

The prefixes can be changed by hand within 5 min­
utes from one prewired encoding to another. The low­
order four bits of a prefix always have even parity,
and the total number of one-bits in a prefix cannot
exceed seven.

Malfunction Indication

A machine check out-signal occurs whenever a ma­
chine check is recognized and the machine-check mask
bit is one. The signal has 0.5-microsecond to 1.0-micro­
second duration and is identical in electronic charac­
teristics to the signals on the signal-out lines of the
direct control feature.

The machine check-out signal is given during ma­
chine-check handling and has a high probability of
being issued in the presence of machine malfunction.

System Initialization

A main external-start line and an alternate external­
start line respond to 0.5-microsecond to 1.0-micro­
second pulses. Either line, when pulsed, sets the pre­
fix trigger to the state indicated by its name and sub­
sequently starts CPU operation. (Refer to "Initial Pro­
gram Loading.")

The definition of the signal to which these lines re­
spond is identical in electronic characteristic to the
definition for the signal-in lines of the external inter­
ruption.

Instruction Format
Status-switching instructions use the following two
formats:

RR Format

I Op Code Rl R2 I
o 78 1112 15

SI Format

I Op Code
o 78 1516 1920 31

In the RR format, the Rl field specifies a general reg­
ister, except for SUPERVISOR CALL. The R2 field speci­
fies a general register in SET STORAGE KEY and INSERT

STORAGE KEY. The Rl and R2 fields in SUPERVISOR CALL

contain an identification code. In SET PROGRAM MASK

the R2 field is ignored.
In the SI format the· eight-bit immediate field (12)

of the instruction contains an identification code. The
12 field is ignored in LOAD PSW, SET SYSTEM MASK, and
TEST AND SET. The content of the general register
specified by Bl is added to the content of the Dl field
to form an address designating the location of an
operand in storage. Only one operand location is re­
quired in status-switching operations.

A zero in the Bl field indicates the absence of the
corresponding address component.

NOTE: In the detailed descriptions of the individual
instructions, the mnemonic and the symbolic operand
designation for the IBM System/360 assembly lan­
guage are shown with each instruction. For LOAD

psw, for example, LPSW is the mnemonic and Dl (Bl)
the operand designation.

Instructions·
The status-switching instructions and their mnemonics,
formats, and operation codes follow. The table also
indicates the feature to which an instruction belongs
and the exceptions in instruction and operand desig­
nation that cause a program interruption.

NAME MNEMONIC

Load PSW LPSW
Set Program Mask SPM
Set·System Mask SSM
Supervisor Call SVG
Set Storage Key SSK
Insert Storage Key ISK
Write Direct WRD
Read Direct RDD
Diagnose
Test and Set TS

Addressing exception
Condition code is set

TYPE

SI
RR
SI
RR
RR Z
RR Z
SI Y
SI Y
SI
SI C

NOTES

A
C
L
M
P
S

New condition code loaded
Privileged-operation exception
Protection exception
Specification exception

Y
Z

Direct control feature
Protection feature

Programming Note

EXCEPTIONS CODE

L M,P,A,S 82
L 04

M,P,A 80
OA

M, A,S 08
M, A,S 09
M,P,A 84
M,P,A 85
M,P,A,S 83
P,A 93

The program status is also switched by interruptions,
initial program loading, and manual control.

Load PSW

LPSW DdSd [51]

I 82 ~ 61 D1 I
~O-----------------7L~~~~~~15~176--~1~92~O-------------~ 31

The double word at the location designated by the
operand address replaces the psw.

The operand address must have its three low-order
bits zero to designate a double word; otherwise, a
specification exception results in a program interrup­
tion.

The double word which is loaded becomes the psw
for the next sequence of instructions. Bits 8-11 become
the new protection key. Bits 40-63 of the double word
become the new instruction address. The psw is not
checked for program interruptions during the load­
psw operation. These checks occur as part of the exe­
cution of the next instructions.

The interruption code in bit positions 16-31 of the
new psw is not retained as the psw is loaded. '\Vhen
the psw is subsequently stored because of an interrup­
tion, these bit positions contain a new code. Similarly,
bits 32 and 33 of the psw are not retained upon load­
ing. They will contain the instruction-length code for
the last-interpreted instruction when the psw is stored
during a branch-and-link operation or during a pro­
gram or supervisor-call interruption.

Condition Code: The code is set according to bits
34 and 35 of the new psw loaded.

Program Interruptions:
Privileged operation
Protection (fetch violation)
Addressing
Specification

Programming Note

The CPU enters the problem state when LOAD psw loads
a double word with a one in bit position 15 and sim­
ilarly enters the wait state if bit position 14 is one.
The LOAD PSW is the only instruction available for
entering the problem state or the wait state.

Set Program Mask

SPM RI [RR]

04
78 1112 15

Bits 2-7 of the general register specified by the Rl field
replace the condition code and the program mask bits
of the current psw.

Status Switching 73

Bits 0, 1, and 8-31 of the register specified by the RI
field are ignored. The contents of the register specified
by the RI field remain unchanged.

The instruction permits setting of the condition code
and the mask bits in either the problem or supervisor
state.

Condition Code: The code is set according to bits
2 and 3 of the register specified by RI.

Program Interruptions: None.

Programming Note

Bits 2-7 of the general register may have been loaded
from the psw by BRANCH AND LINK.

Set System Mask

SSM DdSzJ [SI]

I 80 ~ B1 I D1 I
0 78 1516 1920 31

The byte at the location designated by the operand
address replaces the system mask bits of the current
psw.

I

Condition Code: The code remains unchanged.
Program Interruptions:

Privileged operation
Protection (fetch violation)
Addressing

Supervisor Call

SVC [RR]

OA
7 8 15

The instruction causes a supervisor-call interruption,
with the I field of the instruction providing the inter­
ruption code.

The contents of bit positions 8-15 of the instruction
are placed in bit positions 24-31 of the old psw which
is stored in the course of the interruption. Bit positions
16-23 of the old psw are made zero. The old psw is
stored at location 32, and a new psw is obtained from
location 96. The instruction is valid in both problem
and supervisor state.

Condition Code: The code remains unchanged in
the old psw.

Program Interruptions: None.

Set Storage Key

SSK R/t R2 [RR]

08 R1 I R2 I
0 78 11 12 15

74

The key of the storage block addressed by the register
designated by R2 is set according to the key in the
register designated by RI.

The storage block of 2,048 bytes, located on a mul­
tiple of the block length, is addressed by bits 8-20 of
the register designated by the R2 field. Bits 0-7 and
21-27 of this register are ignored. Bits 28-31 of the
register must be zero; otherwise, a specification ex­
ception causes a program interruption.

The five-bit key is obtained from bits 24-28 of the
register designated by the Rl field. Bits 0-23 and 29-31
of this register are ignored. When fetch protection is
not installed, bit 28 of the register specified by the Rl
field is ignored.

Condition Code: The code remains unchanged.
Program Interruptions:

Operation (if protection feature is not installed)
Privileged operation
Addressing
Specification

Insert Storage Key

ISK R" R:~ [RR]

I 09 I R1 I R2 I
0 78 11 12 15

The key of the storage block addressed by the reg­
ister designated byR2 is inserted in the register desig­
nated by RI.

The storage block of 2,048 bytes, located on a mul­
tiple of the block length, is addressed by bits 8-20 of
the register designated by the R2 field. Bits 0-7 and
21-27 of this register are ignored. Bits 28-31 of the
register must be zero; otherwise, a specification ex­
ception causes a program interruption. The five-bit
key is inserted in bits 24-28 of the register specified
hy the Rl field. Bits 0-23 of this register remain un­
changed, and bits 29-31 are set to zero. When fetch
protection is not installed, bit 28 of the register speci­
fied by the Rl field is set to zero.

Condition Code: The code remains unchanged.
Program Interruptions:

Operation (if protection feature is not installed)
Privileged operation
Addressing
Specification

Test and Set

93 ~Bl
7 8 1516 1920 31

The leftmost bit (bit position 0) of the byte located at
the first operand address is used to set the condition
code, and the entire addressed byte is set to all ones.

The byte in storage is set to all ones as it is fetched
for the testing of bit position O. No other access to
this location is permitted between the moment of
fetching and the moment of storing all ones.

The operation is terminated on any protection vio­
lation. The condition-code setting is unpredictable
when a protection violation occurs.

Resulting Condition Code:
o Leftmost bit of byte specified is zero
1 Leftmost bit of byte specified is one
2 ---
3 ---

Program Interruptions:
Protection (store or fetch violation)
Addressing

Programming Note

TEST AND SET can be used for controlled sharing of a
common storage area by more than one program. To
accomplish this, bit position 0 of a byte must be
designated as the control bit. The desired interlock
can be achieved by establishing a program convention
in which a zero in the bit position indicates that the
common area is available but a one means that the
area is being used. Each using program then must
examine this byte by means of TEST AND SET before
making access to the common area. If the test sets the
condition code to zero, the area is available for use;
if it sets the condition code to one, the area cannot be
used. Because TEST AND SET permits no access to the
test byte between the moment of fetching (for testing)
and the moment of storing all ones (setting), the pos­
sibility is eliminated of a second program's testing the
byte before the first program is able to reset it.

Write Direct

WRD DdS,), 12 [Sl]

I 84 12 Bl I Dl
0 78 1516 1920 31

The byte at the location deSignated by the operand
address is made available as a set of direct-out static
signals. Eight instruction bits are made available as
signal-out timing signals.

The. eight data bits of the byte fetched from storage
are presented on a set of eight direct-out lines as
static signals. These signals remain until the "next
WRITE DIRECT is executed. No parity is presented with
the eight data bits.

Instruction bits 8-15, the 12 field, are made available
simultaneously on a set of eight signal-out lines as 0.5-

microsecond to 1.0-microsecond timing signals. On a
ninth line (write out) a 0.5-microsecond to 1.0-micro­
second timing signal is made available concurrently
with these timing signals. The eight signal-out Hnes
are also used in READ DIRECT. No parity is made availa­
ble with the eight instruction bits.

Condition Code: The code remains unchanged.
Program Interruptions:

Operation (if direct control feature is not installed)
Privileged operation
Protection (fetch violation)
Addressing

Programming Note

The timing signals and the write-out signal may be
used to alert the equipment to which the data are
sent. When data are sent to another CPU, the external
signal interruption may be used to alert that CPU.

Read Direct

ROD DdSj),12 [SI]

85
78 1516 1920 31

Eight instruction bits are made available as signal-out
timing signals. A direct-in data byte is accepted from
an external device in the absence of a hold signal and
is placed in the location designated by the operand
address.

Instruction bits 8-15, the 12 field, are made available
on a set of eight signal-out lines as 0.5-microsecond to
1.0-microsecond timing signals. These signal-out lines
are also used in WRITE DIRECT. On a ninth line (Read
Out) a 0.5-microsecond to 1.0-microsecond timing
signal is made available coincident with these timing
signals. The read-out line is distinct from the write-out
line in WRITE DIRECT. No parity is made available with
the eight instruction bits.

Eight data bits are accepted from a set of eight
direct-in lines when the hold signal on the hold-in
line is absent. The hold signal is sampled after the
read-out signal has been completed and should be
absent for at least 0.5-microsecond. No parity is ac­
cepted with data signals, but a parity bit is generated
as the data are placed in storage. When the hold sig­
nal is not removed, the CPU does not complete the in­
struction. Excessive duration of this instruction may
result in incomplete updating of the timer.

Condition Code: The code remains unchanged.
Program Interruptions:

Operation (if direct control feature is not installed)
Privileged operation
Protection (store violation)
Addressing

Status Switching 75

Programming Note

The direct-out lines of one CPU may be connected to
the direct-in lines of another CPU, providing cpu-to-cpu
static signaling. Further, the write-out signal of the
sending CPU may serve as the hold signal for the re­
ceiving cPu, temporarily inhibiting a READ DIRECT when
the signals are in transition.

Equipment connected to the hold-in line should be
so constructed that the hold signal is removed when
READ DIRECT is performed. Absence of the hold signal
should correspond to absence of current in such a
fashion that the CPU can proceed when power is re­
moved from the source of the hold signal.

Status Switching 75.1

Diagnose

51

83
78 1516 1920 31

The CPU performs built-in diagnostic functions.
The purpose of the 12 field and the operand address

may be defined in greater detail for a particular CPU

and its appropriate diagnostic procedures. Similarly,
the number of low-order address bits which must be
zero is further specified for a particular CPU. When the
address does not have the required number of low­
order zeros, a specification exception causes a program
interruption. Whether protection applies to DIAGNOSE

depends on the model.
The purpose of the diagnostic functions is verifica­

tion of proper functioning of the CPU equipment and
locating faulty components.

The DIAGNOSE is completed either by taking the next
sequential instruction or by obtaining a new psw from
location 112. The diagnostic procedure may affect the
problem, supervisor, and interruptible status of the
CPU, the condition code, and the contents of storage,
registers, and timer, as well as the progress of I/O

operations.
Some diagnostic functions tum on the test light on

the operator control section of the system control
panel.

Since the instruction is not intended for problem­
program or supervisor-program use, DIAGNOSE has no
mnemonic.

Condition Code: The code is unpredictable.
Program Interruptions:

Privileged operation
Protection (store or fetch violation)
S pecifica tion
Addressing

Status-Switching Exceptions
Exceptional instructions, operand designations, or data
cause a program interruption. When the interruption
occurs, the current psw is stored as an old psw, and a
new psw is obtained. The interruption code- inserted
in the old psw identifies the cause of the interruption.
The following exception conditions cause a program
interruption in status-switching operations.

Operation: The direct control feature is not installed,
and the instruction is READ DIRECT OR WRITE DIRECT; or,
the protection feature is not installed and the instruc­
tion is SET STORAGE KEY or INSERT STORAGE KEY.

Privileged Operation: A LOAD PSW, SET SYSTEM MASK,

76

SET STORAGE KEY, INSERT STORAGE KEY, WRITE DIRECT,

READ DIRECT, or DIAGNOSE is encountered while the CPU

is in the problem state.
Protection: The key of an operand in storage does

not match the protection key in the psw. The instruc­
tion is suppressed on a store violation, except for READ

DIRECT and TEST AND SET, which are terminated. The
operation is terminated on a fetch violation.

Addressing: An address designates a location out­
side the available storage for the installation. The op­
eration is terminated, except for DIAGNOSE, which is
suppressed.

Specification: The operand address of a LOAD PSW

does not have all three low-order bits zero; the operand
address of DIAGNOSE does not have as many low-order
zero bits as required for the particular CPU; the
block address specified by SET STORAGE KEY or INSERT

STORAGE KEY does not have the four low-order bits all­
zero; or the protection feature is not installed and a
psw with a nonzero protection key is introduced.

When an instruction is suppressed, storage and ex­
ternal signals remain unchanged, and the psw is not
changed by information from storage. Although stor­
age remains unchanged, READ DIRECT may have made
a timing signal available.

When an interruption is taken, the instruction ad­
dress stored as part of the old psw has been updated
by the number of halfwords indicated by the instruc­
tion-length code in the old psw.

Operand addresses are tested only when used to ad­
dress storage. The address restrictions do not apply
to the components from which an address is geI!erated:
the content of the Dl field and the content of the
register specified by B1 •

Programming Notes

When a program interruption occurs, the current psw
is stored in the old psw location. The instruction ad­
dress stored as part of this old psw is thus the updated
instruction address, having been updated by the num­
ber of halfwords indicated in the instruction-length
code of the same psw. The interruption code in this
old psw identifies the cause of the interruption and
aids in the programmed interpretation of the old psw.

If the new psw for a program interruption has an
unacceptable instruction address, another program in­
terruption occurs. Since this second program interrup­
tion introduces the same unacceptable instruction ad­
dress, a string of program interruptions is established
which may be broken only by an external or I/O in­
terruption. If these interruptions also have an unac­
ceptable new PSW, new supervisor information must
be introduced by initial program loading or by man­
ual intervention.

The interruption system permits the CPU to change its
state as a result of conditions external to the system,
in I/O units, or in the CPU itself. The five classes of
these conditions are input/output, program, super­
visor-calI, external, and machine-check interruptions.

Interruption Action
An interruption consists of storing the current psw as
an old psw and fetching a new psw.

Processing resumes in the state indicated by the
new psw. The new psw is not checked for program­
ming errors when it becomes the current psw. These
checks are made when the next instruction is exe­
cuted. The old psw contains the address of the in­
struction that would have been executed next if an
interruption had not occurred and the instruction­
length code of the last-interpreted instruction.

Interruptions are taken only when the CPU is inter­
ruptible for the interruption source. Input/output and
external interruptions may be masked by the system
mask, four of the 15 program interruptions may be
masked by the program mask, and the machine-check
interruptions may be masked by the machine-check
mask.

An interruption always takes place after one instruc­
tion interpretation is finished and before a new in­
struction interpretation is started. However, the oc­
currence of an interruption may affect the execution
of the current instruction. To permit proper program­
med action following an interruption, the cause of the
interruption is identified and provision is made to
locate the last-interpreted instruction.

When the CPU is commanded to stop, the current
instruction is finished, and all interruptions that are
pending or become pending before the end of the
instruction, and which are not masked, are taken.

The details of instruction execution, source identifi­
cation, and location determination are explained in
later sections and are summarized in the following
table.

Programming Note

A pending interruption will be taken even if the CPU

becomes interruptible during only one instruction.

Interruptions

SOURCE

lDENTIFICA TION

INTERRUPTION CODE MASK ILC OPERATION

psw BITS 16-31 BITS SET EXECUTION

Input/Output (old PSW 56, new PSW 120, priority 4)
Channel 0 00000000 aaaaaaaa 0 x completed
Channell 00000001 aaaaaaaa 1 x completed
Chaimel2 00000010 aaaaaaaa 2 x completed
Channel 3 00000011 aaaaaaaa 3 x completed
Channel 4 00000100 aaaaaaaa 4 x completed
Channel 5 00000101 aaaaaaaa 5 x completed
Channel 6 00000110 aaaaaaaa 6 x completed

Program (old PSW 40, new PSW 104, priority 2)

Operation 00000000 00000001 1,2,3 suppressed
Privileged 00000000 00000010 1,2 suppressed

operation
Execute 00000000 00000011 2 suppressed
Protection 0000000000000100 0,2,3 suppressed

or
terminated

Addressing 00000000 00000101 0,1,2,3 suppressed
or
terminated

Specification 0000000000000110 1,2,3 suppressed
Data 00000000 00000 III 2,3 terminated
Fixed-point 00000000 00001000 36 1,2 completed

overflow
Fixed-point divide 00000000 00001001 1,2 suppressed

or
completed

Decimal overflow 00000000 00001010 37 3 completed
Decimal divide 00000000 00001011 3 suppressed
Exponent overflow 00000000 00001100 1,2 terminated
Exponent 00000000 00001101 38 1,2 completed

underflow
Significance 00000000 00001110 39 1,2 completed
Floating-point 00000000 00001111 1,2 suppressed

divide

Supervisor Call (old PSW 32, new PSW 96, priority 2)

Instruction bits 00000000 r r r r r r r r 1 completed

External (old PSW 24, new PSW 88, priority 3)

Timer 00000000 Innnnnnn 7 x completed
Interrupt key 00000000 nlnnnnnn 7 x completed
External signal 2 00000000 nnlnnnnn 7 x completed
External signal 3 00000000 nnnlnnnn 7 x completed
External signal 4 00000000 nnnnlnnn 7 x completed
External signal 5 00000000 nnnnninn 7 x completed
External signal 6 00000000 nnnnnnin 7 x completed
External signal 7 00000000 nnnnnnn 1 7 x completed

Machine Check (old PSW 48, new PSW 112, priority 1)

Machine cccccccc cccccccc 13 x terminated
malfunction

NOTES

a
c
n
r
x

Device address bits
Bits of model-dependent code
Other external-interruption conditions
Bits of R I and R2 field of SUPERVISOR CALL

U npredicta ble

Interruptions 77

Instruction Execution
An interruption occurs when the preceding instruction
is finished and' the next instruction is not yet started.
The manner in which the preceding instruction is
finished may be influenced by the cause of the inter­
ruption. The instruction is said to have been com­
pleted, terminated, or suppressed.

In the case of instruction completion, results are
stored and the condition code is set as for normal in­
struction operation, although the result may be influ­
enced by the exception which has occurred.

In the case of instruction termination, all, part, or
none of the result may be stored. Therefore, the result
data are unpredictable. The setting of the condition
code~ if called for, may also be unpredictable. In
general, the results should not be used for further
computation.

In the case of instruction suppression, the execution
proceeds as if no operation were specified. Results
are not stored, and the condition code is not changed.

Source Identification

The five classes of interruptions are distinguished by
the storage locations in which the old psw is stored
and from which the new psw is fetched. The detailed
causes are further distinguished by the interruption
code of the old PSW, except for the machine-check
interruption. The bits of the interruption code are
numbered 16-31, according to their position in the psw.

For I/O intelTuptions, additional information is pro­
vided by the contents of the channel status word
stored as part of the I/O interruption.

For machine-check interruptions, additional infor­
mation is provided by the diagnostic procedure, which
is part of the interruption.

The following table lists the permanently allocated
main-storage locations.

ADDRESS LENGTH PURPOSE

o 0000 0000 Double word Initial program loading PSW
8 0000 1000 Double word Initial program loading CCW1

16 00010000 Double word Initial program loading CCW2
24 00011000 Double word External old PSW
32 00100000 Double word Supervisor call old PSW
40 00101000 Double word Program old PSW
48 0011 0000 Double word Machine old PSW
56 00111000 Double word Input/output old PSW
64 0100 0000 Double word Channel status word
72 0100 1000 Word Channel address word
76 01001100 Word Unused
80 01010000 Word Timer
84 01010100 Word Unused
88 0101 1000 Double word External new PSW
96 01100000 Double word Supervisor call new PSW

104 0110 1000 Double word Program new PSW
112 01110000 Double word Machine-check new PSW
120 01111000 Double word Input/output new PSW
128 1000 0000 Diagnostic scan-out area 4)

"'The size of the diagnostic scan-out area depends on the par­
ticular model and 110 channels.

78

Location Determination

For some interruptions, it is desirable to locate the in­
struction being interpreted when the interruption oc­
curred. Since the instruction address in the old psw
designates the instruction to be executed next, it is
necessary to know the length of the preceding instruc­
tion. This length is recorded in bit positions 32 and
33 of the psw as the instruction-length code.

The instruction-length code is predictable only for
program and supervisor-call interruptions. For I/O

and external interruptions, the interruption is not
caused by the last-interpreted instruction, and the
code is not predictable for these instructions. For
machine-check interruptions, the setting of the code
may be affected by the malfunction and, therefore, is
unpredicta ble.

For the supervisor-call interruption, the instruction­
length code is 1, indicating the halfword length of
SUPERVISOR CALL. For program interruptions, the codes
1, 2, and 3 indicate the instruction length in halfwords.
The code 0 is reserved for program interruptions
where the length of the instruction is not available be­
cause of certain overlapping conditions in instruction
fetching. In code-O cases, the instruction address in
the old psw does not represent the next instruction
address. Instruction-length code 0 can occur for a
program interruption only when the interruption is
caused by a protected or an unavailable data address.
The following table shows the states of the instruction­
length code.

INSTRUC-

PSWBITS TION INSTRUCTION
ILC 32-33 BITS 0-1 LENGTH FORMAT

0 00 Not available
1 01 00 One halfword RR
2 10 01 Two halfwords RX
2 10 10 Two halfwords RS or SI
3 11 11 Three halfwords SS

Programming Notes

When a program interruption is due to an incorrect
branch address, the location determined from the in­
struction address and instruction-length code is the
branch address and not the location of the branch
instruction.

When an interruption occurs while the CPU is in the
wait state, the instruction-length code is always unpre­
dictable.

The instruction EXECUTE represents upon interrup­
tion an instruction-length code which does not reflect
the length of the instruction executed, but is 2, the
length of EXECUTE.

Input/Output Interruption
The I/O interruption provides a means by which the
CPU responds to signals from I/O devices.

A request for an I/O interruption may occur at any
time, and more than one request may occur at the
same time. The requests are preserved in the I/O

section until accepted by the CPU. Priority is estab­
lished among requests so that only one interruption
request is processed at a time.

An I/O interruption can occur only after execution
of the current instruction is completed and while the
CPU is interruptible for the channel presenting the
request. Channels are masked by system mask bits 0-6.
Interruptions masked off remain pending.

The I/O interruption causes the old psw to be stored
at location 56 and causes the channel status word as­
sociated with the interruption to be stored at location
64. Subsequently, a new psw is loaded from location
120.

The interruption code in the old psw identifies the
channel and device causing thv llterruption. The in­
struction-length code is unpredictable.

Program Interruption
Exceptions resulting from improper specification or
use of instructions and data cause a program interrup­
tion.

The current instruction is completed, terminated, or
suppressed. Only one program interruption occurs for
a given instruction and is identified in the old psw.
The occurrence of a program interruption does not
preclude the simultaneous occurrence of other pro­
gram-interruption causes. Which of several causes is
identified may vary from one occasion to the next and
from one model to another.

A program interruption can occur only when the
corresponding mask bit, if any, is one. When the mask
bit is zero, the interruption is ignored. Program inter­
ruptions do not remain pending. Program mask bits
36-39 permit masking of four of the 15 interruption
causes.

The program interruption causes the old psw to be
stored at location 40 and a new psw to be fetched
from location 104.

The cause of the interruption is identified by the
four low-order bit positions in the interruption code,
psw bits 28-31. The remainder of the interruption
code, bits 16-27 of the PSW, are made zero. The in­
struction-length code indicates the length of the pre­
ceding instruction in halfwords. For a few cases,
the instruction length is not available. These cases are
indicated by code O.

If the new psw for a program interruption has an
unacceptable instruction address, another program in­
terruption occurs. Since this second program interrup­
tion introduces the same unacceptable instruction ad­
dress, a string of program interruptions is established

which may be broken only by an external or I/O in­
terruption. If these interruptions also have an unac­
ceptable new PSW, new supervisor information must
be introduced by initial program loading or by man­
ual intervention.

A description of the individual program exceptions
follows. The application of these rules to each class of
instructions is further described in the applicable sec­
tions. Some of the exceptions listed may also occur in
operations executed by I/O channels. In that event, the
exception is indicated in the channel status word
stored with the I/O interruption (as explained under
"Input/Output Operations").

Operation Exception

When an operation code is not assigned or the as­
signed operation is not available on the particular
model, an operation exception is recognized. The op­
eration is suppressed.

The instruction-length code is 1,2, or 3.

Privileged-Operation Exception

When a privileged instruction is encountered in the
problem state, a privileged-operation exception is rec­
ognized. The operation is suppressed.

The instruction-length code is 1 or 2.

Execute Exception

When the subject instruction of EXECUTE is another
EXECUTE, an execute exception is recognized. The
operation is suppressed.

The instruction-length code is 2.

Protection Exception

When the key of an instruction halfword or an oper­
and in storage does not match the protection key in
the PSW, a protection exception is recognized.

The operation is suppressed on a store violation, ex­
cept in the case of STORE MULTIPLE, READ DIRECT, TEST

AND SET, and variable-length operations, which are
terminated.

Except for EXECUTE, which is suppressed, the opera­
tion is terminated on a fetch violation.

The instruction-length code is 0, 2, or 3.

Addressing Exception

When an address specifies any part of data, an in­
struction, or a control word outside the available
storage for the particular installation, an addressing
exception is recognized.

In most cases, the operation is terminated for an in­
valid data address. Data in storage remain unchanged,
except when designated by valid addresses. In a few
cases, an invalid data address causes the instruction
to be suppressed - AND (NI), EXCLUSIVE OR (XI), OR

Interruptions 79

(01), MOVE (MVI), CONVERT TO DECIMAL, DIAGNOSE,

EXECUTE, and certain store operations (ST, STC, STH,

STD, and STE). The operation is suppressed for an in­
valid instruction address.

The instruction-length code normally is 1, 2 or 3;
but may be ° in the case of a data address.

Spesification Exception

A specification exception is recognized when:
1. A data, instruction, or control-word address does

not specify an integral boundary for the unit of in­
formation.

2. The Rl field of an instruction specifies an odd
register address for a pair of general registers that
contains a 64-bit operand.

3. A floating-point register address other than 0, 2,
4, or 6 is specified.

4. The multiplier or divisor in decimal arithmetic
exceeds 15 digits and sign.

5. The first operand field is shorter than or equal to
the second operand field in decimal multiplication or
division.

6. The block address specified in SET STORAGE KEY or
INSERT STORAGE KEY has the four low-order bits not
all zero.

7. A psw with a nonzero protection key is encoun­
tered when protection is not installed.

The operation is suppressed. The instruction-length
code is 1, 2, or 3.

Data Exception

A data exception is recognized when:
1. The sign or digit codes of operands in decimal

arithmetic or editing operations or in CONVERT TO

BINARY are incorrect.
2. Fields in decimal arithmetic overlap incorrectly.
3. The decimal multiplicand has too many high­

order significant digits.
The operation is terminated. The instruction-length

code is 2 or 3.

Fixed-Point-Overflow Exception

\Vhen a high-order carry occurs or high-order signifi­
cant bits are lost in fixed-point add, subtract, shift, or
sign-control operations, a fixed-poi nt-overflow excep­
tion is recognized.

The operation is completed by ignoring the infor­
mation placed outside the register. The interruption
may be masked by psw bit 36.

The instruction-length code is 1 or 2.

Fixed-Point-Divide Exception

A fixed-poi nt-divide exception is recognized when a
quotient exceeds the register size in fixed-point divi­
sion, including division by zero, or the result of CON­

VERT TO BINARY exceeds 31 bits.

80

Division is suppressed. Conversion is completed by
ignoring the information placed outside the register.

The instruction-length code is 1 or 2.

Decimal-Overflow Exception

When the destination field is too small to contain the
result field in a decimal operation, a decimal-overflow
exception is recognized.

The operation is completed by ignoring the overflow
information. The interruption may be masked by psw
bit 37.

The instruction-length code is 3.

Decimal-Divide Exception

When a quotient exceeds the specified data field
size, a decimal-divide exception is recognized. The
operation is suppressed.

The instruction-length code is 3.

Exponent-Overflow Exception

\Vhcn the result characteristic in floating-point addi­
tion, subtraction, multiplication, or division exceeds
127 and the result fraction is not zero, an exponent­
overflow exception is recognized. The operation is
completed. The fraction is normalized, and the sign
and fraction of the result remain correct. The result
characteristic is made 128 smaller than the correct
characteristic.

The instruction-length code is 1 or 2.

Exponent-U nderflow Exception
When the result characteristic in floating-point addi­
tion, subtraction, multiplication, halving, or division
is less than zero and the result fraction is not zero, an
exponent-underflow exception is recognized. The oper­
ation is completed.

The setting of the exponent-underflow mask (psw
bit 38) affects the results of the operation. When the
mask bit is zero, the sign, characteristic, and fraction
are set to zero, making the result a true zero. When
the mask bit is one, the fraction is normalized, the
characteristic is made 128 larger than the correct
characteristic, and the sign and fraction remain correct.

The instruction-length code is 1 or 2.

Significance Exception
When the result of a floating-point addition or sub­
traction has an all-zero fraction, a significance excep­
tion is recognized.

The operation is completed. The interruption may
bc masked by psw bit 39. The manner in which the
operation is completed is determined by the mask bit.

The instruction-length code is 1 or 2.

Floating-Point-Divide Exception

When division by a floating-point number with zero
fraction is attempted, a floating-point divide exception
is recognized. The operation is suppressed.

The instruction-length code is 1 or 2.

Supervisor-Call Interruption
The supervisor-call interruption occurs as a result of
the execution of SUPERVISOR CALL.

The supervisor-call interruption causes the old psw

Interruptions 80.1

to be stored at location 32 and a new psw to be
fetched from location 96.

The contents of bit positions 8-15 of the SUPERVISOR

CALL become bits 24-31 in the interruption code of the
old psw. psw bit positions 16-23 in the old psw are
made zero. The instruction-length code is 1, indicating
the halfword length of SUPERVISOR CALL.

Programming Notes

The name "supervisor call" indicates that one of the
major purposes of the interruption is the switching
from problem to supervisor state. This major purpose
does not preclude the use of this interruption for other
types of status switching.

The interruption code may be used to convey a
message from the calling program to the supervisor.

When SUPERVISOR CALL is performed as the subject
instruction of EXECUTE, the instruction-length code is 2.

External Interruption
The external interruption provides a means by which
the CPU responds to signals from the timer, from the
interrupt key, and from external units.

A request for an external interruption may occur at
any time, and requests from different sources may
occur at the same time. Requests are preserved until
honored by the CPU. All pending requests are pre­
sented simultaneously when an external interruption
occurs. Each request is presented only once. When
several requests from one source are made before the
interruption is taken, only one interruption occurs.

An external interruption can occur only when sys­
tem mask bit 7 is one and after execution of the cur­
rent instruction is completed. The interruption causes
the old psw to be stored at location 24 and a new
psw to be fetched from location 88.

The source of the interruption is identified in bit
positions 24-31 of the old psw. The remainder of the
interruption code, psw bits 16-23, is made zero. The
instruction-length code is unpredictable for external
interruptions.

Timer

A timer value changing from positive to negative
causes an external interruption with psw bit 24 set to
one.

The timer occupies a 32-bit word at main-storage
location 80 with a format as shown in the following
illustration. The count is treated as a signed integer by
following the rules for fixed-pOint arithmetic. The neg­
ative overflow, occurring as the timer value changes
from a large negative number to a large positive num­
ber, is ignored. The interruption is initiated as the
count proceeds from a positive number, including

zero, to a negative number. ThefulI cycle of the timer
is 15.5 hours.

lsi 1111 II
21 222324 31

In the basic form, the contents of the timer are re­
duced by one in bit position 21 and in bit position 23
every 1/60 of a second, or the timer contents are re­
duced by one in bit position 21 and in bit position 22
every 1/50 of a second. The choice is determined by
the available line frequency. In either case, the timer
operates as if bit position 23 were being decremented
by one every 1/300 of a second.

The line-frequency timer causes the word at storage
location 80 to be updated whenever access to storage
permits. The updating occurs only between the execu­
tion of instructions. An updated timer value is normal­
ly available at the end of each instruction execution,
and, if no other activity in the system interferes with
timer updating, any reference to the word at location
80 yields a timer value that, within the resolution of
the timer, is not off by more than the execution time of
the instruction. When the execution of an instruction
or other activity in the system causes storage updating
to be delayed by more than one period, the content
of the word at location 80 subsequently may be re­
duced by more than one unit in a single updating
cycle, depending on the length of the delay and the
extent of timer backup storage. Timer updating may
be omitted when I/O data transmission approaches the
limit of storage capability, when a channel sharing CPU

equipment and operating in burst mode causes CPU

activity to be locked out, or when the instruction time
for READ DIRECT is excessive. The program is not alerted
when omission of updating causes the real-time count
to be lost.

The value of the line-frequency timer is accessible
to any reference to word location 80, provided the lo­
cation is not protected for the type of reference. The
32-bit timer value may be changed at any time by
storing a new value in location 80. Fetching of location
80 provides the current contents of bit positions 0-31.
Bit positions 24-31 of the line-frequency timer do not
participate in the updating, and their contents are not
changed by the timer.

Higher resolution of timing may be obtained in some
models by decrementing the content of bit position 31
approximately every 13 microseconds. The exact fre­
quency of decrementing bit position 31 is such as to
count at 300 cycles per second in bit position 23.

To avoid excessive interference in main storage
when a timer with higher resolution is provided, all or
part of the eight-bit high-resolution portion of the
timer may be kept in internal timer backup storage.

Interruptions 81

Location 80 may not be updated for each time in­
crement, but, storage accesses permitting, updating
occurs at least as frequently as with the line-frequency
timer. As in the case of the line-frequency timer, when
activity in the system has caused updating of location
80 to be delayed, two or more contiguous updating
cycles may occur, or, upon excessive activity, updating
may be omitted, thus causing the real-time count to be
lost.

When a CPU equipped with a high-resolution timer
addresses the timer as a source of an operand, the in­
struction refers to both the main storage and backup
storage portions of the timer, provided the location is
not protected for the type of reference. All 32 bits of
the timer may be changed by storing a new value at
location 80, while on fetching an operand, location 80
yields a timer value that, within the resolution of the
timer, is not off by more than the execution time of the
instruction. When the content of the timer is fetched
by the channel or is used as a source of an instruction,
the content of the low-order byte is unpredictable.
Similarly, when the channel stores data at location 83,
the effect of the operation on the eight low-order bits
of the timer value is unpredictable.

When location 80 is protected, any attempt to
change the value of the timer causes a program inter­
ruption with protection exception. When protection
exception is indicated, the timer value in main storage,
as well as in the CPU internal backup storage, remains
unchanged.

In a system having shared main storage, a CPU has
access only to the main-storage part of another cpu's
timer, provided the location is not protected for the
type of reference. On fetching of the timer of another
CPU, the content of the low-order byte is unpredictable
when a high-resolution timer has been installed, where­
as storing in the low-order byte of the timer of another
CPU may have an unpredictable effect on the eight low­
order bits of the timer value.

The timer value remains unchanged during initial
program loading when the CPU is in the stopped state,
or when the rate switch on the operator intervention
panel is set to INSTRUCTION STEP.

The timer is an optional feature on some models.

Programming Notes

The timer in association with a program can serve both
as a real-time clock and as an interval timer.

The value of the timer may be changed without
.losing the real-time count by loading the new value in
byte locations 84-87 and then shifting bytes 80-87 into
byte locations 76-83 by means of the instruction MOVE,

thus placing in a single operation the new timer value
into word location 80 and making the old value availa­
ble at location 76. If two instructions are used to inter-

82

rogate and then replace the value of the timer, the
program may lose a time increment if an updating
cycle occurs between the execution of the two instruc­
tions.

When the value of the timer is to be recorded on an
I/O device, the program should first store the timer
value in a temporary storage location to which the I/O

operation should subsequently refer. When the channel
fetches the timer value directly from location 80, the
value as recorded on the r/o device is unpredictable.
The channel may fetch the information from storage a
byte or a halfword at a time, and the CPU may update
the contents of location 80 between channel references.

Interrupt Key

Pressing the interrupt key on the operator control
section of the system control panel causes an external
interruption with psw bit 25 set to one.

The key is active while power is on.

External Signal

An external signal causes an external interruption,
with the corresponding bit in the interruption code
turned on.

A total of six signal-in lines may be connected to
the CPU for receiving external signals. The pattern
presented in psw bit positions 26-31 depends upon the
pattern received before the interruption is taken. Be­
cause of circuit skew, one or more of several simul­
taneously generated external signals may arrive at the
CPU too late to be included in the external interruption
resulting from the earliest signal. These late signals
may cause another interruption to be taken. An inter­
ruption will clear all signals concurrently if the CPU

was disabled for external interruptions at the time the
signals arrived.

The facility to accept external signals is part of the
direct control feature. It may also be available as a
separate feature.

Programming Note

The signal-in lines of one CPU may be connected to the
signal-out timing lines of the direct control feature of
another CPU, or the Signal-in lines may be connected
to the machine check-out lines of other cpu's. An inter­
connection of this kind allows one CPU to interrupt an­
other. Also, the direct-out lines of one CPU may be
connected to the direct-in lines of the other, and vice
versa .

Machine-Check Interruption
The machine-check interruption provides a means for
recovery from and fault location of machine malfunc­
tion.

When the machine-check mask bit is one, occur­
rence of a machine check terminates the current in­
struction, initiates an internal diagnostic procedure,
issues a signal on the machine check-out line, and sub­
sequcntly causes the machine-check interruption.

The old psw is stored at location 48 and, depending
on the model, the interruption code may identify the
typc of malfunction. The state of the CPU is scanned
out into the storage area, starting with location 128
and extending through as many words as the given
CPU requires. The new psw is fetched from location
112. Proper execution of these steps depends on the
nature of the machine check.

The machine check-out signal is provided as part of
the multisystem feature. The signal is a O.5-micro­
second to l.O-microsecond timing signal that follows
the I/O interface line-driving and terminating spccifi­
cations. The signal is designed so that it has a high
probability of being issued in the presence of machine
malfunction.

When the machine-check mask bit is zero, an at­
tempt is made to complete the current instruction
upon the occurrence of a machine check and to pro­
ceed with the next sequential instruction. No diagnos­
tic procedure, signal, or interruption occurs.

A change in the machine-check mask bit due to the
loading of a new psw results in a change in the treat­
ment of machine checks. Depending on the nature of
a machine check, the earlier treatment may still be in
force for several cycles.

Following emergency power turn-off and turn-on
or system reset, incorrect parity may exist in storage
or registers. Unless new information is loaded, a ma­
chine check may occur erroneously. Once storage and
registers are cleared, a machine check can be caused
only by machine malfunction and never by data or in­
structions.

Machine checks occurring in operations executed
by I/O channels either cause a machine-check inter­
ruption or are recorded in the channel status word for
that operation.

Priority of Interruptions
During execution of an instruction, several interrup­
tion-causing events may occur simultaneously. The
instruction may give rise to a program interruption, an
external interruption may occur, a machine check may
occur, and an I/O interruption request may be made.
Instead of the program interruption, a supervisor-call
interruption might occur; however, both cannot occur
since these two interruptions are mutually exclusive.
Simultaneous interruption requests are honored in a
predetermined order.

The machine-check interruption has highest priority.
When it occurs, the current operation is terminated.
Program and supervisor-call interruptions that would
have occurred as a result of the current instruction are
eliminated. Every reasonable attempt is made to limit
the side-effects of a machine check. Normally, I/O and
external interruptions, as well as the progress of the
I/O data transfer and the updating of the timer, re­
main unaffected.

When no machine check occurs, the program inter­
ruption or supervisor-call interruption is taken first, the
external interruption is taken next, and the I/O inter­
ruption is taken last. The action consists of storing the
old psw and fetching the new psw belonging to the
interruption first taken. This new psw is subsequently
stored without any instruction execution, and the next
interruption psw is fetched. This storing and fetching
continues until no more interruptions are to be serv­
iced. The external and I/O interruptions are taken only
if the immediately preceding psw indicates that the
CPU is interruptible for these causes.

Instruction execution is resumed using the last­
fetched psw. The order of executing interruption sub­
routines is therefore the reverse of the order in which
the psw's are fetched.

The interruption code of a new psw is not loaded
since a new interruption code is always stored. The
inst~uction-Iength code in a new psw is similarly ig­
nored since it is unpredictable for all interruptions
other than program or supervisor call. The protection
key of a new psw is stored unchanged. \Vhen the fea-·
turc is not installed, the protection key must be zero
when loaded.

If the new psw for the program interruption has an
unacceptable instruction address, another program in­
terruption occurs. Since this second program interrup­
tion introduces the same unacceptable instruction ad­
dress, a string of program interruptions is established.
This string may be broken by an external or I/O inter­
rnption. If these interruptions also have an unaccepta­
ble new psw, new supervisor information must be in­
troduced by initial program loading or by manual
intervention.

Programming Note

When interruption sources are not masked off, the
order of priority in handling the interruption sub­
routines is machine check, I/O, external, and program
or supervisor call. This order can be changed to some
extent by masking. The priority rule applies to inter­
ruption requests made simultaneously. An interruption
request made after some interruptions have already
been taken is honored according to the priority pre­
vailing at the moment of request.

Interruptions 83

Input / Output Operations

Transfer of information to and from main storage,
other than to or from the central processing unit or via
the direct control path, is referred to as input and out­
put operation. An input/output (I/O) operation in­
volves the use of an input/output device. Input/out­
put devices perform I/O operations under control of
control units, which are attached to the central proc­
essing unit (CPU) by means of channels.

This portion of the manual describes the pro­
grammed control of I/O devices by the channels and
by the CPU. Formats are defined for the various types
of I/O control information. The formats apply to all
I/O operations, and are independent of the type of I/O

device, its speed, or its mode of operation.
The formats described include provision for func­

tions unique to an I/O device, such as erase gap on a
magnetic tape unit. The way in which a device makes
use of the format is defined in the SRL publication for
the particular device.

NOTE: This part of the manual provides detailed in­
formation about the I/O system. A more general de­
scription appears in the Input and Output section of
the System Structure part of this manual.

Attachment of Input/Output Devices

Input / Output Devices

Input! output devices provide external storage and a
means of communication between data processing
systems or between a system and its environment.
Input/output devices include such equipment as card
read punches, magnetic tape units, direct-access-stor­
age devices (disks and drums), typewriter-keyboard
devices, printers, teleprocessing devices, and process
control equipment.

Most types of I/O devices, such as printers, card
equipment, or tape devices, deal directly with external
documents, and these devices are physically distin­
guishable and identifiable. Other types consist only of
electronic equipment and do not directly handle
physical recording media. The channel-to-channel
adapter, for example, provides a channel-to-channel
data transfer path, and the data never reach a physical
recording medium outside main storage. Similarly, the
IBM 2702 Transmission Control handles transmission of
information between the data processing system and a
remote station, and its input and output arc signals on
a transmission line. Furthermore, in this latter case, the

84

2702 may be time-shared for concurrent operation of
a number of remote stations, and the 2702 is distin­
guished as a particular I/O device only during the time
period associated with the operation on the corre­
sponding remote station.

Input/output devices ordinarily are attached to one
control unit and are accessible from one channel.
Switching equipment is available to make .some de­
vices accessible to two or more channels by switching
them between two or more control units. The time re­
quired for switching occurs during device selection
time and may be ignored.

Control Units

The control unit provides the logical capabilities nec­
essary to operate and control an I/O device, and
adapts the characteristics of each device to the stan­
dard form of control provided by the channel.

All communication between the control unit and
the channel takes place over the I/O interface. The
control unit accepts control signals from the channel,
controls the timing of data transfer over the I/O inter­
face, and provides indications concerning the status
of the device.

The I/O interface provides an information format
and a signal sequence common to all I/O devices. The
interface consists of a set of lines that can connect a
number of control units to the channel. Except for the
signal used to establish priority among control units,
all communications to and from the channel occur
over a common bus, and any signal provided by the
channel is available to all control units. At any. one
instant, however, only one control unit is logically
connected to the channel. .

The selection of a control unit for communication
with the channel is controlled by a signal from the
channel that passes serially through all control units
and permits, sequentially, each control unit to respond
to additional signals provided by the channel. A con­
trol unit remains logically connected on the interface
until it has transferred the information it needs or has,
or until the channel signals it to disconnect, whichever
occurs earlier.

The I/O device attached to the control unit may be
designed to perform only certain limited operations,
or it may perform many different operations. A typical
operation is moving the recording medium and record­
ing data. To accomplish these functions, the device
needs detailed signal sequences peculiar to the type

of device. The control unit decodes the commands
received from the channel, interprets them . for the
particular type of device, and provides the signal se­
quence required for execution of the operation.

A control unit may be housed separately or it may
be physically and logically integral with the I/O de­
vice. In the case of most electromechanical devices, a
well-defined interface exists between the device and
the control unit because of the difference in the type of
equipment the control unit and the device contain.
These electromechanical devices often are of a type
where only one device of a group attached to a control
unit is required to operate at a time (magnetic tape
units or disk access mechanisms, for example), and
the control unit is shared among a number of I/O de­
vices. On the other hand, in electronic I/O devices
such as the channel-to-channel adapter, the control
unit does not have an identity of its own.

From the user's point of view, most functions per­
formed by the control unit can be merged with those
performed by the I/O device. Therefore, this manual
normally does not make specific mention of the control
unit function; the execution of I/O operations is de­
scribed as if the I/O devices communicated directly
with the channel. Reference is made to the control
unit only when emphasizing a function performed by
it or when sharing of the control unit among a num­
ber of devices affects the execution of I/O operations.

Channels

The channel directs the flow of information between
I/O devices and main storage. It relieves the CPU of
the task of communicating directly with the devices
and permits data processing to proceed concurrently
with I/O operations.

The channel provides a standard interface for con­
necting different types of I/O devices to the cpu and
to main storage. It accepts control information from
the CPU in the format supplied by the program and
changes it into a sequence of signals acceptable to a
control unit. After the operation with the device has
been initiated, the CPU is released for other work and
the channel assembles or disassembles data and syn­
chronizes the transfer of data bytes over the interface
with main-storage cycles. To accomplish this, the chan­
nel maintains and updates an address and a count that
describe the destination or source of data in main
storage. Similarly, when an I/O device provides signals
that should be brought to the attention of the program,
the channel converts the signals to a format compatible
to that used in the CPU.

The channel contains all the common facilities for
the control of I/O operations. When these facilities are

provided in the form of separate autonomous equip­
ment designed specifically to control I/O devices, I/O

operations are completely overlapped with the activity
in the CPU. The only main-s·torage cycles required
during I/O operations in such channels are those need­
ed to transfer data and control information to or from
the final locations in main storage. These cycles do
not interfere with the CPU program, except when both
the CPU and the channel concurrently attempt to refer
to the same main storage.

Alternatively, the system may use to a greater or
lesser extent the facilities of the CPU for controlling I/O

devices. When the CPU and the channel share common
facilities, channel operations cause interference to the
CPU, varying in intensity from occasional delay of a
CPU cycle through a complete lockout of CPU activity.
The intensity depends on the extent of sharing and on
the I/O data rate. The sharing of the facilities, how­
ever, is accomplished automatically, and the program
is not affected by CPU delays, except for an increase in
execution time.

Modes of Operation

Data transfer between main storage and an I/O device
occurs in one of two modes: burst or multiplex.

In burst mode, the I/O device monopolizes the I/O

interface and stays logically connected to the channel
for the transfer of a burst of information. No other
device can communicate over the interface during the
time a burst is transferred. The burst can consist of a
few bytes, a whole block of data, or a sequence of
blocks with associated control and status information.

Some channels can tolerate an absence of data
transfer during a burst mode operation, such as occurs
when reading a long gap on tape, for not more than
approximately one-half minute. Equipment malfunc­
tion may be indicated when an absence of data trans­
fer exceeds this time.

In multiplex mode, the facilities in the channel may
be shared by a number of concurrently operating I/O

devices. The multiplex mode causes all I/O operations
to be split into short intervals of time during which
only a segment of information is transferred over the
interface. During an interval, only one device is logi­
cally connected to the channel. The intervals associ­
ated with the concurrent operation of multiple I/O de­
vices are sequenced in response to demands from the
devices. The channel controls are occupied with any
one operation only for the time required to transfer a
segment of information. The segment can consist of a
single byte of data, a few bytes of data, a status report
from the device, or a control sequence used for initia­
tion of a new operation.

Input/Output Operations ~

A short burst of data can be handled in either multi­
plex or burst mode. The distinction between a short
burst occurring in the multiplex mode and an opera­
tion in the burst mode is in the length of the bursts. A
channel that can operate in either mode determines its
mode of operation by «time-out." Whenever the burst
causes the device to be connected to the channel for
more than approximately 100 microseconds, the chan­
nel is considered to be operating in the burst mode.

Operation in burst and multiplex modes is differ­
entiated because of the way the channels respond to
I/O instructions. A channel operating a device in the
burst mode appears busy to new I/O instructions,
whereas a channel operating one or more devices in
the multiplex mode is available for initiating operation
of another device. If a channel that can operate in
either mode happens to be communicating witlLan I/O

device at the instant a new I/O instruction is issued,
action on the instruction is delayed by the channel
until the current mode of operation is established by
time-out. A new I/O operation is initiated only after
the channel has serviced all outstanding requests for
data transfer from devices previously placed in opera­
tion.

Types of Channels

A system can be equipped with two types of channels:
selector and multiplexor. Channels are classified ac­
cording to the modes of operation they can sustain. A
multiplexor channel can operate either in multiplex
mode or in burst mode, depending upon the device. A
selector channel operates only in burst mode.

The channel facilities required for sustaining a
single I/O operation are termed a subchannel. The
subchannel consists of the channel storage used for
recording the addresses, count, and any status and
control information associated with the I/O operation.
The mode in which a channel can operate depends
upon whether it has one or more subchannels.

The selector channel has one sub channel and always
forces the I/O device to transfer data in thc burst mode.
The burst extends over the whole block of data, or,
when command chaining is specified, over the whole
sequence of blocks. The selector channel cannot per­
form any multiplexing and therefore can be involved
in only one data transfer operation at a time. In the
meantime, other I/O devices attached to the channel
can be executing previously initiated operations that
do not involve communication with the channel, such
as rewinding tape to load point. When the selector
channel is not executing an operation or a chain of
operations and is not processing an interruption, it
monitors the attached devices for status information.

86

The multiplexor channel contains multiple subchan~
nels and can operate in either multiplex or burst mode.
In multiplex mode, one or more devices may operate
concurrently, each on a separate sub channel. In burst
mode, only one device on the channel may be trans­
ferring data. The mode of operation is determined by
the I/O device, and the mode can change at any time.
The data transfer associated with an operation can
occur partially in the multiplex mode and partially in
the burst mode. Ordinarily, devices with a high rate
of data transfer operate with the channel in burst
mode, and slower devices run in multiplex mode.
Some control units have a manual switch for setting
the mode of operation.

Multiplexor channels vary in the number of sub­
channels they contain. When the multiplexor channel
operates in multiplex mode, it can sustain concurrently
one I/O operation per subchannel, provided that the
total load on the channel does not exceed its capacity.
Each subchannel appears to the program as an inde­
pendent selector channel, except for those aspects of
communication that pertain to the physical channel
(c.g., individual subchannels on a multiplexor chan­
nel are not distinguished as such by the TEST CHANNEL

instruction or by the mask controlling I/O interruptions
from the channel). When the multiplexor channel is
not servicing an I/O device, it monitors its devices for
data and for interruption conditions.

When the multiplexor channel is transferring data
in burst mode, the subchannel associated with the
hurst operation monopolizes the data transfer facilities
of the channel. Other subchannels on the multiplexor
channcl cannot respond to requests from devices until
the hurst is completed.

Subchannels on the multiplexor channel may be
either nonshared or shared.

A suhchannel is referred to as nonshared if it is asso­
ciated and can be used only with a single I/O device.
A nonshared suhchannel is used with devices that do
not have any restrictions on the concurrency of data
transfer, such as the IBM 1442 Card Read Punch Model
N1 or the IBM 2250 Display Unit ModelL

A subchannel is referred to as shared if data transfer
to or from a set of devices implies the use of the same
subchannel. Only one device associated with a shared
subchannel may be involved in data transmission at a
time. Shared subchannels are used with devices, such
as magnetic tape units or disk access mechanisms,
that share a control unit. For such devices, the sharing
of the subchannel does not restrict the concurrency of
I/O operations since the control unit permits only one
device to be involved in a data-transfer operation at a

time. A subchannel is not necessarily shared, however,
even when the I/O devices share a control unit. For
example, each transmission line attached to the IBM

2702 Transmission Control is assigned a non shared
subchannel, although all of the transmission lines
share the common control unit.

System Operation

Input! output operations are initiated and controlled
by information with three types of formats: instruc­
tions, commands, and orders. Instructions are decoded
by the CPU and are part of the CPU program. Com­
mands are decoded and executed by the channels and
I/O devices, and initiate I/O operations, such as reading
and writing. One or more commands arranged for se­
quential execution form a channel program. Both in­
structions and commands are fetched from main
storage and are common to all types of I/O devices,
although the modifier bits in the command code may
specify device-dependent conditions for the execution
of a data-transfer operation at the device.

Functions peculiar to a device, such as rewinding
tape or positioning the access mechanism on a disk
drive, are specified by orders. Orders are decoded and
executed by I/O devices. The control information
specifying an order may appear in the modifier bits of
a control command code, may be transferred to the
device as data during a control or write operation, or
may be made available to the device by other means.

The CPU program initiates I/O operations with the
instruction START I/O. This instruction identifies the
channel and device and causes the channel to fetch
the channel address word (CAW) from a fixed location
in main storage. The CAW contains the protection key
and designates the location in main storage from
which the channel subsequently fetches the first chan­
nel command word (ccw). The ccw specifies the com­
mand to be executed and the storage area, if any, to
be used.

If the channel is not operating in burst mode and if
the subchannel associated with the addressed I/O de­
vice is not busy, the channel attempts to select the
device by sending the address of the device to all con­
trol units attached to the channel. A control unit that
recognizes the address connects itself logically to the
channel and responds to its selection by returning its
address. The channel subsequently sends the command
code part of the ccw over the interface, and the device
responds with a status byte indicating whether it can
execute the command.

At this time, the execution of START I/O is termi­
nated. The results of the attempt to initiate the execu­
tion of the command are indicated by setting the
condition code in the program status word (psw),

and, under certain conditions, by storing pertinent in­
formation in the channel status word (csw).

If the operation is initiated at the device and its
execution involves transfer of data, the subchannel
is set up to respond to service requests from the device
and assumes further control of the operation. In the
case of operations that do not require any data to be
transferred to or from the device, the device may
signal the end of the operation immediately on receipt
of the command code.

An I/O operation may involve transfer of data to one
storage area, designated by a single ccw, or to a num­
ber of noncontiguous storage areas. In the latter case,
a list of ccw's is used for execution of the I/O opera­
tion, each ccw designating a contiguous storage area,
and the ccw's are said to be coupled by data chaining.
Data chaining is specified by a flag in the ccw and
causes the channel to fetch another ccw upon the ex­
haustion or filling of the storage area designated by
the current ccw. The storage area designated by a ccw
fetched on data chaining pertains to the I/O operation
already in progress at the I/O device, and the I/O de­
vice is not notified when a new ccw is fetched. Pro­
vision is made in the ccw format for the programmer
to specify that, when the ccw is decoded, the channel
request an I/O interruption as soon as possible, thereby
notifying the CPU program that chaining has pro­
gressed to a particular ccw in the channel program.

Termination of the I/O operation normally is indi­
cated by two conditions: channel end and device end.
The channel-end condition indicates that the I/O de­
vice has received or provided all information associ­
ated with the operation and no longer needs channel
facilities. The device-end signal indicates that the
I/O device has terminated execution of the operation.
The device-end condition can occur concurrently with
the channel-end condition or later.

Operations that keep the control unit busy after re­
leasing channel facilities may, under certain conditions,
cause a third type of signal. This signal, called control
unit end, may occur only after channel end and indi­
cates that the control unit has become available for
initiation of another operation.

The conditions signaling the termination of an I/O

operation can be brought to the attention of the pro­
gram by I/O interruptions or, when the channel is
masked, by programmed interrogation of the I/O de­
vice. In either case, these conditions cause storing the
csw, which contains additional information concern­
ing the execution of the operation. At the time the
channel-end condition is generated, the channel identi­
fies to the program the last ccw used and provides its
residual byte count, thus indicating the extent of main
storage used. Both the channel and the device can

Input/Output Operations 87

provide indications of unusual conditions with chan­
nel end. The control-un it-end and device-end condi­
tions can be accompanied by error indications from
the device.

Facilities are provided for the program to initiate
execution of a chain of I/O operations with a single
START I/O. When the chaining Hags in the current ccw
specify command chaining and no unusual conditions
have been detected in the operation, the receipt of the
device-end signal causes the channel to fetch a new
ccw and to initiate a new command at the device. A
chained command is initiated by means of the same
sequence of signals over the I/O interface as the first
command specified by START I/O. The ending signals
occurring at the termination of an operation caused by
a ccw specifying command chaining are not made
available to the program when another operation is
initiated by the command chaining; the channel con­
tinues execution of the channel program. If, however,
an unusual condition has been detected, the ending
signals cause suppression of command chaining and
termination of the channel program.

Conditions that initiate I/O interruptions are asyn­
chronous to activity in the CPU, and more than one
condition can occur at the same time. The channel and
the CPU establish priority among the conditions so that
only one interruption request is processed at a time.
The conditions are preserved in the I/O devices and
subchannels until accepted by the CPU.

Execution of an I/O operation or chain of operations
thus involves up to four levels of participation:

1. Except for the effects caused by the integration
of CPU and channel equipment, the CPU is busy for the
duration of execution of START I/O, which lasts at most
until the addressed I/O device responds to the first
command.

2. The subchannel is busy with the execution from
the initiation of the operation at the I/O device until
the channel-end condition for the last operation of the
command chain is accepted by the CPU.

3. The control unit may remain busy after the sub­
channel has been released and may generate the con­
trol-unit-end condition when it becomes free.

4. The I/O device is busy from the initiation of the
first command until the device-end condition associ­
ated with the last operation is accepted or cleared by
the CPU.

A pending device-end condition causes the associ­
ated device to appear busy, but does not affect the
state of any other part of the system. A pending control
unit end blocks communications through the control
unit to any device attached to it, and a pending chan­
nel end normally blocks all communications through
the sub channel.

88

Compatibility of Operation

The organization of the I/O system provides for a uni­
form method of controlling I/O operations. The capa­
bility of a channel, however, depends on its use and on
the model to which it belongs. Channels are provided
with different data-transfer capabilities, and an I/O

device designed to transfer data only at a specific rate
(a magnetic tape unit or a disk storage, for example)
can operate only on a channel that can accommodate
at least this data rate.

The data rate a channel can accommodate depends
also on the way the I/O operation is programmed. The
channel can sustain its highest data rate when no data
chaining is specified. Data chaining reduces the maxi­
mum allowable rate, and the extent of the reduction
depends on the frequency at which new ccw's are
fetched and on the address resolution of the first byte
in the new main-storage area. Furthermore, since in
most instances the channel may share main storage
with the CPU and other channels, activity in the rest of
the system affects the accessibility of main storage and,
hence, the instantaneous load the channel can sustain.

In view of the dependence of channel capacity on
programming and on activity in the rest of the system,
an evaluation of the ability of a specific I/O configu­
ration to function concurrently must be based on a
consideration of both the data rate and the way the
I/O operations are programmed. Two systems employ­
ing identical complements of I/O devices may be able
to execute certain programs in common, but it is pos­
sible that other programs requiring, for example, data
chaining, may not run on one of the systems because
of the increased load caused by the data chaining.

Control of Input/Output Devices
The CPU controls I/O operations by means of four I/O

instructions: START I/O, TEST I/O, HALT I/O, and TEST

CHANNEL.

The instruction TEST CHANNEL addresses a channel;
it does not address an I/O device. The other three I/O

instructions address a channel and a device on that
channel.

Input I Output Device Addressing

An I/O device and the associated access path are desig­
nated by an I/O address. The I/O address is a 16-bit
binary number and consists of two parts: a channel
address in the eight high-order bit positions and a de­
vice address in the eight low-order bit positions.

The channel-address field provides for identifying
up to 256 channels, out of which only channels 0-6 may
be installed; channel-addresses 7 and up are con­
sidered invalid. Channel 0 is a multiplexor channel;

channels numbered 1-6 may be either multiplexor or
selector channels, as shown below. The number and
type of channels available, as well as their address
assignment, depend on the system model and the
particular installation.

ADDRESS

. Channel Device

0000 0000 XXXX XXXX
0000 0001 XXXX XXXX
0000 0010 XXXX XXXX
0000 0011 XXXX XXXX
0000 0100 XXXX XXXX
0000 0101 XXXX XXXX
0000 0110 XXXX XXXX
0000 0111 XXXX XXXX}

TO
1111 Illl XXXX XXXX

ASSIGNMENT

Devices on channel 0
Devices on channel I
Devices on channel 2
Devices on channel 3
Devices on channel 4
Devices on channel 5
Devices on channel 6

INVALID

The device address identifies the particular I/O de­
vice and control unit on the designated channel. The
address identifies, for example, a particular magnetic
tape drive, disk access mechanism, or transmission line.
Any number in the range 0-255 can be used as a device
address, providing facilities for addreSSing up to 256
devices per channel.

On the multiplexor channel, the device address
identifies the sub channel as well as the I/O device and
control unit. Addresses with a "zero" in the high-order
bit position of the device-address field pertain to sub­
channels that are not shared. Each nonshared subchan­
nel is identified by a unique device address. Addresses
with a "one" in the high-order bit position may desig­
nate either a shared or a non shared subchannel. Shared
subchannels are assigned sets of contiguous addresses,
the number of addresses within the set being a power
of two, and the first address within the set being a
multiple of the set size. When a multiplexor channel
has both shared and nonshared subchannels in the ad­
dress range 128-255 (high-order bit is one), the non­
shared subchannels are assigned lower addresses than
the shared subchannels. The number and the type of
subchannels available on a particular multiplexor chan­
nel and their address assignment depend on the sys­
tem model and the installation.

Devices that do not share a control unit with other
devices may be assigned any device address in the
range 0-255, provided the address is not recognized by
any other control unit. Logically, such devices are not
distinguishable from their control unit, and both are
identified by the same address.

Devices sharing a control unit (i.e., magnetic tape
drives or disk access mechanisms) are assigned ad­
dresses within sets of contiguous numbers. The size of
such a set is equal to the maximum number of devices
that can share the control unit, or 16, whichever is
smaller. Furthermore, such a set starts with an address
in which the number of low-order zeros is at least

equal to the number of bit positions required for speci­
fying the set size. The high-order bit positions of an
address within such a set identify the control unit, and
the low-order bit positions designate the device on the
control unit.

Control units designed to accommodate more than
16 devices (i.e., IBM 2702 Transmission Control) may
be assigned nonsequential sets of addresses, each set
consisting of 16, or the number required to bring the
total number of assigned addresses equal to the maxi­
mum number of devices attachable to the control unit,
whichever is smaller. The addreSSing facilities are
added in increments of a set so that the number of de­
vice addresses assigned to a control unit does not ex­
ceed the number of devices attached by more than 15.

The control unit does not respond to any address
outside its assigned set or sets. For example, if a con­
trol unit is designed to control devices having only
bits 0000-1001 in the low-order positions of the device
address, it does not recognize addresses containing
1010-1111 in these bit positions. On the other hand, a
control unit responds to all addresses in the assigned
set, regardless of whether the device associated with
the address is installed. For example, the IBM 2803
Tape Control with four tape units installed, and not
equipped with the 16-drive addressing feature re­
sponds to all of the eight addresses within the set as­
signed to it. If no control unit responds to an address,
the I/O device appears not operational. If a control
unit responds to an address for which no device is in­
stalled, the absent device appears in the not-ready
state.

Input/ output devices accessible through more than
one channel have a distinct address for each path of
communications. This address identifies the channel,
the subchannel, and the control unit. For sets of de­
.vices connected to two or more control units, the por­
tion of the address identifying the device on the con­
trol unit is fixed, and does not depend on the path of
communications.

Except for the rules described, the assignment of
channel and device addresses is arbitrary. The assign­
ment is made at the time of installation, and the ad­
dresses normally remain fixed thereafter.

States of the Input/Output System

The state of the I/O system identified by an I/O ad­
dress depends on the collective state of the channel,
subchannel, and I/O device. Each of these components
of the I/O system can have up to four states, as far as
the response to an I/O instruction is concerned. These
states are listed in the following table. The name of
the state is followed by its abbreviation and a brief
definition.

Input/Output Operations 89

CHANNEL

Available
Interruption pending

Working
Not operational

SUBCHANNEL

Available
Interruption pending

Working
Not operational

I/O DEVICE

Available
Interruption pending

ABBREV DEFINITION

A None of the following states
I Interruption immediately available

from channel
W Channel operating in burst mode
N Channel not operational

ABBREV DEFINITION

A N one of the following states
I Information for CSW available in

subchannel
W Subchannel executing an operation
N Subchannel not operational

ABBREV DEFINITION

A None of the following states
I Interruption condition pending in

device
Working W Device executing an operation
Not operational N Device not operational

A channel, subchannel, or I/O device that is avail­
able, that contains a pending interruption condition, or
that is working, is said to be operational. The states of
containing an interruption condition, working, or be­
ing not operational are collectively referred to as "not
available."

In the case of the multiplexor channel, the channel
and sub channel are easily distinguishable and, if the
channel is operational, any combination of channel and
subchannel states are possible. Since the selector chan­
nel can have only one subchannel, the channel and
subchannel are functionally coupled, and certain states
of the channel are related to those of the sub channel.
In particular, the working state can occur only concur­
rently in both the channel and sub channel and, when­
ever an interruption condition is pending in the sub­
channel, the channel also is in the same state. The
channel and subchannel, however, are not synony­
mous, and an interruption condition not associated
with data transfer, such as attention, does not affect
the state of the subchannel. Thus, the subchannel may
be available when the channel has an interruption·
condition pending. Consistent distinction between the
sub channel and channel permits the two types of chan­
nels, selector and multiplexor, to be covered uniformly
by a single description.

The device referred to in the preceding table in­
cludes both the device proper and its control unit. For
some types of devices, such as magnetic tape units, the
working and the interruption-pending states can be
caused by activity in the addressed device or control
unit. A shared control unit imposes its state on all de­
vices attached to the control unit. The states of the de­
vices are not related to those of the channel and sub­
channel.

When the response to an I/O instruction is deter­
mined on the basis of the states of the channel and
subchannel, the components further removed are not
interrogated. Thus, ten composite states are identified

90

as conditions for the ex~ution of the I/O instruction.
Each composite state is idenUfied in the following dis­
cussion by three alphabetic chuacters; the first char­
acter position identifies the state of the channel, the
second identifies the state of the sUbchannel, and the
third refers to the state of the device. Each character
position can contain A, I ,W, or N, denoting the state
of the component. The symbol x in place of a letter
indicates that the state of the corresponding compo­
nent is not significant for the execution of the in­
struction.

Available (AAA): The addressed channel, subchan­
nel, control unit, and I/O device are operational, are
not engaged in the execution of any previously initi­
ated operations, and do not contain any pending in­
terruption conditions.

Interruption Pending in Device (AAI) or Device
Working (AAW): The addressed channel and subchan­
nel are available. The addressed control unit or I/O de­
vice is executing a previously initiated operation or
contains a pending interruption conditon. These situa­
tions are possible:

1. The device is executing an operation after sig­
naling the channel-end condition, such as rewinding
tape or seeking on a disk file.

2. The control unit associated with the device is
executing an operation after signaling the channel­
end condition, such as backspacing file on a magnetic
tape unit.

3. The device or control unit is executing an opera­
tion on another subchannel or channel.

4. The device or control unit contains the device­
end, control-unit-end, or attention condition or, on
the selector channel, the channel-end condition as­
sociated with an operation terminated by HALT I/O.

Device Not Operational (AAN): The addressed
channel and sub channel are available. The addressed
I/O device is not operational. A device appears not
operational when no control unit recognizes the ad­
dress. This occurs when the control unit is not pro­
vided in the system, when power is off in the control
unit, or when the control unit has been logically
switched off the I/O interface. The not-operational
state is indicated also when the control unit is pro­
vided and is designed to attach the device, but the
device has not been installed and the address has not
been assigned to the control unit (for example, the
second set of lines on the IBM 2702 Transmission Con­
trol). See also "Input/Output Device Addressing."

If the addressed device is not installed or has been
logically removed from the control unit, but the associ­
ated control unit is operational and the address has
been assigned to the control unit (for example, access

mechanism 7 on the IBM 2841 Storage Control that has
only access mechanism 0-3 installed) the device is
said to be not-ready. When an instruction is addressed
to a device in the not-ready state, the control unit re­
sponds to the selection and indicates unit check when­
ever the not-ready st'ate precludes a successful execu­
tion of the operation. See "Unit Check."

Interruption Pending In Subchannel (AIX): The ad­
dressed channel is available. An interruption condition
is pending in the addressed subchannel because of the
termination of the portion of the operation involving
the use of channel facilities. The subchannel is in a
position to provide information for a complete csw.
The interruption condition can indicate termination of
an operation at the addressed I/O device or at another
device on the sub channel. The state of the addressed
device is not significant, except when TEST I/O is ad­
dressed to the device associated with the terminated
operation, in which case the csw contains status in­
formation provided by the device.

The state AIX does not occur on the selector channel.
On the selector channel, the existence of an interrup­
tion condition in the subchannel immediately causes
the channel to assign to this condition the highest
priority for I/O interruptions and, hence, leads to the
state I1X.

Sub channel Working (AWX): The addressed chan­
nel is available. The addressed subchmmel is executing
a previously initiated operation or chain of operations
in the multiplex mode and has not yet reached the
channel end for the last operation. The state of the ad­
dressed device is not significant, except when HALT I/O

is issued, in which case the csw contains status pro­
vided by the device.

The sub channel-working state does not occur on the
selector channel since all operations on the selector
channel are executed in the burst mode and cause the
channel to be in the working state(wwx).

Sub channel Not Operational (ANX): The addressed
channel is available. The addressed subchannel on the
multiplexor channel is not operational. A subchannel
is not operational when it is not provided in the sys­
tem. This state cannot occur on the selector channel.

Interruption Pending in Channel (IXX): The ad­
dressed channel is not working and has established
which device will cause the next I/O interruption from
this channel. The state wherc the channel contains a
pending interruption condition is distinguished only
by the instruction TEST CHANNEL. This instruction does
not cause the sub channel and I/O device to be interro­
gated. The other I/O instructions consider the chan­
nel available when it contains a pending interruption
condition. When the channel assigns priority for inter­
ruption among devices, the interruption condition is

preserved in the I/O device or subchannel. (See "Inter­
ruption Conditions.")

Channel Working (WXX): The addressed channel
is operating in the burst mode. In the case of the
multiplexor channel, a burst of bytes is currently
being handled. In the case of the selector channel, an
operation or a chain of operations is currently being
executed, and the channel end for the last operation
has not yet been reached. The states of the addressed
device and, in the case of the multiplexor channel,
of the sub channel are not Significant.

Channel Not Operational (NXX): The addressed
channel is not operational, or the channel address in
the instruction is invalid. A channel is not operational
when it is not provided in the system, when power is
off in the channel, or when it has been switched to the
test mode. The states of the addressed I/O device and
subchannel are not significant.

Resetting of the Input/Output System

Two types of resetting can occur in the I/O system.
The reset states overlap the hierarchy of states distin­
guished for the purpose of responding to the CPU

during the execution of I/O instructions. Resetting ter­
minates the current operation, disconnects the device
from the channel, and may place the device in cer­
tain modes of operation. The meaning of the two
reset states for each type of I/O device is specified in
the Systems Reference Library (SRL) publication for
the device.

System Reset

The system-reset function is performed when the
system-reset or load key is pushed, or when a system
power-on sequence is completed.

System reset causes the channel to terminate opera­
tions on all subchannels. Status information and in­
terruption conditions in the subchannels are reset, and
all operational subchannels are placed in the available
state. The channel sends the system-reset signal to all
I/O devices attached to it.

If the device is currently communicating over the
I/O interface, the device immediately disconnects
from the channel. Data transfer and any operation
using the facilities of the control unit are immediately
terminated, and the I/O device is not necessarily posi­
tioned at the beginning of a block. Mechanical mo­
tion not involving the use of the control unit, such as
rewinding magnetic tape or positioning a disk access
mechanism, proceeds to the normal stopping point, if
possible. The device appears in the working state until
the termination of mechanical motion or the inherent
cycle of operation, if any, whereupon it becomes

Input/Output Operations 91

available. Status information in the device and con­
trol unit is reset, and no interruption condition is gen­
erated upon completing the operation.

A control unit accessible by more than one channel
is reset if it is currently associated with a channel on
the CPU generating the reset.

Malfunction Reset

The malfunction-reset function is performed when the
channel detects equipment malfunctioning.

Execution of malfunction reset in the channel de­
pends on the type of malfunction and the model. It
may cause all operations in the channel to be termi­
nated and all operational subchannels to be reset to
the available state. The channel may send either the
malfunction-reset signal to the device connected to the
channel at the time the malfunctioning is detected,
or channels sharing common equipment with the
CPU may send the system-reset signal to all devices
attached to the channel.

When the channel signals malfunction reset over
the interface, the device immediately disconnects
from the channel. Data transfer and any operation
using the facilities of the control unit are immediately
terminated, and the I/O device is not necessarily po­
sitioned at the beginning of a block. Mechanical mo­
tion not involving the control unit, such as rewinding
magnetic tape or positioning a disk access mechanism,
proceeds to the normal stopping point, if possible.
The device appears in the working state until the
termination of mechanical motion or the inherent cycle
of operation, if any. Status information associated with
the addressed device is reset, but an interruption con­
dition may be generated upon completing any me­
chanical operation.

When a malfunction reset occurs, the program is
alerted by an I/O interruption or, when the malfunc­
tion is detected during the execution of an I/O instruc­
tion, by the setting of the condition code. In either
case the csw identifies the condition. The device ad­
dressed by the I/O instruction or the device identified
by the I/O interruption, however, is not necessarily
the one placed in the malfunction-reset state. In chan­
nels sharing common equipment with the CPU, mal­
functioning detected by the channel may be indicated
by a machine-check interruption, in which case a csw
is not stored and a device is not identified. The
method of identifying malfunctioning depends upon
the model.

Condition Code

The results of certain tests by the channel and device,
and the original state of the addressed part of the I/O

system are used during the execution of an I/O in-

92

struction to set one of four condition codes in bit
positions 34 and 35 of the psw. The condition code'­
is set at the time the execution of the instruction is
completed, that is, the time the CPU is released to
proceed with the next instruction. The condition code
indicates whether or not the channel has performed
the function specified by the instruction and, if not,
the reason for the rejection. Immedia ':ely subsequent
branch-on-condition operations can use the code for
decision-making.

The following table lists the ccnditions that are
identified and the corresponding condition codes for
each instruction. The states of the system and their
abbreviations were previously defined in "States of the
Input/Output System." The digits in the table repre­
sent the numeric value of the code. The instruction
START I/O can set code 0 or 1 for the AAA state, de­
pending on the type of operation that is initiated.

CONDITIONS
Available
Interruption pend. in device
Device working
Device not operational
Interruption pend. in subchannel

For the addressed device
For another device

Subchannel working
Subchannel not operational
Interruption pend. in channel
Channel working
Channel not operational
Error

Channel equipment error
Channel programming error
Device error

CONDITION CODE FOR
START TEST HALT TEST
I/O I/O I/O CHAN

A A A 0,1° 0 1 ° 0
A A I 1° P" 1° 0
A A W 1° 1° 1° 0
AAN 3 3 3 0
A I X l'

2 1° 0 0
2 2 0 0

AWX1'2 2 1° 0
A N X t3 3 3 0
I X X l' see note below 1
WX X 1'2 2 2 2
NXX1'3 3 3 3

"'The CSW or its status portion is stored at location 64 during
execution of the instruction.

tThe symbol X stands for A, I, W, and N, and indicates that
the state of the corresponding component is not significant.
As an example, AIX denotes the states AlA, All, AIW, and
AIN, while IXX represents a total of 16 states, some of which
do not occur.

-The condition cannot be identified during execution of the in­
struction.

NOTE: For the purpose of executing START 110, TEST 110,
and HALT I/O, a channel containing- a pending interruption
condition appears the same as an available channel, and the
condition-code setting depends upon the states of the sub­
channel and device. The condition codes for the IXX states are
the same as for the AXX states, where the X's represent the
states of the subchannel and the device. As an example, the
condition-code for the IAA state is the same as for the AAA
state, and the condition code for the lAW state is the same as
for the AA W state.

The available condition is indicated only when no
errors are detected during the execution of the I/O

instruction. When a programming error occurs in the
information placed in the CAW or ccw and the ad­
dressed channel or subchannel is working, either con-

dition code 1 or 2 may be set, depending upon the
model. Similarly, either code 1 or 3 may be set when
a programming error occurs and a part of the ad­
dressed I/O system is not operational

When a sub channel on the multiplexor channel con­
tains a pending interruption condition (state AIX),

the I/O device associated with the terminated opera­
tion normally is in the interruption-pending state.
When the channel detects during execution of TEST

I/O that the device is not operational, condition code
3 is set. Similarly, condition code 3 is set when HALT

I/O is addressed to a sub channel in the working state
and operating in the multiplex mode (state A wx),
but the device turns out to be not operational. The
not-operational state in both situations can be caused
by operator intervention or by machine malfunction­
ing.

The error conditions listed in the preceding table
include all equipment or programming errors detected
by the channel or the I/O device during execution of
the I/O instruction. Except for channel equipment er­
rors, in which case, depending on the model, machine
check may be indicated and no csw may be stored, the
status portion of the csw identifies the error. Three
types of errors can occur:

Channel Equipment Error: The channel can detect
the following equipment errors during execution of
START I/O, TEST I/O, and HALT I/O:

1. The device address that the channel received on
the interface during initial selection either has a
parity error or is not the same as the one the channel
sent out. Some device other than the one addressed
may be malfunctioning.

2. The unit-status byte that the channel received on
the interface during initial selection has a parity error.

3. A signal from the I/O device occurred during
initial selection at an invalid time or had invalid
duration.

4. The channel detected an error in its control
equipment.

The channel may perform the malfunction-reset
function, depending on the type of error and the
model. If a csw is stored, channel control check or
interface control check is indicated, depending on the
type of error.

Channel Programming Error: The channel can de­
tect the following programming errors during execu­
tion of START I/O:

1. Invalid ccw address in CAW

2. Invalid ccw address specification in CAW

3. Invalid storage protection key in CAW

4. Invalid CAW format
5. Location of first ccw protected for fetching
6. First ccw specifies transfer in channel

7. Invalid command code in first ccw
8. Initial data address exceeds addressing capacity

of model (see "Definition of Storage Area")
9. Invalid count in first ccw

10. Invalid format of first ccw
The csw indicates program check, except for condi­

tion 5, in which case protection check is indicated.
Device Error: Programming or equipment errors

detected by the device during the execution of START

I/O are indicated by unit check or unit exception in
the csw.

The conditions responsible for unit check and unit
exception for each type of I/O device are detailed in
the SRL publication for the device.

Instruction Format

All I/O instructions use the following SI format:

I Op Code ~Bli
78 1516 1920 31

Bit positions 8-15 of the instruction are ignored.
The content of the Bl field designates a register. The
sum obtained by the addition of the content of reg­
ister Bl and content of the Dl field identifies the
channel and the I/O device. This sum has the format:

o 1516

Channel
Address

2324

Device
Address

31

Bit positions 0-7 are not part of the address. Bit
positions 8-15, which constitute the high-order portion
of the address, are ignored. Bit positions 16-23 of the
sum contain the channel address, while bit positions
24-31 identify the device on the channel and, addition­
ally in the case of the multiplexor channel, the sub­
channel.

NOTE: In the detailed descriptions of the individual
instructions, the mnemonic and the symbolic operand
designation for the IBM System/360 assembly language
are shown with each instruction. In the case of START

I/O, for example, SIO is the mnemonic and Dl (Bt) the
operand designation.

Instructions

The mnemonics, format, and operation codes of the
I/O instructions follow. The table also indicates that
all I/O instructions cause program interruption when
they are encountered in the problem state, and that
all I/O instructions set the condition code.

NAME

Start 110
Test 110
Halt I/O
Test Channel

MNEMONIC

SIO
TIO
HIO
TCH

TYPE

SI, C
SI, C
SI, C
SI, C

NOTES

C
M

Condition code is set
Privileged-operation exception

EXCEPTION

M
M
M
M

CODE

9C
9D
9E
9F

Input/Output Operations 93

Programming Note

The instructions START I/O, TEST I/O, and HALT I/O

may cause a csw to be stored. To prevent the con­
tents of the csw stored by the instruction from being
destroyed by an immediately following I/O interrup­
tion, all channels must be masked before issuing
START I/O, TEST I/O, or HALT I/O and must remain
masked until the information in the csw provided by
the instruction has been acted upon or stored else­
where for later use.

Start 1/0

510 D1(81) [51]

I 9C ~ B1 I D1
0 78 IS 16 1920 31

A write, read, read backward, control or sense opera­
tion is initiated at the addressed I/O device and sub­
channel. The instruction START I/O is executed only
when the CPU is in the supervisor state.

Bit positions 16-31 of the sum formed by the addi­
tion of the content of register Bl and the content of
the Dl field identify the channel, subchannel, and I/O

device to which the instruction applies. The CAW at
location 72 contains the protection key for the sub­
channel and the address of the first ccw. The ccw so
designated specifies the operation to be performed,
the main-storage area to be used, and the action to
be taken when the operation is completed.

The I/O operation specified by START I/O is initiated
if the addressed I/O device and sub channel are avail­
able, the channel is available or is in the interruption­
pending state, and errors or exceptional conditions
have not been detected. The I/O operation is not ini­
tiated when the addressed part of the I/O system is in
any other state or when the channel or device detects
any error or exceptional condition during execution of
the instruction.

When any of the following conditions occurs, with
the channel either available or in the interruption­
pending state and with the subchannel available be­
fore the execution of the instruction, START I/O causes
the status portion, bit positions 32-47, of the csw at
location 64 to be replaced by a new set of status bits.
The status bits pertain to the device addressed by the
instruction. The contents of the other fields of the csw
are not changed.

1. An immediate operation was executed, and either
no command chaining is specified, or chaining is sup­
pressed because of unusual conditions detected during
the operation. An operation is called immediate when
the I/O device signals the channel-end condition imme­
diately on receipt of the command code. The csw

94

contains the channel-end bit and any other indications
provided by the channel or the device. The busy bit
is off. The I/O operation has been initiated, but no in­
formation has been transferred to or from the storage
area designated by the ccw. No interruption conditions
are generated at the device or subchannel, and the
subchannel is available for a new I/O operation.

2. The I/O device contains a pending interruption
condition due to device end or attention, the control
unit contains a pending control unit end for the ad­
dressed device, or, on the selector channel, the control
unit contains for the addressed device a pending chan­
nel end following the execution of HALT I/O. The csw
unit-status field contains the busy bit, identifies the
interruption condition, and may contain other bits pro­
vided by the device or control unit. The interruption
condition is cleared. The channel-status field indicates
any error conditions detected by the channel and con­
tains the PCI bit if specified in the first ccw.

3. The I/O device or the control unit is executing a
previously initiated operation, or the control unit has
pending an interruption condition associated with a de­
vice other than the one addressed. The csw unit-status
field contains the busy bit or, if the control unit is
busy, the busy and status-modifier bits. The channel­
status field indicates any error conditions detected by
the channel and contains the PCI bit if specified in the
first ccw.

4. The I/O device or channel detected an equip­
ment or programming error during execution of the
instruction. The csw identifies the error condition. The
channel-end and busy bits are off, unless the error was
detected after the device was selected, and the device
was found to be busy, in which case the busy bit, as
well as any bits indicating pendin~interruption condi­
tions, are on. The interruption conditions indicated in
the csw have been cleared at the device. The I/O op­
eration has not been initiated. No interruption condi­
tions are generated at the I/O device or subchannel.

On the multiplexor channel, START I/O causes the
addressed device to be selected and the operation to
be initiated only after the channel has serviced all out­
standing requests for data transfer for previously ini­
tiated operations.

Resulting Condition Code:
o I/O operation initiated and channel proceed-

ing with its execution
1 csw stored
2 Channelorsubchannelbusy
3 Not operational

Program Interruptions:
Privileged operation.

The condition code set by START I/O for all possi­
ble states of the I/O system is shown graphically in

Figure 23. See the "States of the Input/Output Sys­
tem" section of this manual for thorough definition of
the A, I, W, and N states.

SIO

I
A I I WIN I

I W N I 2 3
Subchannel A I I I WIN I A I I I I I

Control unit--I A I I I WIN fD CD 0! A I I I WIN! 2 CD 0

Channel

Device /;:,. 1* 1* 3 /;:,. 1* 1* 3

A = Available

I = Interruptian Pending

W = Working

N = Not Operational

* = CSW Stored

When/;:,. = 0, a regular I/O operation has been initiated and channel is proceeding
with its execution.

When/;:,. = 1*, an immediate operation has been initiated and no command chaining
is taking place.

Note: Encircled condition codes pertain to conditions that can occur only on the
multiplexor channel.

Figure 23. Condition Code set by START I/O

Programming Note

When the channel detects a programming error dur­
ing execution of START I/O and the addressed device
contains an interruption condition, with the channel
and subchannel in the available state, START I/O mayor
may not clear the interruption condition, depending
on the type of error and the model. If the instruction
has caused the device to be interrogated, as indicated
by the presence of the busy bit in the csw, the inter­
ruption condition has been cleared, and the csw con­
tains program or protection check, as well as the status
from the device.

Test I/O

TIO DdB1) [51]

I 90 ~ B1 I D1 I
0 78 1516 1920 31

The state of the addressed channel, subchannel, and
device is indicated by setting the condition code in
the psw and, under certain conditions, by storing the
csw. Pending interruption conditions may be cleared.
The instruction TEST I/O is executed only when the
CPU is in the supervisor state.

Bit positions 16-31 of the sum formed by the addi­
tion of the content of register Bl and the content of
the Dl field identify the channel, subchannel, and
I/O device to which the instruction applies-.

When any of the following conditions occurs with
the channel either available or in the interruption­
pending state, TEST I/O causes the csw at location 64
to be stored. The content of the entire csw pertains to
the I/O device addressed by the instruction.

1. The sub channel contains a pending interruption
condition due to a terminated operation at the ad­
dressed device. The csw identifies the interruption
condition, and the interruption condition is cleared.
The protection key, command address, and count
fields contain the final values for the I/O operation,
and the status may include other bits provided by
the channel and the device. The interruption condi­
tion in the subchannel is not cleared, and the csw is
not stored if the interruption condition is associated
with an operation on a device other than the one
addressed.

2. The subchannel is available and the I/O device
contains a pending interruption condition due to de­
vice end or attention, the control unit contains a pend­
ing control unit end for the addressed device, or, on
the selector channel, the control unit contains for the
addressed device a pending channel end following the
execution of HALT I/O. The csw unit-status field identi­
fies the interruption condition and may contain other
bits provided by the device or control unit. The inter­
ruption condition is cleared. The busy bit in the csw
is off. The other fields of the csw contain zeros unless
an equipment error is detected.

3. The sub channel is available and the I/O device or
the control unit is executing a previously initiated op­
eration or the control unit has a pending interruption
condition associated with a device other than the one
addressed. The csw unit-status field contains the busy
bit or, if the control unit is busy, the busy and status­
modifier bits. Other fields of the csw contain zeros un­
less an equipment error is detected.

4. The subchannel is available and the I/O device or
channel detected an equipment error during execution
of the instruction or the addressed device is in the not­
ready state and does not have any pending interrup­
tion condition. The csw identifies the error conditions.
If the device is not ready, unit check is indicated. No
interruption conditions are generated at the I/O device
or the subchannel.

When TEST I/O is used to clear an interruption con­
dition from the sub channel and the channel has not
yet accepted the condition from the device, the in­
struction causes the device to be selected and the
interruption condition in the device to be ,cleared. Dur­
ing certain I/O operations, some types of devices can­
not provide their current status in response to TEST

I/O. The tape control unit, for example, is in such a
state when it has provided the channel-end condition

Input/Output Operations 95

and is executing the backspace-file operation. When
TEST I/O is issued to a control unit in such a state, the
unit-status field of the csw contains the busy and
status-modifier bits, with zeros in the other csw fields.
The interruption condition in the device and in the
subchannel is not cleared.

On some types of devices, such as the 2702 Trans­
mission Control, the device never provides its current
status in response to TEST I/O, and an interruption
condition can be cleared only by permitting an I/O

interruption. When TEST I/O is issued to such a device,
the unit-status field contains the status-modifier bit,
with zeros in the other csw fields. The interruption
condition in the device and in the subchannel, if any,
is not cleared.

However, at the time the channel assigns the high­
est priority for interruptions to a condition associated
with an operation at the sub channel, the channel ac­
cepts the status from the device and clears the cor­
responding condition at the device. When TEST I/O

is addressed to a device for which the channel has
already accepted the interruption condition, the de­
vice is not selected, and the condition in the sub chan­
nel is cleared regardless of the type of device and its
present state. The csw contains unit status and other
information associated with the interruption condi­
tion.

On the multiplexor channel, TEST I/O causes the ad­
dressed device to be selected only after the channel
has serviced all outstanding requests for data transfer
for previously initiated operations.

Resulting Condition Code:
o Available
1 csw stored
2 Channel or sub channel busy
3 Not operational

Program Interruptions:
Privileged operation

The condition code set by TEST I/O for all possible
states of the I/O system is shown graphically in Figure
24. See the "States of the Input/Output System" sec­
tion of this manual for thorough definition of the A, I,
W, and N states.

Programming Notes

Masking of channels provides the program a means of
controlling the priority of I/O interruptions selectively
by channels. The priority of devices attached on a
channel is fixed and cannot be controlled by the pro­
gram. The instruction TEST I/O permits the program to
clear interruption conditions selectively by I/O device.

When a csw is stored by TEST I/O, the interface­
control-check and channel-control-check indications
may be due to a condition already existing in the

96

channel or due to a condition created by TEST I/O.

Similarly, presence of the unit-check bit in the ab­
sence of channel-end, control-unit-end or device-end
bits may be due to a condition created by the preced­
ing operation, the not-ready state, or an equipment er­
ror detected during the execution of TEST I/O. The
TEST I/O cannot be used to clear a pending interruption
condition due to the PC! Hag while the sub channel is
in the working state.

TlO

Channel I A I ~
I I 2 3

Subchannel! A I I I WIN I A I I I WIN I

ControIUnit_JAIIIWIN!CD00IAII IWI N ! t 00
Device 0 1 * 1 * 3 0 1 * 1 * 3

A = Availoble

B = Interruption Pending

W = Working

N = Not Operational

* = CSW Stored

f: When the pending interruption condition is for the addressed device, t = 1*
When the pending interruption condition is for another device, t = 2

Note: Encircled condition codes pertain to conditions that can occur only an the
multiplexor channel.

Figure 24. Condition Code set by TEST I/O

Halt I/O

HIO D1(81) [51]

I 9E ~ B1 I D1
0 78 1516 1920 31

I

Execution of the current I/O operation at the address­
ed I/O device, subchannel, or channel is terminated.
The subsequent state of the subchannel depends on
the type of channel. The instruction HALT I/O is exe­
cuted only when the CPU is in the supervisor state.

Bit positions 16-31 of the sum formed by the addi­
tion of the contents of register Bl and the contents of
the Dl field identify the channel, and, when the chan­
nel is not working, identify the subchannel and the
I/O device to which the instruction applies.

When the channel is either available or in the inter­
ruption-pending state, with the sub channel either
available or working, HALT I/O causes the addressed
device to be selected and to be signaled to terminate
the current operation, if any. If the subchannel is
available, its state is not affected. If, on the multiplexor
channel, the subchannel is working, data transfer is

immediately terminated, but the sub channel remains
in the working state until the device provides the next
status byte, whereupon the sub channel is placed in the
interruption-pending state.

When HALT I/O is issued to a channel operating in
the burst mode, data transfer for the burst operation is
terminated, and the device performing the burst opera­
tion is immediately disconnected from the channel.
The sub channel and I/O device address in the instruc­
tion, in this case, is ignored.

The termination of a burst operation by HALT I/O on
the selector channel causes the channel and subchan­
nel to be placed in the interruption-pending state.
Generation of the interruption condition is not con­
tingent on the receipt of a status byte from the device.
When HALT I/O causes a burst operation on the multi­
plexor channel to be terminated, the subchannel as­
sociated with the burst operation remains in the work­
ing state until the device provides channel end, where­
upon the sub channel enters the interruption-pending
state.

On the multiplexor channel operating in the multi­
plex mode, the device is selected and the instruction is
executed only after the channel has serviced all out­
standing requests for data transfer for previously initi­
ated operations, including the operation to be halted.
If the control unit does not accept the HALT-I/O signal
because it is in the not-operational or control-unit-busy
state, the subchannel, if working, is set up to signal
termination of device operation the next time the de­
vice requests or offers a byte of data. If command
chaining is indicated in the subchannel and the device
presents status next, chaining is suppressed.

When the addressed sub channel has a pending in­
terruption condition, with the channel in the available
or interruption-pending state, HALT I/O does not cause
any action.

When any of the following conditions occur, HALT

I/O causes the status portion, bit positions 32-47, of
the csw at location 64 to be replaced by a new set of
status bits. The contents of the other fields of the csw
are not changed. The csw stored by HALT I/O pertains
only to the execution of HALT I/O and does not de­
scribe under what conditions the I/O operation at the
addressed subchannel is terminated. The extent of
data transfer, and the conditions of termination of the
operation at the subchannel, are provided in the csw
associated with the interruption condition due to the
termination.

l. The addressed device has been selected and sig­
naled to terminate the current operation. The csw
contains zeros in the status field unless an equipment
error is detected.

2. The channel attempted to select the addressed

device, but the control unit could not accept the HALT­

I/O signal because it is executing a previously initiated
operation or has an interruption condition associated
with a device other than the one addressed. The sig­
nal to terminate the operation has not been trans­
mitted to the device, and the sub channel, if in the
working state, has been ~et up to signal termination
the next time the device identifies itself. The csw unit­
status field contains the busy and status-modifier bits.
The channel-status field contains zeros unless an equip­
ment error is detected.

3. The channel detected an equipment malfunction
during the execution of HALT I/O. The status bits in
the csw identify the error condition. The state of the
channel and the progress of the I/O operation are un­
predictable.

When HALT I/O causes data transfer to be termi­
nated, the control unit associated with the operation
remains unavailable until the data-handling portion
of the operation in the control unit is terminated. Ter­
mination of data-transfer portion of the operation is
signaled by generation of channel end, which may
occur at the normal time for the operation, earlier, or
later, depending on the operation and type of device.
If the control unit is shared, all devices attached to
the control unit appear in the working state until the
channel-end condition is accepted by the cpu. The I/O

device executing the terminated operation remains in
the working state until termination of the inherent
cycle of the operation, at which time device end is
generated. If blocks of data at the device are defined,
such as reading on magnetic tape, the recording medi­
um is advanced to the beginning of the next block.

When HALT I/O is issued at a time when the sub­
channel is available and no burst operation is in prog­
ress, the effect of the HALT-I/O signal depends on the
type of device and its state and is specified in the SRL

publication for the device. The HALT-I/O signal has no
effect on devices that are not in the working state or
are executing an operation of a fixed duration, such
as rewinding tape or positioning a disk access mecha­
nism. If the device is executing a type of operation that
is variable in duration, the device interprets the signal
as one to terminate the operation. Pending attention
or device-end conditions at the device are not reset.

Resulting Condition Code:
o Interruption pending in sub channel
1 csw stored
2 Burst operation terminated
3 Not operational

Program Interruptions:
Privileged operation

The condition code set by HALT I/O for all possible
states of the I/O system is shown graphically in Fig-

Input/Output Operations 97

ure 25. See the "States of the Input/Output System"
section of this manual for thorough definition of the
A, I, W, and N states.

HIO

Channel A

Subchannel A

Control Unit-- j-:oA~~~~
Device 1* 1*

A = Available
I = Interruption Pending
W = Working
N = Not Operational
* = CSW Stored

00

Note: Encircled condition codes pertain to conditions that can occur only on the
multiplexor channel.

Figure 25. Condition Code set by HALT 110

Programming Note

W N

The instruction HALT I/O provides the program a
means of terminating an I/O operation before all data
specified in the operation have been transferred or be­
fore the operation at the device has reached its llormal
ending point. It permits the program to immediately
free the selector channel for an operation of higher
priority. On the multiplexor channel, HALT I/O pro­
vides a means of controlling real-time operations and
permits the program to terminate data transmission
on a communication line.

Test Channel

9F ~Bli
78 1516 1920 31

The condition code in the psw is set to indicate the
state of the addressed channel. The state of the chan­
nel is not affected, and no action is caused. The in­
struction TEST CHANNEL is executed only when the CPU

is in the supervisor state.
Bit positions 16-23 of the sum formed by the addi­

tion of the content of register Bl and the content of
the Dl field identify the channel to which the instruc­
tion applies. Bit positions 24-31 of the address are
ignored.

The instruction TEST CHANNEL inspects only the state
of the addressed channel. It tests whether the channel
is operating in the burst mode, is aware of any out­
standing interruption conditions from its devices, or
is not operational. When the channel is operating in
the burst mode and contains a pending interruption
condition, the condition code is set as for operation in
the burst mode. When none of these conditions exists,

98

the available state is indicated. No device is selected,
and, on the multiplexor channel, the sub channels are
not interrogated.

Resulting Condition Code:
o Channel available
1 Interruption pending in channel
2 Channel operating in burst mode
3 Channel not operational

Program Interruptions:
Privileged operation

The condition code set by TEST CHANNEL for all pos­
sible states of the addressed channel is shown graphi­
cally in Figure 26. See the "States of the Input/Output
System" section of this manual for thorough definition
of the A, I, W, and N states.

TCH
Channel

A = Available
I = Interruption Pending
W = Working
N = Not Operational

A

o

Figure 26. Condition Code set by TEST CHANNEL

Input/Output Instruction Exception Handling

Before the channel is signaled to execute an I/O in­
struction, the instruction is tested for validity by the
CPU. Exceptional conditions detected at this time cause
a program interruption. When the interruption occurs,
the current psw is stored as the program old psw and
is replaced by the program new psw. The interruption
code in the old psw identifies the cause of the interrup­
tion.

The following exception may cause a program inter­
ruption:

Privileged Operation: An I/O instruction is encoun­
tered when the CPU is in the problem state. The in­
struction is suppressed before the channel has been
signaled to execute it. The csw, the condition code in
the PSW, and the state of the addressed subchannel
and I/O device are not affected by the attempt to exe­
cute an I/O instruction while in the problem state.

Execution of Input/Output Operations
The channel can execute six commands: write, read,
read backward, control, sense, and transfer in channel.
Each command except transfer in channel initiates
a corresponding I/O operation. The term "I/O oper­
ation" refers to the activity initiated by a command in
the I/O device and associated subchannel. The sub-

channel is involved with the execution of the opera­
tion from the initiation of the command until the chan­
nel-end signal is received or, in the case of command
chaining, until the device-end signal is received. The
operation in the device lasts until device end occurs.

Blocking of Data

Data recorded by an I/O device may be divided into
blocks. A block of data is defined for each type of I/O

device as the amount of information recorded in the
interval between adjacent starting and stopping points
of the device. The length of a block depends on the
document; for example, a block can be a card, a line
of printing, or the information recorded between two
consecutive gaps on magnetic tape.

The maximum amount of information that can be
transferred in one I/O operation is one block. An I/O

operation is terminated when the associated storage
area is exhausted or the end of the block is reached,
whichever occurs first. For some operations, such as
writing on a magnetic tape unit or on an inquiry sta­
tion, blocks are not defined, and the amount of in­
formation transferred is controlled only by the pro­
gram.

Channel Address Word

The channel address word (CAW) specifies the storage
protection key and the address of the first ccw associ­
ated with START I/O. It is assigned location 72. The
channel refers to the CAW only during the execution
of START I/O. The pertinent information thereafter is
stored in the subchannel, and the program is free to
change the content of the CAW. Fetching of the CAW

by the channel does not affect the contents of location
72.

The CAW has the following format:

I Key I 0 0 0 0 I Command Address
34 78 31

The fields in the CAW are allocated for the follow­
ing purposes:

Protection Key: Bits 0-3 form the protection key for
all commands associated with START I/O. This key is
matched with a key in storage whenever reference is
made to main storage.

Command Address: Bits 8-31 designate the location
of the first ccw in main storage.

Bit positions 4-7 of the CAW must contain zeros.
When the protection feature is not implemented, the
protection key must be zero. The three low-order bits
of the command address must be zero to specify the
ccw on integral boundaries for double words. If any
of these restrictions is violated or if the command ad­
dress specifies a location protected for fetching or

outside the main storage of the particular installation,
START I/O causes the status portion of the csw to be
stored with the protection-check or program-check bit
on. In this event, the I/O operation is not initiated.

Programming Note

Bit positions 4-7 of the CAW, which presently must con­
tain zeros, may in the future be assigned for the
control of new functions. It is therefore recommended
that these bit positions not be set to one for the pur­
pose of obtaining an intentional program-check indi­
cation.

Channel Command Word

The channel command word (ccw) specifies the com­
mand to be executed and, for commands initiating
I/O operations, it designates the storage area associ­
ated with the operation and the action to be taken
whenever transfer to or from the area is completed.
The ccw's can be located anywhere in main storage,
and more than one can be associated with a START

I/O. The channel refers to a ccw in main storage only
once, whereupon the pertinent information is stored
in the channel.

The first ccw is fetched during the execution of
START I/O. Each additional ccw in the sequence is ob­
tained when the operation has progressed to the point
where the additional ccw is needed. Fetching of the
ccw's by the channel does not affect the contents of
the location in main storage.

The ccw has the following format:

I Command Data Address I Code
0 78 31

Flags IOOO~ Count I
32 3637 3940 47 48 63

The fields in the ccw are allocated for the following
purposes:

Command Code: Bits 0-7 specify the operation to
be performed.

Data Address: Bits 8-31 specify the location of an
eight-bit byte in main storage. It is the first location
referred to in the area designated by the ccw.

Chain-Data (CD) Flag: Bit 32, when one, specifies
chaining of data. It causes the storage area designated
by the next ccw to be used with the current operation.

Chain-Command (CC) Flag: Bit 33, when one, and
when the CD Hag is zero, specifies chaining of com­
mands. It causes the operation specified by the com­
mand code in the next ccw to be initiated on normal
completion of the current operation.

Suppress-Length-Indication (SLI) Flag: Bit 34 con­
trols whether an incorrect length condition is to be

Input/Output Operations 99

indicated to the program. When this bit is one and the
CD Hag is zero in the last ccw used, the incorrect length
indication is suppressed. When both the cc and SLI

flags are one, command chaining takes place regardless
of the presence of an incorrect length condition.

Skip (SKIP) Flag: Bit 35, when one, specifies sup­
pression of transfer of information to storage during a
read, read backward, or sense operation ..

Program-Controlled-Interruption (PC I) Flag: Bit 36,
when one, causes the channel to generate an inter­
ruption condition when the ccw takes control of the
channel. When bit 36 is zero, normal operation takes
place.

Count: Bits 48-63 specify the number of eight-bit
byte locations in the storage area designated by the
ccw.

Bit positions 37-39 of every ccw other than one spe­
cifying transfer in channel must contain zeros. Viola­
tion of this restriction generates the program-check
condition. When the first ccw designated by the CAW

does not contain the required zeros, the I/O operation
is not initiated, and the status portion of the csw with
the program-check indication is stored during execu­
tion of START I/O. Detection of this condition during
data chaining causes the I/O device to be signaled to
terminate the operation. When the absence of these
zeros is detected during command chaining, the new
operation is not initiated, and an interruption condition
is generated.

The content of bit positions 40-47 of the ccw is
ignored.

Programming Note

Bit positions 37-39, of the ccw, which presently must
contain zeros, may in the future be assigned for the
control of new functions. It is therefore recommended
that these bit positions not be set to one for the pur­
pose of obtaining a program-check indication.

Command Code

The command code, bit positions 0-7 of the ccw, speci­
fies to the channel and the I/O device the operation to
he performed.

The two low-order bits or, when these bits are
00, the four low-order bits of the command code iden­
tify the operation to the channel. The channel dis­
tinguishes among the following four operations:

Output forward (write, control)
Input forward (read, sense)
Input backward (read backward)
Branching (transfer in channel)
The channel ignores the high-order bits of the com­

mand code.
Commands that initiate I/O operations (write, read,

read backward, control, and sense) cause all eight bits

100

of the command code to be transferred to the I/O de­
vice. In these command codes, the high-order bit po­
sitions contain modifier bits. The modifier bits specify
to the device how the command is to be executed.
They may cause, for example, the device to compare
data received during a write operation with data pre­
viously recorded, and they may specify such con­
ditions as recording density and parity. For the control
command, the modifier bits may contain the order
code specifying the control function to be performed.
The meaning of the modifier bits depends on the type
of I/O device and is specified in the SRL publication
for the device.

The command code assignment is listed in the fol­
lowing table. The symbol x indicates that the bit po­
sition is ignored; M identifies a modifier bit.

CODE COMMAND

X X X X 0 0 00 Invalid
MMMM 0 1 00 Sense
x x x x 1 0 00 Transfer in channel
MMMM 1 1 00 Read backward
MMMM MMOI Write
MMMM MMIO Read
MMMM MMII Control

Whenever the channel detects an invalid command
code during the initiation of a command, the pro­
gram-check condition is generated. When the first ccw
designated by the CAW contains an invalid command
code, the status portion of the csw with the program­
check indication is stored during execution of START

I/O. When the invalid code is detected during com­
mand chaining, the new operation is not initiated, and
an interruption condition is generated. The command
code is ignored during data chaining, unless it speci­
fies transfer in channel.

Definition of Storage Area

The main-storage area associated with an I/O oper­
ation is defined by ccw's. A ccw defines an area by
specifying the address of the first eight-bit byte to be
transferred and the number of consecutive eight-bit
bytes contained in the area. The address of the first
byte appears in the data-address field of the ccw. The
number of bytes contained in the storage area is spe­
cified in the count field.

In write, read, control, and sense operations storage
locations are used in ascending order of addresses. As
information is transferred to or from main storage, the
content of the address field is incremented, and the
content of the count field is decremented. The read­
backward operation causes data to be placed in stor­
age in a descending order of addresses, and both the
count and the address are decremented. When the
count in any operation reaches zero, the storage area
defined by the ccw is exhausted.

Any main-storage location provided in the system
can be used to transfer data to or from an I/O device,
provided that the location is not protected for the type
of reference. Similarly, the ccw's can be specified in
any part of available main storage, provided the loca­
tion is not protected for a fetch-type reference. When
the channel attempts to refer to a protected location,
the protection-check condition is generated, and the
device is signaled to terminate the operation.

In the event the channel refers to a location not pro­
vided in the system, the program-check condition is
generated. The method of indicating the error condi­
tion and terminating the I/O operation upon detection
of an invalid address depends on whether or not the
address exceeds the addressing capacity of the model.
The term "addressing capacity" refers to the model's
facilities for addressing main storage. Most models
have facilities for addressing up to 16,777,216 bytes
regardless of the storage provided in the particular
install~tion. In some models, however, the addressing
facilities in the channel are restricted to main storage
of less than 16,777,216 bytes. When the first ccw des­
ignated by the CAW is at a nonexistent location or the
first ccw contains a data address exceeding the ad­
dressing 'capacity of the model, the I/O operation is not
initiated and the status portion of the csw with the pro­
gram-check indication is stored during the execution
of START I/O. Invalid data addresses within the ad­
dressing capacity of the model, as well as any invalid
ccw addresses detected on chaining, are indicated
to the program with the interruption conditions at the
termination of the operation or chain of operations.

During an output operation, the channel may fetch
data from the main storage prior to the time the I/O de­
vice requests the data. As many as 16 bytes may be
prefetched and buffered. Similarly, on data chaining
during an output operation, the channel may fetch the
new ccw when as many as 16 bytes remain to be
transferred under the control of the current ccw.
When the I/O operation uses data and ccw's from 10-
ations near the end of the available storage, such pre­
fetching may cause the channel to refer to locations
that do not exist. Invalid addresses detected during
prefetching of data or ccw's do not affect the execu­
tion of the operation and do not caUS8 error indica­
tions until the I/O operation actually attempts to use
the information. If the operation is terminated by the
I/O device or by HALT I/O before the invalid informa­
tion is needed, the condition is not brought to the
attention of the program.

Storage addresses do not wrap around to location 0
unless the system has the maximum addressable stor­
age (16,777,216 bytes). When the maximum address­
able storage is provided, location 0 follows location

16,777,215 and, on reading backward, location
16,777,215 follows location O.

The count field in the ccw can specify any number
of bytes up to 65,535. Except for a ccw specifying
transfer in channel, the count field may not contain the
value zero. Whenever the count field in the ccw initi­
ally contains a zero, the program-check condition is
generated. When this occurs in the first ccw desig­
nated by the CAW, the operation is not initiated, and
the status portion of the csw with the program-check
indication is stored during execution of START I/O.

When a count of zero is detected during data chain­
ing, the I/O device is signaled to terminate the opera­
tion. Detection of a count of zero during command
chaining suppresses initiation of the new operation and
generates an interruption condition.

Chaining

When the channel has performed the transfer of in­
formation specified by a ccw, it can continue the ac­
tivity initiated by START I/O by fetching a new ccw.
Such fetching of a new ccw is called chaining, and
the ccw's belonging to such a sequence are said to
be chained.

Chaining takes place only between ccw's located
in successive double-word locations in storage. It pro­
ceeds in an ascending order of addresses; that is, the
address of the new ccw is obtained by adding eight
to the address of the current ccw. Two chains of
ccw's located in noncontiguous storage areas can be
coupled for chaining purposes by a transfer in chan­
nel command. All ccw's in a chain apply to the I/O

device specified in the original START I/O.

Two types of chaining are provided: chaining of
data and chaining of commands. Chaining is con­
trolled by the chain-data (CD) and chain-command
(cc) flags in conjunction with the suppress-Iength­
indication (SLI) flag in the ccw. These flags specify
the action to be taken by the channel upon the ex­
haustion of the current ccw and upon receipt of end­
ing status from the device, as shown in Figure 27.

The specification of chaining is effectively propa­
gated through a transfer in channel command. When
in the process of chaining a transfer-in-channel com­
mand is fetched, the ccw designated by the transfer
in channel is used for the type of chaining specified
in the ccw preceding the transfer in channel.

The CD and cc flags are ignored in the transfer-in­
channel command.

Data Chaining

During data chaining, the new ccw fetched by the
channel defines a new storage area for the original I/O

Input/Output Operations 101

operation. Execution of the operation at the I/O device
is not affected. Data chaining occurs only when all data
designated by the current ccw have been transferred
to or from the device and causes the operation to con­
tinue, using the storage area designated by the new
ccw. The content of the command-code field of the
new ccw is ignored, unless it specifies transfer in
channel.

Data chaining is considered to occur immediately
after the last byte of data designated by the current
ccw has been transferred to or from the device. When
the last byte has been placed in main storage or ac­
cepted by the device, the new ccw takes over the con­
trol of the operation and replaces the pertinent in­
formation in the subchannel. If the device sends chan­
nel end after exhausting the count of the current ccw
but before transferring any data to or from the storage
area designated by the new ccw, the csw associated
with the termination pertains to the new ccw.

If programming errors are detected in the new ccw
or during its fetching, an error indication is gener­
ated, and the device is signaled to terminate the
operation when it attempts to transfer data designated
by the new ccw. If the device signals the channel-end
condition before transferring any data designated by
the new ccw, program check or protection check is
indicated in the csw associated with the termination.
Unless the address of the new ccw is invalid, the loca-

Flags in

tion is protected for fetching, or programming errors
are detected in an intervening transfer-in-channel com­
mand, the content of the csw pertains to the new ccw.
A data address referring to a nonexistent or protected
area causes an error indication only after the I/O de­
vice has attempted to transfer data to or from the in­
valid location, but an address exceeding the addressing
capacity of the model is detected immediately upon
fetching the ccw.

Data chaining during an input operation causes the
new ccw to be fetched when all data designated by
the current ccw have been placed in main storage. On
an output operation, the channel may fetch the new
ccw from main storage ahead of the time data chain­
ing occurs. The earliest such prefetching may occur
is when 16 bytes still remain to be transferred under
the control of the current ccw. Any programming
errors in the prefetched ccw, however, do not affect
the execution of the operation until all data desig­
nated by the current ccw have been transferred to the
I/O device. If the device terminates the operation be­
fore all data designated by the current ccw have been
transferred, the conditions associated with the pre­
fetched ccw are not indicated to the program.

Only one ccw describing a data area may be pre­
fetched and buffered in the channel. If the prefetched
ccw specifies transfer in channel, only one more ccw
is fetched before the exhaustion of the current ccw.

Current CCW Action in Channel upon Exhaustion of Count or Receipt of Channel End

CD CC SU

0 0 0
0 0 1
0 1 0
0 1 1

0 0
0 1
1 0
1 1

End

Stop

IL

Chain Command

Chain Data

IMMEDIATE OPERATION REGULAR OPERATION

End, -
End, -
Chain Command
Chain Command

End, -
End, -
End, -
End, -

Count Exhausted, End of
BlockatDevice not Reached

Stop, IL
Stop, -
Stop, IL
Chain Command

Chain Data
Chain Data
Chain Data
Chain Data

Count Exhausted and Channel
End from Device

End, -
End, -
Chain Command
Chain Command

Count not Exhausted and
Channel End from Device

End, IL
End, -
End, IL
Chain Command

End, IL
End, IL
End, IL
End, IL

The operation is terminated. If the operation is immediate and has been specified by the first CCW associated with a
START I/O, a condition cod7 of 1 is set, and the status portion of the CSW is stored as part of the execution ofthe
START I/O. In all other cases an interruption condition is generated in the subchannel.

The device is signaled to terminate data transfer, but the subchannel remains in the working state until channel end
is received; at this time an interruption condition is generated in the subchannel.

Incorrect length is indicated with the interruption condition.

The channel performs command chaining upon receipt of device end.

The channel immediately fetches a new CCW for the same operation.

The situation where the count is zero but data chaining is indicated at the time the device provides channel end
cannot validly occur. When data chaining is indicated, the channel fetches the new CCW after transferring the last
byte of data designated by the current CCW but before the device provides the next request for data or status transfer.
As a result, the channel recognizes the channel end from the device only after it has fetched the new CCW, which
cannot contain a count of zero unless a programming error has been made.

I Figure 27. Effect of CD, ce, and SLI Flags on an I/O Operation

102

Programming Note

Data chaining may be used to rearrange information
as it is transferred between main storage and an I/O

device. Data chaining permits blocks of information to
be transferred to or from noncontiguous areas of stor­
age, and, when used in conjunction with the skipping
function, data chaining enables the program to place
in main storage selected portions of a block of data.

When, during an input operation, the program speci­
fies data chaining to a location into which data have
been placed under the control of the current ccw, the
channel fetches the new content of the location, even
if the location contains the last byte transferreq. under
the control of the current ccw. When a channel pro­
gram data-chains to a ccw placed in storage by the
ccw specifying data chaining, the input block is said
to be self-describing. A self-describing block contains
one or more ccw's that specify storage locations and
counts for subsequent data in the same input block.

When data chaining is used during a read-backward
operation, the channel places data in storage in a de­
scending sequence, but fetches ccw's in an ascending
sequence. Therefore, if a magnetic tape block is to be
written so that it can be read in either the forward or
backward direction as a self-describing block, the ccw
must be written at both the beginning and the end of
the block. If more than one ccw is to be used, the
order of the ccw's must be reversed at the end of the
block because the storage areas associated with the
ccw's are used in reverse sequence.

Use of self-describing blocks, however, is equivalent
to use of unchecked data. An I/O data transfer mal­
function that affects validity of a block of information
is signaled only at the completion of data transfer. The
error condition normally does not prcmaturely termin­
ate or otherwise affect the execution of the operation.
Thus, there is no assurance that a ccw read as data is
valid until the operation is completed. If the ccw thus
read is in error, use of the ccw in the current opera­
tion may cause subsequent data to be placed in wrong
locations in main storage with resultant destruction of
its contents, subject to the control of the protection
system.

Command Chaining

During command chaining, the new ccw fetched by
the channel specifies a new I/O operation. The chan­
nel fetches the new ccw and initiates the new oper­
ation upon the receipt of the device-end signal for the
current operation. When command chaining takes
place, the completion of the current operation does
not cause an I/O interruption, and the count indicat­
ing the amount of data transferred during the current
operation is not made available to the program. For

operations involving data transfer, the new command
always applies to the next block of data at the device.

'Command chaining takes place and the new oper­
ation is initiated only if no unusual conditions have
been detected in the current operation. In particular,
the channel initiates a new I/O operation by com­
mand chaining upon receipt of a status byte contain­
ing only the following bit combinations: device end,
device end and status modifier, device end and chan­
ne] end, device end and channel end and status modi­
fier. In the former two cases a channel end must have
been signaled before device end, with all other status
bits off. If a condition such as attention, unit check,
unit exception, incorrect length, program check, or
protection check has occurred, the sequence of opera­
tions is terminated, and the status associated with the
current operation causes an interruption condition to
be generated. The new ccw in this case is not fetched.
The incorrect-length condition does not suppress com­
mand chaining if the current ccw has the SLI Hag on.

An exception to sequential chaining of ccw's occurs
when the I/O device presents the status-modifier con­
dition with the device-end signal. When command
chaining is specified and no unusual conditions have
been detected, the combination of status-modifier and
device-end bits causes the channel to fetch and chain
to the ccw whose main-storage address is 16 higher
than that of the current ccw.

When both command and data chaining are used,
the first ccw associated with the operation specifies
the operation to be executed, and the last ccw indi­
cates whether another operation follows.

Programming Note

Command chaining makes it possible for the program
to initiate transfer of multiple blocks of data by means
of a single START I/O. It also permits a sub channel to
be set up for execution of auxiliary functions, such as
positioning the disk access mechanism, and for data
transfer operations without interference by the pro­
gram at the end of each operation. Command chain­
ing, in conjunction with the status-modifier condition,
permits the channel to modify the normal sequence of
operations in response to signals provided by the I/O

device.

Skipping

Skipping is the suppression of main-storage references
during an I/O operation. It is defined only for read,
read backward, and sense operations and is controlled
by the skip Hag, which can be specified individually
for each ccw. When the skip Hag is one, skipping. oc­
curs; when zero, normal operation takes place. The

Input/Output Operations 103

setting of the skip flag is ignored in all other oper­
ations.

Skipping affects only the handling of information
by the channel. The operation at the I/O device pro­
ceeds normally, and information is transferred to the
channel. The channel keeps updating the count but
does not place the information in main storage. If the
chain-command or chain-data flag is one, a new ccw
is obtained when the count reaches zero. In the case
of data chaining, normal operation is resumed if the
skip flag in the new ccw is zero.

No checking for invalid or protected data addresses
takes place during skipping, except that the initial
data address in the ccw cannot exceed the addressing
capacity of the model.

Programming Note

Skipping, when combined with data chaining, permits
the program to place in main storage selected portions
of a block of information from an I/O device.

Program-Controlled Interruption

The program-controlled interruption (PC!) function
permits the program to cause an I/O interruption dur­
ing execution of an I/O operation. The function is con­
trolled by the PCI flag in the ccw. The flag can be on
either in the first ccw specified by START I/O or in a
ccw fetched during chaining. Neither the PC! flag nor
the associated interruption affects the execution of the
current operation.

Whenever the PCI flag in the ccw is on, the channel
attempts to interrupt the program. When the first ccw
associated with an operation contains the PCI flag,
either initially or upon command chaining, the inter­
ruption may occur as early as immediately upon the
initiation of the operation. The PCI flag in a ccw
fetched on data chaining causes the interruption to
occur after all data designated by the preceding ccw
have been transferred. The time of the interruption,
however, depends on the model and the current ac­
tivity in the system and may be delayed even if the
channel is not masked. No predictable relation exists
between the time the interruption due to the PC! flag
occurs and the progress of data transfer to or from the
area designated by the ccw, but the fields within the
csw pertain to the same instant of time.

If chaining occurs before the interruption due to
the PCI flag has taken place, the PCI condition is car­
ried over to the new ccw. This carryover occurs both
on data and command chaining and, in either case,
the condition is propagated through the transfer-in­
channel command. The PCI conditions are not stacked;
that is, if another ccw is fetched with a PCI flag before
the interruption due to the PC! flag of the previous

104

ccw has occurred, only one interruption takes place.
A csw containing the PC! bit may be stored by an

interruption while the operation is still proceeding or
by an interruption or TEST I/O upon the termination
of the operation. It cannot be stored by TEST I/O

while the subchannel is in the working state.
When the csw is stored by an interruption before

the operation or chain of operations has been termi­
nated, the command address is eight higher than the
address of the current ccw, and the count is unpre­
dictable. All unit-status bits in the csw are zero. If the
channel has detected any unusual conditions, such as
channel data check, program check, or protection
check by the time the interruption occurs, the corre­
sponding channel-status bit is on, although the con­
dition in the subchannel is not reset and is indicated
again upon the termination of the operation.

Presence of any unit-status bit in the csw indicates
that the operation or chain of operations has been
terminated. The csw in this case has its regular for­
mat with the PC! bit added.

However, when the interruption condition due to
the PC! flag has been delayed until the operation at
the subchannel has been terminated, two interrup­
tions from the subchannel may still take place, with
the first interruption indicating and clearing the PC!

condition alone, and the second providing the csw
associated with the ending status. Whether one or
two interruptions occur depends on the model, and
on whether the PCI condition has been assigned the
highest priority for interruption at the time of termi­
nation. The TEST I/O addressed to the device associated
with an interruption condition in the sub channel clears
the PCI condition as well as the one associated with
the termination.

The setting of the PCI flag is inspected in every ccw
except those specifying transfer in channel. In a ccw
specifying transfer in channel, the setting of the flag
is ignored. The PC! flag is ignored also during initial
program loading.

Programming Note

Since no unit-status bits are placed in the csw associ­
ated with the termination of an operation on the se­
lector channel by HALT I/O, the presence of a unit­
status bit with the PCI bit is not a necessary condition
for the operation to be terminated. When the selector
channel contains the PCI bit at the time the operation
is terminated by HALT I/O, the csw associated with
the termination is indistinguishable from the csw pro­
vided by an interruption during execution of the op­
eration.

Program-controlled interruption provides a means
of alerting the program of the progress of chaining

during an I/O operation. It permits programmed dy­
namic main-storage allocation.

Commands

The following table lists the command codes for the
six commands and indicates which _Hggs are defined
for each command. The Hags are ignored for all com­
mands for which they are not defined'.

Write
Read

NAME

Read backward
Control
Sense
Transfer in channel

NOTES

CODE FLAG

MMMM MMOI CD CC SLI PCI
MMMM MMIO CD CC SLI SKIP PCI
MMMM 11 00 CD CC SLI SKIP PCI
MMMM MMII CD CC SLI PCI
MMMM 0 1 00 CD CC SLI SKIP PCI
xxxxl000

CD Chain data
CC Chain command
SLI Suppress length indication
SKIP Skip
PCI Program-controlled interruption
M Modifier bit
X Ignored

All Hags have individual significance, except that
the cc and SLI Hags are ignored when the CD Hag is on.
The SLI Hag is ignored on immediate operations, in
which case the incorrect-length indication is sup­
pressed regardless of the setting of the Hag. The PC!

Hag is ignored during initial program loading.
Each command is described below with an illustra­

tion of its ccw format.

Programming Note

A malfunction that affects the validity of data trans­
ferred in an I/O operation is signaled at the end of the
operation by means of unit check or channel data check,
depending on whether the device (control unit) or
the channel detected the error. In order to make use
of the checking facilities prOVided in the system, data
read in an input operation should not be used until
the end of the operation has been reached and the
validity of the data has been checked. Similarly, on
writing, the copy of data in main storage should not
be destroyed until the program has verified that no
malfunction affecting the transfer and recording of
data was detected.

Write

IMMMMMM01[Data Address

78 31

Count
32 35 3940 4748 63

A write operation is initiated at the I/O device, and the
sub channel is set up to transfer data from main storage

to the I/O device. Data in storage are fetched in an
ascending order of addresses, starting with the ad­
dress specified in the ccw.

A ccw used in a write operation is inspected for the
CD, CC, SLI, and the PCI Hags. The setting of the SKIP

flag is ignored. Bit positions 0-5 of the ccw contain
modifier bits.

Programming Note

When writing on devices for which block length is
not defined, such as a magnetic tape unit or an inquiry
station, the amount of data written is controlled only
by the count in the ccw. Every operation terminated
under count control causes the incorrect-length indica­
tion, unless the indication is suppressed by the SLI Hag.

Read

IMMMMMMI0\ Data Address

78 31

~IB\~~[al~~12::1.......::fO~0~~~:;---_c_oun_t _:J
32 3940 4748 63

A read operation is initiated at the I/O device, and the
subchannel is set up to transfer data from the device
to main storage. For devices such as magnetic tape
units, disk storage, and card equipment, the bytes of
data within a block are provided in the same sequence
as written by means of a write command. Data in
storage are placed in an ascending order of addresses,
starting with the address specified in the ccw.

A ccw used in a read operation is inspected for
everyone of the five Hags - CD, cc, SLI, SKIP, and PC!.

Bit positions 0-5 of the ccw contain modifier bits.

Read Backward

IMMMMII00 [Data Address

78 31

Count
32 3940 4748 63

A read-backward operation is initiated at the I/O de­
vice, and the subchannel is set up to transfer data
from the device to main storage. On magnetic tape
units, read backward causes reading to be performed
with the tape moving backwards. The bytes of data
within a block are sent to the channel in a sequence
opposite to that on writing. The channel places the
bytes in storage in a descending order of address, start-

Input/Output Operations 105

ing with the address specified in the ccw. The bits
within an eight-bit byte are in the same order as sent
to the device on writing.

A ccw used in a read-backward operation is in­
spected for everyone of the five Hags - CD, CC, SLI,

SKIP, and PCI. Bit positions 0-3 of the ccw contain
modifier bits.

Control

IMMMMMM 111 Data Address I
o 78 31

Isldafffa2100~ Count I
32 3S 39 40 47 48 63

A control operation is initiated at the I/O device, and
the subchannel is set up to transfer data from main
storage to the device. The device interprets the data
as control information. The control information, if
any, is fetched from storage in an ascending order of
addresses, starting with the address specified in the
ccw. A control command is used to initiate at the I/O

device an operation not involving transfer of data -
such as backspacing or rewinding magnetic tape or
positioning a disk access mechanism.

For most control functions, the entire operation is
specified by the modifier bits in the command code,
and the function is performed over the I/O interface
as an immediate operation (see "Immediate Opera­
tions"). If the command code does not specify the
entire control function, the data-address field of the
ccw designates the location containing the required
additional information. This control information may
include an order code further specifying the operation
to be performed or an address, such as the disk address
for the seek function, and is transferred in response to
requests by the device.

A control command code containing zeros for the
~ix modifier bits is defined as no operation. The no­
operation order causes the addressed device to respond
with channel end and device end without causing any
action at the device. The order can be executed as an
imrr.ediate operation, or the device can delay the
status until after the initiation sequence is completed.
Other operations that can be initiated by means of the
control command depend on the type of I/O device.
These operations and their codes are specified in the
SRL puhiication for the device.

A cc~y used in a control operation is inspected for
the CD, \ ;C, SLI, and the PCI Hags. The setting of the
skip flag is ignored. Bit positions 0-5 of the ccw con­
tain modifi ~r bits.

106

Programming Note

Since a ccw with a count of zero is invalid, the pro­
gram cannot use the ccw count field to . specify that
no data be transferred to the I/O device. Any opera­
tion terminated before data have been transferred
causes the incorrect-length indication, provided the
operation is not immediate and has not been rejected
during the initiation sequence. The incorrect-length
indication is suppressed when the SLI Hag is on.

Sense

IMMMMO 100 I Data Address I
7 8 31

Isl~I~I~12~00~ Count I
32 3940 474.8 63

A sense operation is initiated at the I/O device, and
the subchannel is set up to transfer data from the de­
vice to main storage. The data are placed in storage
in an ascending order of addresses, starting with the
address specified in the ccw.

Data transferred during a sense operation provide
information concerning both unusual conditions de­
tected in the last operation and the status of the de­
vice. The status information provided by the sense
command is more detailed than that supplied by the
unit-status byte and may describe reasons for the unit­
check indication. It may also indicate, for example, if
the device is in the not-ready state, if the tape unit is
in the file-protected state, or if magnetic tape is posi­
tioned beyond the end-of-tape mark.

For most devices, the first six bits of the sense data
describe conditions detected during the last opera­
tion. These bits are common to all devices having this
type of information and are designated as follows:

BIT DESIGNATION

o Command reject
1 Intervention required
2 Bus-out check
3 Equipment check
4 Data check
5 Overrun

The following is the meaning of the first six bits:
Command Reject: The device has detected a pro­

gramming error. A command has been received which
the device is not designed to execute, such as read
backward issued to a direct-access storage device, or
which the device cannot execute because of its present
state, such as write issued to a file-protected tape unit.
Command reject is also indicated when the program
issues an invalid sequence of commands, such as write
to a direct-access storage device without previously
designating the data block.

Intervention Required: The last operation could not
be executed because of a condition requiring some
type of intervention at the device. This bit indicates
conditions such as an empty hopper in a card punch
or the printer being out of paper. It is also turned on
when the addressed device is in the not-ready state, is
in test mode, or is not provided on the control unit.

Bus-Out Check: The device or the control unit has
received a data byte or a command code with an in­
valid parity over the I/O interface. During writing,
bus-out check indicates that incorrect data have been
recorded at the device, but the condition does not
cause the operation to be terminated prematurely.
Parity errors on command codes and control informa­
tion cause the operation to be immediately terminated
and suppresses checking for command-reject and in­
tervention-required conditions.

Equipment Check: During the last operation, the
device or the control unit has detected equipment mal­
functioning, such as an invalid card hole count or
printer buffer parity error.

Data Check: The device or the control unit has de­
tected a data error other than those included in bus­
out check. Data check identifies errors associated with
the recording medium and includes conditions such as
reading an invalid card code or detecting invalid par­
ity on data recorded on magnetic tape.

On an input operation, data check indicates that
incorrect data may have been placed in main storage.
The .control unit forces correct parity on data sent to
the channel. On writing, this condition indicates that
incorrect data may have been recorded at the device.
Unless the operation is of a type where the error pre­
cludes meaningful continuation, data errors on read­
ing and writing do not cause the operation to be
terminated prematurely.

Overrun: The channel has failed to respond on time
to a request for service from the device. Overrun can
occur when data are transferred to or from a non­
buffered control unit operating with a synchronous
medium, and the total activity initiated by the program
exceeds the capability of the channel. When the chan­
nel fails to accept a byte on an input operation, the
following data in main storage are shifted to fill the
gap. On an output operation, overrun indicates that
data recorded at the device may be invalid. The over­
run bit is also turned on when the device receives the
new command too late during command chaining.

All information significant to the use of the device
normally is provided in the first two bytes. Any bit
positions following those used for programming in­
formation contain diagnostic information, which may
extend to as many bytes as needed. The amount and

the meaning of the status information are peculiar to
the type of I/O device and are specified in the SRL

publication for the device.
The basic sense command has zero modifier bits.

This command initiates a sense operation on all de­
vices and cannot cause the command-reject, interven­
tion-required, data-check, or overrun bits to be turned
on. If the control unit detects an equipment malfunc­
tion, or invalid parity of the sense command code, the
equipment-check or bus-out-check bits are turned on,
and unit check is sent with channel end.

Devices that can provide special diagnostic sense in­
formation or can be instructed to perform other special
functions by use of the sense command, may define
modifier bits for the control of these functions. The
special sense operations may be initiated by a unique
combination of modifier bits, or a group of codes may
specify the same function. Any remaining sense com­
mand codes may be considered invalid, thus causing
the unit-check indication, or may cause the same
action as the basic sense command, depending upon
the type of device.

The sense information pertaining to the last I/O op­
eration is reset the next time the program causes the
associated control unit to be selected, unless the selec­
tion is due to the execution of TEST I/O, or HALT I/O,

or unless the basic sense operation, or a no-operation
order is initiated at the control unit.

A ccw used in a sense operation is inspected for
everyone of the five flags - CD, CC, SLI, SKIP, and
pel. Bit positions 0-3 of the ccw contain modifier bits.

Transfer In Channel

~ ~~~~1_0_0_0~1~ __ C_C_W __ A_d_d_re_ss __________________ ~
3 '" 7 8 31

The next ccw is fetched from the location designated
by the data-address field of the ccw specifying trans­
fer in channel. The transfer-in-channel command does
not initiate any I/O operation at the channel, and the
I/O device is not signaled of the execution of the com­
mand. The purpose of the transfer in channel com­
mand is to provide chaining between ccw's not lo­
cated in adjacent double-word locations in an ascend­
ing order of addresses. The command can occur in
both data and command chaining.

The first ccw designated by the CAW may not specify
transfer in channel. When this restriction is violated,
no I/O operation is initiated, and the program-check

Input/Output Operations 107

condition is generated. The error causes the status por­
tion of the csw with the program:.check indication to
be stored during the execution of START I/O.

To address a ccw on integral boundaries for double
words, a ccw specifying transfer in channel must con­
tain zeros in bit positions 29-31. Furthermore, a ccw
specifying a transfer in channel may not be fetched
from a location designated by an immediately preced­
ing transfer in channel. When either of these errors is
detected or when an invalid address is specmed in
transfer in channel, the program-check condition is
generated. When the transfer-in-channel command
designates a ccw in a location protected for fetching,
the protection-check condition is generated. Detec­
tion of these errors during data chaining causes the
operation at the I/O device to be terminated, whereas
during command chaining they cause an interruption
condition to be generated.

The contents of the second half of the ccw, bit po­
sitions 32-63, are ignored. Similarly, the contents of bit
positions 0-3 of the ccw are ignored.

Termination of Input/Output Operations
When the operation or sequence of operations initiated
by START I/O is terminated, the channel and the device
generate status conditions. These conditions can be
brought to the attention of the prograrrr by means of
an I/O interruption, by TEST I/O, or, in certain cases, by
START I/O. The status conditions, as well as an address
and a count indicating the extent of the operation
sequence, are presented to the program in the form of
a channel status word (csw).

Types of Termination

Normally an I/O operation at the subchannel lasts until
the device signals channel end. The channel-end con­
dition can be signaled during the sequence initiating
the operation, or later. When the channel detects
equipment malfunctioning or a system reset is per­
formed, the channel disconnects the device without
rec~iving channel end. The program can force a de­
vice on the selector channel to be disconnected pre­
maturely by issuing HALT I/O.

Termination at Operation Initiation

After the addressed channel and sub channel have been
verified to be in a state where START I/O can be exe­
cuted, certain tests are performed on the validity of
the information specified by the program and on the
availability of the addressed control unit and I/O de­
vice. This testing occurs both during the execution of
START I/O and during command chaining.

A data-transfer operation is initiated at the subchan­
nel and device only when no programming or equip-

108

ment errors are detected by the channel and when the
device responds with zero status during the initiation
sequence. When the channel detects or the device sig­
nals any unusual condition during the initiation of an
operation, but channel end is off, the command is said
to be rejected.

Rejection of the command during the execution of
START I/O is indicated by the setting of the condition
code in the psw. Unless the device is not operational,
the conditions that precluded the initiation are de­
tailed by the portion of the csw stored by START I/O.

The device is not started, no interruption conditions
are generated, and the sub channel is not tied up. be­
yond the initiation sequence. The device is immedi­
ately available for the initiation of another operation,
provided the command was not rejected because of
the busy or non-operational condition.

When an unusual condition causes a command to be
rejected during initiation of an I/O operation by com­
mand chaining, an interruption condition is generated,
and the sub channel is not available until the condition
is cleared. The conditions are indicated to the program
by means of the corresponding status bits in the csw.
The not-operational condition, which during the exe­
cution of START I/O causes condition code 3 to be set,
is indicated by means of the interface-control-check
bit. The new operation at the I/O devices is not started.

Immediate Operations

Instead of accepting or rejecting a command, the I/O

device can signal the channel-end condition immedi­
ately upon receipt of the command code. An I/O op­
eration causing the channel-end condition to be sig­
naled during the initiation sequence is called an
"immediate operation."

When the first ccw designated by the CAW initiates
an immediate operation, no interruption condition is
generated. If no command chaining occurs, the chan­
nel-end condition is brought to the attention of the
program by causing START I/O to store the csw status
portion, and the subchannel is immediately made avail­
able to the program. The I/O operation, however, is
initiated, and, if channel-end is not accompanied by
device end, the device remains busy. Device end, when
subsequently provided by the device, causes an inter­
ruption condition to be generated.

When command chaining is speCified after an im­
mediate operation and no unusual conditions have
been detected during the execution, START I/O does not
cause storing of csw status. The subsequent commands
in the chain are handled normally, and the channel-end
condition for the last operation generates an inter­
ruption condition even if the device provides the sig­
nal immediately upon receipt of the command code.

Whenever immediate completion of an I/O oper­
ation is signaled, no data have been transferred to or
from the device. The data address in the ccw is not
checked for validity, except that it may not exceed
the addressing capacity of the model.

Since a count of zero is not valid, any ccw specifying
an immediate operation must contain a nonzero count.
When an immediate operation is executed, however,
incorrect length is not indicated to the program, and
command chaining is performed when so specified.

Programming Note

Control operations for which the entire operation is
specified in the command code may be executed as
immediate operations. Whether the control function is
executed as an immediate operation depends on the
operation and type of device and is specified in the SRL

publication for the device.

Termination of Data Transfer

When the device accepts a command, the subchannel
is set up for data transfer. The subchannel is said to
be working during this period. Unless the channel de­
tects equipment malfunctioning or, on the selector
channel, the operation is terminated by HALT I/O, the
working state lasts until the channel receives the chan­
nel-end signal from the device. When no command
chaining is specified or when chaining is suppressed
because of unusual conditions, the channel-end con­
dition causes the operation at the sub channel to be ter­
minated and an interruption condition to be generated.
The status bits in the associated csw indicate channel
end and the unusual conditions, if any. The device can
signal channel end at any time after initiation of the
operation, and the signal may occur before any data
have been transferred.

For operations not involving data transfer, the de­
vice normally controls the timing of the channel-end
condition. The duration of data transfer operations
may be variable and may be controlled by the device
or the channel.

Excluding equipment errors and HALT I/O, the chan­
nel signals the device to terminate data transfer when­
ever any of the following conditions occurs:

The storage areas specified for the operation are
exhausted or filled.

Program-check condition is detected.
Protection-check condition is detected.
Chaining-check condition is detected.

The first of these conditions occurs when the channel
has stepped the count in the last ccw associated with
the operation to zero. A count of zero indicates that
the channel has transferred all information specified
by the program. The other three conditions are due to

errors and cause premature termination of data trans­
fer. In either case, the termination is signaled in re­
sponse to a service request from the device and causes
data transfer to cease. If the device has no blocks de­
fined for the operation (such as writing on magnetic
tape), it terminates the operation and generates the
channel-end condition.

The device can control the duration of an operation
and the timing of channel end by blocking of data. On
certain operations for which blocks are defined (such
as reading on magnetic tape), the device does not
provide the channel-end signal until the end of the
block is reached, regardless of whether or not the de­
vice has been previously signaled to terminate data
transfer.

The channel suppresses initiation of an I/O operation
when the data address in the first ccw associated with
the operation exceeds the addreSSing capacity of the
model. Complete check for the validity of the data ad­
dress is performed only as data are transferred to or
from main storage. When the initial data address in
the ccw is invalid, no data are transferred during the
operation, and the device is signaled to terminate the
operation in response to the first service request. On
writing, devices such as magnetic tape units request
the first byte of data before any mechanical motion is
started and, if the initial data address is invalid, the
operation is terminated before the recording medium
has been advanced. However, since the operation has
been initiated, the device provides channel end, and
an interruption condition is generated. Whether a
block at the device is advanced when no data are
transferred depends on the type of device and is speci­
fied in the SRL publication for the device.

When command chaining takes place, the sub chan­
nel appears in the working state from the time the
first operation is initiated until the device signals the
channel-end condition of the last operation of the
chain. On the selector channel, the device executing
the operation stays connected to the channel and the
whole channel appears to be in the working state for
the duration of the execution of the chain of oper­
ations. On the multiplexor channel an operation in the
burst mode causes the channel to appear to be in the
working state only for the duration of the transfer of
the burst of data. If channel end and device end do
not occur concurrently, the device disconnects from
the channel after providing channel end, and the chan­
nel can in the meantime communicate with other de­
vices on the interface.

Any unusual conditions cause command chaining to
be suppressed and an interruption condition to be gen­
erated. The unusual conditions can be detected by

Input/Output Operations 109

either the channel or the device, and the device can
provide the indications with channel end, control unit
end, or device end. When the channel is aware of the
unusual condition by the time the channel-end signal
for the operation is received, the chain is terminated
as if the operation during which the condition oc­
curred were the last operation of the chain. The de­
vice-end signal subsequently is processed as an inter­
ruption condition. When the device signals unit check
or unit exception with control unit end or device end,
the sub channel terminates the working state upon re­
ceipt of the signal from the device. The channel-end
indication in this case is not made available to the
program.

Termination by HALT I/O

The instruction HALT r/o causes the current operation
at the addressed channel or subchannel to be termi­
nated immediately. The method of termination differs
from that used upon exhaustion of count or upon de­
tection of programming errors to the extent that ter­
mination by HALT r/o is not contingent on the receipt
of a service request from the device.

When HALT r/o is issued to a channel operating in
the burst mode, the channel issues the halt-rio signal
to the device regardless of the current activity in the
channel and on the interface. If the channel is involved
in the data-transfer portion of an operation, data trans­
fer is immediately terminated, and the device is dis­
connected from the channel. If HALT r/ a is addressed
to a selector channel executing a chain of operations
and the device has already provided channel end for
the current operation, the instruction causes the de­
vice to be disconnected and the chain-command Hag
to be removed.

When HALT r/o is issued to the multiplexor channel
and the channel is not operating in the burst mode,
HALT r/o causes the device to be selected, and the
halt-I/O signal is issued as the device responds. When
command chaining is indicated in the subchannel,
HALT I/O causes the chain-command Hag to be turned
off.

Termination of an operation by HALT r/o on the se­
lector channel results in up to four distinct interrup­
tion conditions. The first one is generated by the chan­
nel upon execution of the instruction and is not con­
tingent on the receipt of status from the device. The
command address and count in the associated csw
indicate how much data have been transferred, and
the channel-status bits reHect the unusual conditions,
if any, detected during the operation. If HALT I/O is
issued before all data specified for the operation have
been transferred, incorrect length is indicated, subject
to the control of the SLI Hag in the current ccw. The

110

execution of HALT I/O itself is not reHected in csw
status, and all status bits in a csw due to this inter­
ruption condition can be zero. The channel is available
for the initiation of a new r/ a operation as soon as the
interruption condition is cleared.

The second interruption condition on the selector
channel occurs when the control unit generates the
channel-end condition. The selector channel handles
this condition as any other interruption condition from
the device after the device has been disconnected from
the channel, and provides zeros in the protection key,
command address, count, and channel status fields of
the associated csw. The channel-end condition is not
made available to the program when HALT r/o is issued
to a channel executing a chain of operations and the
device has already provided channel end for the cur­
rent operation.

Finally, the third and fourth interruption conditions
occur when control unit end, if any, and device end
are generated. These conditions are handled as for any
other I/O operation.

Termination of an operation by HALT I/O on the
multiplexor channel causes the normal interruption
conditions to be generated. If the instruction is issued
when the subchannel is in the data-transfer portion of
an operation, the sub channel remains in the working
state until channel end is signaled by the device, at
which time the subchannel is placed in the interrup­
tion-pending state. If HALT r/o is issued after the de­
vice has signaled channel end and the sub channel is
executing a chain of operations, the channel-end con­
dition is not made available to the program, and the
subchannel remains in the working state until the next
status byte from the device is received. Receipt of a
status byte subsequently places the sub channel in the
interruption-pending state.

The csw associated with the interruption condition
in the subchannel contains the status bytes provided
by the device and the channel, and indicates at what
point data transfer was terminated. If HALT I/O is is­
sued before all data areas associated with the current
operation have been exhausted or filled, incorrect
length is indicated, subject to the control of the SLI

Hag in the current ccw. The interruption condition is
processed as for any other type of termination.

Programming Note

The csw associated with a write operation terminated
by HALT I/O indicates how many bytes the channel
has sent to the device. Since the execution of HALT I/O
may cause the loss of the byte of data in transit over
the I/O interface and may cause the device to suppress
recording of data contained in its buffer, if any, all

bytes that have left the channel may not necessarily
be recorded at the I/O device.

Termination Due to Equipment Malfunction

When channel equipment malfunctioning is detected
or invalid signals are received over the I/O interface,
the recovery procedure and the subsequent states of
the subchannels and devices on the channel depend
on the type of error and on the model. Normally, the
program is alerted of the termination by an I/O inter­
ruption, and the associated csw indicates the channel­
control-check or interface-control-check condition. In
channels sharing common equipment with the CPU,

malfunctioning detected by the channel may be indi­
cated by a machine-check interruption, in which case
no csw is stored. Equipment malfunctioning may cause
the channel to perform the malfunction-reset function.

Input I Output Interruptions

Input! output interruptions provide a means for the
CPU to change its state in response to conditions that
occur in I/O devices or channels. These conditions can
be caused by the program or by an external event at
the device.

Interruption Conditions

The conditions causing requests for I/O interruptions
to be initiated are called I/O interruption conditions.
An I/O interruption condition can be brought to the
attention of the program only once and is cleared
when it causes an interruption. Alternatively, an I/O

interruption condition can be cleared by TEST 1/0, and
conditions generated by the I/O device following the
termination of the operation at the subchannel can be
cleared by START I/O. The latter include the attention,
device-end, and control-unit-end conditions, and the
channel-end condition when provided by a device on
the selector channel after termination of the operation
by HALT I/O.

The device attempts to initiate a request to the
channel for an interruption whenever it detects any
of the following conditions:

Channel end
Control-unit end
Device end
Attention
The device may also, at command chaining, have

created an interruption condition at the device, which
can be due to the following conditions:

Unit check
U nit exception
Busy indication from device
Program check
Protection check

When an operation initiated by command chaining
is terminated because of an unusual condition detected
during the command initiation sequence, the interrup­
tion condition may remain pending within the chan­
nel, or the channel may create an interruption condition
at the device. An interruption condition is created at
the device in response to presentation of status by the
device and causes the device subsequently to present
the same status for interruption purposes. The inter­
ruption condition at the device mayor may not be
associated with unit status. If the unusual condition is
detected by the device (unit check, unit exception, or
busy) the unit-status field of the associated csw iden­
tifies the condition. In the case of program and pro­
tection check, the identification of the error condition
is preserved in the subchannel, and appears in the
channel-status field of the associated csw. If the as­
sociated interruption condition has been queued at
the device, the device provides zero status for inter­
ruption purposes. When command chaining takes
place, channel end and device end do not cause an
interruption, and are not made available.

An interruption condition caused by the device may
be accompanied by channel and other unit status con­
ditions. Furthermore, more than one interruption con­
dition associated with the same device can be cleared
at the same time. As an example, when the channel­
end condition is not cleared at the device by the time
device end is generated, both conditions may be indi­
cated in the csw and cleared at the device concur­
rently.

However, at the time the channel assigns highest
priority for interruptions to a condition associated
with an operation at the sub channel, the channel ac­
cepts the status from the device and clears the condi­
tion at the device. The interruption condition and the
associated status indication are subsequently preserved
in the subchannel. Any subsequent status generated
by the device is not included with the condition at
the sub channel, even if the status is generated before
the CPU accepts the condition.

When the channel detects any of the following con­
ditions, it initiates a request for an I/O interruption
without communicating and without having received
the status byte from the device:

PCI Flag in a CCW
Execution of HAL T I/O on a selector channel

The interruption conditons from the channel can be
accompanied by other channel status indications, but
none of the device status bits is on when the channel
initiates the interruption.

The method of processing a request for interrup­
tion due to equipment malfunctioning depends on the
model. In channels sharing common equipment with

Input/Output Operations 111

the CPU, malfunctioning detected by the channel may
be indicated by causing a machine-check interruption.

Priority of Interruptions

All requests for I/O interruption are asynchronous to
the activity in the CPU, and interruption conditions as­
sociated with more than one I/O device can exist at
the same time. The priority among requests is con­
trolled by two types of mechanisms - one establishes
the priority among interruption conditions associated
with devices attached to the same channel, and another
establishes priority among requests from different
channels. A channel requests an I/O interruption only
after it has established priority among requests from
its devices. The conditions responsible for the requests
are preserved in the devices or channels until accepted
by the CPU.

Assignment of priority to requests for interruption
associated with devices on anyone channel is a func­
tion of the type of interruption condition and the po­
sition of the device on the I/O interface cable. A de­
vice's position on the cable is not related to its address.

The selector channel assigns the highest priority to
conditions associated with the portion of the operation
in which the channel is involved. These conditions in­
clude channel end, program-controlled interrup­
tion, execution of HALT I/O in the channel, and errors
prematurely terminating a chain of operations. The
selector channel cannot handle any interruption condi­
tions other than those due to the PC! Hag while opera­
tion is in progress.

As soon as the selector channel has cleared the in­
terruption conditions associated with data transfer, it
starts monitoring devices for attention, control-unit-end,
and device-end conditions and for the channel-end
condition associated with operations terminated by
HALT I/O. The highest priority is assigned to the I/O

device that first identifies itself on the interface.
On the multiplexor channel the priority among re­

quests for interruption is based only on response from
devices. The highest priority is assigned to the device
that first identifies itself with an interruption condition
or that requests service for data transfer and contains
the PCI condition in the suhchannel. The PCI, as well
as any other condition in the subchannel, cannot cause
an I/O interruption unless the device initiates a refer­
ence to the subchannel.

Except for conditions associated with termination of
data transfer, the current assignment of priority for
interruption among devices on a channel may be can­
celed when START I/O, TEST I/O, or HALT I/O is issued
to the channel. Whenever the assignment is canceled,
the channel resumes monitoring for interruption con-

112

ditions and reassigns the priority on completion of the
activity associated with the I/O instruction.

The assignment of priority among requests for inter­
ruption from channels is based on the type of channel
and its address assignment. The priorities of channels
1-6 are in the order of their addresses, with channel 1
having the highest priority. The interruption priority
of multiplexor channel 0 is not fixed, and depends on
the model and on the current activity in the channel.
Its priority may be above, below, or between those of
channels 1-6.

Interruption Adion

An I/O interruption can occur only when the channel
accommodating the device is not masked and after the
execution of the current instruction in the CPU has
been terminated. If a channel has established the
priority among requests for interruption from devices
while it is masked, the interruption occurs immediate­
ly after the termination of the instruction removing
the mask and before the next instruction is executed.
This interruption is associated with the highest priority
condition on the channel. If more than one channel is
unmasked concurrently, the interruption occurs from
the channel having the highest priority among those
requesting interruption.

If the priority among interruption conditions has not
yet been established in the channel by the time the
mask is removed, the interruption does not necessarily
occur immediately after the termination of the instruc­
tion removing the mask. This delay can occur regard­
less of how long the interruption condition has existed
in the device or the subchannel.

The interruption causes the current program status
word (psw) to be stored as the old psw at location 56
and causes the csw associated with the interruption to
be stored at location 64. Subsequently, a new psw is
loaded from location 120, and processing resumes in
the state indicated by this psw. The I/O device or, in
the case of control unit end, the control unit causing
the interruption is identified by the channel address in
bit positions 16-23 and by the device address in bit
positions 24-31 of the old psw. The csw associated
with the interruption identifies the condition respon­
sible for the interruption and provides further details
about the progress of the operation and the status of
the device.

Programming Note

When a number of I/O devices on a shared control unit
are concurrently executing operations such as rewind­
ing tape or positioning a disk access mechanism, the
initial device-end signals generated on completion of
the operations are provided in the order of generation,

unless command chaining is specified for the operation
last initiated. In the latter case, the control unit pro­
vides the device-end signal for the last initiated op­
eration first, and the other signals are delayed until
the sub channel is freed. Whenever interruptions due
to the device-end signals are delayed either because
the channel is masked or the subchannel is busy, the
original order of the signals is destroyed.

Channel Status Word

The channel status word (csw) provides to the pro­
gram the status of an I/O device or the conditions
under which an I/O operation has been terminated.
The csw is formed, or parts of it are replaced, in the
process of I/O interruptions and during execution of
START I/O, TEST I/O, and HALT I/O. The csw is placed in
main storage at location 64 and is available to the pro­
gram at this location until the time the next I/O inter­
ruption occurs or until another I/O instruction causes
its content to be replaced, whichever occurs first.

When the csw is stored as a result of an I/O inter­
ruption, the I/O device is identified by the I/O address
in the old psw. The information placed in the csw by
START I/O, TEST I/O, or HALT I/O pertains to the device
addressed by the instruction.

The csw has the following format:

1 Key 100001 Command Address
34 18 31

Status Count

32 4748 63

The. fields in the csw are allocated for the following
purposes:

Protection Key: Bits 0-3 form the protection key
used in the chain of operations at the subchannel.

Command Address: Bits 8-31 form an address that
is eight higher than the address of the last ccw used.

Status: Bits 32-47 identify the conditions in the de­
vice and the channel that caused the storing of the
csw. Bits 32-39 are obtained over the I/O interface and
indicate conditions detected by the device or the con­
trol unit. Bits 40-47 are provided by the channel and
indicate conditions associated with the subchanneI.
Each of the 16 bits represents one type of condition,
as follows:

BIT DESIGNATION BIT DESIGNATION

32 Attention 40 Program-controlled
interruption

33 Status modifier 41 Incorrect length
34 Control unit end 42 Program check
35 Busy 43 Protection check
36 Channel end 44 Channel data check
37 Device end 45 Channel control check
38 Unit check 46 Interface control check
39 Unit exception 47 Chaining check

Count: mts 48-63 form the residual count for the
last ccw used.

Unit Status Conditions

The following conditions are detected by the I/O de­
vice or control unit and are indicated to the channel
over the I/O interface. The timing and causes of these
conditions for each type of device are specified in the
SRL publication for the device.

When the I/O device is accessible from more than
one channel, status due to channel-initiated operations
is signaled to the channel that initiated the associated
I/O operation. The handling of conditions not associ­
ated with I/O operations, such as attention or device
end due to transition from the not-ready to the ready
state, depends on the type of device and condition and
is specified in the SRL publication for the device.

The channel does not modify the status bits received
from the I/O device. These bits appear in the csw as
received over the interface.

Attention

Attention is generated when the device detects an
asynchronous condition that is significant to the pro­
gram. The condition is interpreted by the program
and is not associated with the initiation, execution, or
termination of an I/O operation.

The device can signal the attention condition to the
channel only when no operation is in progress at the
I/O device, control unit, or subchanneI. Attention can
be indicated with device end upon completion of an
operation, and it can be presented to the channel
during the initiation of a new I/O operation. Other­
wise, the handling and presentation of the condition
to the channel depends on the type of device.

When the device signals attention during the initi­
ation of an operation, the operation is not initiated.
Attention accompanying device end causes command
chaining to be suppressed.

Status Modifier

Status modifier is generated by the device when the
device cannot provide its current status in response to
TEST I/O, to indicate that the control unit is busy, or
when the normal sequence of commands has to be
modified.

When the status-modifier condition is signaled in
response to TEST I/O and the bit appears in the csw in
the absence of any other status bit, presence of the bit
indicates that the device cannot execute the instruction
and has not provided its current status. The interrup­
tion condition, which may be pending at the device or
sub channel, has not been cleared, and the csw stored
by TEST I/O contains zeros in the key, command ad-

Input/Output Operations 113

dress, and count fields. The 2702 Transmission Con­
trol is an example of a type of device that cannot
execute TEST I/O.

When the status-modifier bit appears in the csw to­
gether with the busy bit, it indicates that the busy
condition pertains to the control unit associated with
the addressed I/O device. The control unit appears
busy when it is executing a type of operation that pre­
cludes the acceptance and execution of any command
or the instructions TEST I/O and HALT I/O or contains
an interruption condition for a device other than one
addressed. The interruption condition may be due to
control unit end or, on the selector channel, due to
channel end following the execution of HALT I/O. The
busy state occurs for operations such as backspace
tape file, in which case the control unit remains busy
after providing channel end, for operations terminated
on the selector channel by HALT I/O, and temporarily
occurs on the 2702 Transmission Control after initia­
tion of an operation on a device accommodated by the
control unit. A control unit accessible from two or
more channels appears busy when it is communicating
with another channel.

Presence of the status modifier and device end
means that the normal sequence of commands must
be modified. The handling of this set of bits by the
channel depends on the operation. If command chain­
ing is specified in the current ccw and no unusual con­
ditions have been detected, presence of status modi­
fier and device end causes the channel to fetch and
chain to the ccw whose main-storage address is 16
higher than that of the current ccw. If the I/O device
signals the status-modifier condition at a time when no
command chaining is specified, or when any unusual
conditions have been detected, no action is taken in
the channel, and the status-modifier bit is placed in the
csw.

Programmln(l Note

When the multiplexor channel detects a programming
error during command chaining, the interruption con­
dition is queued at the I/O device. On devices such as
the 2702 Transmission Control, queuing of the con­
dition may generate the status-modifier indication,
which subsequently appears in the csw associated
with the termination of the operation.

Control Unit End

Control unit end indicates that the control unit has
become available for use for another operation.

The control-unit-end condition is provided only by
control units shared by I/O devices and only when one
or both of the following conditions has occurred:

1. The program had previously caused the control
unit to be interrogated while the control unit was in

114

the busy state. The control unit is considered to have
been interrogated in the busy state when a command
or the instructions TEST I/O or HALT I/O had been issued
to a device on the control unit, and the control unit
had responded with busy and status modifier in the
unit status byte. See "Status Modifier."

2. The control unit detected an unusual condition
during the portion of the operation after channel end
had been signaled to the channel. The indication of
the unusual condition accompanies control unit end.

If the control unit remains busy with the execution
of an operation after signaling channel end but has not
been interrogated by the program, control unit end
is not generated. Similarly, control unit end is not pro­
vided when the control unit has been interrogated and
could perform the indicated function. The latter case
is indicated by the absence of busy and status modi­
fier in the response to the instruction causing the in­
terrogation.

When the busy state of the control unit is tem­
porary, control unit end is included with busy and
status modifier in response to the interrogation even
though the control unit has not yet been freed. The
busy condition is considered to be temporary if its
duration is commensurate with the program time
required to handle an I/O interruption. The 2702
Transmission Control is an example of a device in
which the control unit may be busy temporarily and
which includes control unit end with busy and status
modifier.

The control-unit-end condition can be signaled with
channel end, device end, or between the two. When
control unit end is signaled by means of an I/O inter­
ruption in the absence of any other status conditions,
the interruption may be identified by any address as­
signed to the control unit. A pending control unit end
causes the control unit to appear busy for initiation of
new operations.

Busy

Busy indicates that the I/O device or control unit can­
not execute the command or instruction because it is
executing a previously initiated operation or because
it contains a pending interruption condition. The in­
terruption condition for the addressed device, if any,
accompanies the busy indication. If the busy condition
applies to the control unit, busy is accompanied by
status modifier.

The following table lists the conditions when the
busy bit (B) appears in the csw and when it is ac­
companied by the status-modifier bit (8M). A double
hyphen (--) indicates that the busy bit is off; an
asterisk (0) indicates that csw status is not stored or
an I/O interruption cannot occur; and the (cl) indi­
cates that the interruption condition is cleared and

the status appears in the csw. The abbreviation DE

stands for device end, while cu stands for control unit.
csw STATUS STORED BY:

START TEST HALT I/O

CONDITION I/O I/O I/O INT.

Subchannel available
DE or attention in device B,cl --,cl ~ --,cl
Device working, CU available B B ~ ~

CU end or channel end in CU:
for the addressed device B,cl --,cl ~ --,cl
for another device B,SM B,SM ~ --,cl-

CUworking B,SM B,SM 0 ~

Interruption pend. in subchannel
for the addressed device

because of:
chaining terminated by

busy condition ~ B,cl ~ B,cl
other type of termination ~ --,cl ~ --,cl

Subchannel working
CU available ~ 0 0

CUworking ~ 0 B,SM ~

Channel End
Channel end is caused by the completion of the por­
tion of an I/O operation involving transfer of data or
control information between the I/O device and the
channel. The condition indicates that the sub channel
has become available for use for another operation.

Each I/O operation causes a channel-end condition
to be generated, and there is only one channel end for
an operation. The channel-end condition is not gen­
erated when programming errors or equipment mal­
functions are detected during initiation of the opera­
tion. When command chaining takes place, only the
channel end of the last operation of the chain is made
available to the program. The channel-end condition
is not made available to the program when a chain of
commands is prematurely terminated because of an
unusual condition indicated with control unit end or
device end or during the initiation of a chained com-

. mand.
The instant within an I/O operation when channel

end is generated depends on the operation and the
type of device. For operations such as writing on mag­
netic tape, the channel-end condition occurs when the
block has been written. On devices that verify the
writing, channel end mayor may not be delayed until
verification is performed, depending on the device.
When magnetic tape_ is being read, the channel-end
condition occurs when the gap on tape reaches the
read-write head. On devices equipped with buffers,
such as the IBM 1443 N1 Printer (bar line printer), the
channel-end condition occurs upon completion of data
transfer between the channel and the buffer. During
control operations, channel end is generated when the
control information has been transferred to the de­
vices, although for short operations the condition may
be delayed until completion of the operation. Opera-

tions that do not cause any data to be transferred can
provide the channel-end condition during the initia­
tion sequence.

A channel-end condition pending in the control unit
causes the control unit to appear busy for initiation of
new operations. Unless the operation has been per­
formed on the selector channel and has been termi­
nated by HALT I/O, a pending channel end causes the
subchannel to be in the interruption-pending state.

Device End
Device end is caused by the completion of an I/O op­
eration at the device or, on some devices, by manually
changing the device from the not-ready to the ready
state. The condition normally indicates that the I/O

device has become available for use for another
operation.

Each I/O operation causes a device-end condition,
and there is only one device-end to an operation. The
device-end condition is not generated when any pro­
gramming or equipment malfunction is detected
during initiation of the operation. When command
chaining takes place, only the device-end of the last
operation of the chain is made available to the
program unless an unusual condition 1s detected dur­
ing the initiation of a chained command, in which case
the chain is terminated without the device-end indica­
tion.

The device-end condition associated with an I/O

operation is generated either simultaneously with the
channel-end condition or later. On data transfer op­
erations on devices such as magnetic tape units, the
device terminates the operation at the time channel
end is generated, and both device end and channel
end occur together. On buffered devices, such as an
IBM 1443 Printer, the device-end condition occurs upon
completion of the mechanical operation. For control
operations, device end is generated at the completion
of the operation at the device. The operation may be
completed at the time channel end is generated or
later.

When command chaining is specified in the sub­
channel, receipt of the device-end signal, in the ab­
sence of any unusual conditions, causes the channel to
initiate a new I/O operation.

Unit Check

Unit check indicates that the I/O device or control unit
has detected an unusual condition that is detailed by
the information available to a sense command. Unit
check may indicate that a programming or an equip­
ment error has been detected, that the not-ready state
of the device has affected the execution of the com­
mand or instruction, or that an exceptional condition

Input/Output Operations 115

other than the one identified by unit exception has
occurred. The unit-check bit provides a summary indi­
cation of the conditions identified by sense data.

An error condition causes the unit-check indication
only when it occurs during the execution of a com­
mand or TEST I/O, or during some activity associated
with an I/O operation. Unless the error condition per­
tains to the activity initiated by a command and is of
immediate significance to the program, the condition
does not cause the program to be alerted after device
end has been cleared; a malfunction may, however,
ca use the device to become not ready.

Unit check is indicated when the existence of the
not-ready state precludes a satisfactory execution of
the command, or when the command, by its nature,
tests the state of the device. When no interruption con­
dition is pending for the addressed device at the con­
trol unit, the control unit signals unit check when TEST

I/O or the no-operation control command is issued to a
not-ready device. In the case of no operation, the
command is rejected, and channel end and device end
do not accompany unit check.

Unless the command is designed to cause unit check,
such as rewind and unload on magnetic tape, unit
check is not indicated if the command is properly exe­
cuted even though the device has become not ready
during or as a result of the operation. Similarly, unit
check is not indicated if the command can be executed
with the device not ready. The IBM 2150 Console, for
example, accepts and executes the alarm control com­
mand when the printer is not ready. Selection of a de­
vice in the not-ready state does not cause a unit-check
indication when the sense command is issued, and
whenever an interruption condition is pending for the
addressed device at the control unit.

If the device detects during the initiation sequence
that the command cannot be executed, unit check is
presented to the channel and appears without channel
end, control unit end, or device end. Such unit status
indicates that no action has been taken at the device
in response to the command. If the condition preclud­
ing proper execution of the operation occurs after exe­
cution has been started, unit check is accompanied by
channel end, control unit end, or device end, depend­
ing on when the condition was detected. Any errors
associated with an operation, but detected after de­
vice end has been cleared, are indicated by signaling
unit check with attention.

Errors, such as invalid command code or invalid
command code parity, do not cause unit check when
the device is working or contains a pending interrup­
tion condition at the time of selection. Under these
circumstances, the device responds by providing the
busy bit and indicating the pending interruption con-

116

dition, if any. The command code invalidity is not
indicated.

Termination of an operation with the unit-check
indication causes command chaining to be suppressed.

Programming Note

If a device becomes not ready upon completion of a
command, the ending interruption condition can be
cleared by TEST I/O without generation of unit check
due to the not-ready state, but any subsequent TEST I/O

issued to the device causes a unit-check indication.

Unit Exception

U nit exception is caused when the I/O device detects
a condition that usually does not occur. Unit exception
includes conditions such as recognition of a tape mark
and does not necessarily indicate an error. It has only
one meaning for any particular command and type of
device.

The unit-exception condition can be generated only
when the device is executing an I/O operation, or when
the device involved with some activity associated with
an I/O operation and the condition is of immediate
Significance to the program. If the device detects
during the initiation sequence that the operation can­
not be executed, unit exception is presented to the
channel and appears without channel end, control unit
end, or device end. Such unit status indicates that no
action has been taken at the device in response to the
command. If the condition precluding normal execu­
tion of the operation occurs after the execution has
been started, unit exception is accompanied by channel
end, control unit end, or device end, depending on
when the condition was detected. Any unusual condi­
tions associated with an operation, but detected after
device-end has been cleared; is indicated by signaling
unit exception with attention.

A command does not cause unit exception when the
device responds during the initial selection with busy
status to the command.

Termination of an operation with the unit-exception
indication causes command chaining to be suppressed.

Channel Status Conditions

The following conditions are detected and indicated by
the channel. Except for the conditions caused by equip­
ment malfunctioning, they can occur only while the
sub channel is involved with the execution of an I/O

operation.

Program-Controlled Interruption

The program-controlled-interruption condition is gen­
erated when the channel fetches a ccw with the pro­
gram-controlled-interruption (PCI) Hag on. The inter­
ruption due to the PC! Hag takes place as soon as

possible after the ccw takes control of the operation
but may be delayed an unpredictable amount of time
because of masking of the channel or other activity in
the system.

Detection of the PCI condition does not affect the
progress of the I/O operation.

Incorrect Length

Incorrect length occurs when the number of bytes con­
tained in the storage areas assigned for the I/O oper­
ation is not equal to the number of bytes requested or
offered by the I/O device. Incorrect length is indicated
for one of the following reasons:

Long Block on Input: During a read, read-backward,
or sense operation, the device attempted to transfer
one or more bytes to storage after the assigned storage
areas were filled. The extra bytes have not been placed
in main storage. The count in the csw is zero.

Long Block on Output: During a write or control
operation the device requested one or more bytes from
the channel after the assigned main-storage areas were
exhausted. The count in the csw is zero.

Short Block on Input: The number of bytes trans­
ferred during a read, read backward, or sense oper­
ation is insufficient to fill the storage areas assigned to
the operation. The count in the csw is not zero.

Short Block on Output: The device terminated a
write or control operation before all information con­
tained in the assigned storage areas was transferred to
the device. The count in the csw is not zero.

The incorrect-length indication is suppressed when
the current ccw has the SLI flag and does not have the
CD flag. The indication does not occur for immediate
operations and for operations rejected during the ini­
tiation sequence.

Presence of the incorrect-length condition suppresses
command chaining unless the SLI flag in the ccw is on
or unless the condition occurs in an immediate oper­
ation. See the table in the Chaining section of this
manual for the effect of the CD, cc, and SLI flags on the
indication of incorrect length.

Program Check

Program check occurs when programming errors are
detected by the channel. The condition can be due to
the following causes:

Invalid C CW Address Specification: The CAW or the
transfer-in-channel command does not designate the
ccw on integral boundaries for double words. The
three low-order bits of the ccw address are not zero.

Invalid CCW Address: The channel has attempted
to fetch a ccw from a location outside the main stor­
age of the particular installation. An invalid ccw ad­
dress can occur in the channel because the program
has specified an invalid address in the CAW or in the

transfer-in-channel command or because on chaining
the channel has stepped the address above the highest
available location.

Invalid Command Code: The command code in the
first ccw designated by the CAW or in a ccw fetched on
command chaining has four low-order zeros. The com­
mand code is not tested for validity during data chain­
ing.

Invalid Count: A ccw other than a ccw specifying
transfer in channel contains the value zero in bit po­
sitions 48-63.

Invalid Data Address: The channel has attempted
to transfer data to or from a location outside the main
storage of the particular installation. An invalid data
address can occur in the channel because the program
has specified an invalid address in the ccw or because
the channel has stepped the address above the highest
available address or, on reading backward, below zero.

Invalid Key: The CAW contains a nonzero storage
protection key in a model not having the protection
feature installed.

Invalid CAW Format: The CAW does not contain
zeros in bit positions 4-7.

Invalid CCW Format: A CCW other than a ccw spe­
cifying transfer in channel does not contain zeros in
bit positions 37-39.

Invalid Sequence: The first ccw designated by the
CAW specifies trarisfer in channel or the channel has
fetched two successive ccw's both of which specify
transfer in channel.

Detection of the program-check condition during
the initiation of an operation causes execution of the
operation to be suppressed. When the condition is de­
tected after the device has been started, the device is
signaled to terminate the operation the next time it
requests or offers a byte of data. The program-check
condition causes command chaining to be suppressed.

Protection Check

Protection check occurs when the channel attempts to
place data in or fetch data or a ccw from a portion of
main storage that is protected for the current operation
on the subchannel. The protection key associated with
the I/O operation does not match the key of the ad­
dressed main-storage location, and the protection key
is not zero.

When the protection-check condition occurs during
the fetching of a ccw that specifies the initiation of an
I/O operation, the operation is not initiated. When
protection check is detected after the device has been
started, the device is Signaled to terminate the opera­
tion the next time it requests or offers a byte of data.
The condition causes command chaining to be sup­
pressed.

Input/Output Operations 117

The protection-check condition can be generated
only on models having the protection feature installed.

Channel Data Check

Channel data check indicates that the channel has de­
tected a parity error in the information transferred to
or from main storage during an I/O operation. This in­
formation includes the data read or written, as well as
the information transferred as data during a sense or
control operation. The error may have been detected
anywhere inboard the 1/6 interface: in the channel, in
main storage, or on the path between the two. Chan­
nel data check may be indicated for parity errors de­
tected in data that are referred to by the channel but
do not participate in the operation.

Whenever a parity error on I/O data is indicated by
means of channel data check, the channel forces cor­
rect parity on all data received over the I/O interface
and, within the limitations of parity checking and cor­
rection facilities of the model, correct parity is forced
on all data placed in main storage. On an output op­
eration, the parity of the data is not changed when
channel data check is indicated.

A condition indicated as channel data check causes
command chaining to be suppressed, but does not af­
fect the execution of the current operation. Data trans­
fer proceeds to normal completion, and an I/O inter­
ruption condition is generated when the device
presents channel end. No log-out or reset occurs, and
the detection of the error does not affect the state of
the channel or device.

When CPU and channel equipment is integrated to
such an extent that a data parity error precludes con­
tinuation of the I/O operation or handling of the parity
bit as described above, a machine-check condition is
generated upon the detection of the error. When a
data parity error causes a machine-check interruption,
reset and log-out may be performed, and the subse-

, quent recovery procedure depends on the model.

Channel Control Check

Channel control check is caused by any machine mal­
functioning affecting channel controls. The condition
includes parity errors on ccw and data addresses and
parity errors on the contents of the ccw. Conditions
responsible for channel control check may cause the
contents of the csw to be invalid and conflicting. The
cswas generated by the channel has correct parity.

Detection of the channel-control-check condition
causes the current operation, if any, to be immediately
terminated and may cause the channel to perform the
malfunction-reset function. The recovery procedure in
the channel and the subsequent state of the subchannel
upon a malfunction reset depend upon the model.

118

Interface Control Cheek

Interface control check is caused by any invalid signal
on the I/O interface. The condition is detected by the
channel and usually indicates malfunctioning of an I/O

device. It can be due to the following reasons:
1. The address or status byte received from a device

has invalid parity.
2. A device responded with an address other than

the address specified by the channel during initiation
of an operation.

3. During command chaining the device appeared
not operational.

4. A signal from a device occurred at an invalid time
or had invalid duration.

Detection of the interface-control-check condition
causes the current operation, if any, to be immediately
terminated and may cause the channel to perform the
malfunction-reset function. The recovery procedure in
the channel and the subsequent state of the subchan­
nel upon a malfunction reset depends on the model.

Chaining Check

Chaining check is caused by channel overrun during
data chaining on input operations. The condition oc­
curs when the I/O data rate is too high for the particu­
lar resolution of data addresses. Chaining check cannot
occur on output operations.

Detection of the chaining-check condition causes the
I/O device to be signaled to terminate the operation.
It causes command chaining to be suppressed.

Content of Channel Status Word

The content of the csw depends on the condition caus­
ing the storing of the csw and on the programming
method by which the information' is obtained. The
status portion always identifies the condition that
caused storing of the csw. The protection key, com­
mand address, and count fields may contain informa­
tion pertaining to the last operation or may be set to
zero, or the original contents of these fields at location
64 may be left unchanged.

Information Provided by Channel Status Word

Conditions associated with the execution or termi­
nation of an operation at the subchannel cause the
whole csw to be replaced. Such a csw can be stored
only by an I/O interruption or by TEST I/O. Except for
conditions associated with command chaining and
equipment malfunctioning, the storing can be caused
by the PC! or channel-end condition and by the execu­
tion of HALT I/O on the selector channel. The contents
of the csw are related to the current values of the cor­
responding quantities, although the count is unpredic-

table after program check, protection check, chaining
check, and after an interruption due to the PC! Hag.

A csw stored upon the execution of a chain of oper­
ation pertains to the last operation the channel exe­
cuted or attempted to initiate. Information concerning
the preceding operations is not preserved and is not
made available to the program.

When an unusual condition causes command chain­
ing to be suppressed, the premature termination of the
chain is not explicitly indicated in the csw. A csw
associated with a termination due to a condition occur­
ing at channel-end time contains the channel-end bit
and identifies the unusual condition. When the device
signals the unusual condition with control unit end or
device end, the channel-end indication is not made
available to the program, and the channel provides the
current protection key, command address, and count,
as well as the unusual indication, with the control­
unit-end or device-end bit in the csw. The command
address and count fields pertain to the operation that
was executed.

When the execution of a chain of commands is ter­
minated by an unusual condition detected during initi­
ation of a new operation, the command address and
count fields pertain to the rejected command. Except
for conditions caused by equipment malfunctioning,
termination at the initiation time can occur because of
attention, unit check, unit exception, or program check,
and causes both the channel-end and device-end bits
in the csw to be turned off.

A csw associated with conditions occurring after the
operation at the subchannel has been terminated con­
tains zeros in the protection key, command address,
and count fields, provided the conditions are not
cleared by START I/O. These conditions include atten­
tion, control unit end, and device end (and channel
end when it occurs after termination of an operation
on the selector channel by HALT I/O).

When the above conditions are cleared by START I/O,

only the status portion of the csw is stored, and the
original contents of the protection key, command ad­
dress, and count fields in location 64 are preserved.
Similarly, only the status bits of the csw are changed
when the command is rejected or the operation at the
subchannel is terminated during the execution of START

I/O or whenever HALT I/O causes csw status to be
stored.

Errors detected during execution of the I/O oper­
ation do not affect the validity of the csw unless the
channel-control-check or interface-control-check con­
ditions are indicated. Channel control check indicates
that equipment errors have been detected, which can
cause any part of the csw, as well as the address in the
psw identifying the I/O device, to be invalid. Interface

control check indicates that the address identifying the
device or the status bits received from the device may
be invalid. The channel forces correct parity on invalid
csw fields.

ProtectIon Key

A csw stored to reHect the progress of an operation at
the subchannel contains the protection key used in
that operation. The content of this field is not affected
by programming errors detected by the channel or by
the condition causing termination of the operation.

Models in which the protection feature is not im­
plemented cause an all-zero key to be stored.

Command Address

When the csw is formed to reHect the progress of the
I/O operation at the subchannel, the command address
is normally eight higher than the address of the last
ccw used i~ the operation.

The following table lists the contents of the com­
mand address field for all conditions that can cause
the csw to be stored. The conditions are listed in order
of priority; that is, if two conditions are indicated or
occur, the csw appears as indicated for the condition
higher on the list. The programming errors listed in
the table refer to conditions included in program
check.

CONDITION

Channel control check
Status stored by START I/O
Status stored by HALT I/O
Invalid CCW address spec in

Transfer in channel (TIC)
Invalid CCW address in TIC
Invalid CCW address

generated
Invalid command code
Invalid count
Invalid data address
Invalid CCW format
Invalid sequence - 2 TIC's
Protection check

Chaining check
Termination under count

control
Termination by I/O device
Termination by HALT I/O
Suppression of command

chaining due to unit check
or unit exception with de­
vice end or control unit end

Termination on command
chaining by busy, unit
check, or unit exception

PCI flag in CCW
Interface control check
Ch end after HIO on sel ch
Control unit end
Device end
Attention
Busy
Status modifier

CONTENT

Unpredictable
Unchanged
Unchanged

Address of TIC + 8
Address of TIC + 8
First invalid CCW address

+8
Address of invalid CCW + 8
Address of invalid CCW + 8
Address of invalid CCW + 8
Address of invalid CQW + 8
Address of second TIC + 8
Address of protected CCW

+8
Address of last-used CCW + 8

Address of last-used CCW + 8
Address of last-used CCW + 8
Address of last-used CCW + 8

Address of last CCW used in
the completed operation + 8

Address of CCW specifying
the new operation + 8

Address of last-used CCW + 8
Address of last-used CCW + 8
Zero
Zero
Zero
Zero
Zero
Zero

Input/Output Operations 119

Count

The residual count, in conjunction with the original
count specified in the last ccw used, indicates the
number of bytes transferred to or from the area desig­
nated by the ccw. When an input operation is termi­
nated, the difference between the original count in the
ccw and the residual count in the csw is equal to the
number of bytes transferred to main storage; on an out­
put operation, the difference is equal to the number
of bytes transferred to the I/O device.

The following table lists the contents of the count
field for all conditions that can cause the csw to be
stored. The conditions are listed in the order of prior­
ity; that is, if two conditions are indicated or occur,
the csw appears as for the condition higher on the list.

CONDITION

Channel control check
Status stored by START I/O
Status stored by HALT I/O
Program check
Protection check
Chaining check
Termination under count

control
Termination by I/O device
Termination by HALT I/O
Suppression of command

chaining due to unit check
or unit exception with device
end or control unit end

Termination on command
chaining by busy,
unit check, or unit
exception

PCI flag in CCW
Interface control check
Ch end after HIO on sel ch
Control unit end
Device end
Attention
Busy
Status Modifier

Status

CONTENT

Unpredictable
Unchanged
Unchanged
Unpredictable
Unpredictable
Unpredictable

Correct
Correct
Correct

Correct. Residual count of last
CCW used in the completed
operation.

Correct. Original count of
CCW specifying the new
operation.

Unpredictable
Correct
Zero
Zero
Zero
Zero
Zero
Zero

The status bits identify the conditions that have been
detected during the I/O operation, that have caused a

120

command to be rejected, or that have been generated
by external events.

When the channel detects several error conditions,
all conditions may be indicated or only one may ap­
pear in the csw, depending on the condition and
model. Conditions associated with equipment mal­
functioning have precedence, and whenever malfunc­
tioning causes an operation to be terminated, channel
control check, interface control check, or channel data
check is indicated, depending on the condition. When
an operation is terminated by program check, pro­
tection check, or chaining check, the channel identifies
the condition responsible for the termination and may
or may not indicate incorrect length. When a data er­
ror has been detected and the operation is terminated
prematurely because of a program check, protection
check, or chaining check, both data check and the pro­
gramming error are identified.

If the ccw fetched on command chaining contains
the PCI Hag but a programming error in the contents of
the ccw or an unusual condition signaled by the de­
vice precludes the initiation of the operation, the PC!

bit appears in the csw associated with the interruption
condition. Similarly, if device status or a programming
error in the contents of the ccw causes the command
to be rejected during execution of START I/O, the csw
stored by START I/O contains the PCI bit. However,
when the channel detects a programming error in the
CAW or in the first ccw, the PCI bit may unpredictably
appear in a csw stored by START I/O without the PCI

Hag being on in the first ccw associated with the START

I/O.

Conditions detected by the channel are not related
to those identified by the I/O device.

The following table summarizes the handling of
status bits. The table lists the states and activities that
can cause status indications to be created and the
methods by which these indications can be placed in
the csw.

WHEN WHEN UPON TERMINATION OF OPERATION DURING BY BY BY BY I/o
I/O IS SUB CHANNEL AT

STATUS IDLE WORKING SUBCHANNEL

Attention Co
Status modifier
Control unit end
Busy
Channel end Co
Device end Co
Unit check C
Unit exception C
Program-controlled interruption Co C
Incorrect length C C
Program check C C
Protection check C C
Channel data check C C
Channel control check Co Co Co
Interface control check Co Co Co
Chaining check C C

NOTES

C-The channel or the device can create or present the status
condition at the indicated time. A CSW or its status portion is
not necessarily stored at this time.

Conditions such as channel end and device end are created at
the indicated time. Other conditions may have been created
previously, but are made accessible to the program only at the
indicated time. Examples of such conditions are program check
and channel data check, which are detected while data are
transferred, but are made available to the program only with
channel end, unless the PCI flag or equipment malfunctioning
have caused an interruption condition to be generated earlier.

S-The status indication is stored in the CSW at the indicated
time.

An S appearing alone indicates that the condition has been
created previously. The letter C appearing with the S indicates
that the status condition did not necessarily exist previously in
the form that causes the program to be alerted, and may have

AT CONTROL AT COMMAND START TEST HALT INTER-

UNIT DEVICE CHAINING I/O I/O I/O RUPTION

C Co S S S
C C CS CS CS S

Co CS CS CS S
C CS CS CS S

COH COt CtS S S
Co C t CtS S S

C C Co CS CS CS
C C Co CS S S

C CS S S
S S

Co CS S S
Co CS S S

S S
Co Co Co CS CS CS CS
Co Co Co CS CS CS CS

S S

been created by the I/O instruction or I/O interruption. For
example, equipment malfunctioning may be detected during an
I/O interruption, causing channel control check or interface
control check to be indicated; or a device such as the 2702
Transmission Control Unit may signal the control-unit-busy
condition in response to interrogation by an I/O instruction,
causing status modifier, busy, and control unit end to be indi­
cated in the CSW.
\) -The status condition generates an interruption condition.

Channel end and device end do not result in interruption
conditions when command chaining is specified and no unusual
conditions have been detected.

t-This status indication can be created at the indicated time
only by an immediate operation.
H-When an operation on the selector channel has been termi­
nated by HALT I/O, channel end indicates the termination of
the data-handling portion of the operation at the control unit.

Input/Output Operations 121

System Control Panel

The system control panel contains the switches and
lights necessary to operate and control the system.
The system consists of the CPU, storage, channels, on­
line control units, and 1/0 devices. Off-line control
units and 110 devices, although part of the system
environment, are not considered part of the system
proper.

System controls are divided into three sections:
operator control, operator intervention, and customer
engineering control. Customer engineering controls
are also available on some storage, channel, and con­
trol-unit frames.

No provision is made for locking out any section of
the system control panel. The conditions under which
individual controls are active are described for each
case.

System Control Functions
The main functions provided by the system control
panel are the ability to reset the system; to store and
display information in storage, in registers and in the
PSW; and to load initial program information.

System Reset

The system-reset function resets the CPU, the channels,
and on-line, nonshared control units and 1/0 devices.

The CPU is placed in the stopped state and all pend­
ing interruptions are eliminated. The parity of general
and Boating-point registers, as well as the parity of the
psw, may be corrected. All error-status indicators are
reset to zero.

In general, the system is placed in such a state that
processing can be initiated without the occurrence of
machine checks, except those caused by subsequent
machine malfunction.

The reset state for a control unit or device is de­
scribed in the appropriate System Reference Library
(SRL) publication. Off-line control units are not reset.
A system-reset signal from a CPU resets only the
functions in a shared control unit or device belonging
to that CPU. Any function pertaining to another CPU

remains undisturbed.
The system-reset function is performed when the

system-reset key is pressed, when initial program

122

loading is initiated, or when a power-on sequence is
performed.

Programming Notes

Because the system reset may occur in the middle of
an operation, the contents of the psw and of result
registers or storage locations are unpredictable. If the
CPU is in the wait state when the system reset is per­
formed, and 110 is not operating, this uncertainty is
eliminated.

Following a system reset, incorrect parity may exist
in storage in all models and in the registers in some
models. Since a machine check occurs when informa­
tion with incorrect parity is used, the incorrect in­
formation should be replaced by loading new infor­
mation.

Store and Display

The store-and-display function permits manual inter­
vention in the progress of a program. The store-and­
display function may be provided by a supervisor
program in conjunction with proper 110 equipment
and the interrupt key.

In the absence of an appropriate supervisor pro­
gram, the controls on the operator intervention panel
permit the CPU to be placed in the stopped state, and
subsequently to store and display information in main
storage, in general and Boating-point registers, and in
the instruction-address part of the psw. The stopped
state is achieved at the end of the current instruction
when the stop key is pressed, when single instruction
execution is specified, or when a preset address is
reached. Once the desired intervention is completed,
the CPU can be started again.

The stopping and starting of the CPU in itself does
not cause any alteration in program execution other
than the time element involved (the transition from
operating to stopped state is described under "Stopped
State" in "Status Switching").

All basic store-and-display functions can be simu­
lated by a supervisor program.

Machine checks occurring during store-and-display
functions do not interrupt or log immediately but may,
in some cases, create a pending interruption. This
interruption request can be removed by a system re­
set. Otherwise, the interruption, when not masked off,
is taken when the CPU is again in the operating state.

Initial Program Loading

Initial program loading (IPL) is provided for the ini­
tiation of processing when the contents of storage or
the psw are not suitable for further processing.

Initial program loading is initiated manually by se­
lecting an input device with the load-unit switches
and subsequently pressing the load key. When facili­
ties for external system initialization are installed,
initial program loading may be initiated externally by
a signal received on one of the external-start lines.

Pressing the load key causes a system reset, turns
on the load light, turns off the manual light, sets the
prefix trigger (if present), and subsequently initiates
a read operation from the selected input device.
When reading is completed satisfactorily, a new psw
is obtained, the CPU starts operating, and the load
light is turned off.

When a signal is received on one of the external­
start lines, the same sequence of events takes place,
except that the read operation is omitted.

System reset suspends all instruction processing, in­
terruptions, and timer updating and also resets all
channels, on-line non shared control units, and I/O de­
vices. The contents of general and floating-point regis­
ters remain unchanged, except that the reset proce­
dure may introduce incorrect parity.

The prefix trigger is set after system reset. In man­
ually initiated IPL, the trigger is set according to the
state of the prefix-select key switch. When IPL is initi­
ated by a signal on one of the two external-start lines,
the trigger is set according to the identity of each line.
The prefix trigger is part of the multisystem feature.

Next, if IPL is initiated manually, the selected input
device starts reading. The first 24 bytes read are placed
in storage locations 0-23. Storage protection, pro­
gram controlled interruption, and a possible incor­
rect length indication are ignored. The double-word
read into location 8 is used as the channel command
word (ccw) for a subsequent I/O operation. When
chaining is specified in this ccw, the operation pro­
ceeds with the ccw in location 16. Either command
chaining or data chaining may be specified.

When the device provides channel end for the last
operation of the chain, the I/O address is stored in bits
21-31 of the first word in storage. Bits 16-20 are made
zero. Bits 0-15 remain unchanged. The input operation
and the storing of the I/O address are not performed
when IPL is initiated by means of the external-start
lines.

The CPU subsequently fetches the double word in lo­
cation 0 as a new psw and proceeds under control of
the new psw. The load light is turned off. No I/O inter­
ruption condition is generated. When the I/O opera-

tions and psw loading are not completed satisfactorily,
the CPU idles, and the load light remains.

Programming Notes

Initial program loading resembles a START I/O that
specifies the I/O device selected in the loa d -u nit
switches and a zero protection key. The ccw for this
START I/O is simulated by CPU circuitry and contains a
read command, zero data address, a byte count of 24,
command-chain flag on, suppress-length-indication Hag
on, program-controlled-interruption flag off, chain­
data flag off, and skip Hag off. The ccw has a virtual
address of zero.

Initial program loading reads new information into
the first six words of storage. Since the remainder of
the IPL program may be placed in any desired section
of storage, it is possible to preserve such areas of stor­
age as the timer and psw locations, which may be
helpful in program debugging. .

If the selected input device is a disk, the IPL infor­
mation is read from track O.

The selected input device may be a channel-to­
channel adapter involving two cpu's. After a system
reset on this adapter, an attention signal is sent to the
addressed cpu. That CPU then should issue the write
command necessary to load a program into main stor­
age of the requesting cpu.

When the psw in location 0 has bit 14 set to one,
the CPU is in the wait state after the IPL procedure
(the manual, the system, and the load lights are off,
and the wait light is on). Interruptions that become
pending during IPL are taken before instruction exe­
cution.

Operator Control Section
This section of the system control panel contains only
the controls required by the operator when the CPU

is operating under full supervisor control. Under su­
pervisor control, a minimum of direct manual inter­
vention is required since the supervisor performs
operations like store and display.

The main functions provided by the operator con­
trol section are the control and indication of power,
the indication of system status, operator to machine
communication, and initial program loading.

The operator control section, with the exception of
the emergency pull switch, may be duplicated once as
a remote panel on a console.

The following table lists all operator controls by
the names on the panel or controls and describes
their implementation.

System Control Panel 123

NAME

Emergency Pull
Power On
Power Off
Interrupt
Wait
Manual
System
Test
Load
Load Unit
Load
Prefix Select·

o Multisystem feature

Emergency Pull Switch

IMPLEMENTATION

Pull switch
Key, backlighted
Key
Key
Light
Light
Light
Light
Light
Three rotary switches
Key
Key switch

Pulling this switch turns off all power beyond the
power-entry terminal on every unit that is part of the
system or that can be switched onto the system. There­
fore, the switch controls the system proper and all
off-line and shared control units and r/o devices.

The switch latches in the out position and can be
restored to its in position by maintenance personnel
only.

When the emergency pull switch is in the out po­
sition, the power-on key is ineffective.

Power-On Key

This key is pressed to initiate the power-on sequence
of the system.

As part of the power-on sequence, a system reset is
performed in such a manner that the system performs
no instructions or I/O operations until explicitly di­
rected. The contents of main storage are preserved.

The power-on key is backlighted to indicate when
the power-on sequence is completed. The key is ef­
fective only when the emergency pull switch is in its
in position.

Power-Off Key

The power-off key is pressed to initiate the power-off
sequence of the system.

The contents of main storage (but not the keys in
storage associated with the protection feature) are
preserved, provided that the CPU is in the stopped
state. The key is effective while power is on the system.

Interrupt Key

The interrupt key is pressed to request an external
interruption.

The interruption is taken when not masked off and
when the CPU is not stopped. Otherwise, the inter­
ruption request remains pending. Bit 25 in the inter­
ruption-code portion of the current psw is made one
to indicate that the interrupt key is the source Qf the
external interruption. The key is effective while power
is on the system.

124

Wait Light
The wait light is on when the CPU is in the wait state.

Manual Light
The manual light is on when the CPU is in the stopped
state. Several of the manual controls are effective only
when the CPU is stopped, that is, when the manual
light is on.

System Light
The system light is on when the CPU cluster meter or
customer-engineering meter is running.

Programming Note

The states indicated by the wait and manual lights
are independent of each other; however, the state of
the system light is not independent of the state of
these two lights because of the definition of the run­
ning condition for the meters. The following table
shows possible conditions when power is on.
SYSTEM MANUAL WAIT CPU I/O

LIGHT LIGHT LIGHT STATE STATE

off off off • •
off off on Wait Not working
off on off Stopped Not working
off on on Stopped, Not working

wait
on off off Running Undetermined
on off on Wait Working
on on off Stopped Working
on on on Stopped, Working

wait

o Abnormal condition

Test Light
The test light is on when a manual control is not in
its normal position or when a maintenance function is
being performed for cpu, channels, or storage.

Any abnormal switch setting on the system contr,01
panel or on any separate maintenance panel for the
CPU, storage, or channels that can affect the normal
operation of a program causes the test light to be on.

The test light may be on when one or more diag­
nostic functions under control of DIAGNOSE are acti­
vated or when certain abnormal circuit breaker or
thermal conditions occur.

The test light does not reflect the state of marginal
voltage controls.

Load Light
The load light is on during initial program loading;
it is turned on when the load key is pressed and is
turned off after the loading of the new psw is com­
pleted successfully.

Load-Unit Switches
Three rotary-switches provide the 11 rightmost r/o
address bits used for initial program loading.

The leftmost rotary switch has eight positions label­
ed 0-7. The other two are 16-position rotary switches
labeled with the hexadecimal characters 0-9, A-F.

Load Key

The load key is pressed to start initial program load­
ing. The key is effective while power is on the system.

Prefix-Select Key Switch

The prefix-select key switch provides the choice be­
tween main prefix and alternate prefix during manu­
ally initiated initial program loading.

The setting of the switch determines the state of the
prefix trigger following the system reset after the load
key is pressed.

The switch is part of the multisystem feature.

Operator Intervention Sedion
This section of the system control panel contains the
controls required for the operator to intervene in nor­
mal programmed operation. These controls may be
intermixed with the customer engineering controls,
and additional switch positions and nomenclature may
be included, depending on the model.

Operator intervention provides the system-reset and
the store-and-display functions. Compatibility in per­
forming these functions is maintained, except that the
word size used for store and display depends on the
physical word size of storage for the model. Switches
for display of the instruction address are absent on
models that continuously display the instruction ad­
dress.

The following table lists all intervention controls by
the names on the panel or controls and describes their
implementation.

NAME

System Reset
Stop
R~te
Start
Storage Select
Address
Data
Store
Display
Set IC
Address Compare
Alternate Prefixo

o Multisystem feature

System-Reset Key

Key
Key

IMPLEMENTATION

Rotary switch
Key
Rotary or key switch
Rotary or key switches
Rotary or key switches
Key
Key
Key
Rotary or key switches
Light

The system-reset key is pressed to cause a system re­
set; it is effective while power is on the system. The
reset function does not affect any off-line or shared
device.

Stop Key

The stop key is pressed to cause the CPU to enter the
stopped state. The key is effective while power is on
the system.

Programming Note

Pressing the stop key has no effect when a continuous
string of interruptions is performed or when the CPU

is unable to complete an instruction because of ma­
chine malfunction. The effect of pressing the key is
indicated by the turn-on of the manual light as the
CPU enters the stopped state.

Rate Switch

This rotary switch indicates the manner in which in­
structions are to be performed.

The switch has two or more positions, depending
on model. The vertical position is marked PROCESS. In
this position, the system starts operating at normal
speed when the start key is pressed. The position
left of vertical is marked INSTRUCTION STEP. When the
start key is pressed with the rate switch in this po­
sition, one complete instruction is performed, and all
pending, not masked interruptions are subsequently
taken. The CPU next returns to the stopped state.

Any instruction can be executed with the rate
switch set to INSTRUCTION STEP. Input/output opera­
tions are completed to the interruption point. When
the CPU is in the wait state, no instruction is per­
formed, but pending interruptions, if any, are taken
before the CPU returns to the stopped state. Initial
program loading is completed with the loading of the
new psw before any instruction is performed. The
timer is not updated while the rate switch is set to
INSTRUCTION STEP.

The test light is on when the rate switch is not set
to PROCESS.

The position of the rate switch should be changed
only while the CPU is in the stopped state. Otherwise
unpredictable results occur.

Start Key

The start key is pressed to start instruction execution
in the manner defined by the rate switch.

Pressing the start key after a normal stop causes in­
struction processing to continue as if no stop had oc­
curred, provided that the rate switch is in the PROCESS

or INSTRUCTION-STEP position. Pressing the start key
after system reset without first introducing a new in­
struction address yields unpredictable results.

The key is effective only while the CPU is in the
stopped state.

System Control Panel 125

Storage-Select Switch

The storage area to be addressed by the address
switches is selected by the storage-select switches.

The switch can select main storage, the general reg­
isters, the floating-point registers and, in some cases,
the instruction-address part of the psw.

When the general or floating-point registers are not
addressed directly but must be addressed by using
another address such as a local-store location, infor­
mation is included on the panel to enable an operator
to compute the required address.

The switch can be manipulated without disrupting
CPU operations.

Address Switches

The address switches address a location in a storage
area and can be manipulated without disrupting CPU

operation. The address switches, with the storage-se­
lect switch, permit access to any addressable location.
Correct address parity is generated.

Data Switches

The data switches specify the data to be stored in the
location specified by the storage-select switch and ad­
dress switches.

The number of data switches is sufficient to allow
storing of a full physical storage word. Correct data
parity is generated. Some models generate either cor­
rect or incorrect parity under switch control.

Store Key

The store key is pressed to store information in the
location specified by the storage-select switch and ad­
dress switches.

The contents of the data switches are placed in the
main storage, general register, or floating-point regis­
ter location specified. Storage protection is ignored.
When the location designated by the address switches
and storage-select switch is not available, data are not
stored.

The key is effective only while the CPU is in the
. stopped state.

Display Key

The display key is pressed to display information in
the location specified by the storage-select switch and
address switches.

The data in the main storage, general register, or
floating-point register location, or in the instruction­
address part of the psw specified by the address
switches and the storage-select switch, are displayed.

126

When the designated location is not available, the dis­
played information is unpredictable. In some models,
the current instruction address is continuously dis­
played and hence is not explicitly selected.

The key is effective only while the CPU is in the
stopped state.

Set IC Key

This key is pressed to enter an address into the in­
struction-address part of the current psw.

The address in the address switches is entered in
bits 40-63 of the current psw. In some models the ad­
dress is obtained from the data switches.

The key is effective only while the CPU is in the
stopped state.

Address-Compare Switch

These rotary or key switches provide a means of stop­
ping the CPU on a successful address comparison.

When these switches are set to the STOP position,
the address in the address switches is compared
against the value of the instruction address on all
models and against all addresses on some models. A
match causes the CPU to enter the stopped state. Com­
parison includes only the part of the instruction ad­
dress that addresses the physical word size of storage.

Comparison of the entire halfword instruction ad­
dress is provided in some models, as is the ability to
compare data addresses.

The address-compare switches can be manipulated
without disrupting CPU operation other than by caus­
ing the address-comparison stop. When they are set
to any position except NORMAL, the test light is on.

Programming Note

When an address not used in the program is selected
in the address switches, the CPU runs as if the address­
compare switches were set to normal, except for the
reduction in performance which may be caused by the
address comparison.

Alternate-Prefix Light

The alternate-prefix light is on when the prefix trigger
is in its alternate state. The light is part of the multi­
system feature.

Customer Engineering Section
This section of the system control panel contains con­
trols intended only for customer-engineering use.

The following examples illustrate the use of many
System/360 instructions. Before studying one of these
examples, the reader should first consult the instruction
description in this manual for the particular instruc­
tion of interest to him. Note that each instruction
description contains the System/360 assembly lan­
guage mnemonic op code and symbolic operand desig­
nation as well as the machine instruction format.

For clarity and for ease in programming, each ex­
ample in this section presents the instruction both as
it is written in an assembly-language statement and as
it appears when assembled in storage (hexadecimal
machine format). As a rule, all numerical operands
are written in hexadecimal format unless otherwise
specified. Hexadecimal operands are shown converted
into binary and/or decimal if such conversion helps to
clarify the example for the reader. Storage addresses
are also given in hexadecimal. In the assembly-lan­
guage statements, registers, lengths, and masks are all
presented in decimal, but displacements may be in
hexadecimal or decimal. A hexadecimal displacement
is indicated by X 'a number', where the number can
range from OOO-FFF16. Immediate operands are nor­
mally shown in hexadecimal. Whenever the value in
a regis,ter or storage location is referred to as "not sig­
nificant," this value is replaced during the execution
of the instruction.

When writing ss format instructions in System/360
assembly language, lengths are given as the total
number of bytes in the field. This differs from the
machine definition regarding lengths which states that
the length is the number of bytes to be added to the
field address to obtain the address of the last byte of
the field. Thus the machine length is one less than the
assembly-language length. The assembly program
automatically subtracts one from the length specified
when the instruction is assembled.

Branching

Branch On Condition (BC, BCR)

The BRANCH ON CONDITION instructions test the condi­
tion code to see whether a branch should or should
not be taken. The branch is taken only if the condition
code is as specified by a mask.

Appendix A. Instruction Use Examples

MASK CONDITION

VALUE CODE

8 0
4 1
2 2
1 3

For example, assume that an add (A, AR) operation
has been performed and that you wish to branch to
address 6050 if the sum is zero or less (condition code
== 0 or 1). Also assume:
Register 10 contains 00 00 50 00
Register 11 contains 00 00 1000

The RX form of the instruction performs the re­
quired test (and branch, if necessary) when written
as:

Machine Format
OP CODE Ml X2 B2 D2

I 47 C I B I AT·o$]
Assembler Format

OP CODE Ml D2 X2 B2

BC 12,X'50'(11,10)

A mask of 15 indicates a branch on any condition
(an unconditional branch). A mask of zero indicates
that no branch is to occur (a no-operation).

Branch and Link (BAL, BALR)

The BRANCH AND LINK instructions are commonly used
to branch to a subroutine with the option of later re­
turning to the main instruction sequence. For example,
assume that you wish to branch to a subroutine at
storage address 1160. Also assume:

The contents of register 2 are not significant
Register 5 contains 00 00 11 50
There is a BAL instruction at address 00 00 C6

(PSW bits 40-63 will contain 00 00 CA after
execution of BAL)

The format of the BAL instruction is:
M achine Format

OP CODE Rl X2 B2 D2

45 2 I 0 I 5 I OlD

After the instruction is executed:

Register 2 (bits 8-31) contains 00 00 CA
PSW bits 40-63 contain 00 11 60

Assembler Format
OP CODE Rl D2 X2 B2

BAL 2,X'10'(0,5)

The programmer can return to the main instruction
sequence at any time with a BRANCH ON CONDITION

(BCR) instruction that specifies register 2 and a mask
of 1510, provided that register 2 has not meanwhile
been disturbed.

The BALR instruction with the R2 field equal to zero
may be used to load a register for use as a base

Appendix A 127

register. For example, in the assembly language, the
sequence of statements:

BALR 15,0
USING '"',15

tells the assembly program that register 15 is to be
used as the base register in assembling this program
segment and that when the program is executed, the
address of the next sequential instruction following
the BALR will be placed in the register. (The USING

statement is an "assembler instruction" and is thus
not a part of the object program.)

At any time the condition code may be preserved
for future inspection with BALR R1,O. Bits 2 and 3 of
the register (R1) contain the condition code.

Branch On Count (BCT, BCTR)

The BRANCH ON COUNT instructions are often used to
execute a program loop for a specified number of
times. For example, assume that the following repre­
sents some lines of coding in an assembly language
program:

LUPE AR 8,1

BACK BCT 6,LUPE

where register 6 contains 00 00 00 03 and the address
of LUPE is 6826. Also assume that register 10 contains
0000 68 00.

The format of the BCI' instruction is:
Machine Format

OP CODE RI X2 B2 D2

~~1_6 __ ~_0~_A~_0_26~

Assembler Format
(alternate form to above)

OP CODE R1 D2 X2 B2

BCT 6,X'26'(0,1O)

The eHect of the coding shown above is to execute
three times the loop defined by locations LUPE and
BACK.

Branch On Index High (BXH)

The BRANCH ON INDEX IDGH instruction is an index-in­
crementing and loop-controlling instruction that causes
a branch whenever the sum of an index value and an
increment value is greater than some comparand. For
example, assume that:
Register 4 contains 00 00 00 8A = 13810 = the index
Register 6 contains 00 00 00 02 = 210 = the increment
Register 7 contains 00 00 00 AA = 17010 = the comparand
Register 10 contains 00 00 71 30 = the branch address

128

The format of the instruction is:
Machine Format

OP CODE RI R3 B2 D2

0 6 J---4_IiJ A I 000]

Assembler Format
OP CODE RIR3D2 B2

BXH 4,6,0(10)

When the instruction is executed, first the contents
of register 6 are added to register 4, second the sum is
compared with the cbntents of register 7, and third the
decision to branch or not to branch is made. After
execution:
Register 4 contains 00 00 00 8C = 14010
Registers 6 and 7 are unchanged

Since the new value in register 4 is not greater than
the value in register 7, the branch to address 7130 is
not taken.

When the register used to contain the increment is
odd, that register also becomes the comparand register.
The following assembly-language subroutine illustrates
how this feature may be used to search a table.

Table
ARGI FUNCTI
ARG2 FUNCT2
ARG3 FUNCT3
ARG4 FUNCT4
ARG5 FUNCT5
ARG6 FUNCT6

'--v-----''-----v----'
2 bytes 2 bytes

Assume that:
Register 0 contains the sea:rch argument
Register 1 contains the width of the table in bytes (00 00 00 04)
Register 2 contains the length of ,the table in bytes (000000 18)
Register 3 contains the starting address of the table
Register 14 containstooretum address in the main program

As the following subroutine is executed, the argu­
ment in register 0 is successively compared with the
arguments in the table. If an equality is found, the cor­
responding function replaces the argument in register
O. If an equality is not found, FFl6 replaces the argu­
ment in register O.
SEARCH LNR
NOTEQUAL BXH
NOTFOUND LA

LOOP
BCR
CH
Be
LH
BCR

1,1
2,I,LOOP
OX'FF'
15,14
0,0(2,3)
7,NOTEQUAL
0,2(2,3)
15,14

Branch On Index Low or Equal (BXlE)

This instruction is similar to BRANCH ON INDEX HIGH

except that the branch is successful when the sum is
low or equal compared to the comparand.

Execute (EX)

The EXECUTE instruction causes one instruction in main
storage to be executed out of sequence without actual­
ly branching to the object instruction. For example, as-

sume that a MOVE (SI) instruction is located at address
3820, with format as follows:

Machine Format Assembler Format
OP CODE 12 Bl Dl

92 I 66 1 C 1 0031
o 7 8 15 16 19 20 31

OP CODE Dl Bl

MVI 3(12),X'66'.

12

where register 12 contains 000089 16.
Further assume that at storage address 5000, the

following EXECUTE instruction is located:
Machine Format Assembler Format

OP CODE Rl X2 B2 D2

1 I 0 1 A 1 OOOJ
o 7 8 11 12 15 16 19 20 31

44
OP CODE RID2X2 B2

EX 1,0(0,10)

where register 10 contains 00 00 38 20, and register 1
contains 00 OF FO 99.

When the instruction at 5000 is executed, bits 24-31
of register 1 are oR'ed inside the CPU with bits 8-15 of
the instruction at 3820:
Bits 8-15: 0110 01102 = 66
Bits 24-31: 1001 10012 = 99

Result: 1111 11112 = FF

causing the instruction at 3820 to be executed as if it
originally were:

Machine Format
OP CODE 12 B1 D1

92 I FF \ C \ 003\
o 7 8 15 16 19 20 31

However, after execution:
Register 1 is unchanged
The instruction at 3820 is unchanged
Storage location 8919 contains FF

Assembler Format
OP CODE Dl Bl 12

MVI 3 (12) ,X'FF'

The CPU next executes the instruction at address 5004
(PSW bits 40-63 contain 00 50 04)

Fixed-Point Arithmetic

load (l, lR)

The LOAD instructions place, unchanged, the contents
of a word in storage or of a register into another regis­
ter. For example, assume that the four bytes starting
with location 21004 (a full-word boundary) are to be
loaded into register 10. Initially:
Register 5 contains 00 02 00 00
Register 6 contains 00 00 10 04
The contents of register 10 are not significant
Storage locations 21004-21007 contain 00 00 AB CD

To load register 10, the RX form of the instruction
can be used:

58 A \5161000

Assembler Format
OP CODE R1 D2 X2B2

L 10,0(5,6)

After the instruction is executed, register 10 contains
00 00 AB CD.

load Halfword (lH)

The LOAD HALFWORD instruction places unchanged the
contents of a halfword in storage into the right half of

a register. The left half of the register is replaced by
zeros or ones to reflect the sign (leftmost bit) of the
halfword.

For example, assume that the two bytes in storage
locations 1802-1803 are to be loaded into register 6.
Also assume:
Register 6 contains 7F 12 34 56
Register 14 contains 00 00 1802
Locations 1802-1803 contain 0020

The instruction required to load the register is:
Machine Format

OP CODE R1 X2 B2 D2

48 I 6 I 0 I E I 000 1

Assembler Format
OP CODE RID2X2 B2

LH 6,0(0,14)

After the instruction is executed, register 6 contains
00000020. If 1802-1803 contained a negative number,
for example A 7 B6, the sign bit would again be prop­
agated to the left, giving FF FF A 7 B6 as the final
result in register 6.

Add Halfword (AH)

The ADD HALFWORD instruction algebraically adds the
halfword contents of a storage location to the contents
of a register. The halfword storage operand is ex­
panded to 32 bits after it is fetched and before it is
used in the add operation. The expansion consists of
propagating the leftmost (sign) bit 16 positions to the
left. For example, assume that the contents of storage
locations 2000-2001 are to be added to register 5.
Initially:

Register 5 contains 00 00 00 19 = 2510
Storage locations 2000-2001 contain FF FE = -210
Register 12 contains 00 00 18 00
Register 13 contains 00 00 01 50

The format of the required instruction is:
Machine Format Assembler Format

OP CODE Rl X2 B2 D2 OP CODE R1 D2 X2 B2

4A I 5 1 Die [6:80-] AH 5,X'6BO' (13,12)

After the instruction is executed, register 5 contains
000000 17 == 2310

Compare Halfword (CH)

The COMPARE HALFWORD instruction compares a half­
word in storage with the contents of a register. For ex­
ample, assume that:
Register 4 contains FF FF 80 00 = -32,76810
Register 13 contains 00 01 6050
Storage locations 16080-16081 contain 8000 = -32,76810

When the instruction:
Machine Format

OP CODE R1 X2 B2 D2

49 4 \ 0 I D 030 I
Assembler Format

OP CODE Rl D2 X2 B2

CH 4,X'30'(0,13)

is executed, the contents of locations 16080-16081 are
fetched, expanded to 32 bits (the sign bit is prop­
agated to the left), and compared with the contents

Appendix A 129

of register 4. Because the two numbers are equal, the
condition code is set to O.

Multiply (M, MR)

Assume that a number in register 5 is to be multiplied
by the contents of a word at address 3750. Initially:
The contents of register 4 are not significant
Register 5 contains 00 00 00 9A = 15410 = the multiplicand
Register 11 contains 00 00 30 00
Register 12 contains 00 00 06 00
Storage locations 3750-3753 contain 00 00 00 83 =

13110 = the multiplier

The instruction required to perform the multiplica­
tion is:

Machine Format Assembler Format
OP CODE Rl X2 B2 D2 OP CODE Rl D2 X2 B2

5C I 4 I B I C 1150 I M 4,X'150'(11,12)

After the instruction is executed:
Register 4 contains 00 00 00 00 }
Register 5 contains 0000 4E CE ::::t 20,17410 product
Storage locations 3750-3753 are unchanged

The RR format of the instruction can be used to
square a number in a register. Assume that register 7
contains 00 00 00 10 == 1610• The instruction:

Machine Format
OP CODE Rl R2

lC

Assembler Format
OP CODE R1R2

MR 6,7

multiplies the number in register 7 by itself. The prod­
uct, 00 00 0000 00 00 01 00 == 25610, appears in reg­
isters 6 and 7.

Multiply Halfword (MH)

The MULTIPLY HALFWORD instruction is used to multi­
ply a register by a halfword in storage. For example,
assume that:
Register 11 contains 00 00 00 15 = 2ho = the multiplicand
Register 14 contains 00 00 01 00
Register 15 contains 00 00 20 00
Storage locations 2102-2103 contain FF 09 = -3910 =

The instruction:
Machine Format

OP CODE Rl X2 B2 D2

4C B I ElF I 002 I

the multiplier

Assembler Format
OP CODE R1 D2 X2 B2

MH 11,2(14,15)

multiplies the two numbers. The product, FF FF FC CD

== -81910, replaces the original contents of register 11.
Only the low-order 32 bits of a product are stored in

a register; any higher-order bits are lost. No program
interruption occurs upon overflow.

Divide (D, DR)

The DIVIDE instruction divides a dividend in an even/
odd register pair by a divisor in a register or in stor-

130

age. Since the dividend is assumed to be 64 bits long,
it is important that the proper sign is first affixed. For
example, assume that:
Storage locations 3550-3553 contain 00 00 08 07 =

227010 = the dividend
Storage locations 3554-3557 contain 00 00 00 32 =

5010 = the divisor
Register 6 does not contain all zeros
The initial contents of register 7 are not significant
Register 8 contains 00 00 35 50

The following assembly language statements load
the registers properly and perform the divide opera­
tion:

L 6,0(0,8)

SRDA 6,32 (0)

D 6,4(0,8)

COMMENTS

Places 00 00 08 D7 into
register 6.
Shifts 00 00 08 D7 into
register 7. Register 6 is filled
with zeros (sign bits).
Performs the division.

The machine format of the above" DIVIDE instruction
is:
OP CODE R1 X2 B2 D2

Lio I 6 I OJ=O~
After all the above instructions are executed:

Register 6 contains 00 00 00 14 = 2010 = the remainder
Register 7 contains 00 00 00 2D = 4510 = the quotient

Note that if the dividend had not been first placed
in register 6 and shifted into register 7, register 6
would not have been filled with the proper sign bits
(zeros in this example) and the DIVIDE instruction
would not have given the expected results.

Convert to Binary (CYB)

The CONVERT TO BINARY instruction converts an eight­
byte, signed, packed-decimal number into a signed
binary number and loads the result into a general reg­
ister. After the conversion operation is completed, the
number IS in the proper form for use as an operand in
fixed-point arithmetic. For example, assume:
Storage locations 7608-760F contain 00 00 00 00 00 25 59 4C,

a positive packed-decimal number
The contents of register 7 are not significant
Register 13 contains 00 00 76 00

The format of the conversion instruction is:
Machine Format

OP CODE Rl X2 B2 D2

710 IDl008

Assembler Format
OP CODE RID2X2 B2

CVB 7,8(0,13)

After the instruction is executed, register 7 contains
00 00 63 FA == + 25, 59410.

Convert to Decimal (CYD)

The CONVERT TO DECIMAL instruction performs func­
tions exactly opposite to those of the CONVERT TO BI­

NARY instruction. CVD converts a binary number in a

register to packed decimal and stores the result in a
double word. For example, assume:
Register 1 contains 00 00 OF OF = 385510
Register 13 contains 00 00 76 00
PSW hit 12 = 0 (EBCDIC mode)

The format of the conversion instruction is:
Machine F orrnat

OP CODE R1 X2 B2 D2

4E 1 1 1 OlD 1 008 1

Assembler Format
OP CODE R1D2X2 B2

CVD 1,8(0,13)

After the instruction is executed, location 7608-760F
contain 00 00 00 00 00 03 85 5+. The plus sign gen­
erated is the standard EBCDIC plus sign, 11002•

Shift Left Single (SLA)

Because the sign bit remains unchanged during an SLA

operation, this instruction performs an algebraic shift.
For example, if the contents of register 2 are:
00 7F OA 72 = 000000000111 11110000 1010 0111 00102

the instruction:
Machine Format

OP CODE R1 R3 B2 D2

8B 2~010081

Assembler Format
OP CODE R1D2 B2

SLA 2,8(0)

results in register 2 being shifted left 8 places so that
its new contents are:
7F OA 72 00 = 0111 1111 0000 1010 0111 0010 0000 00002

If a left shift of 9 places had been specified, a signi­
ficant bit would have been shifted out of position 1,
and a fixed-point overflow interruption might have
occurred (unless psw bit 36 equaled 0).

Note that register 0 does not participate in the op­
eration and that the contents of the Ra field are ig­
nored.

Shift Left Double (SLDA)

The SHIFT LEFT DOUBLE instruction is similar to SHIFT

LEFT SINGLE except that SLDA shifts the 63 bits (not in­
cluding the sign) of an even/odd register pair. The R1
field of this instruction must be even. For example, if
the contents of registers 2 and 3 are:
00 7F OA 72 FE DC BA 98 =
00000000 0111 1111 0000 1010 0111 0010 1111 1110 1101

1100 1011 1010 1001 10002

the instruction:
Machine Format

OP CODE R1 R3 B2 D2

[iF 2 _ 0 I 01F 1

Assembler Format
OP CODE R1 D2 B2

SLDA 2,31 (0)

results in registers 2 and 3 both being left-shifted 31
places, so that their new contents are:
7F 6E 5D 4C 00 00 00 00 =
0111 1111 0110 1110 0101 1101 0100 1100 0000 0000 0000

0000 0000 0000 0000 00002

In this case, a significant bit is shifted out of position
1, and a fixed-point overflow interruption occurs (un­
less psw bit 36 equals 0).

Store Multiple (STM)

Assume that the contents of general registers 14, 15, 0,
and 1 are to be stored in consecutive words starting
with storage location 4050 and that:
Register 14 contains 00 00 25 63
Register 15 contains 00 01 27 36
Register 0 contains 12 43 00 62
Register 1 contains 73 26 12 57
Register 6 contains 00 00 40 00
The initial contents of locations 4050-405F are not significant

The STORE MULTIPLE instruction allows the use of
just one instruction to store the contents of the four
registers when it is written as:

Machine Format Assembler Format
OP CODE R1 R3 B2 D2 OP CODE R1 R3 D2 B2

90 lEI 1 I 6 I 050 1

After the instruction is executed:
Locations 4050-4053 contain 00 00 25 63
Locations 4054-4057 contain 0001 27 36
Locations 4058-405B contain 12 43 00 62
Locations 405C-405F contain 73 26 12 57

Logical Operations

Move (MVI, MVe)

Move Immediate (MVI)

STM 14,I,X'50'(6)

The MOVE IMMEDIATE instruction can place one byte of
information from the instruction stream into any des­
ignated location in storage. For example, if the in­
struction:

Machine Format Assembler Format
OP CODE 12 B1 D1 OP CODE Dl B1 12

92 1 FA I 0 1 0551 MVI 85(0),X'FA'

is executed, bits 8-15 of the instruction (1111 10102)

are copied in storage location 8510•

Move Charaders (MVC)

The MVC instruction can be used to move a data field
from one location in storage to another. For example,
assume that the following two fields are in storage:

2048 2052
Field 1 I Cl I C2 I C3 I C4 I C5 I C6 I C7 I C8 I C9-r-CA I-C~J

3840 3848
Field 2 I Fl I F2 I F3 I F4 I F5 I F6 I F7 I F8 I F9 J

Also assume:
Register 1 contains 00 00 20 48
Register 2 contains 00 00 38 40

With the following instruction the first eight bytes
of field 2 replace the first eight bytes of field 1:

Appendix A 131

Machine Format
OP CODE L Bl Dl B2 D2

D2 07 1 000 2 000

Assembler Format
OP CODE Dl L Bl D2 B2

MVC 0(8,1),0(2)

After the instruction is executed, field 1 becomes:
2048 2052

Field 1 I F1 I F2 I F3 I F4 I F~ I F6 I F7 I F8 I C9 I C~ I CB J
Field 2 is unchanged.
As indicated in the programming note in the MOVE

instruction description, MVC can be used to propagate
one character through a field by starting the first
operand field one byte to the right of the second oper­
and field. For example, suppose that an area in storage
starting with address 358 contains the following data:

358 360

I 00 I F1 I F2 I F3 I F4 I F5 I F6 I F7 I F8 I
With the following MVC instruction, the zeros in

location 358 can be propagated throughout the entire
field (assume that register 11 contains 00 00 03 58):

Machine Format
OP CODE L Bl Dl B2 D2

D2 07 B 001 BODO

Assembler Format
OP CODE Dl L Bl D2 B2

MVC 1(8,11),0(11)

Because the MVC handles one byte at a time, the
above instruction essentially takes the byte at address
358 and stores it at 359 (359 now contains (0), takes
the byte at 359 and stores it at 35A, etc., until the
entire field is filled with zeros. Note that an MVI in­
struction could have originally been used to place the
byte of zeros in location 358.

NOTES:

1. Although the field occupying locations 358-360
contains nine bytes, the length coded in the assembler
format is equal to the number of moves (one less than
the field length).

2. The order of operands is important even though
only one field is involved.

Move Numerics (MVN)

To illustrate the operation of the MOVE NUMERICS in­
struction, assume that the following two fields are in
storage:

7~0 7~7

~wllalrnlrnl~I~I~lrnl~1

7041 7049

Field 2 I FO I F1 I F2 I F3 I F4 I F5 I F6 I F7 I FBi

132

Also assume:
Register 14 contains 00 00 7090
Register 15 contains 00 00 70 40

After the instruction:
Machine Format

OP CODE L Bl Dl B2 D2

D1 03 FOOl E 000

Assembler Format
OP CODE Dl L B1 D2 B2

MVN l(4,15),0(14)

is executed, field 2 becomes:

7041 7049

I Fl I F2 I F3 I F4 I F4 I F5 I F6 I F7 I F8 I
The numeric portions of locations 7090-7093 have

been stored in the numeric portions of locations 7041-
7044. The contents of locations 7090-7097 and 7045-
7049 are unchanged.

Move Zones (MVZ)

The MOVE ZONES instruction, similar to MVC and MVN,

can operate on overlapping or nonoverlapping fields.
(See the examples for MVC and MVN.) When operating
on nonoverlapping fields, MVZ works similar to the MVN

instruction in the previous example, except that the
MVZ moves the high-order four bits of each byte. To
illustrate the use of MVZ with overlapping fields, as­
sume that the following data field is in storage:

800 805

I F1 I C2 I F3 I ~ I F5 I C6 I
Also assume that register 15 contains 00 00 08 00.

The instruction:
Machine Format

OP CODE L Bl Dl B2 D2

D3 04 F 001 F 000

Assembler Format
OP CODE Dl L Bl D2 B2

MVZ 1(5,15),0(15)

propagates the zone from the byte at address 800
through the data field, so that the field becomes:

800 805

I FI I F2 I F3 I F4 I F5 I F6 I

Compare logical (Cl, ClR, CLI, ClC)

The COMPARE LOGICAL instructions differ from the alge­
braic compare instructions (C, CR) in that all quanti­
ties are handled as if unsigned.

Compare Logical Registers (CLR)

Assume that:
Register 1 contains 00 00 00 01
Register 2 contains FF FF FF FF

Execution of the instruction:
Machine Format

OP CODE R1 R2

Assembler Format
OP CODE R1R2

15 1 1 2 1 CLR 1,2

sets the condition code to 1. A condition code of 1 in­
dicates that the first operand is lower than the second.
However, if an algebraic compare instruction had been
executed, the condition code would have been set to 2,
indicating that the first operand is higher. During alge­
braic comparison, the contents of register 1 are inter­
preted as + 1 and the contents of register 2 as -1.
During logical comparison, the leftmost byte of reg­
ister 2 is compared with the leftmost byte of register 1;
each byte is interpreted as a binary number. In this
case:
Leftmost byte of register 1: 0000 00002 = 010
Leftmost byte of register 2: 1111 11112 = 25510

If the two leftmost bytes are equal, the next two
bytes will be compared, etc., until either an inequality
is discovered or the contents of the registers are ex­
hausted.

Compare Logical Immediate (CLI)

The CLI instruction logically compares a byte from the
instruction stream with a byte from storage. For ex­
ample, assume that:
Register 10 contains 00 00 17 00
Storage location 1703 contains 7E

Execution of the instruction:
Machine Format

OP CODE 12 B1 D1

95 1 AF 1 A 1 0031

Assembler Format
OP CODE D1 B1 12

eLI 3(lO),X'AF'

sets the condition code to 1, indicating that· the first
operand (the quantity in main storage) is lower than
the second (immediate) operand.

Compare Logical Characters (CLC)

The COMPARE LOGICAL CHARACfERS instruction can be
used to perform the logical comparison of storage fields
up to 256 bytes in length. For example, assume that
the following two fields of data are in storage:
Field 1

1886 1891

I Dl I D61 C8 I D51 E21 D61 D516B I Cl 14B I C214B I
Field 2

1900 190B

I Dl I D6 I C8 I D51 E21 D6 I D516B I Cl 14B I C314B I
Also assume:

Register 6 contains 00 00 18 80
Register 7 contains 00 00 1900.

Execution of the instruction:
Machine Format

OP CODE L Bl D1 B2 D2

D5 1 OB 1 6 1 006 1 7 1 000 1

Assembler Format
OP CODE D1 L B1 D2 B2

CLC 6(12,6),0(7)

sets the condition code to 1, indicating that field 1 is
lower than field 2.

Because CLC compares bytes on an unsigned binary
basis, the instruction can be used to collate fields com­
posed of characters from the EBCDIC code. For example,
in EBCDIC, the above two data fields are:
Field 1 JOHNSON,A.B.
Field 2 JOHNSON,A.C.

The condition code of 1 tells us that A. B. Johnson
precedes A. C. Johnson, thus placing the names in the
correct alphabetic order.

AND (N, NR, NI, NC)

When the Boolean operator AND is applied to two bits,
the result is 1 when both bits are 1; otherwise, the re­
sult is O. When two bytes are AND' ed in System/360,
each pair of bits is handled separately; there is no con­
nection from one bit position to another.

AND (NI)

A frequent use of the AND instruction is to set a partic­
ular bit to zero. For example, assume that storage loca­
tion 4891 contains 0100 001b. To set the eighth (right­
most) bit of this byte to 0 without affecting the other
bits, the following instruction can be used (assume
that register 8 contains 00 00 48 90):

Machine Format Assembler Format
OP CODE 12 Bl Dl OP CODE D1 Bl 12

Li£ 1 FE 1 8D&~ NI 1(8),X'FE'

When this instruction is executed, the byte in stor­
age is AND'ed with the immediate byte:
Location 4891: 010000112
Immediate byte: 1111 11102

Result: 0100 00102

The resulting byte with bit seven set to 0 is stored in
location 4891. The condition code is set to 1.

OR (0, OR, 01, OC)

When the Boolean operator OR is applied to two bits,
the result is 1 when either bit is 1; otherwise, the re­
sult is O. When two bytes are oR'ed in System/360,
each pair of bits is handled separately; there is no
connection from one bit position to another.

Appendix A 133

OR (01)

A frequent use of the OR instruction is to set a par­
ticular bit to 1. For example, assume that storage loca­
tion 4891 contains 010000102 • To set the eighth (right­
most) bit of this byte to 1 without affecting the other
bits, the fol1owing instruction can be used (assume
that register 8 contains 00 00 48 90):

Machine Format
OP CODE 12 Bl Dl

c=Ji6 I 01 I 8 I 0011

Assembler Format
OP CODE Dl Bl 12

01 1(8),X'01'

When this instruction is executed, the byte in stor­
age is OR' ed with the immediate byte:
Location 4891: 0100 00102
Immediate byte: 0000 00012

Result: 0100 00112

The resulting byte with bit seven set to 1 is stored in
location 4891. The condition code is set to 1.

Exclusive OR (X, XR, XI, XC)

When the Boolean operator exclusive OR is applied
to two bits, the result is 1 when one, and only one, of
the two bits is 1; otherwise, the result is O. When two

I bytes are exclusive OR' ed in System/360, each pair of
I bits is handled separately; there is no connection from

one bit position to another.

Exclusive OR (XI)

A frequent use of the EXCLUSIVE OR (XI) instruction is
to invert a bit (change a 0 bit to a 1 or a 1 bit to a 0).
For example, assume that storage location 8082 con­
tains 0110 looh. To set the leftmost bit to 1 and the
rightmost bit to 0 without affecting any of the other
bits, the following instruction can be used (assume
that register 9 contains 00 00 80 80) :

Machine Format
OP CODE 12 Bl Dl

97 I 81 I 9 I @

Assembler Format
OP CODE Dl:81 12

XI 2(9),X'81'

When the instruction is executed, the byte in storage
is exclusive OR' ed with the immediate byte:
Location 8082: 0110 10012
Immediate byte: 1000 00012

Result: 1110 10002

The resulting byte with the leftmost and rightmost bits
inverted is stored in location 8082. The condition code
is set to 1.

Exclusive OR (XC)

The EXCLUSIVE OR (xc) instruction can be used to ex­
change the contents of two areas in storage without
the use of an intermediate storage area. For example,
assume that two words are in storage:

134

358 35B

Word 1 I 00 I 00 I 17 I 90 I

360 363

Word 2 I 00 I 00 I 14 I 01 I
Execution of the instruction (assume that register 7

contains 00 00 03 58):
Machine Format

OP CODE L Bl Dl B2 D2

~l§: I 7 1000 I 7 10081

Assembler Format
OP CODE Dl L Bl D2 B2

XC O(4,7),8(7)

exclusive OR'S word 1 with word 2 as follows:
Word 1: 000000000000000000010111100100002 = 00001790
Word 2: 000000000000000000010100000000012 = 00001401

Result: 000000000000000000000011100100012 = 00000391

The result replaces the former contents of word 1.
Now, execution of the instruction:

Machine Format
OP CODE L Bl Dl B2 D2

D7 I 03r-7~1-0-08~-7-1~0-0~01
Assembler Format

OP CODE Dl L Bl D2 B2

XC 8(4,7),0(7)

produces the following result:
Word 1: 000000000000000000000011100100012 = 00000391
Word 2: 000000000000000000010100000000012 = 00001401

Result: 000000000000000000010111100100002 = 00001790

The result of this operation replaces the former con­
tents of word 2. Word 2 now contains the original
value of word 1.

Lastly, execution of the instruction:
Machine Format

OP CODE L Bl Dl 82 D2

D7 I 03 I 7 I 000 7 I 0081

Assembler Format
OP CODE Dl L Bl D2 B2

XC 0(4,7),8(7)

produces the following result:
Word 1: 000000000000000000000011100100012 = 00000391
Word 2: 000000000000000000010111100100002 = 00001790

Result: 0000000000000000 0001 0100000000012 = 00001401

The result of this operation replaces the former con­
tents of word 1. Word 1 now contains the original
value of word 2.

NOTES:

1. With the xc instruction, fields up to 256 bytes in
length can be exchanged.

2. With the XR instruction, the contents of two regis­
ters can be exchanged.

3. Because the X instruction operates storage to reg­
ister only, an exchange cannot be made solely by the
use of x.

4. A field exclusive OR' ed with itself is cleared to
zeros.

Test Under Mask (TM)

The TEST UNDER MASK instruction examines specific bits
within a byte and sets the condition code according
to what it finds. For example, assume that:
Storage location 9999 contains FB
Register 9 contains 00 00 99 90

Execution of the instruction:
Machine Format

OP CODE 12 81 D1

91 1 C3 I 9 1 0091

produces the following result:
FB = 1111 10112

Mask (C3) = 1100 00112

Result = 11xx xx 11

Assembler Format
OP CODE D1 81 12

TM 9(9),X'C3'

The condition code is set to 3: all selected bits are
ones.

If location 9999 had contained B9, the result would
have been:

B9 = 1011 10012
Mask (C3) = 1100 00112

Result = 10xx xxOl

The condition code is set to I: the selected bits are
both zeros and ones.

If location 9999 had contained 3C, the result would
have been:

3C == 001111002
Ml1sk (C3) = 1100 00112

Result = OOxx xxOO

The condition code is set to 0: all selected bits are
zeros.

NOTE: Storage location 9999 remains unchanged.

Load Address (LA)

The LOAD ADDRESS instruction provides a convenient
way to place a non-negative number ~ 409510 in a reg­
ister without first defining the number as a constant
and then using it as an operand. For example, assume
that the number 204810 is to be placed in register 1.
One instruction that will do this is:

Machine Format
OP CODE H1 X2 82 D2

41 1 1 I 0 I 0 I Bool

Assembler Format
OP CODE H1 D2 X2B2

LA 1,204B(0,0)

As indicated in the programming note in the in­
struction description, the LOAD ADDRESS instruction can
also be used to increment a register by an amount ~
409510 specified in the D2 field. For example, assume
that register 5 contains 00 12 34 56.

The instruction:
Machine Format

OP CODE H1 X2 82 D2

41 5 0 5 1 OOA 1

Assembler Format
OP CODE H1 D2 X2B2

LA 5,1O(0,5)

adds 10 (decimal) to the contents of register 5 as fol­
lows:
Register 5 (old): 00 12, 34 56

D2: 00 00 00 OA

Register 5 (new): 00 12 34 60

Translate (TR)

With the TRANSLATE instruction, System/360 can trans­
late data from any code to any other desired code,
provided that each coded character consists of eight
bits or fewer. In the following example EBCDIC is trans­
lated to USASCII-8. The first step is to create a 256-byte
table in storage locations lOOO-IOFF. This table con­
tains the characters of the code into which you are
translating (the function bytes.). The table must be
in order, not by the binary values of the characters it
c~ntains, but by the binary sequence of the characters
of the original code (the argument bytes). For ex­
ample, note in the table below that the characters are
in the normal EBCDIC collating sequence.

Translate Table

100F

1000
~4--~-+~--~4-~-4--+-+---+---'-~------

1020
-- --- 1--- 1-... --

1030
~~~-+--~+-~-+--4---+--+- -+-- ----.. -. _ ... _- 1---- --

1040 b ( + 
-- ----. f .. --

$ * 1050 .& 
~~~-+--~+-~~ --- - - .. -+---4--~-+---+--I 

1060 - 7
1070

~4--+--+--~+-~-+--+--

lOBo ---------i b c d e f 9 a h

1090 k m n 0 p q

10AO u v w x y z

lOBO

---------lOCO ABC DE F G HI

---------1000 K LMNOP OR

10EO -----
S T.UVWX y Z

10FO 0 1 2 3 4 5 6 7 B 9

Notes:

@ -;- -
1-----4---1

... I---- -_.. ,-- - -- --

.--

lOFF

1. The overbars are used to indicate the USASCII-8 representations
of the EBCDIC characters shown.

2; If the ch~racter codes in the statement being translated occupy
a range smaller than 0016 through FF16, a table of Ie.. than 256
bytes can be used. ,

3. The symbol in location t040 represents the coding for a blank,
which is the same in both EBCDIC and USASCII-8, 4016.

Appendix A 135

Now, assume that starting at storage location 2100
there is" a sequence of 2010 EBCDIC characters to be
translated to USASCII-8:

Locations 2100-2113: JOHNbJONESb257bW.b95

Also assume:
Register 12 contains 00 00 21 00
Register 15 contains 00 00 10 00

As the instruction:
Machine Format

OP CODE L Bl Dl B2 D2

DC I 13 I El 000 I F I cx@
Assembler Format

OP CODE Dl L Bl D2 B2

TR 0(20,12),0(15)

is executed, the binary value of each argument byte is
added to the starting address of the table, and the re­
sulting address is used to fetch a function byte:
Table starting address: 1000
First argument byte (J): Dl

Address of function byte: 10Dl

Because the table is arranged so that every EBCDIC

character is replaced by the corresponding USASCII-8
character, the result is:
Locations 2100-2113: JOHNbJONESb257bW.95

NOTE: To verify that this example is correct, find in
Appendix F the hexadecimal values for the remaining
EBCDIC characters and add them to the starting address
of the table (1000). The sums should be the ad­
dresses within the table of the corresponding USASCII-8
characters.

Translate and Test (TRT)

The TRANSLATE AND TEST instruction is used to scan a
data field (the argument bytes) for characters with
special meaning. To indicate which characters have
special meaning, first set up a table similar to the one
used for the TRANSLATE instruction. (See the preceding
example.) Once again the table must be in order by
the binary sequence of the code of the argument bytes.
This time, however, put zeros in the table to indicate
characters without any speci~l meaning and nonzero
values to indicate characters with special meaning.

This example deals with EBCDIC characters; the char­
acters with special meaning in the argument field are
a selected set of punctuation marks. The translate and
test table that follows has been set up accordingly.

Now, assume that starting at storage location 3000
you have the following sequence of 3010 EBCDIC char­
acters:

Locations 3000-301D:
bbbbbUNPKbbbbbPROUT(9),WORD(5)

136

Translate and Test Table

2000

2010

2020

2030

2O.tO

2050

2060

2070

2080

2090

2OAO

2080

2OCO

2000

20£0

2OFO

00

00

00

00

00

90

80

00

00

00

00

00

00

00

00

00

00 00

00 00

00 00

00 00

00 00

00 00

85 00

00 00

00 00

00 00

00 00

00 00

00 00

00 00

00 00

00 00

00 00 00

00 00 00

00 00 00

00 00 00

00 00 00

00 00 00

00 00 00

00 00 00

00 00 00

00 00 00

00 00 00

00 00 00

00 00 00

00 00 00

00 00 00

00 00 00

00 00 00

00 00 00

00 00 00

00 00 00

00 00 00

00 00 00

00 00 00

00 00 00

00 00 00

00 00 00

00 00 00

00 00 00

00 00 00

00 00 00

00 00 00

00 00 00

200F

00 00 00 00 00 00 00

00 00 00 00 00 00 00

00 00 00 00 00 00 00

00 00 00 00 00 00 00

00 00 00 "10 20 25 00

00 00 30 35 .to .cs 00

" 00 00 50 55 00 00 00

00 00 60 65 70 75 00

00 00 00 00 00 00 00

00 00 00 00 00 00 00

00 00 00 00 00 00 00

00 00 00 00 00 00 00

00 00 00 00 00 00 00

00 00 00 00 00 00 00

00 00 00 00 00 00 00

00 00 00 00 00 00 00

20FF

Not.: If the character code. in the .tatement being fran.lated occupy
a rang •• mall.r than 0016 through FF16, a table I ... than 256 byt ••
can b. u •• d.

Also assume:
Register 1 contains 00 00 30 00
Register 2 contains 00 00 00 00
Register 15 contains 00 00 20 00

As the instruction:
Machine Format

OP CODE L Bl Dl B2 D2

I DD I ID I 1 I 000 I F I 0001

Assembler Format
OP CODE Dl L B1 D2 B2

TRT O(30,1),0(15)

is executed, the value of the first argument byte, a
blank, is added to the starting address of the table to
produce the address of the function byte to be ex­
amined:
Table starting address 2000
First argument byte (blank) 40

Address of function bye 2040

Because zeros were originally placed in storage loca­
tion 2040, no special action occurs, and the operation
continues with the second argument byte. The opera­
tion will thus continue until it reaches the symbol (
(left parenthesis) in location 3013. When this symbol
is reached, its value is added to the starting address
of the table, as usual:
Table starting address
Argument byte (left parenthesis)

Address of function byte

2000
4D

204D

Because location 204D contains a nonzero value, the
following actions occur:

1. The address of the argument byte, 003013, is
placed in the low-order 24 bits of register 1.

2. The function byte, 20, is placed in the low-order
eight bits of register 2.

3. The condition code is set to 1 (scan not com­
pleted).

In general, TRANSLATE AND TEST is executed by use
of an EXECUTE instruction, which supplies the length
specification from a general register. In this way a
complete statement scan can be performed with a
single TRANSLATE AND TEST instruction repeated over
and over by means of EXECUTE. In the example, after
the first execution of TRT, register 1 contains the ad­
dress of the last argument byte translated. It is then
a simple matter to subtract this address from the ad­
dress of the last argument byte (301D) to produce a
length specification. This length minus one is placed
in the register that is referenced as the Rl field of the
EXECUTE instruction. (Because the length code in the
machine format is one less than the total number of
bytes in the field, one must be subtracted from the
computed length.) The branch address part of the
EXECUTE instruction points to the TRANSLATE AND TEST

instruction, which must now appear in the following
format:

Machine Format
OPCODE L Bl Dl B2 D2

DD I 00 I 1 I 000 I F I 000 I
Assembler Format

OP CODE Dl LBI D2 B2

TRT 0(0,1),0(15)

Now the entire argument field can be scanned, stop­
ping to examine those characters of special interest,
without having to modify any of the instructions al­
ready written. After a stop is made to examine a char­
acter, only a new length and starting address need be
computed before continuing the scan.

Edit (ED)

Because the decimal feature instructions operate only
on packed decimal data, it is necessary to convert the
data to the zoned format before a legible report can
be printed. Moreover, if the report is to be useful to a
great many people, certain punctuation marks, such as
commas and decimal points, should be inserted in
appropriate places. The highly flexible EDIT instruction
performs these two functions in a single execution.

This example shows step-by-step one way in which
EDIT can be used. The field to be edited (the source)
is four bytes long; it is edited against a pattern 13
bytes long. The following symbols are used:

SYMBOL MEANING

b (hexadecimal 40) blank character
((hexadecimal 21) significance starter
d (hexadecimal 20) digit selector

Assume that the source and pattern fields are:

Source
1200 1203

I 02 I 57 I 42 I 6C I
t

Pattern
1000 100C

I 40 I 20 I 20 I 6B I 20 I 20 I 21 I 4B I 20 I 20 L~~OJ~~~~ J ~~ I -------------b d d d d (d d b C R

Execution of the instruction (assume that register 12
contains 00 00 10 00):

Machine Format
OP CODE L Bl Dl B2 D2

DE I OC I C I 000 I C~~]
Assembler ,Format

OP CODE Dl L Bl D2 B2

ED 0 (13,12) ,X'200' (12)

alters the pattern as follows:

SIGNIFICANCE

INDICATOR

PATTERN DIGIT before/after RULE LOCATION lOOO-100C

b off/off leave (1) bdd,dd (.ddbCR
d 0 off/off fill bbd,dd(.ddbCR
d 2 off/on (2) digit bb2,dd (.ddbCR

d
on/on leave same

5 on/on digit bb2,5d(.ddbCR
d 7 on/on digit bb2,57 (.ddbCR
(4 on/on digit bb2,574.ddbCR

on/on leave same
d 2 on/on digit bb2,574.2dbCR
d 6+ on/off (3) digit bb2,574.26bCR
b off/off fill same
C off/off fill bb2,574.26bbR
R off/off fill bb2,574.26bbb

Notes:

1. This character becomes the fill character.
2. First nonzero decimal source digit turns on significance

indicator.
3. Plus sign in the four low-order bits of the byte turns off

significance indicator.

Thus, after the instruction is executed:

Source Unchanged
Pattern
1000 100C

-------------b b 2 , 574 . 2 6 b b b
Condition code = 2; result greater than zero.

When printed, the pattern field, which now contains
the result, appears as:

2,574.26

Appendix A 136.1

If the number in the source field is changed to
00 00 02 6D, a negative number, and the original pat­
tern is used, the edited result becomes:

Pattern
1000 lOoe

[4<q-4014o14o , 40 ,··40 , 40 , 4B , F2 , F6 , 40 , C3JD9l ----------------b b b b b b b 26 bC R
Condition code = 1; result less than zero

The significance starter forces the significance indi­
cator to the on state and hence causes the decimal
point to be left unchanged. Because the minus sign
does not change the significance indicator, the CR

symbol is also preserved.

Edit and Mark (EDMK)

After an edit-and-mark operation, a symbol (such as
a dollar sign) can be inserted at the appropriate posi­
tion in the edited result. Usually a currency symbol
is inserted to the immediate left of the first significant
digit in the amount; however, if a decimal point ap­
pears in an amount less than one, the currency symbol
must be inserted to the immediate left of the decimal
point. A typical operation would leave no blank be­
tween the currency symbol and the amount, thus pro­
tecting against one form of alteration when the result
is printed on a check.

If significance is not forced by the significance
starter, the edit-and-mark operation inserts into gen­
eral register 1 an address one more than the address
at which a currency symbol would normally be in­
serted. After one is subtracted from the value in gen­
eral register 1 (for example, by using a BRANCH ON

COUNT instruction with Rl set to one and R2 set to
zero), a MOVE instruction (MVI) may be used to posi­
tion the symbol in main storage.

Machine Format
OP CODE 12 Bl Dl

92 ,5D '- 1 , 100 ,

Assembler Format
OP CODE D1 B1 12

MVI O(1),C'$'

If significance is forced, general register 1 remains
unchanged. Therefore, the address of the character
following the significance starter should be placed in
that register before the EDIT AND MARK instruction is
performed.

Decimal Arithmetic

Add Decimal (AP)

Assume that the signed, packed-decimal field at stor­
age locations 500-503 is to be added to the signed,
packed-decimal field at locations 2000-2002. Also
assume:

Register 12 contains 00 00 20 00
Register 13 contains 00 00 04 FD
Storage locations 2000-2002 contain 38 46 OD (a neg number)
Storage locations 500-503 contain 01 12 34 5C (a pos number)

136.2

After the instruction:

Machine Format
OP CODE L1 L2 B1 D1 B2 D2

FA I 2 I 3 I C I 000 I D I 003

Assembler Format
OP CODE Dl L1B1 D2 L2B2

AP 0(3,12),3(4,13)

is executed, the storage locations 2000-2002 contain
73 88 5C; the condition code is set to 2 to indicate that
the sum is positive. Note that:

l. Although the second operand Held is larger than
the Hrst operand Held, no overflow interruption occurs
because the result can be entirely contained within the
Hrst operand field.

2. Because the two numbers had different signs,
they were in effect subtracted.

Zero and Add (ZAP)

Assume that the signed, packed-decimal field at stor­
age locations 4500-4502 is to be moved to locations
4000-4004 with four leading zeros in the result Held.
Also assume:

Register 9 contains 00 00 40 00
Storage locations 4000-4004 contain 12 34 56 78 90
Storage locations 4500-4502 contain 38 46 OD

After the instruction:

Machine Format
OP CODE L1 L2 B1 D1 B2 D2

F8 4 I 2 I 9 I 000 I 9 I 500

Assembler Format
OP CODE Dl LtBl D2 L2B2

ZAP O(5,9),X'500'(3,9)

is executed, the storage locations 4000-4004 contain
00 00 3846 OD; the condition code is set to 1 to indi­
cate a negative result. Note that because the first
operand is not checked for vaiid sign and digit codes,
it may contain any combination of hexadecimal digits.

Compare Decimal (CP)

Assume that the signed, packed-decimal contents of
storage locations 700-703 are to be algebraically com­
pared with the signed, packed-decimal contents of lo­
cations 500-503. Also assume:

Register 12 contains 00 00 06 00
Register 13 contains 00 00 04 00
Storage locations 700-703 contain 17 25 35 6D
Storage locations 500-503 contain 06 72 142D

After the instruction:

Machine Format
OP CODE Ll L2 Bl Dl B2 D2

F9 3 3 C 100 D 100

Assembler Format
OPCODE Dl LIBI D2 L2B2

CP X'lOO'(4,12),X'100'(4,13)

is executed, the condition code is set to 1, indicating
that the first operand (the contents of locations 700-
703) is lower than the second.

Multiply Decimal (MP)

Assume that the signed, packed-decimal field in stor­
age locations 1202-1204 (the multiplicand) is to be
multiplied by the signed, packed-decimal field in lo­
cations 500-501 (the multiplier) :

1202 1204

Multiplicand I 38 I 46 I 00]

500 501

Multiplier I 32 110 I
Because there are a total of eight significant digits in
the multiplier and multiplicand, a field at least five
bytes in length must be reserved for the signed result.
As indicated in the programming note for MULTIPLY

DECIMAL, a ZERO AND ADD into a larger field can provide
the required space. If it is assumed:

Register 4 contains 00 00 12 00
Register 6 contains 00 00 05 00

then execution of the assembler instruction:

ZAP X'lOO' (5,4),2 (3,4)

sets up a new multiplicand in storage locations 1300-
1304:

1300 1304

Multiplicand (new) I 00 I 00 I 38 I 46 100 I
Now, after the instruction:

Machine Format
OP CODE Ll L2 Bt Dl B2 D2

FC 4 I 1 I 4 I 100 I 6 000

Assembler Format
OPCODE D1 LIBI D2 L2B2

MP X'lOO'(5,4),O(2,6)

is executed, storage locations 1300-1304 contain the
product: 01 23 45 66 OC.

Divide Decimal (DP)

Assume that the signed, packed-decimal field at stor­
age locations 2000-2004 (the dividend) is to be di­
vided by the signed, packed-decimal field at locations
3000-300 1 (the divisor). Also assume:

Register 12 contains 00 00 20 00
Register 13 contains 00 00 30 00
Storage locations 2000-2004 contain 01 23 45 67 8C
Storage locations 3000-3001 contain 32 10

After the instruction:
Machine Format

OP CODE' L1 L2 Bl Dl B2 D2

Ctiil411 Ic looolo~
Assembler Format

OP CODE Dl LIBI D2 L2B2

OP 0(5,12),0(2,13)

is executed, the dividend field is entirely replaced by
the signed quotient and remainder fields, as follows:

2000 2004

Locations 2000-2004 I 38 I 46 100 I 01 I 8C I
'------.y-----' ~

quotient remainder

NOTES:

1. Because the signs of the dividend and divisor are
different, the quotient receives a negative sign.

2. The remainder receives the sign of the dividend
and the length of the divisor.

3. If an attempt is made to divide the dividend by
the one-byte field at location 3001, the quotient will be
too long to fit within the four bytes allotted to it. A
decimal-divide exception exists, causing a program
interruption.

Pack (PACK)

Assume that storage locations 1000-1004 contain the
following zoned-decimal field that is to be converted
to a packed-decimal field and left in the same location:

1000 1004

Zoned Field I Fl I F2 I F3 I F4 I C51

Also assume that register 12 contains 00 00 10 00.
After the instruction:

Machine Format
OP CODE Ll L2 Bl Dl B2 D2

L F2 4 I 4 I C I 000 I C 000

Assembler Format
OP CODE Dl LIBI D2 L2B2

PACK O(5,12) ,O(5,12)

is executed, the field in locations 1000-1004 is in the
packed -decimal format:

1000 1004

Packed Field I 00 I 00 I 12 I 34 I 5C I
NOTES:

1. This example illustrates the operation of PACK

when the first and second operand fields overlap com­
pletely.

2. During the operation, the second operand was
extended with high-order zeros.

Appendix A 136.3

Unpack (UNPK)

Assume that storage locations 2501-2503 contain a
signed, packed-decimal field that is to be unpacked
and placed in storage locations 1000-1004. Also assume:
Register 12 contains 00 00 10 00
Register 13 contains 00 00 25 00
Storage locations 2501-2503 contain 12 34 5D
The initial contents of storage locations 1000-1004 are not

significant
PSW bit 12 = 0 (EBCDIC mode)

After the instruction:
Machine Format

OP CODE Ll L2 Bl Dl B2 D2

F3 4 I 2 I C I 000 I D I 001

Assembler Format
OP CODE Dl LIBI D2 L2B2

UNPK 0(5,12),1(3,13)

is executed, the storage locations 1000-1004 contain
Fl F2 F3 F4 D5. Because the CPU was in EBCDIC mode,
the zone Illh = F 16 was attached to all digits except
the digit occupying the same byte as the sign.

Move with Offset (MVO)

Assume that the unsigned three-byte field in storage
locations 4500-4502 is to be moved to locations 5600-
5603 and given the sign of the one-byte field located
at 5603. Also assume:
Register 12 contains 00 00 56 00
Register 15 contains 00 00 45 00
Storage locations 5600-5603 contain 77 88 99 OC
Storage locations 4500-4502 contain 12 34 56

After the instruction:
Machine Format

OP CODE Ll L2 BI DI B2 D2

Fl I IT 2 I C I 000 I F I 000

Assembler Format
OP CODE DI LIBI D2 L2B2

MVO 0(4,12),0(3,15)

is executed, the storage locations 5600-5603 contain
01 23 45 6C. Note that the second operand was ex­
tended with one high-order zero to fill out the first
operand field.

NOTE: The section "Shifting of Decimal Fields"
shows how MOVE WITH OFFSET can be used in shifting
a decimal field an odd number of places.

Shifting of Decimal Fields

No instructions have been specifically provided to per­
form shifting of decimal fields in storage. However,
various combinations of System/360 instructions may
be used to accomplish in effect this type of shift. The
following assembly-language examples illustrate some
of the methods for shifting decimal numbers. These

136.4

examples additionally illustrate how the assembly lan­
guage facilitates coding with symbolic operands.

Decimal Righ, Shift (Even Number of "aces)

Assume that symbolic storage location SOURCE contains
12 34 56 78 9C, and you wish to shift the contents of
SOURCE two places to the right (to drop the rightmost
two digits, thereby dividing SOURCE by 1(010). The
MOVE NUMERICS (MVN) instruction can be used to ac­
complish this:

MVN SOURCE+3(1),SOURCE+4

After the MVN instruction is executed, SOURCE con­
tains 12 34 56 7C. 9C. Instructions referencing SOURCE
should now use a length of 4 instead of 5.

Decimal Righ, Sh"t (Odd Number of "aces)

Assume that symbolic storage location SOURCE con­
tains 12 34 56 78 9C, and you wish to shift the contents
of SOURCE three places to the right (to drop the right­
most three digits, thereby dividing SOURCE by 1(0010).
The MOVE WITH OFFSET (MVO) instruction can be used
to accomplish this:

MVO SOURCE(5),SOURCE(3)

After this instruction is executed, SOURCE contains
000123456C.

Decimal Lelt Shift (Even Number of "aces)

Assume that symbolic location ZERO contains 00 00 and
that SOURCE contains 12 34 56 78 9C. The contents of
SOURCE can be shifted four places to the left by using
the following group of instructions:

MVC SOU\lCE+5(2),ZERO
MVN SOURCE+6(1),SOURCE+4
NI SOURCE +4,240

SOURCE

12 34 56 78 9C 00 00
12 34 56 78 9C 00 OC
12 34 56 78 90 00 OC

Note that the number 24010 in the AND (NI) instruc­
tion provides a mask of 1111 00002, which is used to
make the old sign position zero.

Decimal Left Shif, (Odd Number of "aces)

Assume that symbolic location ZERO contains 00 00 and
that SOURCE contains 12 34 56 78 9C. The contents of
SOURCE can be shifted three places to the left by using
the following group of instructions:

MVC SOURCE+5(2),ZERO
MVN SOURCE+6(1),SOURCE+4
NI SOURCE +4,240
MVO SOURCE(6),SOURCE(5)

floating-Point Arithmetic

SOURCE

12 34 56 78 9C 00 00
12 34 56 78 9C 00 OC
12 34 56 78 90 00 OC
0123456789 OOOC

In this section, the abbreviations FPRO, FPR2, FPR4, and
FPR6 stand for floating-point registers 0, 2, 4, and 6,
respectively.

Add Normalized (AE, AER, AD, ADR)

The ADD NORMALIZED instructions perform the addition
of two floating-point numbers and place the normal­
ized result in a floating-point register. Neither of the
two numbers to be added must necessarily be normal­
ized before addition occurs. For example, assume that:
FPR6 contains 43 08 21 00 00 00 00 00 = 82.116 ~ 130.0610

(unnormalized)
Storage locations 2000-2007 contain 41 12 34 560000 0000 =

1.2345616 ~ 1.1310 (normalized)
Register 13 contains 00 002000

The instruction:
Machine Format

OP CODE Rl X2 B2 D2

Assembler Format
OP CODE R1D2 X2B2

I 7 A 6 I 0 I D I 000 AE 6,0(0,13)

can be used to perform the short-precision addition of
the two operands. In this example the instruction
operates as follows:

The characteristics of the two numbers are com­
pared. Since the number in storage has a characteristic
that is smaller by 2, it is right-shifted after fetching
until the characteristics agree. The two numbers are
then added:

FPR6:
Shifted number from storage:

Intermediate sum:

43082100

GUARD
DIGIT

43001234 5

43083334 5

Because the intermediate sum is unnormalized, it is
left-shifted to form the normalized floating-point num­
ber 42 83 33 45 (==83.334516 == 131.210). This number
replaces the high-order portion of FPR6. The low-order
portion of FPR6 and the contents of storage locations
2000-2007 are unchanged.

If the long-precision instruction AD is used, the re­
sult in FPR6 will be 42 83 33 45 60 00 00 00. Note that in
this case, the use of the long-precision instruction pro­
vides one additional hexadecimal digit of precision.

Add Un normalized (AU, AUR, AW, AWR)

The ADD UNNORMALIZED instructions operate identical­
ly to the ADD NORMALIZED instructions, except that the
final result is not normalized when ADD UNNORMALIZED

is used. For example, using the same operands as in
the example for ADD NORMALIZED, when the short­
precision instruction:

Machine Format
OP CODE R1 X2 B2 D2

Assembler Format
OP CODE R1D2 X2D2

7E 6 I 0 I D I 000 AU 6,0(0,13)

is executed, the two numbers are added as follows:

FPR6:
Shifted number from storage:

Sum:

43082100

GUARD
DIGIT

43001234 5

43083334 5

The guard digit participates in the addition but is dis­
carded. The unnormalized sum replaces the high-order
portion of FPR6.

If the result in FPR6 is converted to a normalized
number (42 83 33 40 00 00 00 00) and is compared
to the result in FPR6 when ADD NORMALIZED was used
(42 83 33 45 00 00 00 00), in this case it is apparent
that the use of ADD NORMALIZED (with the retention of
the guard digit) has preserved some additional signifi­
cance in the result.

Compare (CE, CER, CD, CDR)

Assume that FPR4 contains 43 00 00 00 00 00 00 00
(== 0), and FPR6 contains 34 12 34 56 78 9A Be DE
(a positive number). The contents of the two registers
are to be compared with the following long-precision
instruction:

Machine Format
OP CODE R1 R2

29 I 4 I 6 I

Assembler Format
OP CODE RIR2

CDR 4,6

When this instruction is executed, the number with
the smaller characteristic is taken from the register
and right-shifted until the two characteristics agree.
The shifted contents of the FPR6 are:

GUARD
DIGIT

FPR6: 43 00 00 00 00 00 00 00 0

Therefore, when the two numbers are compared the
condition code is set to 0, indicating an equality.

As the above example implies, when floating-point
numbers are compared, more than two numbers may
compare equally if one of the numbers is un normal­
ized. For example, the unnormalized floating-point
number 41 00 12 34 56 78 9A Be compares equally with
all numbers of the form 3F 12 34 56 78 9A Be ox (X
represents any hexadecimal number). When the COM­

PARE instruction is executed, the two low-order digits
are shifted right two places; the 0 becomes the guard
digit, and the X does not participate in the comparison.

Note, however, that when two normalized floating­
point numbers are compared, the relationship between
numbers that compare equally is unique: each digit
in one number must be identical to the corresponding
digit in the other number.

Status Switching

Supervisor Call (SVC)

The SUPERVISOR CALL instruction allows a program that
is operating in the problem state to switch the CPU to
the supervisor state. At the same time, the problem
program can make a byte of information available to
the supervisor program. For example, the instruction:

Appendix A 136.5

Machine Format
OPCODE

OA I 01 I

Assembler Format
OP CODE I

SVC 1

causes a supervisor-call interruption. The byte of in­
formation (0000 OOOb) is placed in the interruption­
code field of the SUPERVISOR CALL old psw (storage lo­
cation 2316), and a new psw is fetched from location
6016• The information byte may indicate, for example,
that certain conditions encountered during processing
require further attention (e.g., the job has been com­
pleted and a printout of storage is desired).

Set Storage Key (SSK)

Assume that the storage block corresponding to ad­
dresses 800-FEF has bits 11110 set into its storage key
(that is, only programs with a protection key of 0 or
1510 can store data in this block, but any program can
fetch data). Also assume that:
Register 5 contains 00 00 OA 60
Register 6 contains 00 00 00 FO

When the instruction:
Machine Format

OP CODE Rl R2

08 I 6 Ii]

Assembler Format
OP CODE RIR2

SSK 6,5

is executed, bits 8-20 of register 5 are examined; their
value indicates which block of 2,04810 bytes is to have
its key set:
Register 5 (bits 8-20): 0000 0000 0000 1

In this case register 5 indicates that the "first" block
(addresses 800-FFF) is the block being addressed. Note
that register 5 will contain all zeros if the block con­
taining addresses 000-7FF is bcing addressed. Also note
that it is not necessary for R2 to contain the exact
address of the first byte in the block (i.e., 00 00 08 00)
because only bits 8-20 of R2 are examined.

The key setting for the storage block indicated by
register 5 is obtained from bits 24-28 of register 6:
Register 6 (bits 24-28) 1111 0

If the fetch protection feature is installed, and it is
desired to prevent fetching as well as storing of data
in locations 800-FFF, the low-order bit of the storage

136.6

key must be set to l. This bit can be set to 1 if bit 28
of register 6 is set to 1 before the execution of SSK.

(The register could contain 00 00 00 F8, for example.)

Insert Storage Key (15K)

Assume that the key of the storage block containing
addresses 800-FFF is to be inspected and that:

Register 5 contains 00000800
Register 6 contains FF FF FF FF

Execution of the instruction:

M achille Format
OP CODE Rl R2

[__ ~~=C~DJ
changes the contents of register 6 to:

Assembler Format
OP CODE RIR2

ISK 6,5

1111 1111 1111 1111 1111 1111 MMMM MOOO where
MMMMM represenfs the five-bit storage key. Note
that the last M is set to 0 if fetch protection is not
installed.

Test and Set (TS)

The TEST AND SET instruction can be used to control the
sharing of a storage area that is used in common by
more than one program. Assume that the convention
has been established that when the leftmost bit of an
indicator byte is set to 1, it is a signal to all other
programs not to attempt to access the storage area.
When a program has finished using the storage area,
it can then set the leftmost bit of the indicator byte to
0, indicating that other programs may now access the
area.

For example, assume that register 10 contains the
address of the indicator byte (00 00 34 56) and that
the indicator byte itself initially contains the bits
0000 0000. After the instruction:

Machine Format
OP CODE Bl Dl

[__ 9} __ · I AJOOoJ
is executed:

Assembler Format
OP CODE Dl Bl

TS 0(10)

The indicator byte (location 3456) contains bits 1111 1111.
The condition code is set to zero (indicating that the test re-

vealed the leftmost bit of the indicator byte was zero).

Appendix B. Fixed-Point and Two/s Complement Notation

A fixed-point number is a signed value, recorded as a
binary integer. It is called fixed point because the pro­
grammer determines the fixed positioning of the binary
point.

Fixed-point operands may be recorded in halfword
(16 bits) or word (32 bits) lengths. In both l~ngths,
the first bit position (0) holds the sign of the number,
with the remaining bit positions (1-15 for halfwords
and 1-31 for fullwords) used to designate the mag­
nitude of the number.

Positive fixed-point numbers are represented in true
binary form with a zero sign bit. Negative fixed-point
numbers are represented in two's complement notation
with a one bit in the sign position. In all cases, the
bits between the sign bit and the leftmost Significant
bit of the integer are the same as the sign bit (i.e.
all zeros for positive numbers, all ones for negative
numbers).

Negative fixed-point numbers are formed in two's
complement notation by inverting each bit of the posi­
tive binary number and adding one. For example, the
true binary form of the decimal value (plus 26) is
made negative (minus 26) in the following manner:

+26
Invert
Add 1

S INTEGER

0000000000011010
1111111111100101

1

-26 1111111111100110 (Two's complement form)

This is equivalent to subtracting the number:
00000000 00011010 from 1 00000000 00000000.

The following addition examples illustrate two's
complement arithmetic. Only eight bit positions are
used. All negative numbers are in two's complement
form.

COMMENTS

+57 00111001
+35 00100011

+92 01011100

+57 = 00111001
-35 11011101 No overflow

+22 00010110 Ignore carry - carry into high
order position and carry out.

+35 00100011
-57 11000111

-22 11101010 Sign change only; no carry.

-57 11000111
-35 11011101 No overflow

-92 10100100 Ignore carry - carry into high
order position and carry out.

-57 11000111
-92 10100100

-149 0001101011 OoOverflow - no carry into high
order position but carry out.

+57 00111001
+92 01011100

149 0010010101 ~Overflow - carry into high order
position, no carry out.

The following are 16-bit fixed-point numbers. The
first is the largest positive number and the last, the
largest negative number.

NUMBER DECIMAL S INTEGER

215 -1 32,767 =0 111111111111111
2° 1 = 0 0000000 00000001
0 0 = 0 0000000 00000000

_2° -1 = 1 111111111111111
_21G -32,768 = 1 0000000 00000000

The following are 32-bit fixed-point numbers. The
first is the largest positive number that can be repre­
sented by 32 bits, and the last is the largest negative
number.

NUMBER

231 -1
216

20

o
_20
_21
_216
_231 +1
-231

DECIMAL S INTEGER

2147483647 =01111111 111111111111111111111111
65 536 = 0 0000000 0000000100000000 00000000

1 = 0 0000000 0000000000000000 00000001
o = 0 0000000 0000000000000000 00000000

-1 =11111111111111111111111111111111
-2 =11111111111111111111111111111110

-65 536 = 1 1111111 11111111 00000000 00000000
-2147483647 = 10000000000000000000000000000001
-2147483648 = 10000000000000000000000000000000

Appendix B 137

Appendix C. Floating-Point Arithmetic

Floating-point arithmetic simplifies programming by
automatically maintaining binary point placement
(scaling) during computations in which the range of
values used vary widely or are unpredictable.

The key to floating-point data representation is the
separation of the significant digits of a number from
the size (scale) of the number. Thus, the number is
expressed as a fraction times a power of 16.

A floating-point number has two associated sets of
values. One set represents the significant digits of the
number and is called the fraction. The second set
specifies the power (exponent) to which 16 is raised
and indicates the location of the binary point of the
number.

These two numbers (the fraction and exponent) are
recorded in a single word or double word.

Since each of these two numbers is signed, some
method must be employed to express two signs in an
area that provides for a single sign. This is accom­
plished by having the fraction sign use the sign associ­
ated with the word (or double word) and expressing
the exponent in excess 64 arithmetic; that is, the ex­
ponent is added as a signed number to 64. The result­
ing number is called the characteristic. Since 64 uses 7
bits, the characteristic can vary from 0 to 127, permit­
ting the exponent to vary from -64 through 0 to +63.
This provides a decimal range of n x 1075 to n x 10-78•

Floating-point data in the System/360 may be re­
corded in short or long formats, depending on the
precision required. Both formats use a sign bit in bit
position 0, followed by a characteristic in bit positions
1-7. Short-precision floating-point data operands con­
tain the fraction in bit positions 8-31; long-precision
operands have the fraction in bit positions 8-63.

Short-Precision Floating-Point Format

Is I Characteristic I Fraction
o 1 7 8 31

Long-Precision Floating-Point Format

~ls~I_C_h_a_r_ac_t_e_ri_st_iC-LI _________ Fr_a_c_ti_o_n ______ ~SS~ ____ ~
o 1 7 8 63

The sign of the fraction is indicated by a zero or one
bit in bit position 0 to denote a positive or negative
fraction, respectively.

138

Within a given fraction length (24 or 56 bits), a
floating-pOint operation will provide the greatest pre­
cision if the fraction is normalized. A fraction is nor­
malized when the high-order digit (bit positions 8,
9, 10 and 11) is not zero. It is unnormalized if the
high-order digit contains all zeros.

If normalization of the operand is desired, the float­
ing-point instructions that provide automatic normal­
ization are used. This automatic normalization is ac­
complished by left-shifting the fraction (four bits per
shift) until a nonzero digit occupies the high-order
digit position. The characteristic is reduced by one for
each digit shifted.

Conversion Example

Convert the decimal number 149.25 to a short-preci­
sion floating-point operand. (Appendix E provides
tables for conversion of hexadecimal and decimal inte­
gers and fractions.)

1. The number is decomposed into a decimal integer
and a decimal fraction.

149.25 149 plus 0.25

2. The decimal integer is converted to its hexadeci­
mal representation.

14910

3. The decimal fraction is converted to its hexadeci­
mal representation.

0,416

4. Combine the integral and fractional parts and ex­
press as a fraction times a power of 16 (exponent).

95.416 (0.954 X 102 h6

5. The characteristic is developed from the expon­
ent and converted to binary.

base + exponent characteristic
64 + 2 = 66 = 1 0 0 0 0 1 0

6. The fraction is converted to binary and grouped
hexadecimally.

.95416 = .1001 0101 0100
7. The characteristic and the fraction are stored in

short precision format. The sign position contains the
sign of the fraction.

S Char Fraction
o 1000010 100101010100000000000000

The following are sample normalized short fioating­
point numbers. The last two numbers represent the
smallest and the largest positive normalized numbers.

NUMBER POWERS OF 16 SCHAR

1.0 = +1/16 X 161 =01000001
0.5 = +8/16 X 160 =0 1000000
1/64 = +4/16 X 16-1 =00111111
0.0 = +0 X 16-64 =00000000

-15.0 = -15/16 X 161 = 1 1000001
5.4 X 1O-79 "=" + 1/16 X 16-64 ~o 0000000
7 X 1075 ~ (1-16-6) X 1663 -=01111111

FRACTION

0001 0000 0000 0000 0000 0000
1000 0000 0000 0000 0000 0000
0100 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000
1111 0000 0000 0000 0000 0000
0001 0000 0000 0000 0000 0000
111111111111111111111111

Appendix C 139

Appendix D. Powers of Two Table

2n
It 2- 11

1 0 1.0
2 1 0.5
4 2 0.25
8 3 0.125

16 4 0.062 5
32 5 0.031 25
64 6 0.015 625

128 7 0.007 812 5

256 8 0.003 906 25
512 9 0.001 953 125

1 024 10 0.000 976 562 5
2 048 11 0.000 488 281 25

4 096 12 0.000 244 140 625
8 192 13 0.000 122 070 312 5

16 384 14 0.000 061 035 156 25
32 768 15 0.000 030 517 578 125

65 536 16 0.000 015 258 789 062 5
131 072 17 0.000 007 629 394 531 25
262 144 18 0.000 003 814 697 265 625
524 288 19 0.000 001 907 348 632 812 5

1 048 576 20 0.000 000 953 674 316 406 25
2 097 152 21 0.000 000 476 837 158 203 125
4 194 304 22 0.000 000 238 418 579 101 562 5
8 388 608 23 0.000 000 119 209 289 550 781 25

16 777 216 24 0.000 000 059 604 644 775 390 625
33 554 432 25 0.000 000 029 802 322 387 695 312 5
67 108 864 26 0.000 000 014 901 161 193 847 656 25

134 217 728 27 0.000 000 007 450 580 596 923 828 125

268 435 456 28 0.000 000 003 725 290 298 461 914 062 5
536 870 912 29 0.000 000 001 862 645 149 230 957 031 25

1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625
2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5

4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25
8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 453 125

17 179 869 184 34 0.000 000 000 058 207 660 913 467 407 226 562 5
34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25

140

The following tables aid in converting hexadecimal
values to decimal values, or the reverse.

Dired Conversion Table
This table provides direct conversion of decimal and
hexadecimal numbers in these ranges:

HEXADECIMAL DECIMAL

000 to FFF 0000 to 4095

For numbers outside the range of the table, add the
following values to the table figures:

0 1 2 3 4 5 6

00_ 0000 0001 0002 0003 0004 0005 0006
01_ 0016 0017 0018 0019 0020 0021 0022
02_ 0032 0033 0034 0035 0036 0037 0038
03_ 0048 0049 0050 0051 0052 0053 0054
04_ 0064 0065 0066 0067 0068 0069 0070
05_ 0080 0081 0082 0083 0084 0085 0086
06_ 0096 0097 0098 0099 0100 0101 0102
07_ 0112 0113 0114 0115 0116 0117 0118
08_ 0128 0129 0130 0131 0132 0133 0134
09_ 0144 0145 0146 0147 0148 0149 0150
O~ 0160 0161 0162 0163 0164 0165 0166
OB_ 0176 0177 0178 0179 0180 0181 0182
OC_ 0192 0193 0194 0195 0196 0197 0198
OD_ 0208 0209 0210 0211 0212 0213 0214
OE_ 0224 0225 0226 0227 0228 0229 0230
OF_ 0240 0241 0242 0243 0244 0245 0246

10_ 0256 0257 0258 0259 0260 0261 0262
11_ 0272 0273 0274 0275 0276 0277 0278
12_ 0288 0289 0290 0291 0292 0293 0294
13_ 0304 0305 0306 0307 0308 0309 0310
14_ 0320 0321 0322 0323 0324 0325 0326
15_ 0336 0337 0338 0339 0340 0341 0342
16_ 0352 0353 0354 0355 0356 0357 0358
17_ 0368 0369 0370 0371 0372 0373 0374
18_ 0384 0385 0386 0387 0388 0389 0390
19_ 0400 0401 0402 0403 0404 0405 0406
1A_ 0416 0417 0418 0419 0420 0421 0422
1B_ 0432 0433 0434 0435 0436 0437 0438
1C_ 0448 0449 0450 0451 0452 0453 0454
ID_ 0464 0465 0466 0467 0468 0469 0470
lE_ 0480 0481 0482 0483 0484 0485 0486
IF_ 0496 0497 0498 0499 0500 0501 0502

7

0007
0023
0039
0055
0071
0087
0103
0119
0135
0151
0167
0183
0199
0215
0231
0247

0263
0279
0295
0311
0327
0343
0359
0375
0391
0407
0423
0439
0455
0471
0487
0503

Appendix E. Hexadecimal Tables

HEXADECIMAL

1000
2000
3000
4000
5000
6000
7000
8000
9000
AOOO
BOOO
COOO
DOOO
EOOO
FOOO

8 9 A

0008 0009 0010
0024 0025 0026
0040 0041 0042
0056 0057 0058
0072 0073 0074
0088 0089 0090
0104 0105 0106
0120 0121 0122
0136 0137 0138
0152 0153 0154
0168 0169 0170
0184 0185 0186
0200 0201 0202
0216 0217 0218
0232 0233 0234
0248 0249 0250

0264 0265 0266
0280 0281 0282
0296 0297 0298
0312 0313 0314
0328 0329 0330
0344 0345 0346
0360 0361 0362
0376 0377 0378
0392 0393 0394
0408 0409 0410
0424 0425 0426
0440 0441 0442
0456 0457 0458
0472 0473 0474
0488 0489 0490
0504 0505 0506

B

0011
0027
0043
0059
0075
0091
0107
0123
0139
0155
0171
0187
0203
0219
0235
0251

0267
0283
0299
0315
0331
0347
0363
0379
0395
0411
0427
0443
0459
0475
0491
0507

C

0012
0028
0044
0060
0076
0092
0108
0124
0140
0156
0172
0188
0204
0220
0236
0252

0268
0284
0300
0316
0332
0348
0364
0380
0396
0412
0428
0444
0460
0476
0492
0508

DECIMAL

4096
8192

12288
16384
20480
24576
28672
32768
36864
40960
45056
49152
53248
57344
61440

D

0013
0029
0045
0061
0077
0093
0109
0125
0141
0157
0173
0189
0205
0221
0237
0253

0269
0285
0301
0317
0333
0349
0365
0381
0397
0413
0429
0445
0461
041r7
0493
0509

E

0014
0030
0046
0062
0078
0094
0110
0126
0142
0158
0174
0190
0206
0222
0238
0254

0270
0286
0302
0318
0334
0350
0366
0382
0398
0414
0430
0446
0462
0478
0494
0510

F

0015
0031
0047
0063
0079
0095
0111
0127
0143
0159
0175
0191
0207
0223
0239
0255

0271
0287
0303
0319
0335
0351
0367
0383
0399
0415
0431
0447
0463
0479
0495
0511

.-

Appendix E 141

0 1 2 3 4 5 6 7 8 9 A B C D E F

20_ 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
21_ 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
22_ 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
23_ 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575
24_ 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591
25_ 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
26_ 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623
27_ 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639
28_ 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
29_ 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671
2A_ 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 06'84 0685 0686 0687
2B_ 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703
2C_ 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719
2D_ 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
2E_ 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751
2F_ 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767

30_ 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
31_ 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
32_ 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
33_ 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831
34_ 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847
35_ 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
36_ 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
37_ 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895
38_ 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911
39_ 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927
3A_ 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943
3B_ 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959
3C_ 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975
3D_ 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991
3E_ 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007
3F_ 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

0 1 2 3 4 5 6 7 8 9 A B C D E F

40_ 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
41_ 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
42_ 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
43_ 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
44_ 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
45_ 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
46_ 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
47_ 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
48_ 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
49_ 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
4A_ 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
4B_ 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
4C_ 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
4D_ 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4E_ 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
4F_ 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
50_ 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
51_ 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
52_ 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
53_ 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
54_ 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
55_ 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
56_ 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
57_ 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
58_ 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
59_ 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
5A_ 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
5B_ 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
5C_ 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
5D_ 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
5E_ 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
5F_ 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

142

0 1 2 3 4 5 6 7 8 9 A B C D E F

60_ 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
61_ 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
62_ 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
63_ 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
64_ 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
65_ 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
66_ 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
67_ 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
68_ 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
69_ 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
6A_ 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
6B_ 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
6C_ 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
6D_ 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
6E_ 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
6F_ 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
70_ 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
71_ 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
72_ 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
73_ 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
74_ 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
75_ 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
76_ 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
77_ 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
78_ 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
79_ 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
7A_ 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
7B_ 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 198.1 1982 1983
7C_ 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
7D_ 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
7E_ 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
7F_ 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

0 1 2 3 4 5 6 7 8 9 A B C D E F

80_ 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
81_ 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
82_ 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
83_ 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
84_ 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
85_ 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
86_ 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
87_ 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
88_ 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
89_ 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
8A_ 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
8B_ 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 - 2239
8C_ 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
8D_ 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
8E_ 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
8F_ 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
90_ 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
91_ 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
92_ 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
93_ 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
94_ 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
95_ 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
96_ 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
97_ 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
98_ 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
99_ 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
9A_ 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
9B_ 2480 2481 "2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
9C_ 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
9D_ 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
9E_ 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
9F_ 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

Appendix E 143

0 1 2 3 4 5 6 7 8 9 A B C D E F

AO_ 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
A1_ 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
A2_ 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A3_ 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
A4_ 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
A5_ 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
A6_ 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
A7_ 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
A8_ 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A9_ 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AA_ 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
AB_ 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
AC_ 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
AD_ 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AE_ 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AF_ 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815

BO_ 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
B1_ 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
B2_ 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
B3_ 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
B4_ 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
B5_ 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
B6_ 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
B7_ 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
B8_ 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
B9_ 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
BA_ 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
BB_ 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
BC_ 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
BD_ 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BE_ 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
BF_ 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

0 1 2 3 4 5 6 7 8 9 A B C D E F

CO_ 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
C1_ 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
C2_ 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
C3_ 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
C4_ 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
C5_ 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
C6_ 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
C7_ 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
C8_ 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
C9_ 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
CA_ 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
CB_ 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
CC_ 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
CD - 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
CE_ 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
CF_ 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
DO_ 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
D1 - 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
D2_ 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
D3_ 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
D4_ 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
D5_ 3-408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
D6_ 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
D7_ 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
D8_ 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 D9_ 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 DA_ 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 DB_ 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
DC -- 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 DD_ 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
DE - 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
DF -- 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583

144

0 1 2 3 4 5 6 7 8 9 A B C D E F

EO_ 3584 3585 3586 3587 3583 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
E1_ 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
E2 - 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
E3_ 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
E4_ 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
E5_ 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
E6_ 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
E7 - 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
E8 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 -

E9_ 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EA_ 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
EB_ 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
EC_ 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
ED_ 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
EE_ 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EF_ 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839

FO_ 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
F1 - 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
F2_ 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
F3_ 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
F4_ 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
F5_ 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
F6_ 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
F7_ 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
F8_ 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
F9_ 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
FA_ 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
FB_ 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
FC_ 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
FD_ 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
FE_ 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
FF_ 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

Appendix E 145

Hexadecimal and Decimal Integer Conversion Table

HALFWORD

BYTE BYTE

BITS: 0123 4567 0123 4567

Hex Decimal Hex Decimal Hex Decimal Hex Decimal

0 0 9 0 0 0 0 0
1 268/435,456 1 16,777,216 1 1,048 576 1 65,536
2 53~;870,912 2 33,554,432 2 2,097,152 2 131,072
3 ~05,306,368 3 50,331,648 3 3,145,728 3 196,608
4 T ,073,741,824 4 67 108 864 4 4 194 304 4 262 144
5 1,342,177,280 5 83,886,080 5 5,242,880 5 327,680
6 1,610,612,736 6 100,663,296 6 6,291,456 6 393,216
7 1,879,048, 192 7 117,440,512 7 7,340,032 7 458 752
8 2,147,483,648 8 134,217,728 8 8,388,608 8 524,288
9 2,415,919,104 9 150,994,944 9 9,437,184 9 589,824
A 2,684,354,560 A 167,772,160 A 10,485,760 A 655,360
B 2,952 790,016 B 184 549 376 B 11 534,336 B 720,896
C 3,221,225,472 C 201,326592 C 12 582,912 C 786 432
D 3,489 660,928 D 218,103,808 D 13,631,488 D 851,968
E 3,758,096,384 E 234,881,024 E 14,680,064 E 917,504
F 4,026,531,840 F 251,658,240 F 15,728,640 F 983,040

8 7 6 5

TO CONVERT HEXADECIMAL TO DECIMAL
EXAMPLE

1. Locate the column of decimal numbers corresponding to Conversion of
the left-most digit or letter of the hexadecimal; select Hexadecimal Value
from this column and record the number that corresponds
to the position of the hexadecimal digit or letter. 1. D

2. Repeat step 1 for the next (second from the left)
2. 3 position.

3. Repeat step 1 for the units (third from the left) 3. 4
position.

4. Add the numbers selected from the table to form the
4. Decimal

decimal number.

TO CONVERT DECIMAL TO HEXADECIMAL
EXAMPLE

1. (a) Select from the table the highest decimal number
Conversion of

that is equal to or less than the number to be con-
Decimal Value

verted.
(b) Record the hexadecimal of the column containing

1. D
the selected number.
(c) Subtract the selected decimal from the number to
be converted.

2. 3
2. Using the remainder from step 1 (c) repeat all ofstep 1

to develop the second position of the hexadecimal
(and a remainder) . 3. 4

3. Using the remainder from step 2 repeat all of step 1 to 4. Hexadecimal
develop the units position of the hexadecimal.

4. Combine terms to form the hexadecimal number.

POWERS OF 16 TABLE

Example: 268,435,45610 = (2.68435456 x 108)10 = 10000000 16 = (107)16

16n

1
16

256
4 096

65 536
1 048 576

16 m 216
268 435 456

4 294 967 296
68 719 476 736

1 099 511 627 776
17 592 186 044 416

281 474 976 710 656
4 503 599 627 370 496

72 057 594 037 927 936
\.1 152 921 504 606 846 976

v
Decimal Values

146

n

o
1
2
3
4
5
6
7
8
9

10=A
11 = B
12 = C
13 = D
14 = E
15 ,= F

Hex

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

D34

3328

48

4

3380

3380

-3328
-s2

-48
--4

-4

D34

HALFWORD

BYTE BYTE

0123 4567 0123 4567

Decimal Hex Decimal Hex Decimal Hex Decimal

0 0 0 0 0 0 0
4,096 1 256 1 16 1 1
8,192 2 512 2 32 2 2

12,288 3 768 3 48 3 3
16 384 4 1 024 4 64 4 4
20,480 5 1,280 5 80 5 5
24,576 6 1,536 6 96 6 6
28/672 7 1,792 7 112 7 7
32 768 8 2 048 8 128 8 8
36,864 9 2,304 9 144 9 9
40,960 A 2,560 A 160 A 10
45,056 B 2,816 B 176 B 11
49 152 C 3 072 C 192 C 12
53,248 D 3,328 D 208 D 13
57,344 E 3,584 E 224 E 14
61,440 F 3,840 F 240 F 15

4 3 2 1

To convert integer numbers greater than the capacity of
table, use the techniques below:

HEXADECIMAL TO DECIMAL

Successive cumulative multiplication from left to right,
adding units position.

Example: D3416 = 338010

DECIMAL TO HEXADECIMAL

D = 13
..1li.Q..
208

3 = + 3
2i1
x16

3376
4 = +4

3380

Divide and collect the remainder in reverse order.

Example: 338010 = X16

16 13380 ~ remainder

16 l1!.L.-______ 4 t
16~--=:3 I

D 338010= D3416

Hexadecimal and Decimal Fraction Conversion Table

BYTE

BITS 0123 4567

Hex Decimal Hex Decimal

.0 .0000 .00 .0000 0000

.1 .0625 .01 .0039 0625

.2 .1250 .02 .0078 1250

.3 .1875 .03 .0117 1875

.4 .2500 .04 .0156 2500

.5 .3125 .05 .0195 3125

.6 .3750 .06 .0234 3750

.7 .4375 .07 .0273 4375

.8 .5000 .08 .0312 5000

.9 .5625 .09 .0351 5625

.A .6250 .OA .0390 6250

.B .6875 .OB .0429 6875

.C .7500 .OC .0468 7500

.0 .8125 .00 .0507 8125

.E .8750 .DE .0546 8750

.F .9375 .OF .0585 9375

I 2

TO CONVERT .ABC HEXADECIMAL TO DECIMAL

Find.A in position 1

Find .OB in position 2

Find .OOC in position 3

.ABC Hex is equal to

.6250

.0429 6875

.0029 2968 7500

• 6708 9843 7500

TO CONVERT .13 DECIMAL TO HEXADECIMAL

Hex

.000

.001

.002

.003

.004

.005

.006

.007

.008

.009

.00A

.OOB

.00C

.000

.00E

.OOF

.0000

.0002

.0004

.0007

.0009

.0012

.0014

.0017

.0019

.0021

.0024

.0026

.0029

.0031

.0034

.0036

HALFWORD

3

BYTE

0123 4567 --
Decimal Hex Decimal Equivalent

0000
4414
8828
3242
7656
2070
6484
0898
5312
9726
4140
8554
2968
7382
1796
6210

0000 .0000 .0000 0000 0000 0000
0625 .0001 .0000 1525 8789 0625
1250 .0002 .0000 3051 7578 1250
1875 .0003 .0000 4577 6367 1875
2500 .0004 .0000 6103 5156 2500
3125 .0005 .0000 7629 3945 3125
3750 .0006 .0000 9155 2734 3750
4375 .0007 .0001 0681 1523 4375
5000 .0008 .0001 2207 0312 5000
5625 .0009 .0001 3732 9101 5625
6250 .OOOA .0001 5258 7890 6250
6875 .000B .0001 6784 6679 6875
7500 .OOOC .0001 8310 5468 7500
8125 .0000 .0001 9836 4257 8125
8750 .OOOE .0002 1362 3046 8750
9375 .OOOF .0002 2888 1835 9375

--
4

To convert fractions beyond the capacity of table, use techniques below:

HEXADECIMAL FRACTION TO DECIMAL

Convert the hexadecimal fraction to its decimal equivalent using the same
technique as for integer numbers. Divide the results by 16n (n is the
number of fraction positions) •
Example: .8A7 = .54077110

8A716 = 221510 .540771
163 = 4096 409612215.000000

1. Find .1250 next lowest to
subtract

.1300
-.1250 = .2Hex

2. Find .0039 0625 next lowest to .0050 0000
-.0039 0625 = .01

3. Find .0009 7656 2500 .00109375 0000
-.0009 7656 2500 = .004

4. Find .0001 0681 1523 4375 .0001 1718 7500 0000
-.0001 0681 1523 4375 = .0007

.0000 10375976 5625 = .2147 Hex

5. 13 Decimal is approximately equal to ________ ---1+

DECIMAL FRACTION TO HEXADECIMAL

Collect integer parts of product in the order of calcu lation.

Example: .540810 = .8A716

.5408

1
8 ..-

A"-

7 ..-

x16
[]].6528

x16
[QI.4448

x16
[11.1168

Appendix E 147

Hexadecimal Addition and Subtraction Table

Example: 6 + 2 = 8, 8 - 2 = 6, and 8 - 6 = 2

1 2 3 4 5 6 7 8 9 A B C D E F

1 02 03 04 05 06 07 08 09 OA OB OC OD OE OF 10

2 03 04 05 06 07 08 09 OA OB OC OD OE OF 10 11

3 04 05 06 07 08 09 OA OB OC OD OE OF 10 11 12

4 05 06 07 08 09 OA OB OC OD OE OF 10 11 12 13
--

5 06 07 08 09 OA OB OC OD OE OF 10 11 12 13 14

6 07 08 09 OA OB OC OD OE OF 10 11 12 13 14 15
-------- ---------- ------

7 08 09 OA OB OC OD OE OF 10 11 12 13 14 15 16

8 09 OA OB OC OD OE OF 10 11 12 13 14 15 16 17

9 OA OB OC OD OE OF 10 11 12 13 14 15 16 17 18

A OB OC OD OE OF 10 11 12 13 14 15 16 17 18 19
-- -

B OC OD OE OF 10 11 12 13 14 15 16 17 18 19 lA

C OD OE OF 10 11 12 13 14 15 16 17 18 19 lA lB

D OE OF 10 11 12 13 14 15 16 17 18 19 lA lB lC

E OF 10 11 12 13 14 15 16 17 18 19 lA lB lC lD

F 10 11 12 13 14 15 16 17 18 19 lA 1 B lC lD IE

Hexadecimal Multiplication Table

Example: 2 x 4 = 08, F x 2 = IE

1 2 3 4 5 6 7 8 9 A B C D E F

1 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF

2 02 04 06 08 OA OC OE 10 12 14 16 18 lA lC IE

3 03 06 09 OC OF 12 15 18 lB IE 21 24 27 2A 2D
--

4 04 08 OC 10 14 18 lC 20 24 28 2C 30 34 38 3C

5 05 OA OF 14 19 IE 23 28 2D 32 37 3C 41 46 4B
--- --

6 06 OC 12 18 IE 24 2A 30 36 3C 42 48 4E 54 5A
--I----

7 07 OE 15 lC 23 2A 31 38 3F 46 4D 54 5B 62 69
-- ---1---

8 08 10 18 20 28 30 38 40 48 50 58 60 68 70 78
---- ---- 1--------

9 09 12 lB 24 2D 36 3F 48 51 5A 63 6C 75 7E 87
--1'- ----- --.. _---.--- ---_ .. _-----

I

A OA 14 IE 28 32 3C 46 50 5A 64 6E 78 82 8C 96
--
B OB 16 21 2C 37 42 4D 58 63 6E 79 84 8F 9A A5

C OC 18 24 30 3C 48 54 60 6C 78 84 90 9C A8 B4

D OD lA 27 34 41 4E 5B 68 75 82 8F 9C A9 B6 C3

E OE lC 2A 38 46 54 62 70 7E 8C 9A A8 B6 C4 D2

F OF IE 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 D2 El

148

Appendix F. USASCII-8 and EBCDIC Charts

Charts and supporting text appear on the following
pages.

Appendix F 149

Code Structures

Both USASCII-8 and EBCDIC provide for 256 possible
characters. Each character is composed of eight bits
(one byte), and each bit position is assigned a num­
ber. The bit positions are numbered as follows:

I I I I I I I I I
USASCII-8 8 7 6 5 4 3 2 1
EBCDIC 0 1 2 3 4 5 6 7

USA Standard Code for Information Interchange
(USASCII) Embedded in USASCII-8

The seven-bit USASCII has its bits numbered as follows:

, , , , I ,

USASCII b7 ba b5 b4 ba b2 bl

The seven-bit USASCII can be extended to eight pits
and embedded in USASCII-8 as follows:

I I I I I I I I

USASCII b7 ba b7 b5 b4 ba b2 b1
USASCII-8 8 7 6 5 4 3 2 1
The 256-position table at the right, outlined by the

heavy black lines, shows the graphic characters and
control character representations for USASCII-8. The
bit-position numbers, bit patterns, and hexadecimal
representations for these and other possible USASCII-8

characters are also shown.

150 Appendix F

,.0,

i5
N- l M

~ "'t-

~ !!
0 l
"1 "C

00 01 10 8
u

~ J! 00 01 10 11 00 01 10 11 00 01 10 11 --- 0 1 2 3 4 5 6 7 8 9 A B

0000 0 NUL DLE SP 0 @ P

0001 1 SOH DCl ICD 1 A Q

0010 2 STX DC2 01 2 B R

0011 3 ETX DC3 /I 3 C S

0100 4 EOT DC4 $ 4 D T

0101 5 ENQ NAK 0/0 5 E U

0110 6 ACK SYN & 6 F V

0111 7 BEL ETB I 7 G W

1000 8 BS CAN (8 H X

1001 9 HT EM) 9 I Y

1010 A LF SUB * : J Z

lOll B VT ESC + i K [

1100 C FF FS , < L \

1101 D CR GS - = M I

1110 E SO RS > N "0
11 " F 51 US / ? 0 -

CD In the event that IBM equipment implementing USASCII-8 is provided, the graphic I (Logical OR) will be u'!;ed
instead of I (Exclamation Point).

o
Note:

In the event that IBM equipment implementing USASCII-8 is provided, the graphic --, (Logical NOT) will be
used instead of A (Circumflex).

Current activities in committees under the auspices of the United States of America Standards Institute may result
in changes to the characters and/or structure of the eight-bit representation of USASCII devised by the Institute.
Such changes may cause the eight-bit representation of USASCII implemented in System/360 (USASCII-8) to be
different from a future USA Standard. Since a difference of this nature may eventually lead to a modification of
System/360, it is recommended that users avoid: (1) operation with PSW bit 12 set to 1, and (2) the use of any
sign codes in decimal data other than those preferred for EBCDIC.

Control Character Representations Special Graphic Characters

NUL Null DLE Data Link Escape (CC) SP Space
SOH Start of Heading (CC) DCl Device Control I I Exclamation Point
STX Start of Text (CC) DC2 Device Control 2 I Logical OR
ETX End of Text (CC) DC3 Device Control 3 Quotation Marks
EOT End of Transmission (CC) DC4 Device Control 4 /I Number Sign
ENQ Enquiry (CC) NAK Negative Acknowledge (CC) $ Dollar Sign
ACK Acknowledge (CC) SYN Synchronous Idle (CC) 0/0 Percent
BEL Bell ETa End ofTransmission Block (CC) & Ampersand
BS Backspace (FE) CAN Cancel Apostrophe
HT Horizontal Tabulation (FE) EM End of Medium Opening Parenthesis
LF Line Feed (FE) SUB Substitute Closing Parenthesis
VT Vertical Tabulation (FE) ESC Escape Asterisk
FF Form Feed (FE) FS File Separator (IS) + Plus
CR Carriage Return (FE) GS Group Separator (IS) Comma
SO Shift Out RS Record Separator (IS) Hyphen (Minus)
SI Shift In US Unit Separator (IS) Period (Decimal Point)

DEL Delete / Slant
(CC) Communication Control Colon
(FE) Format Effector Semicolon
(IS) Information Separator

00 01

C D

<

>
?
@
[
\
]
A
-,

11

10 11

E F

P

a q

b r

c s

d t

e u

f v

9 w

h x

i Y

i z

k {

I I
I

m }

-n

0 DEL

Less Than
Equals
Greater Than
Question Mark
Commercial At
Opening Bracket
Reverse Slant
Closing Bracket
Circumflex
Logical NOT
Underline
Grave Accent
Opening Brace

Bit Positions 8, 7

Bit Positions 6, 5

First Hexadecimal Digit

Vertical Line (This graphic is
stylized to distinguish it from
Logical OR)
Closing Brace
Tilde

Appendix F 150.1

Extended Binary-Coded-Decimallnterchange Code
(EBCDIC)

The 256-position table at the right, outlined by the
heavy black lines, shows the graphic characters and
control character representations for EBCDIC. The bit­
position numbers, bit patterns, hexadecimal represen­
tations and card hole patterns for these and other pos­
sible EBCDIC characters are also shown.

To find the card hole patterns for most characters,
partition the 256-position table into four blocks as
follows:

1 3

2 4

Block 1: Zone punches at top of table;
digit punches at left

Block 2: Zone punches at bottom of table;
digit punches at left

Block 3: Zone punches at top of table;
digit punches at right

Block 4: Zone punches at bottom of table;
digit punches at right

Fifteen positions in the table are exceptions to the
above arrangement. These positions are indicated by
small numbers in the upper right comers of their boxes
in the table. The card hole patterns for these positions
are given at the bottom of the table. Bit-position num­
bers, bit patterns, and hexadecimal representations for
these positions are found in the usual manner.

Following are some examples of the use of the
EBCDIC chart:

Character Type

PF Control Character
% Special Graphic
R Upper Case
a lower Case

Control Character,
function not yet
assigned

150.2

Bit Pattern

00000100
01101100
1101 1001
10000001
0011 0000

.... . ---"

Bit Positions
01 234567

Hex Hole Pattern

Zone Punches I Digit Punches

04 12 - 91- 4
6C 01- 8 - 4
09 111- 9
81 12 - 01- 1
30 12 - 11 - 0 - 91- 8 - 1

I
I

00 01 10 II I Bit Pas itions 0,1

'0,
00 01 10 II 00 01 10 II 00 01 10 II 00 01 10 II I Bit Pas itions 2,3

r--.. Ci I First H -0' 0 a I 2 3 4 5 6 7 8 9 A B C D E F

lI)'
E

f Zo",

'u . 12 12 .12 12 12. ,12"
"l"'

ClJ 12 12
1l

.. ,-_ ..
c: ~ j ..

11 lJ 11 11 11: ~11 11 11
.~ :c

~
"U

_ .. -.---- - • 0- __ .~

c: 0 0 a a a . 0 0 a 8 '0,
i:i5 Jl Ci

9.
---. -- 9 <;\ .9 9 9 9' 9 .

'.

exadecimal Digit

Punches

Digi t Punches

/
0000 a 8-1 CD CD Ds0 CD speD CD J]) CD CD ® ® ~® 8-1 NUL DLE & a

0001 I I SOH DCI SOS /
® a i A J ® 1 1

-
0010 2 :2 STX DC2 FS SYN b k s B K S 2 2

----~

0011 3 3 ETX TM c I t C L T 3 3 -------
0100 4 4 PF RES BYP PN d m u D M U 4 4

----- , -
0101 5 .5 HT NL LF RS e n v E N V 5 .5

--_._- .. _.,. - --.-
0110 6 6 LC BS ETB UC f a w F 0 W 6 6

0111 7 7 DEL I L ESC EOT g p X G P X 7 7

1000 8 8 CAN h q Y H Q Y 8 8

1001 9 8-1 EM i r z I R Z 9 9

1010 A 8-2 SMM CC SM c;: I
@

: 8-2
.. _--_.

1011 B 8-3 VT CUI CU2 CU3 $ # 8-3 • . - - . .. r------

1100 C 8-4 FF IFS DC4 < * % @ 8-4
..

1101 D 8-5 CR IGS ENQ NAK () I 8-5 -
~-I-.

1110 E 8..;6 SO IRS ACK + ; > = 8-6

i-'----

8,,7 IUS BEL I -,
I,

1111 F 51 SUB ? 8-7

12
. .

12· "" :} 12. 12 :

I
. '.: :f

.. 12 12

. 11 . I,
---. r·-.. ··_·-··_···

' ..
',:. : 11 11 1f 11

:. .'
Zan

0: '
.: .

0 "0 0: . •. . o· .; .' .0 . 0 a
: : ..•.

.-,:: -; : .~. : . 1:'- ' .
I· ..

9 • 9 9:: , :; 9 .. 9 9 9 ,', '; .. :,:

e Punc:he!

Card Hole Patterns

CD 12-0-9-8-1 CD No Punches CD 12-0 @ 0-1

CD 12-11-9-8-1 CD 12 ® 11-0 ® 11-0-9-1

CD 11-0-9-8-1 CD II ® 0-8-2 @ 12-11

CD 12-11-0-9-8-1 CD 12-11-0 ® a

Control Character Representations Special Graphic Characters

ACK Acknowledge EOT End of Transmission PF Punch Off Cent Sign Minus Sign, H},phen
BEL Bell ESC Escape PN Punch On Period, Decimal Point / Slash
BS Backspace ETB End of Transmission Block RES Restore < Less-than Sign Comma
BYP Bypass ETX End of Text RS Reader Stop (Left Parenthesis % Percent
CAN Cancel FF Form l=eed SI Shift In + Plus Sign Underscore
CC Cursor Control FS Field Separator SM Set Mode I Logical OR > Greater-than Sign
CR Carriage Return HT Horizontal Tab SMM Start of Manual Message & Ampersand Question Mark
CUI Customer Use 1 IFS I nterchange File Separator SO Shift Out I Exclamation Point Colon
CU2 Customer Use 2 IGS Interchange Group Separator SOH Start of Heading $ Dollar Sign Number Sign
CU3 Customer Use 3 IL Idle SOS Start of Significance Asterisk @ At Sign
DCI Device Control 1 IRS Interchange Record Separator SP Space Right Parenthesis Prime, Apostro,)he
DC2 Device Control 2 IUS Interchange Unit Separator STX Start of Text Semicolon Equal Sign
DC4 Device Control 4 LC Lower Case SUB Substitute ---, Logical NOT Quotation MarK
DEL Delete LF Line Feed SYN Synchronous Idle
DLE Data Link Escape NAK Negative Acknowledge TM Tape Mark
DS Digit Select NL New Line UC Upper Case
EM End of Medium NUL Null VT Vertical Tab Appendix F 150.3
ENQ Enquiry

Appendix G. Formats and Tables

Data Formats Hexadecimal Representation
HEXADECIMAL PRINTED EBCDIC It ASCJJ-8t

CODE GRAPHIC CODE CODE Fixed-Point Numbers
0000 0 11110000 01010000
0001 1 11110001 01010001 Full Word Fixed-Point Number

0010 2 11110010 01010010
0011 3 11110011 01010011
0100 4 1111 0100 01010100

Integer

o 1 31 0101 5 11110101 01010101
0110 6 1111 0110 01010110

Hallword Fixed-Point Number 0111 7 11110111 01010111
1000 8 11111000 01011000

o 1 15

1001 9 11111001 01011001
1010 A 1100 0001 1010 0001
1011 B 1100 0010 1010 0010

IS I Integer

1100 C 1100 0011 1010 0011
1101 D 1100 0100 1010 0100
1110 E 1100 0101 1010 0101
1111 F 1100 0110 1010 0110

Floating-Point Numbers

Short Floating-Point Number °Extended Binary-Coded-Decimal Interchange Code.
t An eight-bit representation for American Standard Code for

IS I Characteristic I Fraction
Information Interchange for use in eight-bit environments.

o 1 7 8 31

Long Floating-Point Number

~IS~I~C __ ha_r_a_c_te_r_is_ti_c~I _________ F_r_a_c_ti_o_n ______ ~~S~ ______ ~
o 1 78 63

Decimal Numbers

Packed Decimal Number

I Digit I Digit I Digit [~~ ~-J Digit I Digit I Digit I Digit I Sign I

Zoned Decimal Number

I Zone I Digit I Zone [~- ~] Digit I Zone I Digit I Sign I Digit I

Logical Information

Fixed.Length Logical Information

Logi cal Data

31

Variable-Length Logical Information

Character Character I ~~ ~~] Character

16

Append~ G 151

Instructions by Format Type

RR Format

I Op Code Rl
0 78

Fixed Point

Load
Load and Test
Load Complement
Load Positive
Load Negative
Add
Add Logical
Subtract
Subtract Logical
Compare
Multiply
Divide

Logical

Compare
AND
OR
Exclusive OR

Branching

Branch on Condition
Branch and Link
Branch on Count

RX Format

Op Code

Fixed Point

LoadH/F
AddH/F

7 8

Add Logical
Subtract H/F
Subtract LOgical
CompareH/F
MultiplyH
Multiply F
Divide F
Convert to Binary
Convert to Decimal
Store H/F

Logical

Compare
Load Address
Insert Character
Store Character
AND
OR
Exclusive OR

152

11 12

11 12

R2

E
E

E
E

1

I
15

1516

Floating Point

Load S/L
Load and Test S/L
Load Complement S/L
Load Positive S/L
Load Negative S/L
Add Normalized S/L
Add Unnormalized S/L
Subtract Normalized S/L
Subtract Unnormalized S/L
Compare S/L
Halve S/L
Multiply S/L
Divide S/L

Status Switching

Set Program Mask 2
Supervisor Call 3
Set Storage Key Z
Insert Storage Key Z

1920 31

Floating Point

Load S/L
Add Normalized S/L
Add Unnormalized S/L
Subtract Normalized S/L
Subtract Unnormalized S/L
Compare S/L
Multiply S/L
Store S/L
Divide S/L

Branching

Branch on Condition 1
Branch and Link
Branch on Count
Execute

RS Format

I Op Code
0 7 8

Fixed Point

Load Multiple
Store Multiple
Shift Left Single
Shift Right Single
Shift Left Double
Shift Right Double

SI Format

Op Code
78

Input/Output

Start I/O
Test 110
Halt 110
Test Channel

Logical

Move
Compare
AND
OR
Exclusive OR
Test Under Mask

SS Format

Op Code

Decimal

Pack
Unpack

7 8

Move With Offset
Zero and Add
Add
Subtract
Compare
Multiply
Divide

FORMAT NOTES

R1
11 12

'2

11 12

E Rl must be even
F Fullword
H Halfword
L Long
S Short
T Decimal feature

R3

2
2

E,2
E,2

T
T
T
T
T
T

4
4
4
4

Y Direct control feature
Z Protection feature
1 Rl used as mask Ml
2 R2 or Ra ignored

1516

1516

1516

B2 D2
1920

Logical

Shift Left Single
Shift Right Single
Shift Left Double
Shift Right Double

Branching

Branch on High
Branch on Low-Eq

B1 D1
1920

Status Switching

LoadPSW
Set System Mask
Write Direct
Read Direct
Diagnose
Test and Set

Logical

Move
Move Numeric
Move Zone
Compare
AND
OR
Exclusive OR
Translate
Translate and Test
Edit
Edit and Mark

3 Rl and R2 used as immediate information
4 12 ignored
5 Ll and Ll/ used as eight-bit L field

31

2
2

E,2
E,2

31

Y
Y

4
4

4

5
5
5
5
5
5
5
5
5

T,5
T,5

All floating-point instructions are part of the floating-point fea­
ture.

Control Word Formats

Base and Index Registers

Base Address or Index
o 78 31

0-7 Ignored
8-31 Base nddress or index

Program Status Word

System Mask Interruption Code
31

Instruction Address

0-7 System mask
0 Channel 0

mask
1 Channell

mask
2 Channel 2

mask
3 Channel 3

mask
4 Channel 4

mask
5 Channel 5

mask
6 Channel 6

mask
7 External mask

8-11 Protection key
12 ASCII-8 mode (A)

Channel Command Word

13

14
15
16-31
32-33

34-35
36-39

36

Machine check mask
(M)

63

Wait state (W)
Problem state (P)
Interruption code
Instruction length
code (ILC)
Condition code (CC)
Program mask
Fixed-point overflow
mask

37 Decimal overflow
mask

38 Exponent underflow
mask

39
40-63

Significance mask
Instruction address

I Command
I Code Data Add ress

0 78

I Flags looo~
32 3637 3940 4748

0-7
8-31

32-36
32
33
34

Command code
Data address
Command flags
Chain data flag
Chain command flag
Suppress length
indication flag

Count

35 Skip flag
36 Program-controlled

interruption flag
37-39 Zero
40-47 Ignored
48-63 Count

31

63

Command Code Assignment

FLAGS NAMES

Write
Read
Read Backward
Control
Sense

CD CC SLI PCI
CD CC SLI SKIP PCI
CD CC SLI SKIP PCI
CD CC SLI PCI
CD CC SLI SKIP PCI

CODE

MMMMMMOI

MMMMMMlO

MMMM 1100
MMMMMMll

MMMM 0100
x x x x 1000 Transfer in Channel

CD
CC
SLI

= Chain data
Chain command
Suppress length
indication

Channel Address Word

SKIP

PCI

Skip
Program­
controlled
interruption

I Key 100 a 01 Command Address
34 7 8 31

0-3 Protection key
4-7 Zero
8-31 Command address

Channel Status Word

I Key I 0000 I Command Address J
LO--------~34~----~7~8---31

l ~,-----------------S-ta-t-u-s------------~47~t78--------c-o-u-n-t--------~J
0-3
4-7
8-31

32-47
32
33
34
35
36
37
38
39

ProteGtion key
Zero
Command address
Status
Attention
Status modifier
Control unit end
Busy
Channel end
Device end
Unit check
Unit exception

40 Program-controlled
interruption

41 Incorrect length
42 Program check
43 Protection check
44 Channel data check
45 Channel control check
46 Interface control

check
47 Chaining check

48-63 Count

Appendix G 153

Operation Codes

RR FORMAT

xxxx

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

SPM
BALR
BCTR
BCR
SSK
ISK
SVC

Branching and
Status Switching

OOOOxxxx

Set Program Mask
Branch and Link
Branch on Count
Branch/Condition
Set Key
Insert Key
Supervisor Call

RX FORMAT Fixed-Point Halfword
and Branching

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

STH
LA
STC
IC
EX
BAL
BCT
BC
LH
CH
AH
SH
MH

CVD
CVB

RS, SI FORMAT

0100xxxx

Store
Load Address
Store Character
Insert Character
Execute
Branch and Link
Branch on Count
Branch/Condition
Load
Compare
Add
Subtract
Multiply

Convert-Decimal
Convert-Binary

Branching Status
Switching and Shifting

xxxx

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

SSM

LPSW

WRD
RDD
BXH
BXLE
SRL
SLL
SRA
SLA
SRDL
SLDL
SRDA
SLDA

SS FORMAT

xxxx

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

1000xxxx

Set System Mask

Load PSW
Diagnose
Write Direct
Read Direct
Branch/High
Branch/Low-Equal
Shift Right SL
Sh ift Left S L
Shift Right S
Shift Left S
Shift Right DL
Shift Left DL
Shift Right D
Shift Left D

l100xxxx

Note: N = Normalized
SL = Single Logicol

154

Fixed-Point Full Word
ond Logicol

0001xxxx

LPR Load Positive
LNR Load Negative
LTR Load and Test
LCR Load Complement
NR AND
CLR Compare Logical
OR OR
XR Exclusive OR
LR Load
CR Compare
AR Add
SR Subtract
MR Multiply
DR Divide
ALR Add Logical
SLR Subtract Logical

Fixed-Point Full Word
and Logical

0101xxxx

ST Store

N AND
CL Compare Logical
0 OR
X Exclusive OR
L Load
C Compare
A Add
S Subtract
M Multiply
D Divide
AL Add Logical
SL Subtract Logical

Fixed-Point Logicol
ond Input/Output

STM
TM
MVI
TS
NI
CLI
01
XI
LM

SIO
no
HIO
TCH

MVN
MVC
MVZ
NC
CLC
OC
XC

TR
TRT
ED
EDMK

1001xxxx

Store Multiple
Test Under Mask
Move
Test and Set
AND
Compare Logical
OR
Exclusive OR
Load Multiple

Start I/O
Test I/O
Halt I/O
Test Channel

Logical

1101xxxx

Move Numeric
Move
Move Zone
AND
Compare Logical
OR
Exclusive OR

Translate
Translate and Test
Edit
Edit and Mark

DL = Double Logical
U = Unnonmalized

Floating-Point
Long

0010xxxx

LPDR Load Positive
LNDR Load Negative
LTDR Load and Test
LCDR Load Complement
HDR Halve

LDR Load
CDR Compare
ADR AddN
SDR Subtract N
MDR Multiply
DDR Divide
AWR Add U
SWR Subtract U

Floating-Point
Long

OllOxxxx

STD Store

LD Load
CD Compare
AD AddN
SD Subtract N
MD Multiply
DD Divide
AW Add U
SW Subtract U

101Qxxxx

1110xxxx

Flaating-Point
Short

OOllxxxx

LPER Load Positive
LNER Load Negative
LTER Load and Test
LCER Load Complement
HER Halve

LER Load
CER Compare
ALR Add N
SER Subtract N
MER Multiply
DER Divide
AUR Add U
SUR Subtract U

Floating-Point
Short

0111xxxx

STE Store

LE Load
CE Compare
AE Add N
SE Subtract N
ME Multiply
DE Divide
AU Add U
SU Subtract U

1011xxxx

Decimal

1111xxxx

MVO
PACK
UNPK

ZAP
CP
AP
SP
MP
DP

S = Single
D = Double

Move with Offset
Pack
Unpack

Zero and Add
Compare
Add
Subtract
Multiply
Divide

Permanent Storage Assignment Logical Operations

ADDRESS LENGTH PURPOSE AND zero not zero

0 00000000 double word Initial program loading PSW Compare Logical equal low high

8 00001000 double word Initial program loading CCWI Edit zero < zero > zero
16 0001 0000 double word Initial program loading CCW2 Edit and Mark zero < zero > zero
24 00011000 double word External old PSW Exclusive OR zero not zero

32 0010 0000 double word Supervisor call old PSW OR zero not zero

40 00101000 double word Program old PSW Test Under Mask zero mixed one

48 0011 0000 double word Machine-check old PSW Translate and Test 7.cro incomplete complete

56 00111000 double word Input/output old PSW
64 01000000 double word Channel status word Status Switchi.ng
72 01001000 word Channel address word Test and Set
76 01001100 word Unused

zero one

80 01010000 word Timer
84 01010100 word Unused Input I Output Operations
88 01011000 double word External new PSW
96 01100000 double word Supervisor call new PSW Halt 110 interruption CSW burst op not oper-

104 0110 1000 double word Program new PSW pending stored stopped ational
112 01110000 double word Machine-check new PSW Start 110 successful CSW busy not oper-
120 0111 1000 double word Input/output new PSW stored ational
128 10000000 Diagnostic scan-out area (I Test 110 available CSW busy not oper-
(I The size of the diagnostic scan-out area depends on the par- stored ational
ticular model and 110 channels.

Test Channel available burst inter- not oper-
ruption mode ational
pending

CONDITION CODE SETTING NOTES

Condition Code Setting available Unit and channel available
burst op Burst operation stopped
stopped

Fixed-Point Arithmetic busy Unit or channel busy

0 1 2 3
carry A carry out of the sign position occurred
complete Last result byte nonzero

AddH/F zero < zero > zero overflow CSW stored Channel status word stored
Add Logical zero, not zero, zero, not zero, equal Operands compare equal

no carry no carry carry carry F Fullword
Compare H/F equal low high > zero Result is greater than zero
Load and Test zero < zero > zero H Halfword
Load Complement zero < zero > zero overflow halted Data transmission stopped. Unit in halt-reset mode
Load Negative zero < zero high First operand compares high
Load Positive zero > zero overflow incomplete Nonzero result byte; not last
Shift Left Double zero < zero > zero overflow L Long precision
Shift Left Single zero < zero > zero overflow < zero Result is less than zero
Shift Right Double zero < zero > zero low First operand compares low
Shift Right Single zero < zero > zero mixed Selected bits are both zero and one
Subtract H/F zero < zero > zero overflow not oper- Unit or channel not operational
Subtract Logical not zero, zero, not zero, ational

no carry carry carry not zero Result is not all zero
one Selected bits are one
overflow Result overflows

Decimal Arithmetic S Short precision

Add Decimal zero < zero > zero overflow zero Result or selected bits are zero

Compare Decimal equal low high The condition code also may be changed by LOAD PSW, SET
Subtract Decimal zero < zero > zero overflow PROGRAM MASK, DIAGNOSE, and by an interruption.
Zero anu Add zero < zero > zero overflow

Floating-Point Arithmetic Interruption Action
Add Normalized S/L < zero > zero

SOURCE INTERRUPTION CODE MASK ILC EXE-zero
PSW BITS 16-31 Add Unnormalized S/L zero < zero > zero

IDENTIFICATION BITS SET CUTlON

Compare S/L equal low high Input/Output (old PSW 56, new PSW 120, Priority 4)
Load and Test S/L zero < zero > zero
Load Complement S/L zero < zero > zero Channel 0 00000000 aaaaaaaa 0 x completed
Load Negative S/L zero < zero Channell 00000001 aaaaaaaa 1 x completed
Load Positive S/L zero > zero Channel 2 00000010 aaaaaaaa 2 x completed
Subtract Channel 3 00000011 aaaaaaaa 3 x completed

Normalized S/L zero < zero > zero Channel 4 00000100 aaaaaaaa 4 x completed
Subtract Unnorm- Channel 5 00000101 aaaaaaaa 5 x completed

alized S/L zero < zero > zero Channel 6 00000110 aaaaaaaa 6 x completed

Appendix G 15.t5

Program (old PSW 40, new PSW 104, priority 2)
Operation 00000000 00000001 1,2,3 suppressed
Privileged 00000000 00000010 1,2 suppressed

operation
Execute 00000000 00000011 2 suppressed
Protection 0000000000000100 0,2,3 suppressed

or
terminated

Addressing 0000000000000101 0,1,2,3 suppressed
or
terminated

Specification 0000000000000110 1,2,3 suppressed
Data 00000000 00000111 2,3 terminated
Fixed-point 00000000 00001000 36 1,2 completed

overflow
Fixed-point divide 00000000 00001001 1,2 suppressed

or
completed

Decimal overflow 00000000 0000 1 a 1 a 37 3 completed
Decimal divide 00000000 0000 1 a 11 3 suppressed
Exponent 00000000 0000 11 00 1,2 terminated

overflow
Exponent 00000000 0000 110 1

underflow
38 1,2 completed

Significance 00000000 0000 111 a 39 1,2 completed
Floating-point 00000000 0000 1111 1,2 suppressed

divide

Supervisor Call (old PSW 32, new PS\V 96, priority 2)
Instruction bits 00000000 rrrrrrrr 1 completed

External (old PSW 24, new PSW 88, priority 3)
Timer 00000000 lnnnnnnn 7 x completed
Interrupt key 00000000 n lnnnnnn 7 x completed
External signal 2 ,00000000 nnlnnnnn 7 x completed
External signal 3 00000000 nnnlnnnn 7 x completed
External signal 4 00000000 nnnnlnnn 7 x completed
External signal 5 00000000 nnnnnlnn 7 x completed
External signal 6 00000000 nnnnnnln 7 x completed
External signal 7 00000000 nnnnnnnl 7 x completed

Machine Check (old PSW 48, new PSW 112, priority 1)
Machine cccccccc cccccccc 13 x terminated

malfunction

NOTES

a Device address bits
c Bits of model-dependent code
n Other external-interruption conditions
r Bits of Rl and R2 field of SUPERVISOR CALL

x Unpredictable

Instruction Length Recording

INSTRUC-

PSW BITS TION

CODE 32-33 BITS 0-1
a 00
1 01 00
2 10 01
2 10 10
3 11 11

156

INSTRUCTION

LENGTH

Not available
One halfword
Two halfwords
Two halfwords
Three halfwords

FORMAT

RR
RX

RS or SI
SS

Program Interruptions
Exceptions resulting from improper specification or use
of an instruction and data cause a program inter­
ruption.

Operation (OP)

The operation code is not assigned or the assigned
operation is not available on the particular cpu.

The operation is suppressed.
The instruction-length code is 1, 2, or 3.

Privileged Operation (M)

A privileged instruction is encountered in the problem
state.

The operation is suppressed.
The instruction-length code is 1 or 2.

NAME MNEMONIC FORMAT ACTION

Diagnose SI Suppressed
Halt 110 HIO SI Suppressed
Insert Storage Key ISK RR Suppressed
Load PSW LPS\V SI Suppressed
Read Direct RDD SI Suppressed
Set Storage Key SSK RR Suppressed
Set System Mask SSM SI Suppressed
Start 110 SIO SI Suppressed
Test Channel TCH SI Suppressed
Test 110 TIO SI Suppressed
"'rite Direct \VRD SI Suppressed

Execute (EX)

The subject instruction of EXECUTE is another EXECUTE.

The operation is suppressed.
The instruction-length code is 2.

NAME

Execute
1\INEMONIC

EX
FORMAT

RX

Protection (P)

ACTION

Suppressed

The key of an instruction or operand location does not
match the protection key in the psw.

The instruction length-code is 0, 2, or 3.

Instructions Subiect to Store Protection

vVhen the protection feature contains only the facility
to monitor operations changing storage contents, the
check is made for every use of the following instruc­
tions. In addition, these instructions are subject to a
protection exception when both store and fetch viola­
tions are monitored. The operation is suppressed on a
store violation, except in the case of STORE MULTIPLE,

READ DIRECT, TEST AND SET, and variable-length opera­
tions, which are terminated.

NAME MNEMONIC FORMAT ACTION NAME MNEMONIC FORMAT ACTION

Add Decimal AP SS Terminated Load Multiple LM RS Terminated
AND NC SS Terminated Load PSW LPSW SI Terminated
AND NI SI Suppressed Multiply M RX Terminated
Convert to Decimal CVD RX Suppressed Multiply (long) MD RX Terminated
Diagnose SI Unpredictable Multiply (short) ME RX Terminated
Divide Decimal DP SS Terminated Multiply Halfword MH RX Terminated
Edit ED SS Terminated OR 0 RX Terminated
Edit and Mark EDMK SS Terminated Set System Mask SSM SI Terminated
Exclusive OR XC SS Terminated Subtract S RX Terminated
Exclusive OR XI SI Suppressed Subtract Halfword SH RX Terminated
Move MVC SS Terminated Subtract Logical SL RX Terminated
Move MVI SI Suppressed Subtract Norm-
Move Numerics MVN SS Terminated alized (long) SD RX Terminated
Move with Offset MVO SS Terminated Subtract Norm-
Move Zones MVZ SS Terminated alized (short) SE RX Terminated
Multiply Decimal MP SS Terminated Subtract Unnorm-
OR OC SS Terminated alized (long) SW RX Terminated
OR 01 SI Suppressed Subtract Unnorm-
Pack PACK SS Terminated alized (short) SU RX Terminated
Read Direct RRD SI Terminated Test Under Mask TM SI Terminated
Store ST RX Suppressed Translate And Test TRT SS Terminated
Store (long) STD RX Suppressed Write Direct WRD SI Terminated
Store (short) STE RX Suppressed
Store Character STC RX Suppressed
Store Halfword STH RX Suppressed Instructions Subiect to Store and Fetch Protection
Store Multiple STM RS Terminated

When the protection feature contains the facility to Test and Set TS SI Terminated
Translate TR SS Terminated monitor for both store and fetch violations, the follow-
Unpack UNPK SS Terminated ing instructions can cause the exception either by a
Zero and Add ZAP SS Terminated

store or fetch violation. The operation is terminated,

Instructions Subiect to Fetch Protection except in the case of DIAGNOSE, which is unpredictable.

When the protection feature contains the facility to NAME MNEMONIC FORMAT ACTION

Add Decimal AP SS Terminated
monitor for both store and fetch violations, the follow- AND NC SS Terminated
ing instructions can cause the exception only by a fetch Diagnose SI Unpredictable

violation. The operation is terminated, except in the Divide Decimal DP SS Terminated
Edit ED SS Terminated

case of EXECUTE, which is suppressed. Edit And Mark EDMK SS Terminated
NAME MNEMONIC FORMAT ACTION Exclusive OR XC SS Terminated

Add A RX Terminated Move MVC SS Terminated

Add Halfword AH RX Terminated Move Numerics MVN SS Terminated
Add Logical AL RX Terminated Move with Offset MVO 5S Terminated
Add Normalized Move Zones MVZ SS Terminated

(long) AD RX Terminated Multiply Decimal MP SS Terminated

Add Normalized OR OC SS Terminated
(short) AE RX Terminated Pack PACK SS Terminated

Add Unnormalized Subtract Decimal SP SS Terminated
(long) AW RX Terminated Test and Set TS SI Terminated

Add Unnormalized Translate TR SS Terminated
(short) AU RX Terminated Unpack UNPK SS Terminated

AND N RX Terminated Zero and Add ZAP SS Terminated
Compare C RX Terminated
Compare CL RX Terminated

Addressing (A) Compare CLI SI Terminated
Compare CLC SS Terminated An address specifies any part of data, instruction, or
Compare (long) CD RX Terminated
Compare (short) CE RX Terminated control words outside the available storage for the par-
Compare Decimal CP SS Terminated ticular installation.
Compare Halfword CH RX Terminated In most cases, the operation is terminated. Data in
Convert to Binary CVB RX Terminated
Divide D RX Terminated storage remain unchanged, except when deSignated by
Divide (long) DD RX Terminated valid addresses. The operation is suppressed for CON-
Divide (short) DE RX Terminated VERT TO DECIMAL, DIAGNOSE, EXECUTE, immediate in-
Exclusive OR X RX Terminated
Execute EX RX Suppressed structions (NI, XI, MVI, 01), and certain store-type oper-
Insert Character IC RX Terminated at ions (ST, STC, STH, STD, and STE).
Load L RX Terminated The instruction-length code is normally 1, 2, or 3;
Load (long) LD RX Terminated
Load (short) LE RX Terminated however, it may be 0 in the case of a data address.

Appendix G 157

NAME

Add
Add Decimal
Add Halfword
Add Logical
Add Normalized

(Long)
Add Normalized

(Short)
Add Unnorm­

alized (Long)
Add Unnorm-

alized (Short)
AND

AND
AND
Compare
Compare Decimal
Compare Halfword
Compare Logical
Compare Logical
Compare Logical
Compare (Long)
Compare (Short)
Convert to Binary
Convert to Decimal

Diagnose
Divide
Divide Decimal
Divide (Long)
Divide (Short)

Edit
Edit and Mark
Exclusive OR
Exclusive OR
Exclusive OR
Execute

Insert Character
Insert Storage Key

Load
Load Halfword
Load (Long)
Load Multiple
Load PSW
Load (Short)

Move
Move
Move Numerics
Move with Offset
Move Zones
Multiply
Multiply Decimal
Multiply Halfword
Multiply (Long)
Multiply (Short)

OR
OR
OR

Pack

Read Direct

Set Storage Key
Set System Mask
Store
Store Character
Store Halfword
Store (Long)
Store Multiple

158

MNEMONIC

A
AP
AH
AL

AD

AE

AW

AU
N

NI
NC
C
CP
CH
CL
CLI
CLC
CD
CE
CVB
CVD

D
DP
DD
DE

ED
EDMK
X
XI
XC
EX

IC
ISK

L
LH
LD
LM
LPSW
LE

MVI
MVC
MVN
MVO
MVZ
M
MP
MH
MD
ME

o
01
OC

PACK

RDD

SSK
SSM
ST
STC
STH
STD
STM

FORMAT

RX
SS
RX
RX

RX

RX

RX

RX
RX

SI
SS
RX
SS
RX
RX
SI
SS
RX
RX
RX
RX

SI
RX
SS
RX
RX

SS
SS
RX
SI
SS
RX

RX
RR

RX
RX
RX
RS
SI
RX

SI
SS
SS
SS
SS
RX
SS
RX
RX
RX

RX
SI
SS
SS

SI

RR
SI
RX
RX
RX
RX
RS

ACTION

Terminated
Terminated
Terminated
Terminated

Terminated

Terminated

Terminated

Terminated
Terminated

Suppressed
Terminated
Terminated
Terminated
Terminated
Terminated
Terminated
Terminated
Terminated
Terminated
Terminated
Suppressed

Suppressed
Terminated
Terminated
Terminated
Terminated

Terminated
Terminated
Terminated
Suppressed
Terminated
Suppressed

Terminated
Terminated

Terminated
Terminated
Terminated
Terminated
Terminated
Terminated

Suppressed
Terminated
Terminated
Terminated
Terminated
Terminated
Terminated
Terminated
Terminated
Terminated

Terminated
Suppressed
Terminated

Terminated

Terminated

Suppressed
Terminated
Suppressed
Suppressed
Suppressed
Suppressed
Terminated

NAME

Store (Short)
Subtract
Subtract Decimal
Subtract Halfword
Subtract Logical
Subtract Norm-

alized (Long)
Subtract Norm­

alized (Short)
Subtract Un­

normalized
(Long)

Subtract Un­
normalized
(Short)

Test Under Mask
Test and Set
Translate
Translate and

Test

Unpack

Write Direct

Zero and Add

MNEMONIC

STE
S
SP
SH
SL

SD

SE

SW

SU

TM
TS
TR

TRT

UNPK

WRD

ZAP

FORMAT

RX
RX
SS
RX
RX

RX

RX

RX

RX

SI
SI
SS

SS
SS
SI

SS

ACTION

Suppressed
Terminated
Terminated
Terminated
Terminated

Terminated

Terminated

Terminated

Terminated

Terminated
Terminated
Terminated

Terminated

Terminated

Terminated

Terminated

The addressing interruption can occur in normal sequential
operation following branching, LOAD psw, interruption, or man­
ual operation. Instruction execution is suppressed.

Specification (S)

1. A data, instruction, or control-word address does
not specify an integral boundary for the unit of in­
formation.

2. The Rl field of an instruction specifies an odd
register address for a pair of general registers that
contain a 64-bit operand.

3. A floating-point register address other than 0, 2,
4, or 6 is specified.

4. The multiplier or divisor in decimal arithmetic
exceeds 15 digits and sign.

5. The first operand field is shorter than or equal to
the second operand field in decimal multiplication or
division.

6. The block address specified in SET STORAGE KEY

or INSERT STORAGE KEY has the four low-order bits not
all zero.

7. A psw with a nonzero' protection key is encoun­
tered when the protection feature is not installed.

In all of these cases the operation is suppressed.
The instruction-length code is 1, 2, or 3.

NAME MNEMONIC FORMAT ACTION

Suppressed
Suppressed
Suppressed

NOTE

Add A RX
Add Halfword AH RX
Add Logical AL RX
Add Normalized

(Long) ADR RR
Add Normalized

(Long) AD RX
Add Normalized

(Short) AER RR
Add Normalized

(Short) AE RX

Suppressed

Suppressed

Suppressed

Suppressed

4
2
4

3

3,8

3

3,4

NAME MNEMONIC FORMAT ACTION NOTE NAME MNEMONIC FORMAT ACTION NOTE

Add Unnorm- Multiply
alized (Long) AWR RR Suppressed 3 Decimal MP SS Suppressed 5

Add Unnorm- Multiply
alized (Long) AW RX Suppressed 3,8 Halfword MH RX Suppressed 2

Add Unnorm- Multiply (Long) MDR RR Suppressed 3
alized (Short) AUR RR Suppressed 3 Multiply (Long) MD RX Suppressed 3,8

Add Unnorm- Multiply (Short) MER RR Suppressed 3
alized (Short) AU RX Suppressed 3,4 Multiply (Short) ME RX Suppressed 3,4

AND N RX Suppressed 4

Compare C RX Suppressed 4
OR 0 RX Suppressed 4

Compare Set Storage
Halfword CH RX Suppressed 2 Key SSK RR Suppressed 7

Compare Shift Left
Logical CL RX Suppressed 4 Double SLDA RS Suppressed 1

Compare Shift Left
(Long) CDR RR Suppressed 3 Double

Compare Logical SLDL RS Suppressed 1
(Long) CD RX Suppressed 3,8 Shift Right

Compare Double SRDA RS Suppressed 1
(Short) CER RR Suppressed 3 Shift Right

Compare Double
(Short) CE RX Suppressed 3,4 Logical SRDL RS Suppressed 1

Convert to Store ST RX Suppressed 4
Binary CVB RX Suppressed 8 Store Halfword STH RX Suppressed 2

Convert to Store (Long) STD RX Suppressed 3,8
Decimal CVD RX Suppressed 8 Store Multiple STM RS Suppressed 4

Diagnose SI Suppressed Store (Short) STE RX Suppressed 3,4
Divide DR RR Suppressed 1 Subtract S RX Suppressed 4
Divide D RX Suppressed 1,4 Subtract
Divide Decimal DP SS Suppressed 5 Halfword SH RX Suppressed 2
Divide (Long) DDR RR Suppressed 3 Subtract
Divide (Long) DD RX Suppressed 3,8 Logical SL RX Suppressed 4
Divide (Short) DER RR Suppressed 3 Subtract Norm-
Divide (Short) DE RX Suppressed 3,4 alized (Long) SDR RR Suppressed 3

Exclusive OR X RX Suppressed 4 Subtract Norm-
alized (Long) SD RX Suppressed 3,8

Execute EX RX Suppressed 2 Subtract Norm-
Halve (Long) HDR RR Suppressed 3 ali zed (Short) SER RR Suppressed 3
Halve (Short) HER RR Suppressed 3 Subtract Norm-

Insert Storage
alized (Short) SE RX Suppressed 3,4

Subtract Un-Key ISK RR Suppressed 7
normalized

Load L RX Suppressed 4 (Long) SWR RR Suppressed 3
Load and Test Subtract Un-

(Long) LTDR RR Suppressed 3 normalized
Load and Test (Long) SW RX Suppressed 3,8

(Short) LTER RR Suppressed 3 Subtract Un-
Load Comple- normalized

ment (Long) LCDR RR Suppressed 3 (Short) SUR RR Suppressed 3
Load Comple- Subtract Un-

ment (Short) LCER RR Suppressed 3 normalized
Load Halfword LH RX Suppressed 2 (Short) SU RX Suppressed 3,4
Load (Long) LDR RR Suppressed 3
Load (Long) LD RX Suppressed 3,8

The specification interruption can occur in normal sequential Load
Multiple LM RS Suppressed 4 operation following branching, LOAD psw, interruption, or man-

Load Negative ual operation (Note 1).
(Long) LNDR RR Suppressed 3

Load Negative
(Short) LNER RR Suppressed 3

Load Positive SPECIFICATION INTERRUPTION NOTES

(Long) LPDR RR Suppressed 3 1 Even register specification Load Positive
2 Two-byte unit of information specification (Short) LPER RR Suppressed 3 3 Floating-point register specification Load PSW LPSW SI Suppressed 8 4 Four-byte unit of information specification Load (Short) LER RR Suppressed 3 5 Decimal multiplier or divisor size specification Load (Short) LE RX Suppressed 3,4 6 Zero protection key specification

Multiply MR RR Suppressed 1 7 Block address specification
Multiply M RX Suppressed 1,4 8 Eight-byte unit of information specification

Appendix G 159

Data (D)

1. The sign or digit codes of operands in decimal
arithmetic, or editing operations, or CONVERT TO

BINARY> are incorrect.
2. Fields in decimal arithmetic overlap incorrectly.
3. The decimal multiplicand has too many high­

order significant digits.
The operation is terminated in all three cases.
The instruction-length code is 2 or 3.

NAME MNEMONIC FORMAT ACTION NOTE

Add Decimal AP SS Terminated 1,2
Compare

Decimal CP SS Terminated 1,2
Convert to

Binary CVB RX Terminated 1
Divide Decimal DP SS Terminated 1,2
Edit ED SS Terminated 1
Edit and Mark EDMK SS Terminated 1
Multiply

Decimal MP SS Terminated 1,2,3
Subtract

Decimal SP SS Terminated 1,2
Zero and Add ZAP SS Terminated 1,2

DATA INTERRUPTION NOTES

1 All instructions listed may have incorrect sign or digit
codes.

2 Overlapping fields
3 Multiplicand length

Fixed-Point Overflow (IF)

A high-order carry occurs or high-order significant bits
are lost in fixed-point addition, subtraction, shifting,
or sign-control operations.

The operation is completed by ignoring the infor­
mation placed outside the register. The interruption
may be masked by psw bit 36.

The instruction-length code is 1 or 2.

NAME MNEMONIC FORMAT ACTION

Add AR RR Completed
Add A RX Completed
Add Halfword AH RX Completed
Load Complement LCR RR Completed
Load Positive LPR RR Completed
Shift Left Double SLDA RS Completed
Shift Left Single SLA RS Completed
Subtract SR RR Completed
Subtract S RX Completed
Subtract Halfword SH RX Completed

Fixed-Point Divide (IK)

1. The quotient exceeds the register size in fixed­
point division, including division by zero.

2. The result of CONVERT TO BINARY exceeds 31 bits.
Division is suppressed. Conversion is completed by

ignoring the information placed outside the register.
The instruction-length code is 1 or 2.

NAME

Convert to Binary
Divide
Divide

160

MNEMONIC

CVB
DR
D

FORMAT

RX
RR
RX

ACTION

Completed
Suppressed
Suppressed

Decimal Overflow (OF)
The destination field is too small to contain the result
field in decimal operations.

The operation is completed by ignoring the over­
How information. The interruption may be masked by
psw bit 37.

The interruption-length code is 3.
NAME

Add Decimal
Subtract Decimal
Zero and Add

MNEMONIC

AP
SP
ZAP

Decimal Divide (OK)

FORMAT

SS
SS
SS

ACTION

Completed
Completed
Completed

The quotient exceeds the specified data field.
The operation is suppressed.
The instruction-length code is 3.

NAME MNEMONIC FORMAT ACTION

Divide Decimal DP SS Suppressed

Exponent Overflow (E)
The result characteristic exceeds 127 in Hoating-point
addition, subtraction, multiplication, or division.

The operation is terminated.
The instruction-length code is 1 or 2.

NAME MNEMONIC FORMAT ACTION

Add Normalized
(Long) ADR RR Terminated

Add Normalized
(Long) AD RX Terminated

Add Normalized
(Short) AER RR Terminated

Add Normalized
(Short) AE RX Terminated

Add Unnorm-
alized (Long) AWR RR Terminated

Add Unnorm-
alized (Long) AW RX Terminated

Add Unnorm-
alized (Short) AUR RR Terminated

Add Un norm-
alized (Short) AU RX Terminated

Divide (Long) DDR RR Terminated
Divide (Long) DO RX Terminated
Dividp- (Short) DER RR Terminated
Divide (Short) DE RX Terminated
Multiply (Long) MDR RR Terminated
Multiply (Long) MD RX Terminated
Multiply (Short) MER RR Terminated
Multiply (Short) ME RX Terminated
Subtract Norm-

alized (Long) SDR RR Terminated
Subtract Norm-

alized (Long) SO RX Terminated
Subtract Norm-

alized (Short) SER RR Terminated
Subtract Norm-

alized (Short) SE RX Terminated
Subtract Unnorm-

alized (Long) SWR RR Terminated
Subtract Unnorm-

alized (Long) SW RX Terminated
Subtract Unnorm-

alized (Short) SUR RR Terminated
Subtract Unnorm-

alized (Short) SU RX Terminated

Exponent Underflow (U)

The result characteristic is less than zero in floating-
point addition, subtraction, multiplication, or division.

The operation is completed by making the result of
the operation a true zero. The interruption may be
masked by psw bit 38.

The instruction-length. code is 1 or 2.
NAME MNEMONIC FORMAT ACTION

Add Normalized
(Long) ADR RR Completed

Add Normalized
(Long) AD RX Completed

Add Normalized
(Short) AER RR Completed

Add Normalized
(Short) AE RX Completed

Divide (Long) DDR RR Completed
Divide (Long) DD RX Completed
Divide (Short) DER RR Completed
Divide (Short) DE RX Completed
Multiply (Long) MDR RR Completed
Multiply (Long) MD RX Completed
Multiply (Short) MER RR Completed
Multiply (Short) ME RX Completed
Subtract Norm-

alized (Long) SDR RR Completed
Subtract Norm-

alized (Long) SD RX Completed
Subtract Norm-

alized (Short) SER RR Completed
Subtract Norm-

alized (Short) SE RX Completed

Significance (LS)
The result of a floating-point addition or subtraction
has an all-zero fraction.

The operation is completed. The interruption may
be masked by psw bit 39. The manner in which the
operation is completed is determined by the lllask bit.

The instruction-length code is 1 or 2.
NAME MNEMONIC FORMAT ACTION

Add Normalized
(Long) ADR RR Completed

Add Normalized
(Long) AD RX Completed

Add Normalized
(Short) AER RR Completed

Add Normalized
(Short) AE RX Completed

Add Unnorm-
alized (Long) AWR RR Completed

NAME MNEMONIC FORMAT ACTION

Add Unnorm-
alized (Long) AW RX Completed

Add Unnorm-
alized (Short) AUR RR Completed

Add Unnorm-
alized (Short) AU RX Completed

Subtract Norm-
alized (Long) SDR RR Completed

Subtract Norm-
alized (Long) SD RX Completed

Subtract Norm-
alized (Short) SER RR Completed

Subtract NOrin-
alized (Short) SE RX Completed

Subtract Unnorm-
alized (Long) SWR RR Completed

Subtract U nnorm-
alized (Long) SW RX Completed

Subtract Unnorm-
alized (Short) SUR RR Completed

Subtract Unnorm-
ali zed (Short) SU RX Completed

Floating-Point Divide (FK)

Division by a floating-point number with zero fraction
is attempted.

The operation is suppressed.
The instruction-length code is 1 or 2.

NAME MNEMONIC FORMAT ACTION

Divide (Long) DDR RR Suppressed
Divide (Long) DD RX Suppressed
Divide (Short) DER RR Suppressed
Divide (Short) DE RX Suppressed

functions that May Differ Among Models

Instruction Execution

In the editing operations, overlapping fields give un­
predictable results.

Equipment connected to the hold-in line of READ

DIRECT should be so constructed that the hold signal
will be removed when READ DIRECT is performed. Ex­
cessive duration of this instruction may result in in­
complete updating of the timer.

The purpose of the 12 field and the operand address
in the SI format of DIAGNOSE may be further defined
for a particular CPU and its appropriate diagnostic

Appendix G 161

procedures. Similarly the number of low-order address
bits that must be zero is further specified for a par­
ticular CPU. When the address does not have the re­
quired number of low-order zeros, a specification ex­
ception is recognized and causes a program interrup­
tion.

Whether DIAGNOSE is subject to protection action
depends on the model.

The diagnose operation is completed either by tak­
ing the next sequential instruction or by obtaining a
new psw from location 112. The diagnostic procedure
may affect the problem, supervisor, and interruptable
states of the CPU, and the contents of storage registers
and timer, as well as the progress of I/O operations.

Instruction Termination

Only one program interruption occurs for a given in­
struction. The old psw always identifies a valid cause.
This does not preclude simultaneous occurrence of
any other causes. Which of several causes is identified
may vary from one occasion to the next and from one
mode1 to another.

When instruction execution is terminated by an in­
terruption, all, part, or none of the result may be
stored. The result data, therefore, are unpredictable.
The setting of the condition code, if called for, may
also be unpredictable. In general, the results of the
operation should not be used for further computation.

Cases of instruction termination for a program in­
terruption are:

Protection: The key of the addressed storage loca­
tion does not match the protection key in the psw. A
store violation causes the operation to be terminated
in the case of STORE MULTIPLE, READ DIRECT, TEST AND

SET, and variable-length operations. Protected stor­
age remains unchanged. The timing signals of READ

DIRECT may have been made available. The operation
is terminated on a fetch violation, except for EXECUTE,

which is suppressed.

Addressing: An address specifies any part of data,
instruction, or control word outside the available stor­
age for the particular installation. In most cases the
operation is terminated. Data in storage remain un­
changed, except when designated by valid addresses.

When part of an operand in CLC is specificd in an
unavailable location, the comparison may end at an
inequality, or the operation may be terminated by the
addressing exception, even though inequality could
have been estahlished from the availahle operand
parts.

162

Data: The sign or digit codes of operands in deci­
mal arithmetic, CONVERT TO BINARY, or editing opera­
tions are incorrect, or fields in decimal arithmetic over­
Jap incorrectly, or the decimal multiplicand has too
many high-order significant digits. The operation is
terminated in all three cases. The condition code set­
ting, if called for, is unpredictable for protection, ad­
dressing, and data exceptions.

Exponent Overflow: The result exponent of an ADD,

SUBTRACT, MULTIPLY, or DIVIDE overflows and the re­
sult fraction is not zero. The operation is terminated.
The condition code is set to 3 for ADD and SUBTRACT,

and remains unchanged for MULTIPLY and DIVIDE.

Machine-Check Interruption

For a machine-check interruption, the old psw is
storcd at location 48, and depending on the model, the
interruption code may identify the type of malfunction.
The state of the CPU is scanned out into the storage
area starting with location 128 and extending through
as many words as are required by the given CPU. The
new psw is fetched from location 112. Proper execu­
tion of these steps depends on the nature of the ma­
chine check. A change in the machine-check mask bit
due to the loading of a new psw results in a change
in the treatment of machine checks. Depending upon
the nature of a machine check, the old treatment may
still be in force for several cycles. Machine checks that
occur in operations executed by I/O channels may
either cause a machine-check interruption or are re­
corded in the csw for that operation.

Instruction-Length Code

The instruction-length code is predictable only for
program and supervisor-call interruptions. For I/O and
external interruptions, the interruption is not caused
hy the last interpreted instruction, and the code is not
predictable for these classes of interruptions. For ma­
chine-check interruptions, the setting of the code is a
function of the malfunction and therefore unpredict­
able.

For the supervisor-call interruption the instruction­
length code is 1, indicating the halfword length of
SUPERVISOR CALL; for the program interruptions, the
codes 1, 2, and 3 indicate the instruction length in
halfwords. The code 0 is reserved for program inter­
ruptions where the length of the instruction is not
available because of certain overlap conditions in in­
struction fetching. In those cases, the instruction ad­
dress in the old psw does not represent the next in­
struction address. The instruction-length code 0 can
occur only for a program interruption caused by a
protected or unavailable data address.

Timer
Updating of the timer may be omitted when I/O data
transmission approaches the limit of storage capability
and when a channel sharing CPU equipment and op­
erating in burst mode causes CPU activity to be locked
out.

When a high-resolution timer is installed, the follow­
ing rules apply:

1. Use of the contents of location 83 as a source of
an instruction yields unpredictable results.

2. The storing of data by the channel at location 83
has an unpredictable effect on the eight low-order bits
of the timer value, while fetching of data by the chan­
nel from word location 83 yields unpredictable results.

3. In a system having shared storage, storing in the
low-order byte of another cpu's timer has an unpre­
dictable effect on the eight low-order bits of the timer
value, while a fetch-type operation to the timer loca­
tion of another CPU causes the content of the low-order
byte to be unpredictable.

System Control Panel

The system-reset function may correct the parity of
general and floating-point registers, as well as the
parity of the psw.

Pressing the start key after a system reset without
first introducing a new instruction address yields
unpredictable results.

The number of data switches is sufficient to allow
storing of a full physical storage word. Corree ,?arity
generation is provided. In some models, either correct
or incorrect parity is generated under switch control.

The data in the storage, general register or floating­
point register location, or the instruction-address part
of the psw as specified by the address switches and
the storage-select switch can be displayed by the dis­
play key. When the location designated by the address
switches and storage-select switch is not available, the
displayed information is unpredictable. In some mod­
els, the instruction address is permanently displayed
and hence is not explicitly selected.

When the address-comparison switches are set to
the stop position, the address in the address switches
is compared against the value of the instruction ad­
dress on some models, and against all addresses on
others. Comparison includes only that part of the in­
struction address corresponding to the physical word
size of storage.

Comparison of the entire halfword instruction ad­
dress is provided in some models, as is the ability to
compare data addresses.

The test light may be on when one or more diag­
nostic functions under control of DIAGNOSE are acti­
vated, or when certain abnormal circuit breaker or
thermal conditions occur.

Normal Channel Operation

Channel capacity depends on the way I/O operations
are programmed and the activity in the rest of the
system. In view of this, an evaluation of the ability
of a specific I/O configuration to function concurrent­
ly must be based on the application. Two systems em­
ploying identical complements of I/O devices may be
able to execute certain programs in common, but it
is possible that other programs requiring, for example,
data chaining may not run on one of the systems.

The time when the interruption due to the PCI flag
occurs depends on the model and the current activity.
The channel may cause the interruption an unpredict­
able time after control of the operation is taken over
by the ccw containing the PCI flag.

The content of the count field in a csw associated
with an interruption due to the PCI flag is unpredict­
able. The content of the count field depends on the
model and its current activity.

When the interruption condition due to the PCI flag
has been delayed until the operation at the subchannel
has been terminated, two interruptions from the sub­
channel still may take place, with the first interruption
indicating and clearing the PCI condition alone, and
the second providing the csw associated with the end­
ing status. Whether one or two interruptions occur de­
pends on the model, and on whether the pcr condition
has been assigned the highest priority for interruption
at the time of termination.

When the channel has established which device on
the channel will cause the next r/o interruption, the
identity of the device is preserved in the channel. Ex­
cept for conditions associated with termination of an
operation at the subchannel, the current assignment
of . priority for interruptions among devices mayor
may not be canceled when START I/O or TEST r/o is
issued to the channel, depending upon the model.

The assignment of priority among requests for in­
terruption from channels is based on the type of chan­
nel. The priorities of selector channels are in the order
of their addresses, with channel 1 having the highest
priority. The interruption priority of the multiplexor
channel is not fixed, and depends on the model and
the current activity in the channel.

Channel Programming Errors

A data address referring to a location not provided in
the model normally causes program check when the
device offers a byte of data to be placed at the non­
existent location or requests a byte from that location.
Models in which the channel does not have the ca­
pacity to address 16,777,216 bytes of storage cause
program check whenever the address is found to ex­
ceed the addressing capacity of the channel.

Appendix G 163

In the following cases, action depends on the ad­
dressing capacity of the model.

1. When the data address in the ccw designated
by the CAW exceeds the addressing capacity of the
model, the I/O operation is not initiated and the csw
is stored during the execution of START I/O. Normally
an invalid data address does not preclude the initi­
ation of the operation.

2. When the data address in a ccw fetched during
command chaining exceeds the addressing capacity of
the model, the I/O operation is not initiated.

3. When a ccw fetched on data chaining contains
an address exceeding the addressing capacity of the
model and the device signals channel end immediate­
ly upon transferring the last byte designated by the
preceding ccw, program check is indicated to the pro­
gram. Normally, program check is not indicated un­
less the device attempts to transfer one more byte of
data.

4. Data addresses are not checked for validity dur­
ing skipping, except that the initial data address in
the ccw cannot exceed the addressing capacity of the
model.

When the channel detects chaining check, program
check, or protection check, the content of the count
field in the associated csw is unpredictable.

When the channel detects a programming error in
the CAW or in the first ccw, the PCI bit may unpre­
dictably appear in a csw stored by START I/O without
the PCI flag being on in the first ccw associated with
the START I/O.

When a programming error occurs in the informa­
tion placed in the CAW or ccw and the addressed
channel or subchannel is working, either condition
code 1 or 2 may be set, depending on the model.
Similarly, either code 1 or 3 may be set when a pro­
gramming error occurs and a part of the addressed
I/O system is not operational.

When a programming error occurs and the ad­
dressed device contains an interruption condition,
with the channel and subchannel in the available
state, START I/O mayor may not clear the interruption
condition, depending on the type of error and the
model. If the instruction has caused the device to be
interrogated, as indicated by the presence of the busy
bit in the csw, the interruption condition has been
cleared, and the csw contains program check, as well
as the status from the device.

164

"Vhen the channel detects several error conditions,
all conditions may be indicated or only one may ap­
pear in the csw, depending on the condition and the
model.

Channel Equipment Errors

Parity errors detected by the channel on data sent to
or received from the I/O device on some models cause
the current operation to be terminated. When the
channel and the CPU share common equipment, parity
errors on data may cause malfunction reset to be per­
formed. The recovery procedure in the channel and
subsequent state of the sub channel upon a malfunc­
tion reset depend on the model.

Detection of channel control check or interface con­
trol check causes the current operation, if any, to be
immediately terminated and causes the channel to per­
form the malfunction-reset function. The recovery pro­
cedure in the channel and the subsequent state of the
sub channel upon a malfunction reset depend on the
model.

The contents of the csw, as well as the address in
the psw identifying the I/O device, are unpredictable
upon the detection of a channel-control-check con­
dition.

Some channels can tolerate an absence of data trans­
fer during a burst mode operation, such as occurs
when reading a long gap on tape, for not more than
approximately one-half minute. Equipment malfunc­
tion may be indicated when an absence of data trans­
fer exceeds this time.

Execution of malfunction reset in the channel de­
pends on the type of error and model. It may cause
all operations in the channel to be terminated and all
operational subchannels to be reset to the available
state. The channel may send the malfunction-reset
signal to the device connected to the channel at the
time the malfunctioning is detected, or a channel shar­
ing common equipment with the CPU may send the
system-reset signal to all devices attached to the chan­
nel.

The method of processing a request for interruption
due to equipment malfunctioning, as indicated by the
presence of the channel-control-check and interface­
control-check conditions, depends on the model. In
channels sharing common equipment with the CPU,

malfunctioning detected by the channel may be indi­
cated by the machine-check interruption.

I Alphabetic List of Instructions MNE-

NAME MONIC TYPE EXCEPTIONS CODE PG.

The listings in the TYPE and EXCEPTIONS columns mean: Compare Logical CLR RR C 15 54
A Addressing exception Compare Logical CL RX C P,A,S 55 54
C Condition code is set Compare Logical CLI SI C P,A 95 54
D Data exception Compare Logical CLC SS C P,A 05 54
OF Decimal-overflow exception Compare (Long) CDR RRF,C S 29 47
OK Decimal-divide exception Compare (Long) CD RXF,C P,A,S 69 47
E Exponent-overflow exception Compare (Short) CER RRF,C S 39 47
EX Execute exception Compare (Short) CE RXF,C P,A,S 79 47
F Floating-point feature Convert to Binary CVB RX P,A,S,D, IK 4F 31
FK Floating-point divide exception Convert to Decimal CVD RX P,A,S 4E 32
IF Fixed-point overflow exception Diagnose SI M,P,A,S 83 76
IK Fixed-point divide exception Divide DR RR S, IK 10 31
L New condition code loaded Divide 0 RX P,A,S, IK 50 31
LS Significance exception Divide Decimal DP SS T P,A,S,D, OK FO 38
M Privileged-operation exception Divide (Long) DDR RRF S,U,E,FK 20 4D
P Protection exception Divide (Long) DO RXF P,A,S,U,E,FK 60 49
S Specification exception Divide (Short) DER RRF S,U,E,FK 3D 49
T Decimal feature Divide (Short) DE RXF P,A,S,U,E,FK 70 49
U Exponent-underflow exception Edit ED SS T,C P,A, 0 DE 57
Y Direct control feature Edit and Mark EDMKSS T,e P,A, 0 OF 59 Z Protection feature Exclusive OR XR RR C 17 55

MNE- Exclusive OR X RX C P,A,S 57 55

NAME MONIC TYPE EXCEPTIONS CODE PG. Exclusive OR XI SI C P,A 97 55

Add AR RR C IF lA 28
Exclusive OR XC SS C P,A 07 55

Add A RX C P,A,S, IF 5A 28
Execute EX RX P,A,S, EX 44 67

Add Decimal AP SS T,C P,A, 0, DF FA 37 Halt I/O HIO SI CM 9E 96

Add Halfword AH RX C P,A,S, IF 4A 28 Halve (Long) HDR RRF S 24 48

Add Logical ALR RR C IE 28 Halve (Short) HER RRF S 34 48

Add Logical AL RX C P,A,S 5E 28 Insert- Character IC RX P,A 43 56
Add Normalized Insert Storage Key ISK RRZ M, A,S 09 74

(Long) ADR RRF,C S,U,E,LS 2A 45 Load LR RR 18 26
Add Normalized Load L RX P,A,S 58 26

(Long) AD RXF,e P,A,S,U,E,LS 6A 45 Load Address LA RX 41 56
Add Normalized Load and Test LTR RR C 12 26

(Short) AER RRF,C S,U,E,LS 3A 45 Load and Test
Add Normalized (Long) LTDR RRF,C S 22 44

(Short) AE RXF,C P,A,S, U ,E,LS 7A 45 Load and Test
Add Unnorm- (Short) LTER RRF,C S 32 44

alized (Long) AWR RRF,C S, E,LS 2E 46 Load Complement LCR RR C IF 13 27
Add Unnorm- Load Complement

alized (Long) AW RXF,C P,A,S, E,LS 6E 46 (Long) LCDR RRF,C S 23 44
Add Unnorm- Load Complement

alized (Short) AUR RRF,C S, E,LS 3E 46 (Short) LCER RRF,C S 33 44
Add Unnorm- Load Halfword LH RX P,A,S 48 26

alized (Short) AU RXF,C P,A,S, E,LS 7E 46 Load (Long) LOR RRF S 28 44
AND NR RR C 14 55 Load (Long) LD RXF P,A,S 68 44
AND N RX e P,A,S 54 55 Load Multiple LM RS P,A,S 98 27
AND NI SI e P,A 94 55 Load Negative LNR RR C 11 27
AND NC SS X,C P,A D4 55 Load Negative
Branch and Link BALR RR 05 66 (Long) LNDR RRF,C S 21 45
Branch and Link BAL RX 45 66 Load Negative
Branch on (Short) LNER RRF,C S 31 45

Condition BCR RR 07 65 Load Positive LPR RR C IF 10 27
Branch on Load Positive

Condition BC RX 47 65 (Long) LPDR RRF,C S 20 44
Branch on Count BCTR RR 06 66 Load Positive
Branch on Count BCT RX 46 66 (Short) LPER RRF,C S 30 44
Branch on Index LoadPSW LPSW SI LM,P,A,S 82 73

High BXH RS 86 66 Load (Short) LER RRF S 38 44
Branch on Index Load (Short) LE RXF P,A,S 78 44

Low or Equal BXLE RS 87 66 Move MVI SI P,A 92 53
Compare CR RR C 19 30 Move MVC SS P,A 02 53
Compare C RX C P,A,S 59 30 Move Numerics MVN SS P,A 01 54
Compare Decimal CP SS T,C P,A, 0 F9 38 Move with Offset MVO SS P,A E1 40
Compare Halfword CH RX C P,A,S 49 30 Move Zones MVZ SS P,A 03 54

Appendix G 165

MNE- List of Instructions by Set and Feature
NAME MONIC TYPE EXCEPTIONS CODE PG.

Multiply MR RR S lC 30
Multiply M RX P,A,S 5C 30 Standard Instruction Set
Multiply Decimal MP SS T P,A,S,D FC 38
Multiply Halfword MH RX P,A,S 4C 30 NAME MNEMONIC TYPE CODE

Multiply (Long) MDR RRF S,U,E 2C 48 Add AR RR C lA
Multiply (Long) MD RXF P,A,S,U,E 6C 48 Add A RX C 5A
Multiply (Short) MER RRF S,U,E 3C 48 Add Halfword AH RX C 4A
Multiply (Short) ME RXF P,A,S,U,E 7C 48 Add Logical ALR RR C IE
OR OR RR C 16 55 Add Logical AL RX e 5E
OR 0 RX C P,A,S 56 55 AND NR RR C 14
OR 01 SI C P,A 96 55 AND N RX C 54
OR OC SS C P,A D6 55 AND NI SI C 94
Pack PACK SS P,A F2 39

AND NC SS C D4

Read Direct RDD SI Y M,P,A 85 75
Branch and Link BALR RR 05
Branch and Link BAL RX 45 Set Program Mask SPM RR L 04 73 Branch on

Set Storage Key SSK RRZ M, A,S 08 74 Condition BCR RR 07 Set System Mask SSM SI M,P,A 80 74 Branch on
Shift Left Double SLDA RS C S, IF 8F 33 Condition BC RX 47 Shift Left Double Branch on Count BCTR RR 06 Logical SLDL RS S 8D 60 Branch on Count BCT RX 46 Shift Left Single 3LA RS C IF 8B 32 Branch on Index
Shift Left Single High BXH RS 86 Logical SLL RS 89 59 Branch on Index
Shift Right Double SRDA RS C S 8E 34 Low or Equal BXLE RS 87 Shift Right Double

Logical SRDL RS S 8C 60 Compare CR RR C 19
Shift Right Single SRA RS C 8A 33 Compare C RX C 59
Shift Right Single Compare Halfword CH RX C 49

Logical SRL RS 88 60 Compare Logical CLR RR C 15
Start I/O SIO SI CM 9C 94 Compare Logical CL RX C 55
Store ST RX P,A,S 50 32 Compare Logical CLC SS C D5
Store Character STC RX P,A 42 56 Compare Logical CLI SI C 95
Store Halfword STH RX P,A,S 40 32 Convert to Binary CVB RX 4F
Store (Long) STD RXF P,A,S 60 50 Convert to Decimal CVD RX 4E
Store Multiple STM RS P,A,S 90 32 Diagnose SI 83
Store (Short) STE RXF P,A,S 70 50 Divide DR RR ID
Subtract SR RR C IF IB 29 Divide D RX 5D
Subtract S RX C P,A,S, IF 5B 29 Exclusive OR XR RR C 17
Subtract Decimal SP SS T,e P,A, D, DF FB 37 Exclusive OR X RX C 57
Subtract Halfword SH RX C P,A,S, IF 4B 29 Exclusive OR XI SI C 97
Subtract Logical SLR RR C IF 29 Exclusive OR XC SS C D7
Subtract Logical SL RX C P,A,S 5F 29 Execute EX RX 44
Subtract Norm- Halt I/O HIO SI C 9E alized (Long) SDR RRF,C S,U,E,LS 2B 46 Insert Character Subtract Norm- IC RX 43

alized (Long) SD RXF,e P,A,S,U,E,LS 6B 46 Load LR RR 18
Subtract Norm- Load L RX 58

alized (Short) SER RRF,C S,U,E,LS 3B 46 Load Address LA RX 41
Subtract N orm- Load and Test LTR RR C 12

alized (Short) SE RXF,e P,A,S,U,E,LS 7B 46 Load Complement LCR RR C 13
Subtract Unnorm- Load Halfword LH RX 48

alized (Long) SWR RRF,C S, E,LS 2F 47 Load Multiple LM RS 98
Subtract Unnorm- Load Negative LNR RR C 11

alized (Long) SW RXF,C P,A,S, E,LS 6F 47 Load Positive LPR RR C 10
Subtract Unnorm- LoadPSW LPSW SI L 82

ali zed (Short) SUR RRF,C S, E,LS 3F 47 Move MVI SI 92
Subtract Unnorm- Move MVC SS D2

alized (Short) SU RXF,C P,A,S, E,LS 7F 47 Move Numerics MVN SS 01 Supervisor Call SVC RR OA 74 Move with Offset MVO SS Fl
Test and Set TS SI C P,A 93 74 Move Zones MVZ SS D3
Test Channel TCH SI CM 9F 98 Multiply MR RR lC
TestIlO TIO SI CM 9D 95 Multiply M RX 5C
Test Under Mask TM SI C P,A 91 56 Multiply Halfword MH RX 4C
Translate TR SS P,A DC 57 OR OR RR C 16
Translate and Test TRT SS C P,A DD 57 OR 0 RX C 56
Unpack UNPK SS P,A F3 39 OR 01 SI C 96
Write Direct WRD SI Y M,P,A 84 75 OR OC SS C 06
Zero and Add ZAP SS T,C P,A, D, DF F8 37 Pack PACK SS F2

166

NAME MNEMONIC TYPE CODE NAME MNEMONIC TYPE CODE

Set Program Mask SPM RR L 04 Load (Long) LDR RRF 28
Set System Mask SSM SI 80 Load (Long) LD RXF 68
Shift Left Double SLDA RS C 8F Load Negative
Shift Left Single SLA RS C 8B (Long) LNDR RRF,C 21
Shift Left Double Load Negative

Logical SLDL RS 8D (Short) LNER RRF,C 31
Shift Left Single Load Positive

Logical SLL RS 89 (Long) LPDR RRF,C 20
Shift Right Double SROA RS C 8E Load Positive
Shift Right Single SRA RS C 8A (Short) LPER RRF,C 30
Shift Right Double Load (Short) LER RRF 38

Logical SRDL RS 8C Load (Short) LE RXF 78
Shift Right Single Multiply (Long) MDR RRF 2C

Logical SRL RS 88 Multiply (Long) MD RXF 6C
Start 110 SIO SI C 9C Multiply (Short) MER RRF 3C
Store ST RX 50 Multiply (Short) ME RXF 7C
Store Character STC RX 42 Store (Long) STD RXF 60
Store Halfword STH RX 40 Store (Short) STE RXF 70
Store Multiple STM RS 90 Subtract Norm-
Subtract SR RR C IB alized (Long) SDR RRF,C 2B
Subtract S RX C 5B Subtract N orm-
Subtract Halfword SH RX C 4B alized (Long) SD RXF,C 6B
Subtract Logical SLR RR C IF Subtract Norm-
Subtract Logical SL RX C 5F alized (Short) SER RRF,C 3B
Supervisor Call SVC RR OA Subtract N orm-
Test and Set TS SI C 93 alized (Short) SE RXF,C 7B
Test Channel TCH SI C 9F Subtract Unnorm-
Test 110 TIO SI C 9D alized (Long) SWR RRF,C 2F
Test Under Mask TM SI C 91 Subtract Unnorm-
Translate TR SS DC alized (Long) SW RXF,C 6F
Translate and Test TRT SS C DD Subtract Unnorm-
Unpack UNPK SS F3 alized (Short) SUR RRF,C 3F

Subtract Unnorm-
Floating-Point Feature Instructions alized (Short) SU RXF,C 7F

NAME MNEMONIC TYPE CODE
Decimal Feature Instructions Add Normalized

(Long) ADR RRF,C 2A NAME MNEMONIC TYPE CODE

Add Normalized Add Decimal AP SS T,C FA
(Long) AD RXF,C 6A Compare Decimal CP SS T,C F9

Add Normalized Divide Decimal DP SS T FD
(Short) AER RRF,C 3A Edit ED SS T,C DE

Add Normalized Edit and Mark EDMK SS T,C DF
(Short) AE RXF,C 7A Multiply Decimal MP SS T FC

Add Unnorm- Subtract Decimal SP SS T,C FB
alized (Long) AWR RRF,C 2E Zero and Add ZAP SS T,C F8

Add Unnorm-
alized (Long) AW RXF,C 6E Commercial Instruction Set

Add Unnorm- The commercial instruction set includes the instructions of both
alized (Short) AUR RRF,C 3E the standard instruction set and the decimal feature.

Add Unnorm-
alized (Short) AU RXF,C 7E Protection Feature Instructions

Compare (Long) CDR RRF,C 29
Compare (Long) CD RXF,C 69 NAME MNEMONIC TYPE CODE

Compare (Short) CER RRF,C 39 Insert Storage Key ISK RRZ 09
Compare (Short) CE RXF,C 79 Set Storage Key SSK RRZ 08

Divide (Long) DDR RRF 2D Scientific Instruction Set Divide (Long) DD RXF 6D
Divide (Short) DER RRF 3D The scientiBc instruction set includes the instructions of both
Divide (Short) DE RXF 7D the standard instruction set and the Hoating-point feature.

Halve Long HDR RRF 24 Universal Instruction Set Halve (Short) HER RRF 34
Load and Test When the ,instructions associated with storage protection are

(Long) LTDR RRF,C 22 added to the commercial and scientific features, a universal

Load and Test instruction set is obtained.

(Short) LTER RRF,C 32
Direct Control Feature Instructions Load Complement

(Long) LCDR RRF,C 23 NAME MNEMONIC TYPE CODE

Load Complement Read Direct RDD SI Y 85
(Short) LCER RRF,C 33 Write Direct WRD SI Y 84

Appendix G 167

List of Instructions by Operation Code CODE MNEMONIC PAGE

59 C 30
5A A 28

CODE MNEMONIC PAGE 5B S 29
04 SPM 73 5C M 30
05 BALR 66 5D D 31
06 BCTR 66 5E AL 28
07 BCR 65 5F SL 29
08 SSK 74 60 STD 50
09 ISK 74 68 LD 44
OA SVC 74 69 CD 47
10 LPR 27 6A AD 45
11 LNR 27 6B SD 46
12 LTR 26 6C MD 48
13 LCR 27 6D DD 49
14 NR 55 6E AW 46
15 CLR 54 6F SW 47
16 OR 55 70 STE 50
17 XR 55 78 LE 44
18 LR 26 79 CE 47
19 CR 30 7A AE 45
lA AR 28 7B SE 46
IB SR 29 7C ME 48
lC MR 30 7D DE 49
ID DR 31 7E AU 46
IE ALR 28 7F SU 47
IF SLR 29 80 SSM 74
20 LPDR 44 82 LPSW 73
21 LNDR 45 83 76
22 LTDR 44 84 WRD 75
23 LCDR 44 85 RDD 75
24 HDR 48 86 BXH 66
28 LDR 44 87 BXLE 66
29 CDR 47 88 SRL 60
2A ADR 45 89 SLL 59
2B SDR 46 8A SRA 33
2C MDR 48 8B SLA 32
2D DDR 49 8e SRDL 60
2E A\VR 46 8D SLDL 60
2F SWR 47 8E SRDA 34
30 LPER 44 8F SLDA 33
31 LNER 45 90 STM 32
.'32 LTER 44 91 TM 56
33 LCER 44 92 MVI 53
34 HER 48 93 TS 74
38 LER 44 94 NI 55
39 CER 47 95 CLI 54
3A AER 45 96 01 55
.'3B SER 46 97 XI 55
3C MER 48 98 LM 27
:3D DER 49 9C SIO 94
:3£ AUR 46 9D TIO 95
:3F SUR 47 9E HIO 96
40 STH 32 9F TCH 98
41 LA 56 Dl MVN 54
42 STC 56 D2 MVC 53
43 IC 56 b3 MVZ 54
44 EX 67 D4 NC 55
45 BAL 66 D5 CLC 54
46 BCT 66 D6 OC 55
47 BC 65 D7 XC 55
48 LH 26 DC TR 57
49 CH 30 DD TRT 57
4A AH 28 DE ED 57
lB SH 29 DF EDMK 59
tC MH 30 F1 MVO 40
IF CVD 32 F2 PACK 39
IF CVB 31 F3 UNPK 39

.')0 ST 32 F8 ZAP 37
54 N 55 F9 CP 38
.55 CL 54 FA AP 37
F)() 0 55 FB SP 37
':>7 X .55 FC MP 38
;,K L 26 FD DP 38

168

Where more than one page-reference is given, major references
appear first and in italic type.

.. 70,17
. 84, 85

Access to main storage, right of
Adapter, channel-to-channel
ADD DECIMAL instruction (AP)

~:!~~1~O~ ~~.~ .. :: ":::::.:::::: ... 136~~
ADD HALFWORD instruction (AH)

~:!~~!iO~f .~~~ .. :::
ADD instruction (AR, A)
ADD LOGICAL instruction (ALR, AL)

28
129
28
28

ADD NORMALIZED instruction (ADR, AD, AER, AE)
Description '" 45
Example of use 136.5

ADD NORMALIZED instruction (AXR) 50.2
ADD UN NORMALIZED instruction (AWR, AW, AUR, AU)

Description , 46
Example of use 136.5

Address
Generation .. 13
Of channel address word (CAW) 15
Of channel status word (CSW) 15
Of diagnostic scan-out area 15
Of initial program loading CCWI 15
Of initial program loading CCW2 15
Of old and new program status words (PSW) 15
Of timer .. 15
Switches .. 126

Address-compare switch on system control panel 126

A~h:~!~fs .. 88, 89, 94, 112

~~S!~i~Zs::~~,7~::~-H!
Limitations 8
Nonexistent areas 102
Of locations in main and shared storage 8
Of registers . 9
Of subchannels and shared subchannels 89
Wraparound feature with maximum storage 8.101

Altering of an instruction by EXECUTE 67,128
Alternate-prefix light on system control panel 126
AND instruction (NR, N, NI, NC)

Description ,
Example of use

Appendixes A-G
Arithmetic

Decimal
Fixed-point
Floating-point

Arithmetic and logical unit
ASCII(A) bit (in PSW)
ASCII-8

.... 55
.... 133, 136.4

..... 127-167

....... 35,10
...... 24, 10

.. 41,11
10

.. 71,15

(See "USA standard code for information interchange
extended to eight bits.")

Assembly language, symbolic operand designations for
System/360

(See individual instruction descriptions.)
Attention condition

Base address
Basic unit of information (the byte)
Bits

In a byte
Modifier

Blocking of data.
Boundary, integral

..113,111

13
8

8
100

99
8

Boundary restrictions, effect of byte-oriented operand
feature on

Branch address
BRANCH AND LINK instruction (BALR, BAL)

~::~~1~0~ .~~~ .. ::.
BRANCH ON CONDITION instruction (BCR, BC)

Description .. .
Example of use

BRANCH ON COUNT instruction (BCTR, BCT)
Description
Example of use

BRANCH ON INDEX HIGH instruction (BXH)
Description
Example of use

BRANCH ON INDEX LOW OR EQUAL instruction
(BXLE)

Branching
As a change in sequential operations
Decision 'making in
Definition
Examples
Instruction formats .
Instructions
Sequential operation exceptions in .
Uses ."

Burst mode of operation
Bus-out check (sense bit) ...
Busy condition
Byte-oriented operand feature
Bytes

Index

8
.63,64

66
127

65
127

66
128

66
128

66

62
63
62

127
64

64-67
62
14

.. .85,18
106
U4

17,8
8

CAW (channel address word) 99,19,87
CCW

(See "channel command word.")
Cen~ral processing unit. (CPU)
Cham-command flag (In CCW)
Chain-data flag (in CCW)
Chaining

Of commands
Of data

Chaining check condition
Channel

." 8
.99,101

..99,101

103
101
U8

Address .. 89

~~~!!a~~:re :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: .. "'::'85, ig 
Commands ............................................................... . .105,99 
Compatibility of operation ....................... .................. 88 
Data rate capabilities ................................ 88 
Equipment error ............... . ...... 93, 164 
Facilities provided 18 
Function ................. ............................ . ............. 85 
Modes of operation .................... .. ....... 85, 18 
Multiplex mode ......................... .. .85, 18 
Programming error ......... ............... . .. 93,163 
Subchannels .......... " . . . . . . . . . . . . . . ... . .. .. . . . .. . . . . . . . . .. 86, 89 

Channel address word (CAW). ................ .. ..... 99,19,87 
Channel command word (CCW) 

Composition . . . . . . . . . .. .......................... ................... 99 
Types ............................................. 19 

Channel control check condition ..... .. ......... . U8 
Channel data check condition.. 118 
Channel end condition ..... .. ............................... 115.1U 
Channel operation, possible differences among models in 

normal ....................................................... . 
Channel status conditions 

Chaining check .. .... .. ...................... . 
Channel control check 
Channel data check . 

163 

118 
118 
118 

Index 169 



Incorrect length ......................... ...................... 117 
Interface control check ............... 118 
Program check ............................ ............... 117 
Program-controlled interruption 116 
Protection check . . . . . .. . . . . . . . . . . . . . .. ......................................... 117 

Channel status word (CSW) 
Command address ........... . ................. . 
Content .... . ............................... . 
Count ................................. . 

119 
. ..... 113, U8 

.. ...... 120 
Protection key ........... . ........................ .. ...... 119 
Status bits .................... .. ... . 

Channel-to-channel adapter ................... . 
Characteristic in floating-point operands ...... . 
Check bit (parity bit) .................................... . 
Classes of instructions .................................... . 
Clock, timer as a real-time . 
Code 

120 
. .. 84,85 

.. ..41,11,138 
8 

154 
82 

EBCDIC ..... 12, 150.2 
Charts ..................................................................... 150.1, 150.3 
Command ................................................................ .......... 100 
Instruction-length ....... ...... ....... ........ . .. 71, 156, 162 
Interruption ...................................... . ..................... 15,71,77 
Operation ........................................ . ...... 12, 13, 154, 167.1 
USASCII-8 ... ..... ......................... ..... . ..... 12, 36, 150 

Code, condition 
(See "condition code.") 

Command 
Chaining ....... .................. .. ..... .. ... ............ 103 
Code in CCW ....................... ............. 100 
Control . .............. . ........ 106,20 
Read ................................................ . .. . 105, 19 
Read Backward ............... . ...... 105,20 
Sense ............................... ................ . .. 106,20 
Transfer in Channel ................................................... . 107,20 
Write .......... ................ . . .. . 105, 19 

Command address 
Of CAW .................................................. __ ..... . 
Of CSW ............................................................. . 

Command immediate (or immediate operation) 
Command reject (sense bit) ............................... . 
Commercial instruction set ......................... . 
COMPARE DECIMAL instruction (CP) 

Description ............................................. . 
Example of use .... . .. . 

COMPARE HALFWORD instruction (CH) 
Description ................................. '" .............. . 
Example of use ....................................... . 

COMPARE instruction (CR, C) ............ . 

99 
.. 113, 119 
106,.108 

106 
..... 167,5 

38 
...... 136.2 

30 
129 
30 

COMPARE instruction (CDR, CD, CER CE) 
Description ........................................... :......... 47 
Example of use .............................................................. 136.5 

COMPARE LOGICAL instruction (CLR, CL CLI CLC) 

~:~~~i~£ ,;~ p P:' 
COA!v~~t!~% ........... .. 

As a design feature 
Limitations 
Of models .... . 
Of operation .................. . 

Components of an address 
Condition code 

54 
132 

5 
5 
5 
5 

88 
13 

As part of PSW ......................................... 71 
In branching ............................................. .14, 63 
In decimal arithmetic operations .......... 36 
In fixed-point arithmetic operations ..... . 25 
In floating-point arithmetic operations. ........ ......... 42 

~~ lt3c~f~~a::~ti~~~·::::::::::::::::::::::::::::::::::::::::::::::.............. ~~ 
For 110 instructions according to states of 110 system. 92 
Summary ....................................................................... 65,155 

Control command ................................ 106,20,100 
Control ranel 

(See < system control paneL") 
Control section in CPU 
Control unit 

Address in device address 
Address in 110 old PSW ............. .. 
Attachment in system .. 
Functions ........................................ . 
Indistinguishable from 110 devices 

170 

9 

89 
112 

7,84 
...... 84,18 

... 18,85 

Selection ............................................. . 
Shared by I/O devices .... . ............ .. 

Control unit end condition .............. . 
Control word formats . . ........................................... . 
CONVERT TO BINARY instruction (eVB) 

Description ............................................ .. 
Example of use. .. ............................... .. 

CONVERT TO DECIMAL instruction (CVD) 
Description . . . . . . . .. . ....................................... . 
Example of use . .. .............................. .. 

Count 
In CCW .......................... . 
In CSW ................................................................... . 

Counter, instruction (instruction address portion of 
current PSW) ..................................................... . 

CPU (central processing unit) ......................... .. 
CPU facilities ...................................................... . 
CSW 

(See "channel status word.") 

Data 
Address in CCW .......................... .. 
Blocking .................................... . 
Chaining .................................................... . 
Chaining (as affected by compatibility) 
Channel prefetching and buffering of ... . 
Exception . . ........................................ . 
Positioning of in main storage .... . 
Switches ........................................ . 

Data check (sense bit) 
Data format 

Decimal arithmetic ..... 
Fixed-point arithmetic . 
Floating-point arithmetic 
Logical operations 
Summary. ... ..... .. ............ .. 

Data rate (as affected by compatibility) 
Data transfer 

Basic procedure for a .. 
Termination of a .... 

Decimal arithmetic 

84 
85,89 

114,111 
153 

31 
130 

32 
130 

100 
120 

71 
8 
8 

99 
99 

.... 101,87 
.... 88,163 

.... 101 
....... 80,160 

8 
126 
107 

35 
24 
41 
51 

151 
88 

21 
109 

Application 10 
Condition-code settings 36 
Data format 35 
Examples .. 136.2 
Exceptions .................. 40 
Instruction formats 36 
Instructions ...... .... . .36-40 
Number representation ...... 35 
Packed and zoned formats ... ....... . .. . . 35 
Representation in USASCII-8 and 'EBCDIC . . .. 11,36 

Decimal feature instructions 167 
Decimal fields, shifting of .. 136.4, 40 
Decimal-divide exception 40,80 
Decimal-overflow exception .................... .. 40, 80, 160 
Decimal-to-hexadecimal, hexadecimal-to-decimal 

conversion .. ...................... .. .. 146-147 
Decision-making by BRANCH ON CONDITION 

instruction ..... 65, 14, 63 
Design feature 

Compatibility as a 5 
General-purpose system as a ......... ... .. .. 5 
Multisystem operation as a ... . ... 6, 17 
Solid logic technology as a . . 6 
Supervisory program as a 5 
System alerts as a 6 

Device 
Accessibility 89 
Addressing .... . . .. . .. .. . . . .. .. .. . 88 
Address in 110 old PSW .... 112 
Address in START I/O . . 94 
Error condition . 93 
General information . . .84, 18 

Device end condition ..... . ..... 115, III 
DIAGNOSE instruction .............................................. 76, 162 
Diagnostic procedure (initiated by a machine check) 16 
Diagnostic scan-out area, address of ................ ....... 15 



Differences among models, possible .. . 
Digit selector ip editing .............................. .. 
Direct control feature ................................ . 
Direct control feature instructions .............. . 
Displacement portion of address .............. . 
Display key on system control panel ...... . 
DIVIDE DECIMAL instruction (DP) 

~::~~1~iO~ ~~.~ .. ::::::::::::::::::::::::::::::::::::::: 
DIVIDE instruction (DR, D) 

Description ........................ . 
Example of use 

DIVIDE instructi~~ '(DDR',"DD, DER,"O'E'j'" 
Double word ....................................... .. 

....... 161 
58 

...... 17,82 

.. ..... 167 
14 

126 

38 
.... ... 136.3 

31 
130 
49 

8 

EBCDIC (extended binary-coded-decimal interchange 
code) .................................................................. 12, 36, 150.2 

EDIT AND MARK instruction (EDMK) 
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .................. . 
Example of use .......... 

EDIT instruction (ED) 
Description ..................................... . 
Example of use ....................................................... . 

Emergency pull switch on system control panel .... . 
Equipment check (sense bit) ............................. . 
Error 

Channel equipment ..... .. 
Channel programming ........ . 
Device ................................................................... . 

Examples of instruction use (see also individual 

60 
.136.2 

57 
....... 136.1 

124 
107 

...... 93, 164 
.. 93,163 

93 

instruction names) ................................................. . 
Exception conditions (causes of program interruptions) 

127 

During decimal arithmetic operations ....................... 40 
During EXECUTE operations ............... ............... 67 
During fixed-point arithmetic operations....... 34 
During floatinr-point arithmetic operations 50 
During logic a o~erations ......................... 61 
During sequentia operations ..................... ................ 62 
During status-switching operations .. ..... ... ....... 76 
Summar}, of ................................................ .. ... 79, 16 

Excess-64 binary notation ..................................... . .... 41,.138 
EXCLUSIVE OR instruction (XR, X XI XC) 

Description .................................... ~ .... ' ... ... ..... ... 55 
Example of use 134 

Execute exception .. .. . . .. .. . .. .. .. . 79 
EXECUTE instruction (EX) 

Description .. .. . .. .. ... .. .. .... . .. .. ... .. .. . ......... .. 
Example of use ........................................................... . 

Execute operation, exceptions during ....................... . 

67 
128 
67 

Execution of instructions, possible differences among 
models in ..................................... 161 

Execution of programs ....................... 12 
Exponent in a floating-point number. ..41, 11, 138 
Exponent-overflow exception ............... 50, 80, 160 
Exponent-underflow exception.............................. 50, 80, 161 

Exte(~e:cf~Icr~.~.~.~~.~~~~I.~~.~ .~~~~~c~.~~.~.~ .. c~~~ ..... 12, 36, 149 
Extended precision and rounding ... ..... ........ 50.1 
External interruptions ................. .... 81, 16 
External signal ..................................................... 82 
External-start lines (initial program loading) 123 

Feature and instmction set, list of instructions by . 
Features 

Byte-oriented operand 
Design .............. .. 
Direct control . 
Multisystem 
Protection .. ................ . 

166 

........ 17, 8 
5 

17 
...... 6, 17 

. .. 17,70 
Timer ......... .. 

Fetch protection 
Field lengths 

....... ........ .... . .. 17,81 
............. 17, 70,156-157 

( See "instruction formats.") 
Fill character in editing ......... . 58 

Fixed-length logical information 
Fixed-point arithmetic 

Con Clition code settings ................ . 
Data format ...................... . 
Examples ..................................... .. 
Exceptions ........... .. 
General description 
Instmction formats .... . 
Instructions .................. . 
Number representation .. . ............. . 
Summary of instructions ........... . 
Use of two's complement in .. 

Fixed-point-divide exception .. 
Fixed-point-overflow exception 
Flag in CCW 

As defined for each type of command 
Chain-command .................................. . 
Chain-data ....... .... ..... ... .... .. .... .. 
Program-con troll cd-interruption (PCI) 
Skip .. . ........ . 
Suppress-length-indication (SLI) 

Floating-point arithmetic 
Condition code settings . 
Data format 
Examples ................. . 
Exceptions . . 
General description 
Instmction formats 
Instmctions 
Normalization .............. . 
Number representation 

51 

25 
24 

129 
34 
10 
25 

.. 26-34 
24 
26 

.. ........ 24,137 

. ..... 34, 80,160 
........... 34,80,160 

105 
99 
99 

100 
100 
99 

42 
41 

..136.4 
50 
11 
42 

Purpose ............................................................... . 

.43-50 
42 
41 
41 

Registers ............................................................ . 
Floating-point numbers, converting from decimal 

9 

numbers to ......... . 
Floating-point register 

Identification .... 
Number. 
S~ ..................................... . 

138 

9 
9 

10 
9 

50,80,161 
167 

Use ........................................... . 
Floating-point-divide exception ................... . 
Floating-point-feature instructions, listing of 
Format, data 

( Sf'C "data format.") 
Format, I/O ................. .. 
Format, information. 
Format, instruction 

(See "instruction formats.") 
Formats, basic instruction ' ..... . 
Fullword (word) ....................................... . 
Functions that may differ among models 

General registers ........... . 
General-purpose ihstem 
Generating of ad resses ....... ................... . 
Guard digit (in fioating-point arithmetic) 

Halfword ................................. . 
HAL T I/O instruction (HIO) 
HALVE instruction (HDR, HER) 
Hexadecimal representation 
Hexadecimal tables for 

Addition ...... . 

93 
7 

12 
8 

161-164 

9 
5 

13 
41 

8 
............ 96, 19, 110 

48 
12,151 

148 
Direct conversion . ................................... 141-145 
Fraction conversion 
Integer conversion 
Powers of 16 . 
Multiplication .............. . 
Subtraction 

ILC (instruction length code) 
Immediate operands ............... . 
Incorrect length condition 

147 
146 
146 
148 
148 

.... 71,77 
13 

117 

Index 171 



Index portion of address ......................... .. 
Information formats .................................. . 
Initial program loading (IPL) .... . 
Initial program loading CCWI ........ . 

14 
7 

Initial program loading CCW2 ..... . 
Initial program loading PSW ....... . .......... . 

.123,22 
15 
15 
15 

Input/output (I/O) 
Basic procedure for a data transfer operation .21,22 

... 85,18 
. .... 105, 19 

88 
..84,18 

98 
6 

... 87,19 
. .... 93 

.............. . .. 93-98 
..84,6,18 

111,20,77 

. Channels ........ . 
Commands ................................. . 
Control ............................. . 
Control units 
Execution .......... . 
General description 
Initiation ............ . 
Instruction format .... . 
Instructions .................................. . 
Interface .................................... . 
Interruptions. . ................. . 
Operations .............. . 
Resetting of system . 
Termination ., ..... . 

Input/output device 
(See "device.") 

Input/output system 

. ........ 87 
91 

.108,20 

Availability ............................................................. . 
Operation of .................................. . .... . 

90 
87 
56 
74 

INSERT CHARACTER instruction (IC) .............. . 
INSERT STORAGE KEY instruction (ISK) 
Instruction 

Add (AR, A) 
Add decimal (AP) ........... . 

28 

Add halfword (AH) ............... . 
... 37,136.2 
. ..... 28, 129 

28 
... .45, 136.5 

50.2 
....... .46, 136.5 
.... 55, 133, 136.4 

.. . ..... 66,127 

Add logical (ALR, AL) .......................... . 
Add normalized (ADR, AD, AER, AE) 
Add normalized (AXR ) 
Add unnormalized (AWR, AW, AUR, AU) 
AND (NR~ N, NI, NC) ........... . 
Branch ana link (BALR, BAL) 
Branch on condition (BCR, BC) 
Branch on count (BCTR, BCT) 
Branch on index high (BXH) .. ............ . 
Branch on index low or equal (BXLE) 
Compare (CR, C) ... .. . ...... . 
Compare (CDR, CD, CER, CE) ..... . 
Compare decimal (CP) ............... . 
Compare halfword (CH) .................... . 
Compare logical (CLR, CL, CLI, CLC) 
Convert to binary (CVB) 
Convert to decimal (CVD) 
Diagnose .................................... . 
Divide (DR, D) .. . 
Divide (DDR, DD, DER, DE) . 
Divide decimal (DP) 
Edit (ED) .......... . 
Edit and mark (EDMK) 
Exclusive OR (XR, X, XI, XC) 
Execute (EX) .......................... . 
Halt I/O .................. . 
Halve (HDR, HER) .... . 
Insert character (IC) . 
Insert storage key (ISK) 
Load (LR, L) .................. . 
Load (LDR, LD) .... . 
Load address (LA) ............ . 
Load and test (L TR ) . . . . . .............. . 

.. 65,14,127 
... 66,15, 128 

66,128 
66 
30 

. .. 47,136.5 

. .38,136.2 
.... 30, 129 

54,132 
31,130 

.. 32,130 
32 

... 31,130 
49 

.... 38, 136.3 

... 57, 136.1 
..60,136.2 
.... 55,134 

.. 67,128 

.. 96,110 
48 
56 

.74,136.6 
.. 26,129 

44 
. ... 56,135 

Load and test (L TDR, L TER) ............................ . 
Load complement (LCR) ..... . 

26 
44 
27 

Load complement (LCDR, LCER) , 
Load halfword (LH) . " . 
Load multiple (LM) 
Load negative (LNR) .............. . 
Load negative (LNDR, LNER) . 
Load positive (LPR) .................. . 
Load positive (LPDR, LPER) ' .. . 
Load PSW (LPSW) .............. . 
Load Rounded (LRER, LRDR) 
Move (MVI, MVC) ..... 
Move numerics (MVN) 
Move with offset (MVO) 

172 

44 
... 26,129 

27 
27 
45 
27 
44 
73 

50.2 
..... 53, 129, 131, 136.4 

... 54, 132, 136.4 
..... 40,136.4 

Move zones (MVZ) ....................... .. .... 54, 132 
Multiply (MR, M) ...................... ................... .. .30, 130 
Multiply (MDR, MD, MER, ME) 48 
Multiply (MXDR, MXD) 50.4 
Multiply (MXR) 50.3 
Multiply decimal (MP) ...... 38, 136.3 
Multiply halfword (MH) .. ............... . .. 30, 130 
OR (OR, 0, 01, OC) 55, 133 
Pack (PACK) ..... 39,136.3 
Read direct (RDD) 75 
Set program mask (SPM 73 
Set storage key (SSK) ... .. .... 74, 136.6 
Set system mask (SSM) 74 
Shift left double (SLDA) .. 33, 131 
Shift left double (SLDL) 60 
Shift left single (SLA) .32, 131 
Shift left single (SLL) .... ... 60 
Shift right double (SRDA) 34 
Shift right double (SRDL) 61 
Shift right single (SRA) 33 
Shift right single (SRL) 60 
Start I/O (SIO) ...... 94 
Store (ST) ..... ...... . ..... ......... ...... 32 
Store (STD, STE) ......... 50 
Store character (STC) 56 
Store halfword (STH) .. . 32 
Store multiple (STM) ... 32, 131 
Subtract (SR, S) ........ 29 
Subtract decimal (SP) 37 
Subtract halfword (SH) 29 
Subtract logical (SLR, SL) .................... 29 
Subtract normalized (SDR, SD, SER, SE) 46 
Subtract normalized (SXR) 50.3 
Subtract unnormalized (SWR, SW, SUR, SU) ........ 47 
Supervisor call (SVC) .. 74, 136.5 
Test and set (TS) .. 74, 136.6 
Test channel (TCH) 98 
Test I/O (TIO). ........................ 95 
Test under mask (TM) 56, 135 
Translate (TR) ........... . .. 57, 135 
Translate and test (TRT) ....... 57,136 
Unpack (UNPK) 39, 136.4 
Write direct (WRD) 75 
Zero and add (ZAP) .. 37, 136.2 

T nstruction address (in PSW) .. 72, 15 
Instruction counter (instruction address portion of 

current PSW) ............................................................... 71 
Instruction execution, possible differences among models in 161 
Instruction execution, sequential 

( See "sequential execution of instructions.") 
Instruction formats 
Ba~c 12 
Branching 64 
Decimal arithmetic 36 
Fixed-point arithmetic 25 
Floatinr-point arithmetic 42 
Genera information about 12 
Input/output 93 
Logical operations 52 
Status switching 72 
Summary of................................. . .. 152,154 

Instruction information, summary of . 165 
Instruction length code (ILC) . ..71,77,156,162 
Instruction sets .. ........................ ........ ....... ........ . .. 165-167,5 
Instruction termination, possible differences among 

models in ... ........ ........ . .... 162 
Instructions, examples of the use of . 127 
Integral boundary ....... 8 
Interface control check condition . 118 
Interface, I/O .... .................. . 6, 18, 84 
Interleaving of main storage ............... 7 
Interrupt key on system control panel .124, 82 
Interruptible and masked program states .... 69, 17 
Interruption 

Action ................ . .... ........... 77 
Code (in PSW) .15,71,77 
Exceptions causing . .. . ......... 79 
External ....................... 81, 16 
1/0...... ................................................... 111, 15,20-22,78 
Location of instruction being interpreted at . 78 



Machine check ............................................................. .82, 16 
~fasking ................ . ................. 77, 15 
Priority ................... . ....................... 83, 16 
Program .............................. . ...... 79, 16 
Program-controlled .. .104, 116 
Purpose . .... ................. ............... ....... ....... . .. 77,15 
Sources ........................ ................................. 78 
Supervisor call ........................................................ .. 80, 16 

Interruftion pending (state of the I/O system) 90 
Interva timer 

(See "timer.") 
Intervention required (sense bit) 
I/O 

(See "input/output.") 
I/O devj.,ce . " 

(See deVIce. ) 
IPL (initial program loading) 
IPL via external-start lines 

Key in storage .. 
Key, protection 

(See "protection key.") 
Keys and lights on system control panel 

Length specifications 
( See "instruction formats.") 

Limitations of addressing ................ . 
LOAD ADDRESS instruction (LA) 

Description 
Example of use ... ................ ........... . 

LOAD AND TEST instruction (L TR ) 
LOAD AND TEST instruction (L TDR, L TER) 
LOAD COMPLEMENT instruction (LCR) 

107 

.123,22 
123 

.......... 17,70 

124-126 

8 

56 

LOAD COMPLEMENT instruction (LCDR, LCER) 
LOAD HALFWORD instruction (LH) 

135 
26 
44 
27 
44 

Description ......................................... . 
Example of use .... ........ . 

LOAD instruction (LR, L) 
Description 
Example of use ....................... . 

26 
129 

LOAD instruction (LDR, LD) ...... . 
Load key on system control panel. . ........................... . 
Load light on system control panel .. 

26 
129 
44 

125 
124 
27 
27 
45 
27 
44 
73 

LOAD MULTIPLE instruction (LM) 
LOAD NEGATIVE instruction (LNR) 
LOAD NEGATIVE instruction (LNDR, LNER) 
LOAD POSITIVE instruction (LPR) 
LOAD POSITIVE instruction (LPDR, LPER) 
LOAD PSW instruction (LPSvV) 
LOAD ROUNDED instruction (LRDR, LRER) 
Load-unit switches on system control panel .. 
Loading of initial program information ....... . 
Locations subject to protection 
Logical operations 

Condition code settings 
Data formats ........................................... . 
Examples. 
Exceptions 
General description 
Instruction formats 
Instructions ............................. . 

Logging of machine-error information 
Long floating-point number 

50.2 
124 

22, 123 
70 

52 
51 

131 
61 
12 
52 

......... 53-60 
83,6 

41 

Machine check interruption .. 
Machine-check mask ........... . 

. .............. 82, 16, 162 
.................... 71 

Machine errors, handling of .............. . 
Main storage 

Addressing ........................................................... . 
Channel command word (CCW) definition of 
Controlled sharing of by TEST AND SET 
In the system structure .............................. . 

... 82,16 

8 
100 

.... 74,136.6 
7 

Information formats ............. ....................... 7 
Information positioning ....... ................ 8 
Permanent assignments in ................ ..... ................ 15 
Protection ............................... ................. ..70,17 
Sharing of ......................... 8 
Size ............................................................... 8 
Wraparound with maximum addressable ........... 8, 101 

Malfunction (selective) reset in I/O system 92 
Manual light on system control panel. 124 
Manual operation of system 

( See "system control paneL") 
Mask position values used in BRANCH ON CONDITION 65 
Masked and interruptible program states ........ 17, 69 
Masks in the PSW .................................... ... 71 
M ('ssage character in editing ................................................ 58 
Mnemonic listing in alphabetic list of instructions 165, 166 
Models, functions that may differ among " ........ 161-164 
Modification of an instruction by EXECUTE 67, 128 
Modifier bits in CCW command code . . . ............. 100 
Monitoring accesse~ to main storage by use of the 

protection features .70,17 
MOVE instruction (MVI, MVC 

Description . . ..... :.................... .... . . . . . . . . . . . 53 
Examples of use .............................................. 131, 129, 136.4 

MOVE NUMERICS instruction (MVN) 
Description ... ... .. ..... .... . 53 
Examples of use ........................ . ... 132, 136.4 

MOVE WITH OFFSET instruction (MVO) 
Description . .. ... .. .. 40 
Example of use ......... 136.4 

MOVE ZONES instruction (MVZ) 
Description .......................... . 
Example of use .................. . 

Multiplex mode of operation .. 
Multiplexor channel 

Addressing ......... . 
Description ..... . 
Location in system structure .. . 
Operating modes ............ .. 

MULTIPLY DECIMAL instruction (MP) 
Description . . . . .. . . . . . . . . . . . . . . . .. . .............. . 
Example of use 

MULTIPLY HALFWORD instruction 
Description .......................................... . 
Example of use ............................ . 

MULTIPLY instruction (MR, M) 
Description 
Example of use ......................... . 

MULTIPLY instruction (MDR, MD, MER, ME) 
t\fUL TIPL Y instruction (MXDR, MXD) 
MUL TIPL Y instruction (MXR) 
Multisystem operation ................... . 

54 
132 

85, 18 

89 
86 
6 

86, 18 

38 
136.3 

30 
130 

30 
130 
48 

50.4 
50.3 

72,6,17 

Normali7ation (in floating-point arithmetic) .. 42 
Not available (a general designation for three states of 

the I/O system) 90 
Not operational (state of the I/O system) .... 90 
Number bases, transition between by the use of 

conversion instructions 10 
Number representation 

Decimal arithmetic 35 
Fixed-point arithmetic 24 
floating-point arithmetic 41 

Numbering 
Bits of a byte ....... ... ... ... 8 
Of byte locations in main storage 8 

Numeric in zoned decimal data ... 35 

Op code (operation code) .............. 12,13,154,167.1 
Operands in addressing .............. 13 
Operating and stopped program states 6.9, 16 
Operation code ................................. 12,13,154,167.1 
Operation exception ............. " .. .. .... .... . .. ... . ... .. .. .. .. . . 79 
Operator control section of system control panel 12.3 
Operator intervention section of system control panel 125 

Index 173 



OR instruction (OR, 0, 01, OC) 
Description ............... . 
Example of use 

Orders 
Overflow 

55 
133 

... .106, 20 

Decimal. 
Exponent 
Fixed-point 

Overrun (sense bi~) 

................... .40, 80 
. ... 50, 80,160 

.......... 24, 34, 80 
107 

PACK instruction (PACK) 
Packed decimal number 
Parity bit (check bit) ........... . 
Pattern character in editing 
Permanent-storage assignments ........ . 
Postnormalization (in floating-point arithmetic) 
Power transitions, effect on main storage of 
Power-off key on system control panel ....... . 
Power-on key on system control panel ................. . 
Prefix (used in direct address relocation), 12-bit 
Prefix-select key-switch on system control panel 
Prenormalization (in floating-point arithmetic) 
Priority of interruptions .................. . 
Privileged instructions, summary of. . ............. . 
Privileged-operation exception 
Problem and supervisor program states ... . 
Problem state bit (in PSW) .............. . 
Program check condition .................. . 
Program errors, handling of 

39 
.......... 11,35 

8 
58 

.... 15,155 
42 
7 

124 
......... 124 

18 
125 
42 

.... 83,16 
156 

... 79 
..... 68, 17 

.71,15 
117 

..... 79, 16 
....... 12 Program execution ..... 

Program interruptions 
Program mask 

. ............................ 79, 16, 156-161 

Program states ............... . 
Program status word (PSW) 
Program-controlled interruption (PCI) 

71 
. ..... 68, 16 

..... 71, 15 

Bit in CSW . . ........................ 116, 164 
Flag in CCW ............................. . 100, 163, 164 
General discussion ..................... 104 

Program-controlled-interruption condition 116 
Propagating the sign-bit value in halfword 

operations . .......................... .. ... 24, 26, 28, 29, 30 
Protection 

General discussion . .... ................ .. ............. ........ 70,17 
Instructions subject to store and fetch protection . 156-157 
Instructions subject to store protection 156 

Protection check condition .. .. ... ......... 117 
Protection exception .. ... ................... 79 
Protection key 

In channel address word ( CAW) 99 
In channel status word (CSW) 119 
In program status word (PSW) ..... ..... .. 71 

PSW (program status word) ........ ........... ........ . ... 71,15 

Radixes, transition between by the use of conversion 
instructions ........... ................... .................................... 10 

Rate switch on system control panel .... 125 
Read Backward command .................105, 20, 98 
Read command............................. ..105,19,98 
READ DIRECT instruction (RDD) ..... ..... ..... 75 
Heal-time clock, timer as a 82 
Register-and-indexed-storage operations 12 
Register-and-storage operations 12 
Register-to-register operations ..................... 12 
Registers 

(Sec "general registers" and "floating-point registers.") 
Representation of numbers 

( Sec "number representation.") 
Resetting of I/O system .... 91 

58 Result condition in editing 
Right of access to main storage 
Rounding instructions (LRDR, LRER) 

.. ........ 70, 17 
50.2 

174 

RR (register-to-register) instruction format . . . . . . . . . . . . . . .. . .. . . .. 12 
RS (register-and-storage) instruction format .. .......... 12 
Running and wait program states ................ 68,17 
RX (register-and-indexed-storage) instruction format . 12 

Scientific instruction set 
Selector channel 

Addressing 
Description 
Location in system structure. 
Operating mode ........... .. 

Sense command .................................... . 
Sense information and operation 
Sequential execution of instructions 

Change in by branching ........... . 
Change in by interruptions . . 
Change in by manual intervention 
Change in by status switching 

..... 167, 5 

89 
86 

6 
........... 86 
. .. .106, 20, 98 

...... 106 

Controlled by PSW . ... .. . 

... 62.14 
77 

122 
68 
15 

122 
14 

166 
126 
73 

Initiation and termination of from system control panel 
Normal...... .......... . ........ . 

Set and feature, list of instructions by instruction . 
Set IC key on system control panel...... ....... ..... .. 
SET PROGRAM MASK instruction (SPM) 
SET STORAGE KEY instruction (SSK) 

Description 
Example of use 

SET SYSTEM MASK instruction (SSM) 
Shared and nonshared control units . 
Shared I/O 
Shared main storage . 
Shared subchannels . .. ............ . 
SHIFT LEFT DOUBLE instruction (SLDA) 

Description .... . ................ . 
Example of use ............................................... . 

SHIFT LEFT DOUBLE instruction (SLDL) 
SHIFT LEFT SINGLE instruction (SLA) 

74 
... 136.6 

.. 74 
.85,89 

6,7 
18,72,82 

89 

33 
131 
60 

Description ............... 32 
Example of use.................................... 131 

SHIFT LEFT SINGLE instruction (SLL) 60 
SHIFT RIGHT DOUBLE instruction (SRDA) 34 
SHIFT RIGHT DOUBLE instruction (SRDL) 61 
SHIFT RIGHT SINGLE instruction (SRA) 33 
SHIFT RIGHT SINGLE instruction (SRL) 60 
Short floating-point number ................................ . 41 
SI (storagc-and-immediate-operand) instruction format 12 
Sign and zone codes used in decimal arithmetic ..... 36 
Sign change in fixed-point arithmetic ... ....... .......... 25 
Significance exception ...... .80, 161 
Significance indicator in editing 58 
Significance starter in editing. 58 
Skip flag in CCW 100 

~~~~~naigit'i;'''~diti;'g'':''' .............. :.::: .. :: .... :.. . 19~ 
Specification exception80, 158-159
SS (storage-to-storage) instruction format 12
Standard instruction set ... 166, 5
START I/O data transfer example21,22
START I/O instruction (SIO) 94
Start key on system control panel 125
States of I/O system... . .. 8 8~
~~:~~; c~~Ji~~~s .. 6 ',,1

(Scc "unit status condition" and "channel status condition.)
Status modifier condition 113
Status switching

Description
Examples
Exceptions
In multisystem operation
Instruction formats
Instructions
Program-state alternatives
Program status word (PSW)
Protection of storage

Stop key on system control panel
Stopped and operating program states .

..... 68
.......... 136.5

76
72
72

... 73-76
68
71
70

125
........ 69,16

Storage '
(See "main storage.")

Storage protection ... , .. 70,17,156-157

~~~~:~:~a~e(L~~'~di'~t~~~p~'~~~~f '~'p~'~~ti~~~":::::::::::::::::::::::: ~O, ~~ 
Storage-select switch on system control panel ............... 126 
Storage-to-storage operations ................... ,............................ 12 
Store-and-display functions of system control panel ...... 122,22 
STORE CHARACTER instruction (STC) ........................ 56 
STORE HALFWORD instruction (STH) 32 
STORE instruction (ST) ............................................. 32 
STORE instruction (STD, STE) ........... 50 
Store key on system control panel .................. ................. 126 
STORE MULTIPLE instruction (STM) 

Description ............................... '" . . . . ... . .. . . . . . . . .. ................ 32 
Example of use .................................................................. 131 

Store protection .................................................... 70, 17, 156-157 
Subchannels and shared subchannels .................................. 86, 89 
SUBTRACT DECIMAL instruction (SP) .... 37 
SUBTRACT HALFWORD instruction (SH) 29 
SUBTRACT instruction (SR, S) ... 29 
SUBTRACT LOGICAL instruction (SLR, SL) . .... 29 
SUBTRACT NORMALIZED instruction (SDR, SD, SER, 

SE) .................................................................................. 46 
SUBTRACT NORMALIZED instruction (SXR) 50.3 
SUBTRACT UN NORMALIZED instruction (SWR, SW, 

Supe~~!~ ~~J p·~~bi~~·p·~~g~~~ .. ~t~t~~·::·.:::: ..... 68, i~ 
SUPERVISOR CALL instruction (SVC) 

Description .. , . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 74 
Example of use ................ .. ...... 136.5 

Supervisor call interruption .......... . ... ..... .. ... . .. ............. 80 

~~~~~~~ss~l~n~~h~f~ili~a~~~gr(SLi)' . 'fl~g"'( 'i~ 'ceW) ... :: .... ::::: 9~ 
Suppression and termination of instructions by interruption 78
Switches on system control panel................. 123-126
System alerts............ 6
System control panel

Functions
Operator control section
Operator intervention section
Possible differences among models in .

System control section in CPU
System light on system control panel .
System mask (in PSW)
System (supervisory) program
System structure
System-reset function of system control fanel ..
System-reset key on system control pane

Tables

... .122, 21
..123,22
.. 125,23

163
9

124
71
5
7

122
125

Conversion 146, 147
Hexadecimal............... 141
Powers of two 140

Teleprocessing, use of direct control and timer features in 5
Termination and suppression of instructions by interruption 78
Termination of 110 operations 20, 108
Termination of instructions, possible differences among

models in ,..................................... 162
TEST AND SET instruction (TS)

Description 74, 7
..136.6

...... 98,19
................... ...95,19

.................. 124

Example of use
TEST CHANNEL instruction (TCH)
TEST 110 instruction (TIO)
Test light on system control panel
TEST UNDER MASK instruction (TM)

~::~rip1~O~ .~~~ .. :: :::::::::::::::::::::: :::::.::::::::::::::::
56

135

TIC (Transfer in Channel) command
Timer

Address .. .

..... 107, 20, 98

Description
15
17

.81,16
163

.107,20,98
21

Interruption caused by
Possible differences among models in

Transfer in Channel command ..
Transfer of data, basic procedure for a ...
TRANSLATE AND TEST instruction (TRT)

Description
Example of use

TRANSLATE instruction (TR)
Description ,
Example of use

Two, powers of
Two's complement notation ..

Unit check condition
Unit exception condition
Unit of information (the byte), basic.
Unit status conditions

57
136

57
135
140

.24,137

. 115,111
.116,111

8

Attention 113, III
Busy. 114
Channel end115,111
Control unit end. 114, 111, 112
Device end.......... 115, 111
Status modifler 113
Unit check 115, III
Unit exception 116, 111

Universal instruction set..167,5
Unnormalized operation (in floating-point arithmetic) 42
UNPACK instruction (UNPK)

Description 39
Example of use 136.4

Unusual conditions that cause interruptions.. 16, 79
USA standard code for information interchange extended

to eight bits (USASCII-8) 150, 12, 36

Variable-length logical information
Violation (exception), protection

51
79

Wait and running program states68, 17
Wait light on system control panel........................ 124
Wait state bit (in PSW) 71, 15
Word .. 8
Working (state of 110 system) .. 90
Wraparound of register addresses in LOAD MULTIPLE

and STORE MULTIPLE 27,32
Wraparound with maximum addressable main storage 8,101
Write command 105, 19,98
WRITE DIRECT instruction (WRD) 75

ZERO ~NJ? ADD instruction (ZAP)
DeSCrIptIOn , 37
Example of use 136.2

36
35
35

Zone and sign codes used in decimal arithmetic . .
Zone in zoned decimal data
Zoned decimal number

Index 175

READER'S COMMENT FORM

IBM System/360 Principles of Operation

How did you use this publication?

As a reference source
As a classroom text
As

o
o
o

Based on your own experience, rate this publication ...

As a reference source:
Very Good
Good

As a text:
Very Good
Good

A22-6821-7

Fair Poor Very
Poor

Fair Poor Very
Poor

What is your occupation? .. .

We would appreciate your other comments; please give specific page and line references
where appropriate. If you wish a reply I be sure to include your name and address.

Thank you for your cooperation. No postage necessary if mailed in the U.S. A .

A22-6821-7

YOUR COMMENTS, PLEASE .•••••.••.•

This SRL manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back
of this form, together with your comments, will help us produce better pUblications for
your use. Each reply will be carefully reviewed by the persons responsible for writing and

. publishing this material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM
system should be directed to your IBM representative or to the IBM sales office serving
your locality.

fold fold ...

BUSI NESS REPLY MA I L
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY

IBM CORPORATION
P.O. BOX 390
POUGHKEEPSIE, N.Y. 12602

ATTENTION: CUSTOMER MANUALS, DEPT. B98

fold

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N. Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

FIRST CLASS
PERMIT NO. 419

POUGHKEEPSIE, N.Y.

fold

A22-6821-7

International Business Machines Corporation
Data Processing Division
tt2 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade CorporatiDn
821 United Nations Plaza, New YDrk, New York 10017
[International]

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017.0
	017.1
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042.0
	042.1
	043
	044
	045
	046
	047
	048
	049
	050.0
	050.1
	050.2
	050.3
	050.4
	050.5
	051
	052
	053
	054
	055
	056.0
	056.1
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066.0
	066.1
	067
	068
	069
	070
	071
	072
	073
	074
	075.0
	075.1
	076
	077
	078
	079
	080.0
	080.1
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136.0
	136.1
	136.2
	136.3
	136.4
	136.5
	136.6
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150.0
	150.1
	150.2
	150.3
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	replyA
	replyB
	xBack

