
A Scale Invariant Algorithm for

Packing Rectangles Perfectly

Stefan Hougardy

Research Institute for Discrete Mathematics, University of Bonn
Lennéstr. 2, 53113 Bonn, Germany

Abstract. We propose a new exact algorithm to solve the Perfect-

Rectangle-Packing problem. The runtime of our algorithm depends
on the number of input rectangles only but not on their sizes. Our algo-
rithm can also be used to solve non-perfect rectangle packing problems.
As an application we solve for the first time instances of sizes 28, 32, 33,
34, 47, and 48 of a well known square packing benchmark.

1 Introduction

Given n rectangles r1, . . . , rn with integer widths wi and integer heights hi for
i = 1, . . . , n and a W × H rectangle R the Rectangle-Packing problem is
to decide whether the n rectangles can be orthogonally packed into R. The
Perfect-Rectangle-Packing problem is the special case of the Rectangle-

Packing problem where the total area of the n rectangles r1, . . . , rn equals the
area of R. Both problems are NP-complete [10]. Several (exponential time) exact
algorithms for these problems have been suggested over the last decades. The
runtime of most of these algorithms depends on the sizes of the input rectangles.

We call a rectangle packing algorithm scale invariant if its runtime does not
depend on the sizes of the input rectangles. In this paper we will present a new
scale invariant exact algorithm for the Perfect-Rectangle-Packing prob-
lem. It was motivated by an application in VLSI-design [3] and by a theoretical
question about dense square packings [12]. Our algorithm outperforms other al-
gorithms on unsolvable instances and on instances where the rectangles have
large sizes. The ideas used in our algorithm can be adapted to the non-perfect
case.

We use our algorithm to solve for the first time instances with 28, 32, 33, 34,
47, and 48 squares of a well known (non-perfect) square packing benchmark [9,
16]. This yields six new values to the integer sequence A005842[1]. In addition
we will present new hard benchmark instances for the Perfect-Rectangle-

Packing problem. These instances contain 30 rectangles only but none of the
existing rectangle packing algorithms can solve these instances within an hour.

1.1 Known Scale Invariant Rectangle Packing Algorithms

In 1975 Bitner and Reingold [7, 6] solved the Perfect-Square-Packing prob-
lem with a simple backtrack approach. Their algorithm looks for a smallest



Hello2x4
3x3

6x1

5x3

6x4
3x6

2x5

3x5 Hello
8x7

2x9

4x4 3x5

a) b)

Fig. 1. A partial placement inside a 20×10 rectangle resulting in three valleys (hatched
areas). Figure b) shows the decomposition of the partial placement into 5 vertical bars
where the fifth bar has height 0.

valley in a partial solution and fills it first. The approach easily extends to the
Perfect-Rectangle-Packing problem and allows a scale invariant imple-
mentation as described in [6].

The algorithm of Bitner and Reingold has been improved (see e.g. [18, 14])
and several other exact algorithms for the Rectangle-Packing problem have
been suggested (see e.g. [15, 16, 2, 4, 5, 20, 8]). But all these algorithms are not
scale invariant.

In 2006 Moffitt and Pollack [19] presented an algorithm for the Rectan-

gle-Packing problem that considers possible relative orderings between pairs
of rectangles. Currently it is the fastest scale invariant algorithm for the rectan-
gle packing problem. On dense instances our new algorithm is faster than the
algorithm of Moffitt and Pollack.

2 Definitions and Notations

For the Rectangle-Packing problem we are given n rectangles with width wi

and height hi each, for i = 1, . . . , n and a rectangle with width W and height H ,
where all widths and heights are integers. The task is to decide whether there
exist integer points (x1, y1), . . . , (xn, yn) such that

0 ≤ xi ≤ W − wi and 0 ≤ yi ≤ H − hi ∀1 ≤ i ≤ n (1)

xi + wi ≤ xj ∨ xj + wj ≤ xi ∨ yi + hi ≤ yj ∨ yj + hj ≤ yi ∀1 ≤ i < j ≤ n (2)

In this formulation the point (xi, yi) is the lower left corner of the ith rectangle
and the W × H rectangle has its lower left corner in the origin.

A set of points (xi, yi) for i = 1, . . . , n satisfying the above inequalities is
called a placement of the rectangles. Given a set I ⊆ {1, . . . , n} a partial place-

ment of the rectangles ri with i ∈ I is a set of points (xi, yi) with i ∈ I such that
the above inequalities are satisfied and such that whenever a point (x, y) is cov-
ered by some rectangle then this also holds for all points (x, y′) with 0 ≤ y′ ≤ y.
See Figure 1 a) for an example of a partial placement.



We decompose the area covered by the rectangles in a partial placement by
vertical bars in such a way that the total width of all bars equals W . For this to
be possible we allow bars of height 0. We always assume to have a decomposition
into the minimum possible number of vertical bars. See Figure 1 b) for an exam-
ple of the decomposition of a partial placement into vertical bars. A vertical bar
generates a valley if the vertical bars immediately to the left and to the right
of the bar have larger height. The vertical edges of the W × H rectangle are
assumed to be bars of width 0 and height H . The width of a valley is the width
of its defining vertical bar. The height of a valley is the minimum difference
between the height of its defining vertical bar and its two neighbors. The area

of a valley is the product of its width and height. See Figure 1 for an example
of valleys occurring in a partial placement.

3 The Algorithm

Our algorithm is a branch-and-bound algorithm that uses the same branching
rule as the backtracking algorithm of Bitner and Reingold [7]. In each step we
look for a valley with smallest width in a partial placement. For each unplaced
rectangle that fits into the valley we extend the partial placement by placing
the unplaced rectangle at the far left of the valley. Note that contrary to other
branching rules, e.g., the staircase rule [14], the smallest valley rule cannot create
the same partial placement twice.

We use four different pruning rules that are all scale invariant. Crucial for
the efficiency of our algorithm is that checking these rules and updating a partial
placement often can be done in constant time.

Below we describe our four pruning rules. The first two of these are well
known. We omit the proofs of correctness in this extended abstract.

Rule 1: Valley Area Check

Check that the total area of all unplaced rectangles that fit into the
smallest valley is at least as large as the area of the smallest valley.

In [18] a heuristic based on dynamic programming is used to check that
the smallest valley can be filled completely. However, this approach is not scale
invariant as its runtime linearly depends on the width of the smallest valley.

Rule 2: Symmetry Breaking

Choose some input rectangle in advance and check that its midpoint
lies in the upper right part of the W × H rectangle.

Note that if all rectangles are squares one can strengthen Rule 2.

Rule 3: Inferred Bounding

Assume that branching with a rectangle r yields no solution and all
valleys that have been considered during the recursion are to the left
of r. If the width of r is larger than the widest valley that has been
considered during the recursion one does not have to branch with a
rectangle that is at least as high as r.



6 5 6 5 10 6 5 101

6 5 101 2

a) b) c) d)

6 5 101
4

6 5 101
42

6 5 101
4

7
6 5 101

4
7 2

e) f) g) h)

6 5 102

6 5 104

6 5 11
i) j) k)

Fig. 2. Suppose we want to place the squares of size 1, . . . , 24 into a square of size 70
and assume that we use the square of size 3 for symmetry breaking. If we have a partial
placement as shown in a) the smallest valley is to the right of the square of size 5 (the
hatched area in a)). Now assume we try to extend this partial placement by placing
the square of size 10 into the smallest valley (b)). After the recursive steps c)–j) we
conclude that the partial placement b) cannot be extended to a complete solution. All
valleys that have been considered after placing the square of size 10 are to the left of
this square and had width smaller than 10. Therefore, by Rule 3 we know that we do
not have to extend the partial placement shown in a) by placing the squares of size
11, 12, . . . , 24 next to the square of size 5.

We illustrate this rule in Figure 2. The fourth rule is a bit more technical.
We split it into two parts to simplify its description.

Rule 4a: Unused Rectangle Check

Let r be an unplaced rectangle of height strictly smaller than the
smallest valley height such that at most one other unplaced rectangle
exists that has strictly smaller width than r while all other unplaced
rectangles have strictly larger width than r. If the width of r equals
the width of the smallest valley then branching with r needs not to
be considered.

Rule 4b: Unused Rectangle Check

Let r be an unplaced rectangle of width strictly smaller than the
smallest valley width and assume that at most one unplaced rectangle
exists with width and height strictly smaller than r while all other
unplaced rectangles are higher and wider than r. If the left edge of
the valley is higher than r then branching with r needs not to be
considered.



Table 1. Instances of the square packing benchmark that we solved and that had not
been solved before. Runtime is in seconds on a single core 3.3GHz Intel Xeon processor.

n trivial lower bound add. 1× 1 squares instance size runtime [s] backtrack nodes

28 88 30 58 32,306,387 480,068,709,271,739

32 107 9 41 70,908 1,246,191,654,270

33 112 15 48 3,668,233 61,486,847,102,612

34 117 4 38 12,125 166,106,615,874

47 189 1 48 8,115,666 108,027,727,717,946

48 195 1 49 16,906,977 219,418,598,333,078

3.1 Implementation Details
A key point of our algorithm is to perform the branching very efficiently. We
use an approach similar to the one suggested in [13] for the best-fit heuristic. It
allows updating the valleys in O(log n). In special situations this updating can
even be done in constant time. We observed that in practice these situations
occur in more than 90% of the cases and speed up the algorithm significantly.

Using appropriate data structures it takes only constant time to check Rules
2 to 4. Rule 1 can easily be checked in time proportional to the number of
rectangles fitting into the smallest valley. In practice, this turned out to be
faster than a more sophisticated O(log n) implementation.

We obtain the best results when the rectangles are ordered by increasing
height. Choosing the third smallest (by area) rectangle for symmetry breaking
turned out to yield the best results on average. Table 2 shows the impact of the
four rules on the number of backtracking nodes on an instance with 24 rectangles.

4 Experimental Results
Even though our algorithm is especially designed for unsolvable instances and
for large rectangle sizes we also tested it on a common set of benchmark in-
stances for the Perfect-Rectangle-Packing problem [11]. All instances in
this benchmark allow many different perfect packings in a square of size 200 and
are therefore quite easy to solve. Compared to the algorithm of Lesh et al. [18]
our algorithm is about 50 times faster on these instances.

4.1 New Results for a Square Packing Benchmark

Finding the smallest square into which the squares of size 1, 2 . . . , n can be packed
is a well established square packing benchmark [15, 19, 20]. The size f(n) of the
smallest square as a function in n is the integer sequence A005842 [1].

In 2008 Simonis and O’Sullivan [20] showed that f(26) = 80 holds. The
result was confirmed by Korf, Moffitt and Pollack [17] in 2010. This is the
largest value for which one was able to prove that f(n) does not equal the
trivial lower bound. So far up to n = 50 the function f was not known for the
values 28, 32, 33, 34, 38, 40, 42, 47 and 48. We use our algorithm to prove that for
n = 28, 32, 33, 34, 47 and 48 the value of f(n) is one larger than the trivial lower
bound. To use our algorithm we added a suitable number of 1 × 1 squares as
shown in the third column of Table 1. The fourth column in Table 1 shows the
size of the resulting perfect square packing instance.



Table 2. Number of backtracking nodes (divided by 10000) when applying a subset of
our four rules to a small instance with 24 rectangles.

Rule 1 X - X - X - X - X X - - X - X -

Rule 2 X X X X X X - - X - - X - - - -

Rule 3 X X - - X X X X - - - - X X - -

Rule 4 X X X X - - X X - X X - - - - -

nodes 159 163 223 228 366 432 451 468 607 618 644 736 1197 1545 1932 2529

4.2 New Hard Perfect Square Packing Instances

From the square packing benchmark we derived new instances by adding addi-
tional squares appropriately, scaling all by a factor of 1000 and resizing some of
the squares to make all square sizes relatively prime. The resulting unsolvable
Perfect-Square-Packing instances contain at most 30 squares and cannot
be solved by existing rectangle packing algorithms within an hour.

References

1. The on-line encyclopedia of integer sequences, sequence a005842. http://oeis.org.
2. A. Aggoun and N. Beldiceanu. Extending CHIP in order to solve complex schedul-

ing and placement problems. Mathl. Comput. Modelling, 17(7):57–73, 1993.
3. C. J. Alpert, D. P. Mehta, and S. S. Sapatnekar, editors. Handbook of Algorithms

for Physical Design Automation. Auerbach Publications, 2009.
4. N. Beldiceanu, E. Bourreau, and H. Simonis. A note on perfect square placement.

Technical report, COSYTEC SA, 1999.
5. N. Beldiceanu, M. Carlsson, and E. Poder. New filtering for the cumulative con-

straint in the context of non-overlapping rectangles. In CPAIOR2008, 2008.
6. J. R. Bitner. Use of macros in backtrack programming. Master’s thesis, University

of Illinois at Urbana-Champaign, Department of Computer Science, 1974.
7. J. R. Bitner and E. M. Reingold. Backtrack programming techniques. Communi-

cations of the ACM, 18(11):651–656, November 1975.
8. E.Huang and R.E.Korf. New improvements in optimal rectangle packing. IJCAI09.
9. M. Gardner. Mathematical Carnival. George Allen & Unwin, 1976.

10. M. R. Garey and D. S. Johnson. Computers and intractability. A guide to the

theory of NP-completeness. W.H. Freeman and Company, New York, 1979.
11. E. Hopper and B. Turton. An empirical investigation of meta-heuristic and heuris-

tic algorithms for a 2D packing problem. Eur. J. Oper. Res., 128:34–57, 2001.
12. S. Hougardy. On packing squares into a rectangle. Comp. Geom., 44, 2011.
13. S. Imahori and M. Yagiura. The best-fit heuristic for the rectangular strip packing

problem. Computers & Operations Research, 37:325–333, 2010.
14. M. Kenmochi, T. Imamichi, K. Nonobe, M. Yagiura, and H. Nagamochi. Exact

algorithms for the two-dimensional strip packing problem with and without rota-
tions. European Journal of Operational Research, 198:73–83, 2009.

15. R. E. Korf. Optimal rectangle packing: Initial results. In ICAPS 2003, 2003.
16. R. E. Korf. Optimal rectangle packing: New results. In ICAPS 2004, 2004.
17. R. E. Korf, M. D. Moffitt, and M. E. Pollack. Optimal rectangle packing. Annals

of Operations Research, 179:261–295, 2010.
18. N. Lesh, J. Marks, A. McMahon, and M. Mitzenmacher. Exhaustive approaches

to 2D rectangular perfect packings. Information Processing Letters, 90:7–14, 2004.
19. M. D. Moffitt and M. E. Pollack. Optimal rectangle packing: a meta-CSP approach.

In ICAPS 2006, 2006.
20. H. Simonis and B. O’Sullivan. Search strategies for rectangle packing. In CP 2008.


