

Oracle and storage IOs, explanations and experience at CERN

Eric Grancher

CERN Geneva 23 CH-1211 Switzerland

Eric.Grancher@cern.ch

Abstract. The Oracle database system is used extensively in the High Energy Physics

community. Critical to the efficient running of these databases is the storage subsystem, and

over the years Oracle has introduced new ways to access and manage this storage, e.g. ASM

(Oracle database version 10.1), Direct NFS (Oracle database version 11.1), and Exadata

(Oracle database version 11.1). This paper presents CERN’s experience over the past few

years with the different storage access and management features, and gives a comparison of

each functionality. Also compared are the different solutions used at CERN, and the Tier 1

sites for storing Oracle databases.

1. Oracle in Accelerator, High Energy Physics and Worldwide LHC Computing Grid

The Oracle [1] database has been used since 1982 at CERN and in other High Energy Physics

laboratories. It has been chosen following an evaluation essentially for its ability to be part of the

accelerator controls systems, see [2] for a scanned version of the original document.

Since then, the Oracle database software has been selected as a key element of the accelerator

controls systems, for the CERN laboratory infrastructure (examples of it are the CERN Engineering

and Equipment Data Management Service [3] and the administrative applications) as well as for the

Large Hadron Collider (LHC) experiments. The LHC experiments have based a significant part of the

online and offline systems on Oracle, as described in [4], making use for part of it of the Streams

functionality ([5]). It has been recently demonstrated in [6] that the Oracle database system can be

used as a storage and analysis foundation for large and intensive accelerators and experiments control

systems.

The Worldwide LHC computing grid (WLCG) consists of three main layers or “tiers”, as described

in [7]. The Oracle database system is deployed in ten of the eleven Tier-1 sites.

2. Oracle and the IO subsystem

By nature, a database system is dependent on the Input Output storage system. The Input Output (IO)

storage system is often called “disk subsystem”, with the flash Solid State Drive (SSD) devices

coming increasingly as replacement for the rotating drives, the IO subsystem is a more adequate term.

The Oracle database system makes use of the different types of IO subsystems available, presented

to the host, or hosts in case of clustering. In the past years, the operating system vendors or developers

have added features to their system that have enabled the Oracle database to make better use of the

computing resources and provide faster response time. This is for example the case of Asynchronous

and direct IO features. A description of the major types of IO subsystems as used by the Oracle

database is given is the next section.

2.1. Asynchronous and direct IO

The two options are now widely available on all platforms where Oracle is supported, it is either used

by default, for example with Automated Storage Management (ASM), or requires to be set explicitly

(the setall value for the database parameter FILESYSTEMIO_OPTIONS will enable both

asynchronous and direct IO).

Asynchronous IO enables the database software to launch several IO operations and then wait for

their completion; it is beneficial for writing to the redo logs and the database files, see [8] for further

explanation. The implementation depends on the operating system, some operating systems use the

Portable Operating System Interface [for UNIX] (POSIX) libraries, Linux uses the libaio library. In

[9], there are examples on how to identify which system calls are used.

The direct IO feature is available on some platforms and enables to bypass the system buffer cache,

it almost always provides a performance gain and reduces the CPU usage, the buffer cache already

provides the best approach for data caching, see [10] for further explanation. The exception that we

have observed is for the Large Object Binary (LOB) entities which are not cached by default by the

Oracle database system and for which the filesystem cache can provide a significant performance

improvement. If faced with such a case, the LOB columns can be tagged to be cached in the buffer

cache. One has to be careful with such a change that the activity of loading lots of data in the buffer

cache does not lead to poor performance for other objects. Direct IO is enabled when the file is

opened, using the O_DIRECT tag of the open(2) system call.

2.2. Real Application Cluster (RAC) and IO subsystem

With Real Application Cluster, one of the pre-requisite and fundamental requirements is a symmetric

access to the datafiles and online redo logs. It means that all nodes in the cluster should be able to

access the storage in a symmetrical way. It implies that the usage of Directly Attached Storage

(typically disks behind a set of controller cards) is not possible. In the early implementations of RAC

(or Oracle Parallel Server, the predecessor of RAC) this requirements has often been a source of

increased complexity and human errors. An example of issues linked with this requirement is

presented in section 2.3.3.

One can classify the type of IO subsystems in two main classes: block device access and file based

access.

2.3. Block devices

Block device access, implemented as Fiber Channel Storage Area Network, Internet Small Computer

System Interface (iSCSI) or Fibre Channel over Ethernet (FCoE) is a very common access deployment

method for Oracle databases. The underlying media can be Fibre Channel, Ethernet or Infiniband.

2.3.1. Raw devices

Raw device access was initially widely recommended for high performance Oracle implementations

on UNIX for its minimal overhead regarding IO subsystem access. For Oracle 9i Real Application

Cluster, it was the only option if neither a cluster filesystem nor a Network File System (NFS) capable

storage subsystem was used.

The implementation is different depending on the operating system: Solaris has for example a

/dev/rdsk/cAtBdCsD device for each /dev/dsk/cAtBdCsD, Linux has the raw(8)

command to create raw device bindings /dev/raw/raw<N>.

Oracle has announced in [11] that it will not support anymore using raw devices for creating new

databases with the database configuration assistant as of the 11.2 release.

2.3.2. ASM management

Automatic Storage Management is a feature of the Oracle database software which has been released

as of the Oracle database version 10.1. It consists in a volume management system implemented as

specialised Oracle instance which provides access to the database instance. For “normal redundancy”

disk groups, it implements the “Stripe And Mirror Everything” paradigm as well as direct and

asynchronous IO. It has been a major step forward for the simplification of Oracle cluster deployment

and datafile management.

CERN had tested early versions of ASM and has deployed ASM on Serial ATA (SATA) disks

based, Fiber Channel connected disk arrays as described in [12]. All of the WLCG Tier 1 sites

deploying the Oracle database system are using ASM for part or all of the databases. The Port

d'Informació Científica (PIC) is using ASM on top of NAS based storage systems.

2.3.3. Third party volume manager

In the early (1990s) years of Oracle UNIX deployment, both for performance and flexibility, a third

party volume manager was used to create “volumes” (Veritas Volume Manager term) on top of disks,

it was a key enabler to have stripping (for performance), and mirroring (for reliability).

For the early (1990s) Oracle cluster deployment, a very common approach was to use a cluster

volume manager like the Veritas Cluster Volume Manager (CVM), a clustered version of the widely

used Veritas Volume Manager (VxVM).

At CERN, the added complexity of a large cluster volume manager complexity has been the root

cause for several incidents leading to downtime. One of the cons of such a solution is the impossibility

to use the datafile auto-extensibility feature.

2.4. File bases access

File based access is the most natural deployment model for Oracle databases, with Oracle naming

itself the different type of files as “datafiles”, “tempfiles”, “redo log files”, “spfiles”... For single

instance systems, it is a widely used solution, for clustered Oracle database, cluster filesystems and

NFS based solutions are also widely used. Usage of file based systems also enables a central storage of

log and configuration files.

2.4.1. Local filesystem

The simplest deployment method is to use the local filesystem, on Linux, at the time of the writing for

this paper, ext3 is the most widely used filesystem. As of RedHat Enterprise Linux 4, deployment of

Oracle databases on top of ext3 can make use of both direct and asynchronous IO.

2.4.2. Cluster Filesystem

Deployment on top of cluster filesystem provides a lot of facilities which was especially desirable for

clusters before the availability of ASM in Oracle database version 10.1, indeed the typical other option

to be used was to use raw devices.

Working with a cluster filesystem has been an option for OpenVMS. For UNIX/Linux this

possibility has been offered as of the availability of Tru64 Cluster FileSystem. Since then, other

cluster filesystems have been made available: OCFS / OCFS2 cluster filesystems from Oracle, GPFS

from IBM, Veritas Cluster File System, Sun QFS, RedHat GFS, PolyServe Matrix Server. See the

certification matrix is available at [13]. Academia Sinica Grid Computing (ASGC) is using OCFS2 for

some of its databases.

2.4.3. Host NFS stack

NFS storage systems are providing a valuable solution, easy to use and manage for database storage.

In the past years, the operating system vendors and Linux kernel developers have added a number of

features like asynchronous and direct IO which leads to excellent performance. At the same time, the

ubiquitous presence of 1 Gbit Ethernet per second, link aggregation, and increasingly 10 Gbit Ethernet

per second leads to high bandwidth from the database instance servers to the storage systems. CERN

has started using NFS based appliances for Oracle databases since 2006, see [14] for explanations

about the setup and experience.

2.4.4. Direct NFS

As of Oracle database version 11.1, Oracle has made available the “Oracle Direct NFS client” which is

an embedded (in the form of an ODM library) client in the database instance. It performs the link

aggregation and fail-over of the links if unavailable. This has the advantage of a high-performance

implementation with some functionality which is not available in host based NFS stack (like combined

link aggregation and fail-over).

2.5. Oracle Exadata storage server

The Oracle Exadata storage server version 1 is a solution developed by Oracle and HP in which part of

the processing, normally performed by the database instance, is performed at the storage system level.

This includes, for example in Oracle database version 11.1, the offloading of datafile creation, column

project, row selection.

CERN has tested the “HP Oracle Database Machine” which consists of a number of Exadata

storage servers with database instance servers, a number of performance tests have been performed. In

order push the system to its limits in a remote environment, we have developed a Swingbench ([15])

plug-in (figure 1) that provides PVSS (the Supervisory Control And Data Acquisition -SCADA-

software used at CERN) workload.

Figure 1. Swingbench simulation of the PVSS workload.

Using this Swingbench plug-in, we have been able to stress test the Exadata system in different

configurations (figure 2). For example, we have been testing the workload with the file creation

offloading capabilities enabled, which is the default, or disabled.

Figure 2. Comparison of the execution time of insertion

(in ms) with the offload feature enabled and disabled.

In order to sustain the load, the execution time has to be less than 1000ms: indeed the system works

by inserting a certain number of entries every second, if it takes more than one second to insert these

entries, the system cannot sustain the load.

We can observe that, with the offload feature enabled (which is the default), one can sustain a high

load with the tablespace switches (new files for data storage creation) without perturbation. Without

the feature, the tablespace switches create an additional load on the server to storage connection which

leads to having peaks of execution times and the overall system not being able to sustain the load in a

stable way.

3. Identifying Oracle IOs

3.1. Oracle instrumentation

The Oracle database software is instrumented, it implies that, when the server process associated with

a session is required to wait -on a transaction lock, a disk IO...-, it will publish this information at

various places. The place to find this information can be session based aggregate values, system based

aggregate values, in memory or disk sampled history (Active Session History, see next section) or it

can be a traced to a file if the session has been set in a special mode.

Set the 10046 event at the session level or call

DBMS_MONITOR.SESSION_TRACE_ENABLE(sid,serial#,

wait, binds);

WAIT #5: nam='db file sequential read'

ela=6784 file#=6 block#=467667 blocks=1 obj#=73442

tim=1490530491532

Figure 3. In this example, we show that how a trace file looks like when a

session is waiting for the answer of an IO operation (elapsed time in bold).

In [16], Carry Millsap describes how developers can make use of the extended SQL trace and

instrumentation information to have feedback on the code written and how it executes in the database

instance.

3.2. Active Session History

Active Session History is a feature of the Oracle database introduced in version 10.1. It is based on a

one second sampling of the active sessions (not waiting for input from the client) where information

about the SQL being executed and about the session state (on CPU or waiting for a given event) is

stored. This information is stored in the memory of the instance and persisted to disk (with another

sampling). A graphical description is available in [17].

As not all information is is available due to the sampling, some important information might be

missing when investigating performance issues. But, for the IO patterns, we have measured and

observed the fact that the Active Session History is actually providing very accurate information.

One can compare the complete instrumentation information, as retrieved from the trace file with

the sampled information. We have been studying the differences on a number of systems and have

observed that the collected information is very similar. In the following example (figure 4), a simple

comparison is made -on the accessed segments- between Active Session History and the trace file

information.

SQL> create table t as select p1,p2 from

v$active_session_history h where h.module like 'DATA_LOAD%'

and h.action like 'COLLECT_DN%' and h.event ='db file

sequential read' and h.sample_time>sysdate-4/24;

> grep "db file sequential read" accmeas2_j004_32116.trc |

head -2 | awk '{print $9"="$10}' | awk -F= '{print $2","$4}'

13,200041 |

6,587915 | data loaded in table t

SQL> select distinct e.owner, e.segment_name,

e.PARTITION_NAME,(e.bytes/1024/1024) size_MB from t,

dba_extents e where e.file_id=t.p1 and t.p2 between e.block_id

and e.block_id+e.blocks order by

e.owner,e.segment_name,e.PARTITION_NAME;

Figure 4. In this example, we show how one can compare the information about the objects

being accessed, using Active Session History with the one second sampling with the same

information about which objects are being accessed based on the 10046 trace file.

3.3. IO at the Operating System level

In order to understand how the Oracle database is performing IO operations, it is important to observe

which functions are being called within Oracle as well as system calls. DStackProf, a tool created by

Tanel Poder, see [18] for more resources, can be used on the Solaris operating system to analyse the

stack traces of the Oracle processes.

Once identified with such a tool, measurements can be made on the time it takes for the system call

to be processed, this can, for example, be done with the Solaris truss command.

4. Overloads

4.1. Overload at the disk / disk driver level

The disk subsystems are only capable of a certain number of random IO operations per second, each

disk being capable of 100 to 250 random operations per second (depending on the spinning rotation

speed and the interface used). It implies that, if more operations are given in the run queue, they will

take longer to be processed. The figure 5 shows that if not enough load (“8 threads”) is put on the

system, the best performance cannot be achieved. With “16 threads” the maximum number of IO

operations per second is achieved. With “32 threads” or “64 threads” threads, the run queue is too long

and the time taken per IO is higher.

Figure 5. In this example, we show that overload at the disk

level can lead to wrong interpretation of the Oracle

instrumentation information.

4.2. Overload at the CPU level

We have often observed that there can be confusions regarding the source of performance problem.

Indeed, Oracle, through the instrumentation layer, provides information about the timing required to

perform the IO operation from the database session point of view. It may not represent the real time

required to perform the IO operation. This is the case, for example, in case of CPU overload: the

operating system may not be able to have the session process on the CPU right after the IO operation

has been performed if many processes are active at the same time.

This can be illustrated as follows: in a system under acceptable load, when an Oracle session

requires doing an IO operation, it records the first timer information, then makes some operations and

calls the system call. The Operating System will perform some operations and perform the operation

to the disk subsystem. Once the operation at the disk level is performed, it will return to the Operating

System (OS) and then to the Oracle layer which will take the second timer information, the difference

t2-t1 being the recorded time, at the Oracle session level for the wait.

Under high load, the same logic applies but the operating system might not be able to schedule the

Oracle process at the OS level rapidly after the IO operation has been performed, hence larger values

for the t2-t1 Oracle level delay for the wait. This is illustrated in figure 6.

Figure 6. In this example, we show that overload at the

CPU level can lead to wrong interpretation of the Oracle

instrumentation information.

DTrace can be used to investigate the reason for the difference between normal load and high load

with the exact same IO load. In figure 7, one can see that the distribution of the time spent for the

process off-cpu. A small DTrace script, as shown in Appendix A can help to investigate such

questions.

normal load - avg_cpu_off = 6768876 - off-cpu distribution

 value ------------- Distribution ------- count

 1048576 | 2

 2097152 |@@@@ 86

 4194304 |@@@@@@@@@@@@@@@@@@@@@@@@@@@ 577

 8388608 |@@@@@@@@@ 189

 16777216 | 2

high load - avg_cpu_off = 10409057 - off-cpu distribution

 value ------------- Distribution ------- count

 16384 | 4

 32768 |@ 11

 65536 | 2

 2097152 |@ 15

 4194304 |@@@@@@@@@@@@@@ 177

 8388608 |@@@@@@@@@@@@@@@@@@@@ 249

 16777216 |@@@ 41

 33554432 | 4

Figure 7. off-cpu distribution under normal or high load with the same IO load.

5. Flash Solid-State Drive

Solid-State Drive devices are devices which emulate a hard disk drive interface even so it internally

uses solid-state memory to store the data. They exist in several types, in this paper, we concentrate on

the flash memory based ones and not the Random-access memory (RAM) based devices. There exist

several types of flash SSDs, depending on the type of memory they use: single-level cell and multi-

level cell. The single-level cell devices are faster and said to be more reliable, it is among these ones

that some SSDs are called “enterprise SSDs”.

The interest in SSDs for database type workloads is in the ability of delivering a lot of random IO

operations per second with short response time. In the recent years, we have seen the need to have

large number of disks only for providing enough random IO operations resources. One of the benefits

for SSD devices is that is that the number of IO operations per second per Watt is higher, thus for a

system sized on the IO operations per second factor, it will require less power.

It is important to note that the competition in the consumer market is typically on laptop/desktop

workload and not on the ability to process large number of IO operations per second and random write

operations. As the consumer market is often a driving factor for the whole computing hardware

industry, one has to, as normally done, validate the configuration based on the application workload.

By nature, the flash based SSDs require additional capacity and complex algorithms for handling the

write operations in a fast manner.

At CERN, a number of tests have been performed with Oracle database workload and a high

variety of results has been identified depending on the device. For example figures 8 and 9 present

distribution of the time taken by 8Kib random write operation on two different devices.

On the first device, one can see that the write operations are processed in average in 196μs with a

standard deviation of 77μs, we can observe on the graph of figure 8 that few IO operations require

more than 2ms to be processed. The device can capable of 4941 write operations per second sustained.

Figure 8. Distribution of write IO operations

on device 4.

Figure 9. Distribution of write IO operations

on device 5.

On the second device for which the results are presented, the average is also very low (but higher

than for the first device): 528μs but the standard deviation is high: 2ms and indeed one can observe the

fact on figure 9 that the distribution of the operation time is much wider than for the first device.

6. Conclusions

Although this paper concentrates on IO performance, target should be to limit the amount of physical

IO required in the first place. When investigating IO related application performance problems, it is

better to target the amount of logical IO operations as described in [19].

The different solutions deployed by the WLCG sites have been compared: ASM, cluster

filesystems and NFS storage systems. One should note that these three solutions are both cluster

enabled and offer a higher level view of the storage than traditional Oracle installation with raw

devices. ASM is the most widely deployed solution. It has been shown that Oracle Exadata provides

stability and performance for some very demanding workloads thanks to its offloading features.

Exadata shows great promise and allows for high throughput data acquisition.

The results of this work demonstrate that new tools like DTrace and Active Session History

provide database experts easier and non-intrusive ways to investigate IO issues compared with

traditional tracing of the Oracle sessions. Two types of misunderstanding related to typical overload

scenarios have also been demonstrated and explained.

Results of tests on flash SSD devices have been presented. They show important variation among

devices for the completion time for write operations, from 77μs to 2ms as standard deviation. For

databases, the write operations time to completion is very important as synchronous redo log write

operation is part of the commit operation. One of the tested flash SSD devices can provide up to 17

times the number of random IO operations per second than the best hard drives. It implies that less

power is required for some deployments. The flash SSD devices can be recommended either as

primary storage (for redo log files and high IO requirements datafiles if such files are well identified

and storage capacity permits) or as another level of read/write caches in other cases.

Acknowledgments

I would like to thank CERN’s IT-Database and Engineering Services group for the help and support,

Elzbieta Gajewska-Dendek and Anton Topurov for their work on the Swingbench PVSS workload

implementation and the tests performed in the CERN openlab framework, Péter Kelemen for the help

on the SSD tests and Oracle for the possibility to perform the tests on Exadata, especially Vincent

Burguburu, Owen Hughes, Graeme Kerr, Bjørn Kisbye Engsig, Monica Marinucci and Michel Sitbon.

Appendix A : DTrace script to investigate IO response time under high load
syscall::pread:entry

/pid == $target && self->traceme == 0 /

{

 self->traceme = 1;

 self->on = timestamp;

 self->off= timestamp;

 self->io_start=timestamp;

}

syscall::pread:entry

/self->traceme == 1 /

{ self->io_start=timestamp; }

syscall::pread:return

/self->traceme == 1 /

{

 @avgs["avg_io"] = avg(timestamp-self->io_start);

 @[tid,"time_io"] = quantize(timestamp-self->io_start);

 @counts["count_io"] = count();

}

sched:::on-cpu

/pid == $target && self->traceme == 1 /

{

 self->on = timestamp;

 @[tid,"off-cpu"] = quantize(self->on - self->off);

 @totals["total_cpu_off"] = sum(self->on - self->off);

 @avgs["avg_cpu_off"] = avg (self->on - self->off);

 @counts["count_cpu_on"] = count();

}

sched:::off-cpu

/self->traceme == 1/

{

 self->off= timestamp;

 @totals["total_cpu_on"] = sum(self->off - self->on);

 @avgs["avg_cpu_on"] = avg(self->off - self->on);

 @[tid,"on-cpu"] = quantize(self->off - self->on);

 @counts["count_cpu_off"] = count();

}

tick-1sec

/i++ >= 5/

{ exit(0); }

References

[1] Oracle http://www.oracle.com/

[2] Schinzel J 1982 Oracle : The Database Management System For LEP CERN-LEP-Note-374

[3] CERN Engineering and Equipment Data Management Service http://edms.cern.ch/

[4] Shiers J 2006 The Evolution of Databases in HEP 15th Int. Conf. on Computing In High Energy

and Nuclear Physics, Mumbai, India, 13 - 17 Feb 2006 pp 303-307

[5] Distributed Deployment of Databases for LCG http://lcg3d.cern.ch/

[6] Gonzalez-Berges M 2007 The High Performance Database Archiver for the LHC Experiments

ICALEPS’07, Knoxville, Tennessee USA, 2007 p 517

[7] WLCG, The Tier Sites http://cern.ch/LCG/public/tiers.htm

[8] Adams S Use asynchronous I/O
http://www.ixora.com.au/tips/use_asynchronous_io.htm

[9] Closson K 2006 Analyzing Asynchronous I/O Support with Oracle10g
http://kevinclosson.wordpress.com/2006/12/06/analyzing-

asynchronous-io-support-with-oracle10g/

[10] Adams S Direct I/O http://www.ixora.com.au/notes/direct_io.htm

[11] Oracle Announcement on using Raw devices with release 11.2 MetaLink Note 754305.1

[12] M Girone 2008 CERN database services for the LHC computing grid J. Phys.: Conf. Ser. 119

052017 (7pp)

[13] Raw Devices and Cluster Filesystems With Real Application Clusters MetaLink Note 183408.1

[14] M Guijarro and R Gaspar 2008 Experience and Lessons learnt from running High Availability

Databases on Network Attached Storage J. Phys.: Conf. Ser. 119 042015 (10pp)

[15] Swingbench http://dominicgiles.com/swingbench.html

[16] Millsap C 2009 For Developers: Making Friends with the Oracle database http://method-
r.com/downloads/cat_view/38-papers-and-articles

[17] Wood G Sifting through the ASHes
http://www.oracle.com/technology/products/manageability/databa

se/pdf/twp03/PPT_active_session_history.pdf

[18] Poder T blog http://blog.tanelpoder.com/

[19] Millsap C 2001 Why You Should Focus on LIOs Instead of PIOs
http://www.hotsos.com/

http://www.oracle.com/
http://edms.cern.ch/
http://lcg3d.cern.ch/
http://cern.ch/AccelConf/ica07/PAPERS/ROPA02.PDF
http://cern.ch/LCG/public/tiers.htm
http://www.ixora.com.au/tips/use_asynchronous_io.htm
http://kevinclosson.wordpress.com/2006/12/06/analyzing-asynchronous-io-support-with-oracle10g/
http://kevinclosson.wordpress.com/2006/12/06/analyzing-asynchronous-io-support-with-oracle10g/
http://www.ixora.com.au/notes/direct_io.htm
http://dominicgiles.com/swingbench.html
http://method-r.com/downloads/doc_download/10-for-developers-making-friends-with-the-oracle-database-cary-millsap
http://method-r.com/downloads/cat_view/38-papers-and-articles
http://method-r.com/downloads/cat_view/38-papers-and-articles
http://www.oracle.com/technology/products/manageability/database/pdf/twp03/PPT_active_session_history.pdf
http://www.oracle.com/technology/products/manageability/database/pdf/twp03/PPT_active_session_history.pdf
http://blog.tanelpoder.com/
http://www.hotsos.com/

