
GNUbatch Release 1

API Reference Manual

GNUbatch API

This manual is for GNUbatch (API Reference Manual).

Copyright 2009 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or any
later version published by the Free Software Foundation; with no
Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
Texts. A copy of the license is included in the GNUbatch reference manual
in the section entitled ``GNU Free Documentation License''.

Page 2

GNUbatch API

Table of Contents

1 Introduction to GNUbatch API..1
2 Installation and access to API..2
3 Warning on Windows Version!...3
4 The API file descriptor..4
5 Slot numbers...5
6 Sequence numbers..6
7 The Job Structure...7

7.1 Overall Structure..7
7.2 The job header...7

7.2.1 Progress codes...9
7.2.2 Job Flags...9
7.2.3 Run Flags..10
7.2.4 Mode Structures...10
7.2.5 Condition Structures...11
7.2.6 Assignment structures..12
7.2.7 Time Constraints...13
7.2.8 Exit code structure..13

8 The Variable Structure...15
9 User profile structures...17
10 Default user profile..18
11 Command Interpreters..19
12 API Functions...20

12.1 Sign-on and off...22
12.1.1 gbatch_open...22

12.1.1.1 Return values..23
12.1.1.2 Example..23

12.1.2 gbatch_close...23
12.1.2.1 Return values..23

12.1.3 gbatch_newgrp...23
12.1.3.1 Return values..23

12.1.4 gbatch_setqueue..24
12.1.4.1 Return values..24

12.1.5 gbatch_gethenv..24
12.1.5.1 Return values..24

12.1.6 gbatch_holread...24
12.1.6.1 Return values..25

12.1.7 gbatch_holupd..25
12.1.7.1 Return values..25

12.2 Job access..25
12.2.1 gbatch_joblist...25

12.2.1.1 Return values..26
12.2.1.2 Example..26

12.2.2 gbatch_jobfind..26
12.2.2.1 Return values..27

12.2.3 gbatch_jobread...27
12.2.3.1 Return values..28

12.2.4 gbatch_jobdata...28
12.2.4.1 Unix and GNU/Linux...28
12.2.4.2 Windows..28
12.2.4.3 Return values..29
12.2.4.4 Example..29

12.2.5 gbatch_jobadd..29
12.2.5.1 Unix and GNU/Linux...30
12.2.5.2 Windows..30

Page i

GNUbatch API

12.2.5.3 Return values..30
12.2.5.4 Example..31

12.2.6 gbatch_jobdel...32
12.2.6.1 Return values..32
12.2.6.2 Example..32

12.2.7 gbatch_jobupd..33
12.2.7.1 Return values..33

12.2.8 gbatch_jobchown..33
12.2.8.1 Return values..33

12.2.9 gbatch_jobchgrp...33
12.2.9.1 Return values..34

12.2.10 gbatch_jobchmod...34
12.2.10.1 Return values..34

12.2.11 gbatch_jobop..34
12.2.11.1 Return values..35

12.2.12 gbatch_jobmon...35
12.2.12.1 Unix and GNU/Linux...35
12.2.12.2 Windows..35
12.2.12.3 Return values..36
12.2.12.4 Example..36

12.3 Job fields..36
12.3.1 gbatch_getarg..36

12.3.1.1 Return values..37
12.3.2 gbatch_getdirect...37

12.3.2.1 Return values..37
12.3.3 gbatch_getenv..37

12.3.3.1 Return values..37
12.3.4 gbatch_getenvlist...37

12.3.4.1 Return values..37
12.3.5 gbatch_getredir..38

12.3.5.1 Redirection structure...38
12.3.5.2 Return values..38
12.3.5.3 gbatch_gettitle..39
12.3.5.4 Return values..39

12.3.6 gbatch_delarg...39
12.3.6.1 Return values..39

12.3.7 gbatch_delenv..39
12.3.7.1 Return values..40
12.3.7.2 Notes...40

12.3.8 gbatch_delredir...40
12.3.8.1 Return values..40

12.3.9 gbatch_putarg..40
12.3.9.1 Return values..40

12.3.10 gbatch_putargglist..41
12.3.10.1 Return values..41

12.3.11 gbatch_putdirect...41
12.3.11.1 Return values..41

12.3.12 gbatch_putenv..41
12.3.12.1 Return values..41

12.3.13 gbatch_putenvlist...42
12.3.13.1 Return values..42
12.3.13.2 Notes...42

12.3.14 gbatch_putredir..42
12.3.14.1 Return values..42

12.3.15 gbatch_putredirlist..42
12.3.15.1 Return values..43

12.3.16 gbatch_puttitle...43

Page ii

GNUbatch API

12.3.16.1 Return values..43
12.4 Variable access..43

12.4.1 gbatch_varlist...43
12.4.1.1 Return values..44

12.4.2 gbatch_varfind..44
12.4.2.1 Return values..45

12.4.3 gbatch_varread...45
12.4.3.1 Return values..45

12.4.4 gbatch_varadd..45
12.4.4.1 Return values..46
12.4.4.2 Example..46

12.4.5 gbatch_vardel...46
12.4.5.1 Return values..46
12.4.5.2 Example..46

12.4.6 gbatch_varupd..47
12.4.6.1 Return values..47

12.4.7 gbatch_varchcomm..47
12.4.7.1 Return values..48

12.4.8 gbatch_varchown..48
12.4.8.1 Return values..48

12.4.9 gbatch_varchgrp...48
12.4.9.1 Return values..49

12.4.10 gbatch_varchmod...49
12.4.10.1 Return values..49

12.4.11 gbatch_varrename..49
12.4.11.1 Return values..50

12.4.12 gbatch_varmon...50
12.4.12.1 Return values..50
12.4.12.2 Example..50

12.5 Command Interpreters...50
12.5.1 gbatch_ciread...50

12.5.1.1 Return values..51
12.5.2 gbatch_ciadd..51

12.5.2.1 Return values..52
12.5.3 gbatch_cidel...52

12.5.3.1 Return values..52
12.5.3.2 Notes...52

12.5.4 gbatch_ciupd..52
12.5.4.1 Return values..53

12.6 User permissions..53
12.6.1 gbatch_getbtd..53

12.6.1.1 Return values..53
12.6.2 gbatch_getbtu..53

12.6.2.1 Return values..53
12.6.3 gbatch_putbtd..54

12.6.3.1 Return values..54
12.6.4 gbatch_putbtu..54

12.6.4.1 Return values..54
13 Example API program..55

Page iii

GNUbatch API

1 Introduction to GNUbatch API

The GNUbatch API enables a C or C++ programmer to access GNUbatch facilities
directly from within an application. The application may be on a Unix host or on a
Windows workstation.

Communication takes place using a TCP connection between the API running on a
Windows or Unix machine and the server process xbnetserv running on the Unix host
in question. The same application may safely make several simultaneous
conversations with the same or different host.

The user may submit, change, delete and alter the state of jobs or variables to which
he or she has access, and may receive notification about changes which may require
attention. In addition, the user access control parameters may be viewed and if
permitted, changed.

Page 1

GNUbatch API

2 Installation and access to API

The API is provided as two files, a header file gbatch.h and a library file.

The header file should be copied to a suitable location for ready access. On Unix
systems we suggest that the header file is copied to the directory /usr/include/xi
so that it may be included in C programs via the directive: #include <gbatch.h>

The library file is supplied in the form libgnubatch.a on Unix systems, or as a shared
library as libgnubatch.so. On some systems you may have to include a socket
handling library as well when linking.

On Windows systems the library is supplied as gbatchapi.dll.

Page 2

GNUbatch API

3 Warning on Windows Version!

The default stack segment size allocated by some compilation systems, such as
Microsoft Visual C++, is too small to accommodate the stack space required for some
of these functions together with that for Windows and the Network software.

The manifestation of problems due to this can be very strange and seemingly
unrelated.

Page 3

GNUbatch API

4 The API file descriptor

Each routine in the API uses a file descriptor to identify the instance in progress. This
is an integer value, and is returned by a successful call to the gbatch_open routine (or
gbatch_login on Windows). All other routines take this value as a first parameter. As
mentioned before, more than one session may be in progress at once with different
gbatch_open parameters.

Each session with the API should be commenced with a call to gbatch_open or
gbatch_login and terminated with a call to gbatch_close.

Page 4

GNUbatch API

5 Slot numbers

Each job or variable is identified to GNUbatch by means of two numbers:

1. The host or network identifier. This is a long corresponding to the Interment
address in network byte order. The host identifier is given the type netid_t.

2. The shared memory offset, or slot number. This is the offset in shared
memory on the relevant host of the job or variable and stays constant during
the lifetime of the job or variable. The type for this is slotno_t.

These two quantities uniquely identify any job or variable.

It might be worth noting that there are two slot numbers relating to a remote job or
variable.

1. The slot number of the record of the job or variable held in local shared
memory. This is the slot number which will in all cases be manipulated
directly by the API.

2. The slot number of the job or variable on the owning host. This is in fact
available in the job structures as the field bj_slotno and in the variable
structure as the field var_id.slotno. For local jobs or variables, these fields
usually have the same value, but this should not be relied upon.

Page 5

GNUbatch API

6 Sequence numbers

These quantities are not available directly, but are held to determine how out-of-date
the user's record of jobs or variables may be.

Every time you read a job or variable record, the sequence number of the job or
variable list is checked, and if out-of-date, you will receive the error GBATCH_SEQUENCE.
This is not so much of an error as a warning. If you re-read the job or variable
required, then you will not receive this error, except where you and one or more other
users have "raced" to update a variable and you have "lost the race".

If you want to bypass this, you can access the job or variable without worrying about
the sequence using the flag GBATCH_IGNORESEQ, however you might receive an error
about unknown job or variable if the job or variable has disappeared. In the case of
variables you may still receive the GBATCH_SEQUENCE error if another user "wins a
race" as described above.

Page 6

GNUbatch API

7 The Job Structure

The following structures are used to describe jobs within the API. All the structures and
definitions are contained within the include file gbatch.h.

7.1 Overall Structure

A job structure consists of two parts, a header part and a string table. The header part
contains all the run flags and parameters such as load level and priority, whilst the
string table contains all the variable-length fields, namely the job title, directory,
environment variables, arguments and redirections.

Whilst the C programmer may directly manipulate the string table if he or she wishes,
this is strongly discouraged in favour of the use of the utility functions gbatch_gettitle,
gbatch_puttitle etc. Future extensions to GNUbatch and the API will attempt
wherever possible to preserve the interfaces to these functions.

typedef struct {
 apiBtjobh h;
 char bj_space[JOBSPACE];
} apiBtjob;

The size of the bj_space vector is given by the constant JOBSPACE which is
determined when GNUbatch is compiled on the relevant host. It may possibly vary
from machine to machine, but the string manipulation functions pack the data at the
start of the space and always pass the minimum length, so enabling copies of
GNUbatch with different values of JOBSPACE to be able to talk to one another. (It is
sometimes necessary to provide releases of GNUbatch with very large values of
JOBSPACE where the user has a large number of environment variables, however from
Release 5 a "static" environment table has been introduced to attempt to overcome
this).

When creating new jobs, we suggest that you start by clearing the entire structure to
zero and then insert the various fields. This way your code should work across various
releases as we shall endeavour to keep the existing behaviour where the new fields
are zero.

7.2 The job header

The header structure for the job is defined as follows:

typedef struct {
 jobno_t bj_job;
 long bj_time;
 long bj_stime;
 long bj_etime;
 int_pid_t bj_pid;
 netid_t bj_orighostid;
 netid_t bj_hostid;
 netid_t bj_runhostid;
 slotno_t bj_slotno;
 unsigned char bj_progress;
 unsigned char bj_pri;

Page 7

GNUbatch API

 unsigned short bj_ll;
 unsigned short bj_umask;
 unsigned short bj_nredirs,
 bj_nargs,
 bj_nenv;
 unsigned char bj_jflags;
 unsigned char bj_jrunflags;
 short bj_title;
 short bj_direct;
 unsigned long bj_runtime;
 unsigned short bj_autoksig;
 unsigned short bj_runon;
 unsigned short bj_deltime;
 char bj_cmdinterp[CI_MAXNAME+1];
 Btmode bj_mode;
 apiJcond bj_conds[MAXCVARS];
 apiJass bj_asses[MAXSEVARS];
 Timecon bj_times;
 long bj_ulimit;
 short bj_redirs;
 short bj_env;
 short bj_arg;
 unsigned short bj_lastexit;
 Exits bj_exits;
} apiBtjobh;

The various constants MAXCVARS, MAXSEVARS etc are defined elsewhere in gbatch.h,
and the sub-structures for times, modes, conditions, assignments and exit codes are
described below.

The functions of the various fields are as follows:

bj_job Job number
bj_time Time job was submitted
bj_stime Time job was (last) started
bj_etime Time job last finished
bj_pid Process id of running job
bj_orighostid Originating host id, network byte order.
bj_hostid Host id of job owner
bj_runhostid Host id running job, if applicable
bj_slotno Slot number on owning machine of non-local job
bj_progress Progress code, see below
bj_pri Priority
bj_ll Load level
bj_umask Umask value
bj_nredirs Number of redirections
bj_nargs Number of arguments
bj_nenv Number of environment variables
bj_jflags Job flags see below

Page 8

GNUbatch API

bj_jrunflags Job flags whilst running
bj_title Offset of title field in job string area
bj_direct Offset of directory field in job string area
bj_runtime Maximum run time (seconds)
bj_autoksig Signal number to kill with after run time
bj_runon Grace time (seconds)
bj_deltime Delete time automatically (hours)
bj_cmdinterp Command interpreter name (NB string in R5 up)
bj_mode Job permissions, see below
bj_conds Job conditions, see below
bj_asses Job assignments, see below
bj_times Job time constraints, see below
bj_ulimit Job maximum file size
bj_redirs Offset of redirection table in job string area
bj_env Offset of environment variables in job string area
bj_arg Offset of arguments in job string area.
bj_lastexit Saved exit code from last time job was run
bj_exits Exit code constraints, see below

If the user only has "reveal" access when a job is read using gbatch_jobread, then all
fields will be zeroed apart from bj_job, bj_jflags, bj_progress, bj_hostid,
bj_orighostid and bj_runhostid. The completion of the bj_mode field depends upon
whether the user has "display mode" access.

7.2.1 Progress codes

The progress code field of a job consists of one of the following values.

BJP_NONE Job is ready to run
BJP_DONE Job has completed
BJP_ERROR Job terminated with error
BJP_ABORTED Job aborted
BJP_CANCELLED Job cancelled
BJP_STARTUP1 Startup - phase 1
BJP_STARTUP2 Startup - phase 2
BJP_RUNNING Job is running
BJP_FINISHED Job has finished - phase 1

The values BJP_STARTUP1 and BJP_STARTUP2, and BJP_FINISHED are transient states.

Note that jobs should be created and updated with the values BJP_NONE (this is zero,
so if the job structure is cleared initially it will be set to this) and BJP_CANCELLED only.

7.2.2 Job Flags

The field bj_jflags consists of some or all of the following values.

BJ_WRT Send message to users terminal on completion
BJ_MAIL Mail message to user on completion
BJ_NOADVIFERR Do not advance time on error

Page 9

GNUbatch API

BJ_EXPORT Job is visible from outside world
BJ_REMRUNNABLE Job is runnable from outside world
BJ_CLIENTHOST Job was submitted from Windows client
BJ_ROAMUSER Job was submitted from "dynamic IP" client

The flags BJ_CLIENTHOST and BJ_ROAMUSER are set as appropriate by the interface and
will be ignored if a job is created or updated with these set.

7.2.3 Run Flags

The field bj_jrunflags in the job header contains some or all of the following bits:

BJ_PROPOSED
Remote job proposed. This is an intermediate step in a remote
execution protocol.

BJ_SKELHOLD Job held dependent on inaccessible remote variables
BJ_AUTOKILLED Job has exceeded run time, initial signal applied.
BJ_AUTOMURDER Job has exceeded "grace period", final kill applied.
BJ_HOSTDIED Job killed because owning host died.
BJ_FORCE Force job to run
BJ_FORCENA Do not advance time on Force job to run

These are provided for reference only when a job is read and will be ignored if a job is
created or updated with any of these set.

7.2.4 Mode Structures

These are applicable to both jobs and variables, and contain the permission structures
in each case. Note that user profiles are held in a separate structure defined later.

typedef struct {
 int_ugid_t o_uid, o_gid, c_uid, c_gid;
 char o_user[UIDSIZE+1],
 o_group[UIDSIZE+1],
 c_user[UIDSIZE+1],
 c_group[UIDSIZE+1];
 unsigned short u_flags,
 g_flags,
 o_flags;
} Btmode;

The two sets of users and groups correspond to those of the current owner, and the
creator. When ownership is changed, which is a two stage process in GNUbatch, the
creator field is changed first when the owner is "given away" and then the owner field
when the owner is "assumed".

The numeric user ids are unlikely to be very useful unless they are identical on the
host machine to the calling machine (possibly if it is the same machine), but are
included for completeness.

The flags fields consist of the following bitmaps.

BTM_READ Item may be read
BTM_WRITE Item may be written
BTM_SHOW Item is visible at all
BTM_RDMODE Mode may be displayed

Page 10

GNUbatch API

BTM_WRMODE Mode may be updated
BTM_UTAKE User may be assumed
BTM_GTAKE Group may be assumed
BTM_UGIVE User may be given away
BTM_GGIVE Group may be given away
BTM_DELETE Item may be deleted
BTM_KILL Job may be killed, not meaningful for variables.

The #define constants JALLMODES and VALLMODES combine all valid flags at once for
jobs and variables respectively for where the user wants to "allow everything".

If a job or variable is read, and the BTM_RDMODE permission is not available to the user,
then the whole of the mode field is set to zero apart from o_user and o_group. Jobs
and variables may not be created without certain minimal modes enabling someone
to delete them or change the modes.

7.2.5 Condition Structures

The job condition structures consist of the following fields:

typedef struct {
 unsigned char bjc_compar;
 unsigned char bjc_iscrit;
 apiVid bjc_var;
 Btcon bjc_value;
} apiJcond;

The field bjc_compar has one of the following values:

C_UNUSED
Not used. This marks the end of a list of conditions if there are less than
MAXCVARS. This is zero.

C_EQ Compare equal to value
C_NE Compare not equal to value
C_LT Compare less than value
C_LE Compare less than or equal to value
C_GT Compare greater than value
C_GE Compare greater than or equal to value

The field bjc_iscrit is set with some or all of the following bit flags:

CCRIT_NORUN
Set to indicate job should not run if remote variable in this condition
unavailable.

CCRIT_NONAVAIL
Set internally to denote that condition is relying on unavailable
variable.

CCRIT_NOPERM
Set internally to denote that condition is relying on remote variable
which proves to be unreadable when machine has restarted.

The field bjc_var is an instance of the following structure:

typedef struct {
 slotno_t slotno;
} apiVid;

The slot number referred to is that on the host machine which the API is talking to, as
returned by gbatch_varlist, and not the slot number on the owning machine.

The field bjc_value is an instance of the following structure.

Page 11

GNUbatch API

typedef struct {
 short const_type;
 union {
 char con_string[BTC_VALUE+1];
 long con_long;
 } con_un;
} Btcon;

The field const_type may be either CON_LONG to denote a numeric (long) value, or
CON_STRING to denote a string value.

7.2.6 Assignment structures

A job assignment structure consists of the following fields:

typedef struct {
 unsigned short bja_flags;
 unsigned char bja_op;
 unsigned char bja_iscrit;
 apiVid bja_var;
 Btcon bja_con;
} apiJass;

The field bja_flags consists of one or more of the following bits

BJA_START Apply at start of job
BJA_OK Apply on normal exit
BJA_ERROR Apply on error exit
BJA_ABORT Apply on abort
BJA_CANCEL Apply on cancel
BJA_REVERSE Reverse assignment on exit

The field bja_op consists of one of the following values.

BJA_NONE
No operation. This is used to signify the end of a list of assignments if
there are less than MAXSEVARS. This is zero.

BJA_ASSIGN Assign value given
BJA_INCR Increment by value given
BJA_DECR Decrement by value given
BJA_MULT Multiply by value given
BJA_DIV Divide by value given
BJA_MOD Modulus by value given
BJA_SEXIT Assign job exit code
BJA_SSIG Assign job signal number

The field bja_iscrit is set with some or all of the following bit flags:

ACRIT_NORUN
Set to indicate job should not run if remote variable in this
assignment unavailable.

ACRIT_NONAVAIL
Set internally to denote that assignment is relying on unavailable
variable.

ACRIT_NOPERM
Set internally to denote that assignment is relying on remote
variable which proves to be unwritable when machine has
restarted.

The fields bja_var and bja_con are similar to those in the condition fields above for

Page 12

GNUbatch API

variable and constant value.

7.2.7 Time Constraints

The time constraint field bj_times in a job header consists of the following structure.

typedef struct {
 long tc_nexttime;
 unsigned char tc_istime;
 unsigned char tc_mday;
 unsigned short tc_nvaldays;
 unsigned char tc_repeat;
 unsigned char tc_nposs;
 unsigned long tc_rate;
} Timecon;

The field tc_nexttime gives the next time at which the job is to be executed.

The field tc_istime is non-zero to indicate that the time constraint is valid, otherwise
the job is a "do when you can" job.

The field tc_mday is the target day of the month for "months relative to the beginning
of the month" repeats, or the number of days back from the end of the month
(possibly zero) for "months relative to the end of the month" repeats.

The field tc_nvaldays is the "days to avoid" field with Sunday being bit (1 << 0),
Monday being bit (1 << 1), through to Saturday being bit (1 << 6). Holidays are
represented by bit (1 << 7), also given by the #define constant TC_HOLIDAYBIT.

The field tc_repeat is set to one of the following values.

TC_DELETE Run and delete
TC_RETAIN Run and retain
TC_MINUTES Repeat in minutes
TC_HOURS Repeat in hours
TC_DAYS Repeat in days
TC_WEEKS Repeat in weeks
TC_MONTHSB Repeat in months relative to the beginning
TC_MONTHSE Repeat in months relative to the end
TC_YEARS Repeat in years

The field tc_nposs is set to one of the following values

TC_SKIP Skip if not possible
TC_WAIT1 Delay current if not possible
TC_WAITALL Delay all if not possible
TC_CATCHUP Run one and catch up

The field tc_rate gives the repetition rate (number of units).

7.2.8 Exit code structure

The job header field bj_exits consists of an instance of the following structure.

typedef struct {
 unsigned char nlower;

Page 13

GNUbatch API

 unsigned char nupper;
 unsigned char elower;
 unsigned char eupper;
} Exits;

The 4 values give the ranges of exit codes to be considered "normal" or "error"
respectively. If the ranges overlap, then an exit code falling inside both ranges will be
considered to fall in the smaller of the two ranges.

Page 14

GNUbatch API

8 The Variable Structure

The following structure is used to manipulate variables.

typedef struct {
 unsigned long var_sequence;
 vident var_id;
 long var_c_time, var_m_time;
 unsigned char var_type;
 unsigned char var_flags;
 char var_name[BTV_NAME+1];
 char var_comment[BTV_COMMENT+1];
 Btmode var_mode;
 Btcon var_value;
} apiBtvar;

The field var_sequence is updated every time the variable is changed, but should not
be relied upon within the API.

The field var_id consists of an instance of the following structure, which denotes the
location of the variable on the owning host.

typedef struct {
 netid_t hostid;
 slotno_t slotno;
} vident;

The field hostid refers to the owning host, and the slotno field refers to the slot
number on the owning host. Remember that this should not be confused with
the slot number used by the API to refer to variables, which refers to the
slot number on the host with which the API is in communication. (Actually this
may be the same if the variable belongs to that machine).

The field var_c_time refers to the creation time of the variable, but this is not
currently maintained by the API.

The field var_m_time gives the time at which the variable was last modified.

The field var_type gives the type of the variable if it is a system variable, otherwise it
is zero to denote that the variable is an ordinary variable. Values are as follows:

VT_LOADLEVEL Maximum Load Level variable
VT_CURRLOAD Current load level variable
VT_LOGJOBS Log jobs variable
VT_LOGVARS Log vars variable
VT_MACHNAME Machine name (constant) variable
VT_STARTLIM Max number of jobs to start at once
VT_STARTWAIT Wait time

The field var_flags gives certain flag bits for the variable as follows:

VF_READONLY Read-only system variable
VF_STRINGONLY System variable which may take strings only
VF_LONGONLY System variable which may take numeric only
VF_EXPORT Variable is exported
VF_CLUSTER Variable is "clustered"

Page 15

GNUbatch API

VF_SKELETON Variable is "outline" for variable on remote host.

Only the VF_EXPORT and VF_CLUSTER flags may be set by the user, the latter only if the
former is set.

The fields var_name and var_comment give the name and comment fields of the
variable.

The field var_mode gives the permissions for the variable in a similar manner to the
corresponding field in the job header structure, as given for jobs.

The field var_value gives the current value of the variable as described in the job
condition and assignment structures.

If a user has no read access to a variable, but does have "reveal" access, then the
fields var_comment and var_value are zeroed when the variable is read. The
completion of the var_mode field depends upon whether the user has "display mode"
access

Page 16

GNUbatch API

9 User profile structures

The profile of a given user is described via a structure of the following format.

typedef struct {
 unsigned char btu_isvalid,
 btu_minp,
 btu_maxp,
 btu_defp;
 int_ugid_t btu_user;
 unsigned short btu_maxll;
 unsigned short btu_totll;
 unsigned short btu_spec_ll;
 unsigned short btu_priv;
 unsigned short btu_jflags[3];
 unsigned short btu_vflags[3];
} apiBtuser;

The field btu_isvalid denotes that the user description is valid. This will always be
non-zero.

The fields btu_minp, btu_maxp and btu_defp give the minimum, maximum and
default priorities respectively.

The fields btu_maxll, btu_totll and btu_spec_ll give the maximum per job load
level, the total load level and the "special create" load levels respectively.

The field btu_priv gives the user's privileges as a combination of some of the
following bits.

BTM_SSTOP Stop the scheduler
BTM_UMASK Change own default permissions
BTM_SPCREATE Special create permission
BTM_CREATE Create new entries
BTM_RADMIN Read administration file
BTM_WADMIN Write admin file
BTM_ORP_UG Or user and group permissions
BTM_ORP_UO Or user and other permissions
BTM_ORP_GO Or group and other permissions

The fields btu_jflags and btu_vflags give the default permissions for jobs and
variables respectively, and the owner, group and "others" permission as three
successive fields for each. These are bit maps with the same meanings as that given
for the job and variables permissions.

Page 17

GNUbatch API

10 Default user profile

The default user profile is applied to all new users on the system and consists of the
following fields.

typedef struct {
 unsigned char btd_minp,
 btd_maxp,
 btd_defp,
 btd_version;
 unsigned short btd_maxll;
 unsigned short btd_totll;
 unsigned short btd_spec_ll;
 unsigned short btd_priv;
 unsigned short btd_jflags[3];
 unsigned short btd_vflags[3];
} apiBtdef;

The meanings of the various fields are the same as the corresponding elements of the
apiBtuser structure, defined above apart from btd_version, which contains the
current release number of GNUbatch, currently 6.

Page 18

GNUbatch API

11 Command Interpreters

The following structure is used to describe command interpreters.

typedef struct {
 unsigned short ci_ll;
 unsigned char ci_nice;
 unsigned char ci_flags;
 char ci_name[CI_MAXNAME+1];
 char ci_path[CI_MAXFPATH+1];
 char ci_args[CI_MAXARGS+1];
} Cmdint;

The field ci_ll gives the default load level for the command interpreter. If this is
given as zero in an gbatch_ciadd or gbatch_ciupd function call, then the user's special
create load level is substituted.

The field ci_nice gives the nice value at which jobs will run.

The field ci_flags contains a combination of:

CIF_SETARG0 Insert job title as argument 0 of job

CIF_INTERPARGS
Expand environment variables and `` constructs in
arguments.

The fields ci_name, ci_path and ci_args give the name, the path name and the
prefix to the arguments for the command interpreter. Neither the path nor the
arguments are checked for validity. GNUbatch assumes virtually everywhere that few
changes will ever be made to command interpreters and that they are more or less
the same on each connected host. Accordingly changes to the command interpreter
list should be sparing.

Page 19

GNUbatch API

12 API Functions

The following sub-sections describe the GNUbatch API C routines including each
function's purpose, syntax, parameters and possible return values.

The function descriptions also contain additional information that illustrate how the
function can be used to carry out tasks.

Apart from the string manipulation functions and Unix versions of the two functions
gbatch_jobadd and gbatch_jobdata which return a standard I/O file descriptor, all
functions return an integer value. This is negative to indicate an error, or zero if all is
well, apart from gbatch_open, which may return a positive value.

In some cases there are differences between the Unix and Windows variants, these
are noted where appropriate.

The negative values have the following meanings.

Error code Meaning

GBATCH_INVALID_FD Invalid file descriptor

GBATCH_NOMEM API unable to allocate memory

GBATCH_INVALID_HOSTNAME Invalid host name

GBATCH_INVALID_SERVICE Invalid service name

GBATCH_NODEFAULT_SERVICE Default service not found

GBATCH_NOSOCKET Unable to create socket

GBATCH_NOBIND Unable to bind socket

GBATCH_NOCONNECT Unable to make connection

GBATCH_BADREAD Failure reading from socket

GBATCH_BADWRITE Failure writing to socket

GBATCH_CHILDPROC Unable to create child process

GBATCH_NOT_USER Not relevant user

GBATCH_BAD_CI Invalid command interpreter

GBATCH_BAD_CVAR Bad variable in condition

GBATCH_BAD_AVAR Bad variable in assignment

GBATCH_NOMEM_QF No memory or disk space for queue file

GBATCH_NOCRPERM No create permission

GBATCH_BAD_PRIORITY Invalid priority

GBATCH_BAD_LL Invalid load level

GBATCH_BAD_USER Invalid user

GBATCH_FILE_FULL File system full creating job

GBATCH_QFULL IPC Message system full

GBATCH_BAD_JOBDATA Invalid job data

Page 20

GNUbatch API

GBATCH_UNKNOWN_USER Unknown user specified

GBATCH_UNKNOWN_GROUP Unknown group specified

GBATCH_ERR Undefined error

GBATCH_NORADMIN No read admin file permission

GBATCH_NOCMODE No change permissions permission

GBATCH_UNKNOWN_COMMAND Unknown command in gbatch_jobop

GBATCH_SEQUENCE Sequence error

GBATCH_UNKNOWN_JOB Unknown job

GBATCH_UNKNOWN_VAR Unknown variable

GBATCH_NOPERM No permission for operation

GBATCH_INVALID_YEAR Invalid year in holiday file operations

GBATCH_ISRUNNING Job is running

GBATCH_NOTIMETOA Job has no time to advance

GBATCH_VAR_NULL Null variable name

GBATCH_INVALIDSLOT Invalid slot number

GBATCH_ISNOTRUNNING Job is not running

GBATCH_NOMEMQ No memory for queue name

GBATCH_NOPERM_VAR No permission on variable(s) referenced in job

GBATCH_RVAR_LJOB Remote variable in local job

GBATCH_LVAR_RJOB Local variable in remote job

GBATCH_MINPRIV Too few permissions given

GBATCH_SYSVAR Invalid operation on system variable

GBATCH_SYSVTYPE
Invalid type assignment attempted to system
variable

GBATCH_VEXISTS Variable exits

GBATCH_DSYSVAR Attempt to delete system variable

GBATCH_DINUSE Attempt to delete variable in use

GBATCH_DELREMOTE Attempt to delete remote variable.

GBATCH_NO_PASSWD A password is required for the user

GBATCH_PASSWD_INVALID The supplied password is invalid.

GBATCH_BAD_GROUP Invalid group name (inaccessible to user).

GBATCH_NOTEXPORT "Cluster" set on variable but not "Export"

GBATCH_RENAMECLUST Attempt to rename clustered variable

Page 21

GNUbatch API

12.1 Sign-on and off

12.1.1 gbatch_open

int gbatch_open(const char *hostname,
 const char *servname)

int gbatch_open(const char *hostname,
 const char *servname,
 const char *username)

int gbatch_login(const char *hostname,
 const char *servname,
 const char *username,
 char *passwd,
 const int rereg)

The function gbatch_open is used to open a connection to the GNUbatch API. It has
two slightly different variants on Windows clients.

The first format, with two arguments, applies to Unix and GNU/Linux applications. The
username used is that of the effective userid at the time of the call.

The second format, with three arguments is used on Windows clients and specifies the
Unix user name in the call. This may not be acceptable unless the user is on a static IP
address client with a default user either matching the user name given or being a user
with Write Admin File privilege. So if the /etc/Xibatch-hosts file has the following in:

mypc - client(myuser)

then myuser can invoke this call from client mypc, or some other user if myuser has
write admin file privilege. The final privilege will be that of the user logged-in as.

The third format, which should probably be used if in any doubt, supplies a password.

In all cases, hostname is the name of the host being connected to. This may be in any
format which can be recognised by the network library routine gethostbyname(3).
localhost is acceptable if the local server is to be used.

servname may be NULL to use a standard service name, otherwise an alternative
service may be specified.

username should be a valid user on the server.

passwd should be the Unix password on the server or an alternate interface password
set up by xipasswd. If this is not required it may be nulls. Note that this is a non-const
array; it will be deliberately filled with nulls as soon as possible after entering the
routine to minimise the length of time during which clear-text passwords are on the
stack.

rereg, if non-zero, only applies to DHCP clients, and denotes that the Unix host should
register the user as the ``primary'' user for the given client. The main effect of this is
to override the user permissions for operations being performed by a concurrent btqw
session.

Note that more than one connection can be open at any time with various

Page 22

GNUbatch API

combinations of user names and hosts.

When finished, close the conection with a call to gbatch_close.

12.1.1.1 Return values

The function returns a positive value if successful, which is the file descriptor used in
various other calls, otherwise one of the error codes listed on page 20 onwards, all of
which are negative.

12.1.1.2 Example

int fd;
fd = gbatch_open("myhost", (char *) 0);
if (fd < 0) { /* handle error */
 ...
}
 ...
gbatch_close(fd)

12.1.2 gbatch_close

int gbatch_close(const int fd)

The function gbatch_close is used to terminate a connection with the API.

fd is a file descriptor which was previously returned by a successful call to
gbatch_open.

12.1.2.1 Return values

The function returns 0 if successful otherwise one of the error codes listed on page 20
onwards.

In most API programs the return value is ignored as it is only likely to report an error if
an invalid API descriptor is passed.

12.1.3 gbatch_newgrp

int gbatch_newgrp(const int fd, const char * group)

The function gbatch_newgrp is used to select a new primary group as the user's
primary group.

fd is a file descriptor which was previously returned by a successful call to
gbatch_open.

group is the required group name to be selected. If the user has write admin file
privilege, this may be any valid group name, otherwise the group must be the user's
default group or one of the user's supplementary groups.

12.1.3.1 Return values

The function returns 0 if successful otherwise one of the error codes listed on page 20

Page 23

GNUbatch API

onwards.

12.1.4 gbatch_setqueue

int gbatch_setqueue(const int fd, const char *queuename)

The function gbatch_setqueue is used to allocate a queue name for transactions with
the API. This may effect the selection of jobs and job titles.

fd is a file descriptor which was previously returned by a successful call to
gbatch_open.

queuename is the name of the proposed queue or NULL to delete a previous queue
name.

12.1.4.1 Return values

The function returns 0 if successful otherwise one of the error codes listed on page 20
onwards.

12.1.5 gbatch_gethenv

char **gbatch_gethenv(const int fd)

The function gbatch_gethenv is used to obtain a copy of the static environment file for
the server. This will provide the environment variables which a job running on that
server would have unless overridden by separate environment variables in the job.

fd is a file descriptor which was previously returned by a successful call to
gbatch_open.

The result is a vector of character pointers containing environment variable
assignments of the form NAME=VALUE. This list is terminated by a null pointer. If there
is no static environment file, an empty list is returned, i.e. it will be a pointer to a char
* location containing NULL.

Unlike other routines, the user has the responsibility to deallocate the space allocated,
each string and the overall vector, when not required.

12.1.5.1 Return values

The function returns a null-terminated vector of character vectors if successful,
otherwise it returns NULL and one of the error codes listed on page 20 onwards is
assigned to the external variable gbatch_dataerror.

12.1.6 gbatch_holread

int gbatch_holread(const int fd,
 const unsigned flags,
 int year,
 unsigned char *bitmap)

The function gbatch_holread is used to read the holiday file for the specified year.

fd is a file descriptor which was previously returned by a successful call to

Page 24

GNUbatch API

gbatch_open.

flags is currently unused but is reserved for future extensions.

year is the year for which the holiday file is required. This should be the actual
number of the year or an offset from 1990. For example the year 1994 could be given
as 1994 or 94. Note: The offset value should be less than 200.

bitmap is an array of characters representing the bitmap. Bits are set if the days is a
holiday. To test the bitmap use the following formula:

if (bitmap[day >> 3] & (1 << (day & 7)))
 /*day is holiday*/

12.1.6.1 Return values

The function returns 0 if successful otherwise one of the error codes listed on page 20
onwards.

12.1.7 gbatch_holupd

int gbatch_holupd(const int fd,
 const unsigned flags,
 int year,
 unsigned char *bitmap)

The function gbatch_holupd is used to update the holiday file for the specified year.

fd is a file descriptor which was previously returned by a successful call to
gbatch_open.

flags is currently unused but is reserved for future use.

year is the year for which the holiday file is required. This should be the actual
number of the year or an offset from 1990. For example the year 1994 could be given
as 1994 or 94. Note: The offset value should be less than 200.

bitmap is an array of characters representing the bitmap. Bits are set if the days is a
holiday. To test the bitmap use the following formula:

if (bitmap[day >> 3] & (1 << (day & 7)))
 /*day is holiday*/

12.1.7.1 Return values

The function returns 0 if successful otherwise one of the error codes listed on page 20
onwards.

12.2 Job access

12.2.1 gbatch_joblist

int gbatch_joblist(const int fd,
 const unsigned flags,
 int *numjobs,

Page 25

GNUbatch API

 slotno_t **slots)

The function gbatch_joblist is used to get a list of jobs from the API.

fd is a file descriptor which was previously returned by a successful call to
gbatch_open.

flags is zero, or a logical OR of one or more of the following values

GBATCH_FLAG_LOCALONLY
Ignore remote jobs/hosts, i.e. not local to the server, not
the client.

GBATCH_FLAG_QUEUEONLY
Restrict to the selected queue (with gbatch_setqueue)
only.

GBATCH_FLAG_USERONLY Restrict to the user only.

GBATCH_FLAG_GROUPONLY
Restrict to the current group (possibly as selected by
gbatch_newgrp) only.

numjobs is a pointer to an integer which upon return will contain the number of jobs in
the list.

slots will upon return contain a list of slot numbers, each of which can be used to
access an individual job. The memory used by this array is owned by the API and
therefore the user should not attempt to deallocate it.

12.2.1.1 Return values

The function returns 0 if successful otherwise one of the error codes listed on page 20
onwards.

12.2.1.2 Example

int fd, ret, cnt, numjobs;

ret = gbatch_joblist(fd, 0, &numjobs, &list);
if (ret < 0) { /* handle error */
 . . .
}

for (cnt = 0; cnt < numjobs; cnt++) {
 slotno_t this_slot = list[cnt];
 /* process this_slot */
}

/* do not try to deallocate the list

12.2.2 gbatch_jobfind

int gbatch_jobfind(const int fd,
 const unsigned flags,
 const jobno_t jobnum,
 const netid_t nid,
 slotno_t *slot,
 apiBtjob *jobd)

Page 26

GNUbatch API

int gbatch_jobfindslot(const int fd,
 const unsigned flags,
 const jobno_t jobnum,
 const netid_t nid,
 slotno_t *slot)

The function gbatch_jobfind is used to retrieve the details of a job, starting from the
job number, in one operation.

The function gbatch_jobfindslot is used to retrieve just the slot number of a job,
starting from the job number.

fd is a file descriptor which was previously returned by a successful call to
gbatch_open.

flags is zero or the logical OR of one or more of the following bits:

GBATCH_FLAG_LOCALONLY Search for jobs local to the server only.
GBATCH_FLAG_USERONLY Search for jobs owned by the user only.
GBATCH_FLAG_GROUPONLY Search for jobs owned by the group only.

GBATCH_FLAG_QUEUEONLY
Search for jobs with the queue name specified by
gbatch_setqueue only.

jobnum is the job number to be searched for.

nid is the IP address (in network byte order) of the host on which the searched-for job
is to be located. It should be correct even if GBATCH_FLAG_LOCALONLY is specified.

slot is assigned the slot number corresponding to the job. It may be null is not
required, but this would be nearly pointless with gbatch_jobfindslot (other than
reporting that the job was unknown).

jobp is a pointer to a structure to contain the details of the job for gbatch_jobfind.

The definition of the job structure is given on page 7 onwards.

12.2.2.1 Return values

The function returns 0 if successful otherwise one of the error codes listed on page 20
onwards.

12.2.3 gbatch_jobread

int gbatch_jobread(const int fd,
 const unsigned flags,
 const slotno_t slot,
 apiBtjob *jobd)

The function gbatch_jobread is used to retrieve the details of a job

fd is a file descriptor which was previously returned by a successful call to
gbatch_open.

flags is zero or GBATCH_FLAG_IGNORESEQ to ignore recent changes to the job list.

Page 27

GNUbatch API

slot is the slot number corresponding to the job as returned by gbatch_joblist or
gbatch_jobfindslot.

jobp is a pointer to a structure to contain the details of the job.

The definition of the job structure is given on page 7 onwards.

12.2.3.1 Return values

The function returns 0 if successful otherwise one of the error codes listed on page 20
onwards.

12.2.4 gbatch_jobdata

FILE *gbatch_jobdata(const int fd,
 const int flags,
 const slotno_t slot)

int gbatch_jobdata(const int fd,
 const int outfile,
 int (*fn)(int,void*,unsigned),
 const unsigned, flags,
 const slotno_t slotno)

The function gbatch_jobdata is used to retrieve the job script of a job. There are two
versions, one for the Unix and GNU/Linux API and one for the Windows API. The second
form is used under Windows as there is no acceptable substitute for the pipe(2)
system call.

In both forms of the call, fd is a file descriptor which was previously returned by a
successful call to gbatch_open.

flags is zero or GBATCH_FLAG_IGNORESEQ to ignore recent changes to the job list.

slot is the slot number corresponding to the job as returned by gbatch_joblist or
gbatch_jobfindslot.

The difference between the two versions of gbatch_jobadd is in the method of passing
the job script.

12.2.4.1 Unix and GNU/Linux

The Unix and GNU/Linux API version returns a stdio file descriptor which may be used
with the standard I/O functions getc(3), fread(3) etc to read the job script. The job
script should always be read to the end and then using fclose(3) to ensure that all
incoming data on the socket is collected.

If there is any kind of error, then gbatch_jobdata will return NULL, leaving the error
code in the external variable GBATCH_dataerror.

12.2.4.2 Windows

In the case of the Windows version, the specified function fn is invoked with
parameters similar to write to read data to pass across as the job script, the argument

Page 28

GNUbatch API

outfile being passed as a file handle as the first argument to fn.

fn may very well be write. The reason for the routine not invoking write itself is partly
flexibility but mostly because some versions of Windows DLLs do not allow write to be
invoked directly from within it.

N.B. This routine is particularly susceptible to peculiar effects due to assignment of
insufficient stack space.

The return value is zero for success, or an error code. The error code is also assigned
to the external variable GBATCH_dataerror for consistency with the Unix version.

12.2.4.3 Return values

The Unix version of gbatch_jobdata returns NULL if unsuccessful, placing the error
code in the external variable GBATCH_dataerror.

The Windows version of gbatch_jobdata returns zero if successful, otherwise an error
code.

The error codes which may be returned are listed on page 20 onwards.

12.2.4.4 Example

int fd, ret, ch;
FILE *inf;
slotno_t slot;

/* select a job assign it to slot */

inf = gbatch_jobdata(fd, XBABI_IGNORESEQ, slot);

if (!inf) { /* error in GBATCH_dataerror */
 . . .
}

while ((ch = getc(inf)) != EOF)
 putchar(ch);

fclose(inf);

12.2.5 gbatch_jobadd

FILE *gbatch_jobadd(const int fd,
 apiBtjob *jobd)

int gbatch_jobres(const int fd,
 jobno_t *jobno)

int gbatch_jobadd(const int fd,
 const int infile,
 int(*fn)(int,void*,unsigned),
 apiBtjob *jobd)

Page 29

GNUbatch API

The function gbatch_jobadd, is used to create a new GNUbatch job.

There are two forms of gbatch_jobadd. The first form, together with gbatch_jobres, is
used to create jobs using the Unix or GNU/Linux version of the API.

The second form is used under Windows as there is no acceptable substitute for the
pipe(2) system call.

In both forms of the call, fd is a file descriptor which was previously returned by a
successful call to gbatch_open.

jobd is a pointer to a structure containing the attributes of the job to be created apart
from the job script.

The definition of the job structure is given on page 7 onwards.

The difference between the two versions of gbatch_jobadd is in the method of passing
the job script.

12.2.5.1 Unix and GNU/Linux

The Unix and GNU/Linux API version returns a stdio file descriptor which may be used
with the standard I/O functions fputs(3), fprintf(3) etc to write the job script. When
complete, the job script should be closed using fclose(3). The result of the job
submission is then collected using the gbatch_jobres routine, which assigns the job
number to the contents of the jobno parameter and returns zero as its result. The job
number is also placed into the bj_job field in the job structure.

For reasons of correctly synchronising socket messages, be sure to call gbatch_jobres
immediately after the call to fclose(3), even if you do not require the answer.

If there is any kind of error, then depending upon at what point the error is detected,
either gbatch_jobadd will return NULL, leaving the error code in the external variable
GBATCH_dataerror, or gbatch_jobres will return the error as its result rather than zero.

12.2.5.2 Windows

In the case of the Windows version, the specified function fn is invoked with
parameters similar to read to read data to pass across as the job script, the argument
infile being passed as a file handle as the first argument to fn.

fn may very well be read. The reason for the routine not invoking read itself is partly
flexibility but mostly because some versions of Windows DLLs do not allow read to be
invoked directly from within it.

N.B. This routine is particularly susceptible to peculiar effects due to assignment of
insufficient stack space.

The return value is zero for success, in which case the job number will be assigned to
the bj_job field of jobd, or an error code. The error code is also assigned to the
external variable GBATCH_dataerror for consistency with the Unix version.

12.2.5.3 Return values

The Unix version of gbatch_jobadd returns NULL if unsuccessful, placing the error code

Page 30

GNUbatch API

in the external variable GBATCH_dataerror.

The Windows version of gbatch_jobadd and the gbatch_jobres under Unix return zero
if successful, otherwise an error code.

The error codes which may be returned are listed on page 20 onwards.

12.2.5.4 Example

This example creates a job from standard input:

int fd, ret, ch;
FILE *outf;
jobno_t jn;
apiBtjob outj;

fd = gbatch_open("myhost", (char *) 0);
if (fd < 0) { /* error handling */
 . . .
}

/* always clear the structure first */
memset((void *)&outj, '\0', sizeof(outj));

/* only the following parameters are compulsory */

outj.h.bj_pri = 150;
outj.h.bj_ll = 1000;
outj.h.bj_mode.u_flags = JALLMODES;
outj.h.bj_exits.elower = 1;
outj.h.bj_eupper = 255;
outj.h.bj_ulimit = 0x10000;
strcpy(outj.h.bj_cmdinterp, "sh"); /* NB assumes sh defined */
gbatch_putdirec(&outj, "~/work");

/* set progress code to zero */
outj.h.bj_progress = BJP_CANCELLED;

/* set up a time constraint */
outj.h.bj_times.tc_istime = 1;
outj.h.bj_times.tc_nexttime = time(long *)0) + 300;
outj.h.bj_times.tc_repeat = TC_MINUTES;
outj.h.bj_times.tc_rate = 10;
outj.h.bj_times.tc_nposs = TC_SKIP;

gbatch_puttitle(&outj, "MyTitle");

outf = gbatch_jobadd(fd, &outj);
if (!outf) { /* error in GBATCH_dataerror */
 . . .
}

while ((ch = getchar()) != EOF)

Page 31

GNUbatch API

 putc(ch, outf);
fclose(outf);
ret = gbatch_jobres(fd, &jn);
if (ret < 0) { /* error in ret */
 . . .
}
else
 printf("job number is %ld\n", jn);

gbatch_close(fd);

12.2.6 gbatch_jobdel

int gbatch_jobdel(const int fd, const unsigned flags, const slotno_t
slot)

The function gbatch_jobdel is used to delete a job.

fd is a file descriptor which was previously returned by a successful call to
gbatch_open.

flags is zero or GBATCH_FLAG_IGNORESEQ to ignore recent changes to the job list.

slot is the slot number corresponding to the job as returned by gbatch_joblist or
gbatch_jobfindslot.

12.2.6.1 Return values

The function returns 0 if successful otherwise one of the error codes listed on page 20
onwards.

12.2.6.2 Example

To delete all jobs for a user.

int fd, ret, cnt, numjobs;
slotno_t *list;

fd = gbatch_open("myhost", (char *) 0);
ret = gbatch_joblist(fd, GBATCH_FLAG_USERONLY, &numjobs, &list);
if (fd < 0) { /* handle error */
 . . .
}

for (cnt = 0; cnt < numjobs; cnt++) {
 if ((ret = gbatch_jobdel(fd, GBATCH_FLAG_IGNORESEQ, list[cnt]) {
 /* handle error */
 . . .
 }
}

gbatch_close(fd);

Page 32

GNUbatch API

12.2.7 gbatch_jobupd

int gbatch_jobupd(const int fd,
 const unsigned flags,
 const slotno_t slot,
 apiBtjob * jobd)

The function gbatch_jobupd is used to update the details of a job.

fd is a file descriptor which was previously returned by a successful call to
gbatch_open.

flags is zero or GBATCH_FLAG_IGNORESEQ to ignore recent changes to the job list.

jobp is a pointer to a structure containing the details of the job.

The definition of the job structure is given on page 7 onwards.

12.2.7.1 Return values

The function returns 0 if successful otherwise one of the error codes listed on page 20
onwards.

12.2.8 gbatch_jobchown

int gbatch_jobchown(const int fd,
 const unsigned flags,
 const slotno_t slot,
 const char *newowner)

The function gbatch_jobchown is used to change the ownership of a job

fd is a file descriptor which was previously returned by a successful call to
gbatch_open.

flags is zero or GBATCH_FLAG_IGNORESEQ to ignore recent changes to the job list.

slot is the slot number corresponding to the job as returned by gbatch_joblist or
gbatch_jobfindslot.

newowner is the user name of the prospective new owner.

12.2.8.1 Return values

The function returns 0 if successful otherwise one of the error codes listed on page 20
onwards.

12.2.9 gbatch_jobchgrp

int gbatch_jobchgrp(const int fd,
 const unsigned flags,
 const slotno_t slot,
 const char *newgroup)

The function gbatch_jobchgrp is used to attempt to change the group ownership of a

Page 33

GNUbatch API

job.

fd is a file descriptor which was previously returned by a successful call to
gbatch_open.

flags is zero or GBATCH_FLAG_IGNORESEQ to ignore recent changes to the job list.

slot is the slot number corresponding to the job as returned by gbatch_joblist or
gbatch_jobfindslot.

newgroup is a valid group name.

12.2.9.1 Return values

The function returns 0 if successful otherwise one of the error codes listed on page 20
onwards.

12.2.10 gbatch_jobchmod

int gbatch_jobchmod(const int fd,
 const unsigned flags,
 const slotno_t slot,
 const Btmode *newmode)

The function gbatch_jobchmod is used to change the permissions of a job.

fd is a file descriptor which was previously returned by a successful call to
gbatch_open.

flags is zero or GBATCH_FLAG_IGNORESEQ to ignore recent changes to the job list.

slot is the slot number corresponding to the job as returned by gbatch_joblist or
gbatch_jobfindslot.

newmode is a pointer to a structure containing the details of the new mode.

The definition of the job structure is given on page 7 onwards.

12.2.10.1 Return values

The function returns 0 if successful otherwise one of the error codes listed on page 20
onwards.

12.2.11 gbatch_jobop

int gbatch_jobop(const int fd,
 const unsigned flags,
 const slotno_t slot,
 const unsigned op,
 const unsigned param)

The function gbatch_jobop is used to perform an operation on a job.

fd is a file descriptor which was previously returned by a successful call to
gbatch_open.

Page 34

GNUbatch API

flags is zero or GBATCH_FLAG_IGNORESEQ to ignore recent changes to the job list.

slot is the slot number corresponding to the job as returned by gbatch_joblist or
gbatch_jobfindslot.

op is one of the following:

GBATCH_JOP_SETRUN Set job running
GBATCH_JOP_SETCANC Cancel a job
GBATCH_JOP_FORCE Force a job to start
GBATCH_JOP_FORCEADV Force to start and advance time
GBATCH_JOP_ADVTIME Advance to next repeat
GBATCH_JOP_KILL Kill job

param is only relevant to GBATCH_JOP_KILL, in which case it gives the signal number
to kill the job.

12.2.11.1 Return values

The function returns 0 if successful otherwise one of the error codes listed on page 20
onwards.

12.2.12 gbatch_jobmon

int gbatch_jobmon(const int fd, void (*fn)(const int))

int gbatch_setmon(const int fd, HWND hWnd, UINT wMsg)

int gbatch_procmon(const int fd)

void gbatch_unsetmon(const int fd)

12.2.12.1 Unix and GNU/Linux

The function gbatch_jobmon is used to set a function to monitor changes to the job
queue.

fd is a file descriptor which was previously returned by a successful call to
gbatch_open.

fn is a pointer to a function which must be declared as returning void and taking one
const int argument. Alternatively, this may be NULL to cancel monitoring.

The function fn will be called upon each change to the job list. The argument passed
will be fd. Note that any changes to the job queue are reported (including changes on
other hosts whose details are passed through) as the API does not record which jobs
the user is interested in.

12.2.12.2 Windows

The gbatch_setmon routine may be used to monitor changes to the job queue or
variable list. Its parameters are as follows.

Page 35

GNUbatch API

fd is a file descriptor which was previously returned by a successful call to
gbatch_open.

hWnd is a windows handle to which messages should be sent.

wMsg is the message id to be passed to the window (WM_USER or a constant based on
this is suggested).

To decode the message, the gbatch_procmon is provided. This returns
XBWINAPI_JOBPROD to indicate a change or changes to the job queue and
XBWINAPI_VARPROD to indicate a change or changes to the variable list. If there are
changes to both, two or more messages will be sent, each of which should be decoded
via separate gbatch_procmon calls.

To cancel monitoring, invoke the routine

gbatch_unsetmon(fd)

If no monitoring is in progress, or the descriptor is invalid, this call is just ignored.

12.2.12.3 Return values

The function gbatch_jobmon returns 0 if successful otherwise the error code
GBATCH_INVALID_FD if the file descriptor is invalid. Invalid fn parameters will not be
detected and the application program will probably crash.

12.2.12.4 Example

void note_mod(const int fd)
{
 job_changes++;
}

. . .

gbatch_jobmon(fd, note_mod);
 . . .

if (job_changes) { /* handle changes */
 . . .
}

12.3 Job fields

12.3.1 gbatch_getarg

const char *gbatch_getarg(const apiBtjob *jobp, const unsigned indx)

The function gbatch_getarg is used to extract an argument string from a job string
table.

jobp is a pointer to a structure containing the details of the job.

The definition of the job structure is given on page 7 onwards.

Page 36

GNUbatch API

indx is the argument number required. This should be between 0 and 1 less than the
total number of arguments (given by the field jobp->h.bj_args).

12.3.1.1 Return values

If successful the function will return the required argument as a const character string
otherwise NULL if the argument number is invalid.

12.3.2 gbatch_getdirect

const char *gbatch_getdirect(const apiBtjob *jobp)

The function gbatch_getdirect is used to extract the working directory of a job from
the string table of the job.

jobp is a pointer to a structure containing the details of the job. The definition of the
job structure is given on page 7 onwards.

12.3.2.1 Return values

The result is the working directory of the job as a const character string, or NULL if
this is not set (but this is almost certainly an error).

12.3.3 gbatch_getenv

const char *gbatch_getenv(const apiBtjob *jobp, const char *name)

The function gbatch_getenv is used to extract an environment variable from a job
string table.

jobp is a pointer to a structure containing the details of the job. The definition of the
job structure is given on page 7 onwards.

name is the environment varible required.

12.3.3.1 Return values

The result is the environment variable value as a const character string or NULL if the
variable does not exist in the job (perhaps because it is in the static environment file).

12.3.4 gbatch_getenvlist

const char **gbatch_getenvlist(const apiBtjob *jobp), const char
*name)

The function gbatch_getenvlist is used to extract the list of environment variables
from a job string table.

jobp is a pointer to a structure containing the details of the job. The definition of the
job structure is given on page 7 onwards.

12.3.4.1 Return values

The result is a null-terminated vector of environment variables in the form

Page 37

GNUbatch API

NAME=VALUE, or NULL if memory could not be allocated for it.

The space is allocated within the API. The user should not attempt to free it after use.
Also note that the space is re-used if gbatch_getenv is invoked on a different job, the
result should be copied if needed.

12.3.5 gbatch_getredir

const apiMredir *gbatch_getredir(const apiBtjob *jobp,
 const unsigned indx)

The function gbatch_getredir is used to extract a redirection structure from a job
structure.

jobp is a pointer to a structure containing the details of the job. The definition of the
job structure is given on page 7 onwards.

indx is the redirection number required. This should be between 0 and 1 less than the
number of redirections as given by the field jobp->h.bj_nredirs.

12.3.5.1 Redirection structure

The format of the redirection structure is as follows:

typedef struct {
 unsigned char fd;
 unsigned char action;
 union {
 unsigned short arg;
 const char *buffer;
 } un;
} apiMredir;

In this structure fd represents the file descriptor, and action gives the action required
as follows:

RD_ACT_RD Open file name given in un.buffer for reading.
RD_ACT_WRT Open file name given in un.buffer for writing.
RD_ACT_APPEND Append to file name given in un.buffer, opened for writing.
RD_ACT_RDWR Open file name given in un.buffer for read/write.

RD_ACT_RDWRAPP
Open file name given in un.buffer for read/write and
append.

RD_ACT_PIPEO Open pipe to shell command given in un.buffer for output.
RD_ACT_PIPEI Open pipe from shell command given in un.buffer for input.
RD_ACT_CLOSE Close file descriptor.
RD_ACT_DUP Duplicate file descriptor given in un.arg.

12.3.5.2 Return values

The result is a pointer to a static structure containing the required redirection of the
job NULL if the redirection number is invalid.

Note that the structure used will be overwritten by a further call to gbatch_getredir

Page 38

GNUbatch API

with different arguments, hence it should be copied if required.

12.3.5.3 gbatch_gettitle

const char *gbatch_gettitle(const int fd, const apiBtjob *jobp)

The function gbatch_gettitle may be used to extract the title from a job as a character
string. Optionally the queue name (as set by gbatch_setqueue) may be elided from
the title.

fd is a file descriptor which was previously returned by a successful call to
gbatch_open, or -1 to disregard the queue name.

jobp is a pointer to a structure containing the details of the job. The definition of the
job structure is given on page 7 onwards.

12.3.5.4 Return values

The result is the title of the job as a const character string.

If a valid file descriptor is provided, and this has a queue name set using
gbatch_setqueue, and the queue name is the same as that in the job title, then the
queue name is deleted from the title returned to the user.

12.3.6 gbatch_delarg

int gbatch_delarg(apiBtjob *jobp, const unsigned indx)

The function gbatch_delarg is used to delete an argument from a job structure string
table.

jobp is a pointer to a structure containing the details of the job. The definition of the
job structure is given on page 7 onwards.

indx is the number of the argument being deleted. Note that all the following
arguments are "moved up" the list and their index numbers will be reduced by one.

12.3.6.1 Return values

The result is non-zero if successful, or zero if the string table overflowed, an likely
event in the case of gbatch_delarg.

12.3.7 gbatch_delenv

int gbatch_delenv(const apiBtjob *jobp, const char *name)

The function gbatch_getenv is used to delete an environment variable from a job
string table.

jobp is a pointer to a structure containing the details of the job. The definition of the
job structure is given on page 7 onwards.

name is the environment varible to be deleted.

Page 39

GNUbatch API

12.3.7.1 Return values

The result is non-zero if successful, or zero if the string table overflowed, an unlikely
event in the case of a deletion.

No error is reported if the specified variable does not exist.

12.3.7.2 Notes

Environment variables common to all jobs may be held in a "static environment file" to
which the job structure environment variables represent differences only. This routine
will not affect entries in the static environment file.

12.3.8 gbatch_delredir

int gbatch_delredir(apiBtjob *jobp, const unsigned indx)

The function gbatch_delredir is used to delete a redirection from a job structure string
table.

The definition of the job structure is given on page 7 onwards.

jobp is a pointer to a structure containing the details of the job.

indx is the number of the redirection. Note that any subsequent redirections are
"moved up" one place as a result of this function and their index numbers reduced by
one.

12.3.8.1 Return values

The result is non-zero if successful, or zero if the string table overflowed, an likely
event in the case of gbatch_delredir.

12.3.9 gbatch_putarg

int gbatch_putarg(apiBtjob *jobp, const unsigned indx, const char
*newarg)

The function gbatch_putarg is used to replace or add a new argument to the argument
list of a job.

jobp is a pointer to a structure containing the details of the job. The definition of the
job structure is given on page 7 onwards.

indx is the number of the argument to be replaced or added. This may be greater
than any number of existing arguments if required, in which case any intervening
arguments are created as empty strings.

newarg is the character string containing the new argument.

12.3.9.1 Return values

The result is non-zero if successful or zero if the string table overflowed. In the latter
case the contents of the string table should not be relied upon. The job structure
should be saved first if in doubt.

Page 40

GNUbatch API

12.3.10 gbatch_putargglist

int gbatch_putarglist(apiBtjob *jobp, const char **alist)

The function gbatch_putarglist is used to replace the entire argument list within a
string table of a job.

jobp is a pointer to a structure containing the details of the job. The definition of the
job structure is given on page 7 onwards.

alist is a vector of strings containing the new arguments.

The new argument list completely replaces the old

12.3.10.1 Return values

The result is non-zero if successful or zero if the string table overflowed. In the latter
case the contents of the string table should not be relied upon. The job structure
should be saved first if in doubt.

12.3.11 gbatch_putdirect

int gbatch_putdirect(apiBtjob *jobp, const char *direct)

The function gbatch_putdirect is used to insert a new working directory name into a
job structure.

jobp is a pointer to a structure containing the job details. The definition of the job
structure is given on page 7 onwards.

direct is the name of the directory to be inserted.

12.3.11.1 Return values

The result will be non-zero if successful or zero if the string table overflowed. In the
latter case the string table contents of the job should not be relied upon. The job
structure should be saved first if in doubt.

12.3.12 gbatch_putenv

const char *gbatch_putenv(const apiBtjob *jobp, const char *name)

The function gbatch_putenv is used to insert an environment variable into a job string
table.

jobp is a pointer to a structure containing the details of the job. The definition of the
job structure is given on page 7 onwards.

name is the environment varible required, in the form NAME=VALUE.

12.3.12.1 Return values

This function will return non-zero if successful otherwise zero if the string table
overflowed. In the latter case the contents of the job structure should not be relied
upon. If in doubt copy the job structure first.

Page 41

GNUbatch API

12.3.13 gbatch_putenvlist

int gbatch_putenvlist(const apiBtjob *jobp, const char **elist)

The function gbatch_putenv is used to replace the entire environment variable list of a
job string table.

jobp is a pointer to a structure containing the details of the job. The definition of the
job structure is given on page 7 onwards.

elist is a null-terminated list of environment variables. Each should be of the form
NAME=VALUE. Any entries not in this form are ignored.

12.3.13.1 Return values

The result will be no-zero if successful or zero if the string table overflowed. In the
latter case the string table contents of the job should not be relied upon. The job
structure should be saved first if in doubt.

12.3.13.2 Notes

Remember that these entries merely override settings in any "static environment file"
on the server running the job.

12.3.14 gbatch_putredir

int gbatch_putredir(apiBtjob *jobp,
 const unsigned indx,
 const apiMredir *newredir)

The function gbatch_putredir is used to insert a new or replacement redirection into a
job structure.

jobp is a pointer to a structure containing the job details. The definition of the job
structure is given on page 7 onwards.

indx is the number of the redirection to be inserted or replaced (starting at zero). This
should be equal to the number of existing redirections to create a new one.

newredir is the redirection structure representing the redirection to be inserted or
replaced.

Details of the redirection structure and fields therein are documented under
gbatch_getredir on page 38.

12.3.14.1 Return values

The result will be no-zero if successful or zero if the string table overflowed. In the
latter case the string table contents of the job should not be relied upon. The job
structure should be saved first if in doubt.

12.3.15 gbatch_putredirlist

int gbatch_putredirlist(apiBtjob *jobp,

Page 42

GNUbatch API

 const apiMredir *rdlist,
 const unsigned num)

The function gbatch_putredirlist is used to replace the entire redirection list for a job
in one operation.

jobp is a pointer to a structure which contains the job details. The definition of the job
structure is given on page 7 onwards.

rdlist is a vector of redirections.

Details of the redirection structure and fields therein are documented under
gbatch_getredir on page 38.

num is the number of elements in rdlist.

The new redirection list completely replaces the old.

12.3.15.1 Return values

The function will return non-zero if successful otherwise zero if the string table
overflowed. In the latter case the contents of the job should no be relied upon, the job
structure should be saved first if in doubt.

12.3.16 gbatch_puttitle

int gbatch_puttitle(const int fd, apiBtjob *jobp, const char *title)

The function gbatch_puttitle is used to insert a new or replacement title into the string
table of a job structure, possibly automatically inserting the current queue name as
set by gbatch_setqueue.

fd is a file descriptor which was previously returned by a successful call to
gbatch_open, or -1 to disregard any queue name set by gbatch_setqueue.

jobp is a pointer which contains the details of the job.

The definition of the job structure is given on page 7 onwards.

title is the required new title or NULL if the title is to be deleted. If fd is a valid API
descriptor, then any queue name set by gbatch_setqueue will be added to it.

12.3.16.1 Return values

The result will be no-zero if successful or zero if the string table overflowed. In the
latter case the string table contents of the job should not be relied upon. The job
structure should be saved first if in doubt.

12.4 Variable access

12.4.1 gbatch_varlist

int gbatch_varlist(const int fd,
 const unsigned flags,
 int *numvars,

Page 43

GNUbatch API

 slotno_t **slots)

The function gbatch_varlist is used to obtain a vector of slots which can be used to
access the details of variables readable by the user.

fd is a file descriptor which was previously returned by a successful call to
gbatch_open.

flags is zero, or a logical OR of one or more of the following values

GBATCH_FLAG_LOCALONL
Y

Ignore remote variables/hosts, i.e. not local to the server, not
the client.

GBATCH_FLAG_USERONLY Restrict to the user only.
GBATCH_FLAG_GROUPONL
Y

Restrict to the current group (possibly as selected by
gbatch_newgrp) only.

numvars is a pointer to an integer which will contain the number of variables in the
list.

slots is a pointer to an array of slots. The memory used by this list should not be
freed by the user as it is owned by the API.

12.4.1.1 Return values

The function returns 0 if successful otherwise one of the error codes listed on page 20
onwards.

12.4.2 gbatch_varfind

int gbatch_varfind(const int fd,
 const unsigned flags,
 const char *vname,
 const netid_t nid,
 slotno_t *slot,
 apiBtvar *vard)

int gbatch_varfindslot(const int fd,
 const unsigned flags,
 const char *vname,
 const netid_t nid,
 slotno_t *slot)

The function gbatch_varfind is used to retrieve the details of a variable, starting from
its name, in one operation.

The function gbatch_varfindslot is used to retrieve just the slot number of a variable,
starting from its name.

fd is a file descriptor which was previously returned by a successful call to
gbatch_open.

flags is zero or the logical OR of one or more of the following bits:

GBATCH_FLAG_LOCALONLY Search for variables local to the server only.
GBATCH_FLAG_USERONLY Search for variables owned by the user only.

Page 44

GNUbatch API

GBATCH_FLAG_GROUPONLY Search for variables owned by the group only.

vname is the variable name to be searched for.

nid is the IP address (in network byte order) of the host on which the searched-for
variable is to be located. It should be correct even if GBATCH_FLAG_LOCALONLY is
specified.

slot is assigned the slot number corresponding to the variable. It may be null is not
required, but this would be nearly pointless with gbatch_varfindslot (other than
reporting that the variable was unknown).

vard is a pointer to a structure which will contain the details of the variable for
gbatch_varfind. The definition of the variable structure is given on page 15 onwards.

12.4.2.1 Return values

The function returns 0 if successful otherwise one of the error codes listed on page 20
onwards.

12.4.3 gbatch_varread

int gbatch_varread(const int fd,
 const unsigned flags,
 const slotno_t slot,
 apiBtvar *vard)

The function gbatch_varread is used to read the details for a variable

fd is a file descriptor which was previously returned by a successful call to
gbatch_open.

flags is zero or GBATCH_FLAG_IGNORESEQ to ignore recent changes to the variable list.

slot is the slot number corresponding to the variable as returned by gbatch_varlist or
gbatch_varfind.

vard is a pointer to a structure which will contain the details of the variable. The
definition of the variable structure is given on page 15 onwards.

12.4.3.1 Return values

The function returns 0 if successful otherwise one of the error codes listed on page 20
onwards.

12.4.4 gbatch_varadd

int gbatch_varadd(const int fd, apiBtvar *vard)

The function gbatch_varadd is used to create a new variable.

fd is a file descriptor which was previously returned by a successful call to
gbatch_open.

vard is a pointer to a structure which contains the details of the new variable. The
definition of the variable structure is given on page 15 onwards.

Page 45

GNUbatch API

12.4.4.1 Return values

The function returns 0 if successful otherwise one of the error codes listed on page 20
onwards.

12.4.4.2 Example

int fd, ret
int apiBtvar outv;

fd = gbatch_open("myhost", (char *) 0);
if (fd < 0) { /* error handling */
 ...
}
memset((void *)&outv, '\0', sizeof(outv));
strcpy(outv.var_name, "var1");
strcpy(outv.var_comment, "A comment");
outv.var_value.const_type = CON_LONG;
outv.var_value.con_un.con_long = 1;
outv.var_mode.u_flags = VALLMODES;
ret = gbatch_varadd(fd, &outv);
if (ret < 0) { /* error handling */
 ...
}
gbatch_close(fd);

12.4.5 gbatch_vardel

int gbatch_vardel(const int fd, const unsigned flags, const slotno_t
slot)

The function gbatch_vardel is used to delete a variable from the variable list.

fd is a file descriptor which was previously returned by a successful call to
gbatch_open.

flags is 0 or GBATCH_FLAG_IGNORESEQ to attempt to ignore recent changes to the
variable list.

slot is the slot number corresponding to the variable as returned by gbatch_varlist or
gbatch_varfindslot.

12.4.5.1 Return values

The function returns 0 if successful otherwise one of the error codes listed on page 20
onwards.

12.4.5.2 Example

This example deletes all the variables owned by the user.

int fd, ret, cnt;
int numvars;

Page 46

GNUbatch API

slotno_t *list;

fd = gbatch_open("myhost", (char *)0);
ret = gbatch_varlist(fd, GBATCH_FLAG_USERONLY, &numvars, &list);
if (fd < 0) { /* process error */
 . . .
}

for (cnt = 0; cnt < numvars, cnt++) {
 if ((ret = gbatch_vardel(fd, 0, list[cnt])) < 0) {
 /* process error */
 . . .
 }
}

12.4.6 gbatch_varupd

int gbatch_varupd(const int fd,
 const unsigned flags,
 const slotno slot,
 apiBtvar *vard)

The function gbatch_varupd is used to update the details of a variable

fd is a file descriptor which was previously returned by a successful call to
gbatch_open.

flags is 0 or GBATCH_FLAG_IGNORESEQ to ignore recent changes to the variable list if
possible.

slot is the slot number corresponding to the variable as returned by gbatch_varlist or
gbatch_varfindslot.

vard is a pointer to a descriptor which contains the new details for the variable. The
definition of the variable structure is given on page 15 onwards.

12.4.6.1 Return values

The function returns 0 if successful otherwise one of the error codes listed on page 20
onwards.

12.4.7 gbatch_varchcomm

int gbatch_varchcomm(const int fd,
 const unsigned flags,
 const slotno_t slot,
 const char *newcomment)

The function gbatch_varchcomm is used to change the comment which is associated
with a variable

fd is a file descriptor which was previously returned by a successful call to
gbatch_open.

flags is 0 or GBATCH_FLAG_IGNORESEQ to ignore recent changes to the variable list if

Page 47

GNUbatch API

possible.

slot is the slot number corresponding to the variable as returned by gbatch_varlist or
gbatch_varfindslot.

newcomment is the proposed new comment for the variable.

12.4.7.1 Return values

The function returns 0 if successful otherwise one of the error codes listed on page 20
onwards.

12.4.8 gbatch_varchown

int gbatch_varchown(const int fd,
 const unsigned flags,
 const slotno_t slot,
 const char *newowner)

The function gbatch_varchown is used to change the ownership of a variable to new
user.

fd is a file descriptor which was previously returned by a successful call to
gbatch_open.

flags is 0 or GBATCH_FLAG_IGNORESEQ to ignore recent changes to the variable list if
possible.

slot is the slot number corresponding to the variable as returned by gbatch_varlist or
gbatch_varfindslot.

newname is the name of the user who is to gain ownership of the variable.

12.4.8.1 Return values

The function returns 0 if successful otherwise one of the error codes listed on page 20
onwards.

12.4.9 gbatch_varchgrp

int gbatch_varchgrp(const int fd,
 const unsigned flags,
 const slotno_t slot,
 const char *newgroup)

The function gbatch_varchgrp is used to attempt to change the group ownership of a
variable.

fd is a file descriptor which was previously returned by a successful call to
gbatch_open.

flags is 0 or GBATCH_FLAG_IGNORESEQ to ignore recent changes to the variable list if
possible.

slot is the slot number corresponding to the variable as returned by gbatch_varlist or

Page 48

GNUbatch API

gbatch_varfindslot.

12.4.9.1 Return values

The function returns 0 if successful otherwise one of the error codes listed on page 20
onwards.

12.4.10 gbatch_varchmod

int gbatch_varchmod(const int fd,
 const unsigned flags,
 const slotno_t slot,
 const Btmode *newmode)

The function gbatch_varchmod is used to change the permissions associated with a
variable.

fd is a file descriptor which was previously returned by a successful call to
gbatch_open.

flags is 0 or GBATCH_FLAG_IGNORESEQ to ignore recent changes to the variable list if
possible.

slot is the slot number corresponding to the variable as returned by gbatch_varlist or
gbatch_varfindslot.

newmode is a pointer to the structure which contains all the new mode details. The
definition of the variable structure is given on page 15 onwards.

12.4.10.1 Return values

The function returns 0 if successful otherwise one of the error codes listed on page 20
onwards.

12.4.11 gbatch_varrename

int gbatch_varrename(const int fd,
 const unsigned flags,
 const slotno_t slot,
 const char *newname)

The function gbatch_varrename is used to change the name of a variable

fd is a file descriptor which was previously returned by a successful call to
gbatch_open.

flags is zero or GBATCH_FLAG_IGNORESEQ to ignore recent changes to the variable list.

slot is the slot number corresponding to the variable as returned by gbatch_varlist or
gbatch_varfindslot.

newname is the proposed new name for the variable.

Page 49

GNUbatch API

12.4.11.1 Return values

The function returns 0 if successful otherwise one of the error codes listed on page 20
onwards.

12.4.12 gbatch_varmon

int gbatch_varmon(const int fd, void (*fn)(const int))

Note that this routine is not available in the Windows version, please see the section
on gbatch_setmon on page 35 which covers both jobs and variables.

The function gbatch_varmon is used to set a function to monitor changes to the
variables list.

fd is a file descriptor which was previously returned by a successful call to
gbatch_open.

fn is a pointer to a function which will handle the changes to the list or NULL, which
cancels any previous call. This function will be called with fd as an argument when any
change is noted. The API does not note which variables the user is interested in, so
any changes to variables may provoke a call to this function.

12.4.12.1 Return values

The function returns 0 if successful otherwise one of the error codes listed on page 20
onwards.

12.4.12.2 Example

void note_mod(const int fd)
{
 var_changes++;
}

...

gbatch_varmon(fd, note_mod);
if (var_changes) {
 var_changes = 0;
 ...
/* Re-read list etc */
 ...
}

gbatch_varmon(fd, NULL);

12.5 Command Interpreters

12.5.1 gbatch_ciread

int ciread(const int fd,

Page 50

GNUbatch API

 const unsigned flags,
 int *numcis,
 Cmdint **cilist)

The function gbatch_ciread is used to read the list of command interpreters from the
given server. This may be invoked by any user, no special permission is required.

fd is a file descriptor which was previously returned by a successful call to
gbatch_open.

flags is currently unsused, but is reserved for future use. Set it to zero.

numcis is a pointer to an integer which upon return will contain the number of
command interpreter structures returned in cilist. (This might exceed the number of
actual command interpeters if some have been deleted).

cilist is a pointer to which a vector of command interpreter structures will be
assigned by this routine. The user should not attempt to free the memory used by this
structure as it is owned by the API. The list returned may possibly have "holes" in it
where previously-created command interpreters have been deleted. These holes can
be identified by having a null ci_name field.

The definition of the command interpreter structure is given on page 19 onwards.

The index number of each element in the vector is the number which should be used
as the third argument in gbatch_cidel and gbatch_ciupd calls.

12.5.1.1 Return values

The function returns 0 if successful otherwise one of the error codes listed on page 20
onwards.

12.5.2 gbatch_ciadd

int gbatch_ciadd(const int fd,
 const unsigned flags,
 const Cmdint *newci,
 unsigned *indx)

The function gbatch_ciadd is used to create a new command interpreter on a
GNUbatch server. The invoking user must have special create permission or the call
will be rejected.

fd is a file descriptor which was previously returned by a successful call to
gbatch_open.

flags is currently unused, but reserved for future use. Set it to zero.

newci is a pointer to a structure containing the new command interpreter details.

indx is a pointer to an unsigned location into which the index number of the new
command interpreter is placed.

The definition of the command interpreter structure is given on page 19 onwards.

Page 51

GNUbatch API

12.5.2.1 Return values

The function returns 0 if successful otherwise one of the error codes listed on page 20
onwards.

12.5.3 gbatch_cidel

int gbatch_cidel(const int fd, const unsigned flags, const unsigned
indx)

The function gbatch_cidel is used to delete a command interpreter from a GNUbatch
server. The invoking user must have special create permission or the call will be
rejected.

fd is a file descriptor which was previously returned by a successful call to
gbatch_open.

flags is currently unused, but is reserved for future extensions. Set it to zero.

indx is the number of the command interpreter to be deleted.

12.5.3.1 Return values

The function returns 0 if successful otherwise one of the error codes listed on page 20
onwards.

12.5.3.2 Notes

The standard shell entry, entry zero, cannot be deleted and attempts to do so will
always return an error code (GBATCH_BAD_CI).

There are few checks and interlocks on command interpreter lists, which are assumed
to be likely to be changed sparingly. The user should satisfy him or herself that there
are no jobs likely to use the command interpreter about to be deleted before invoking
this operation.

12.5.4 gbatch_ciupd

int gbatch_ciupd(const int fd,
 const unsigned flags,
 const int indx,
 const Cmdint *newci)

The function gbatch_ciupd is used to update the details of a command interpreter on a
GNUbatch server. The invoking user must have special create permission or the call
will be rejected.

fd is a file descriptor which was previously returned by a successful call to
gbatch_open.

flags is currently unused, but is reserved for future extensions. Set it to zero.

indx is the number of the command interpreter to be updated (see gbatch_ciread).

newci is a pointer to a structure containing the new command interpreter details.

Page 52

GNUbatch API

The definition of the command interpreter structure is given on page 19 onwards.

12.5.4.1 Return values

The function returns 0 if successful otherwise one of the error codes listed on page 20
onwards.

12.6 User permissions

12.6.1 gbatch_getbtd

int gbatch_getbtd(const int fd, apiBtdef *defs)

The function gbatch_getbtd is used to read the default user profile parameters for the
given host.

fd is a file descriptor which was previously returned by a successful call to
gbatch_open.

defs is a pointer to a structure which will on successful return, contain the default
user details. The definition of the default user profile structure is given on page 18.

12.6.1.1 Return values

The function returns 0 if successful otherwise one of the error codes listed on page 20
onwards.

12.6.2 gbatch_getbtu

int gbatch_getbtu(const int fd,
 char *username,
 char *groupname,
 apiBtuser *ustr)

The function gbatch_getbtu is used to read the user profile of a specific user. Only a
user with read admin file privilege will be able to read the profiles of other users.

fd is a file descriptor which was previously returned by a successful call to
gbatch_open.

username is the name of a valid user on the server.

groupname will be assigned with the default group name on the server.

ustr is a pointer to a structure which will on successful return, contain the profile of
the specific user. The definition of the user profile structure is given on page 17.

12.6.2.1 Return values

The function returns 0 if successful otherwise one of the error codes listed on page 20
onwards.

Page 53

GNUbatch API

12.6.3 gbatch_putbtd

int gbatch_putbtd(const int fd, const apiBtdef *defs)

The function gbatch_putbtd is used to update the default user profile parameters for
the given host. It may only be invoked by a user with write admin file privilege.

fd is a file descriptor which was previously returned by a successful call to
gbatch_open.

defs is a pointer to a structure containing the new default user profile. The definition
of the default user profile structure is given on page 18.

12.6.3.1 Return values

The function returns 0 if successful otherwise one of the error codes listed on page 20
onwards.

12.6.4 gbatch_putbtu

int gbatch_putbtu(const int fd,
 const char *username,
 const apiBtuser *ustr)

The function gbatch_putbtu is used to update a user's profile parameters for the given
host. It may only be invoked by a user with write admin file privilege, unless the user
just wants to change his or her default modes and has change default modes
privilege. (The privileges are those applying prior to the operation).

fd is a file descriptor which was previously returned by a successful call to
gbatch_open.

username is the name of the user, whose details are being updated.

ustr is a pointer to a structure which contains the new user profile. The definition of
the user profile structure is given on page 17.

12.6.4.1 Return values

The function returns 0 if successful otherwise one of the error codes listed on page 20
onwards.

Page 54

GNUbatch API

13 Example API program

The following program is an example of the use of the Unix API to provide a simple
read-only screen displaying some jobs and variables simultaneously.

#include <sys/types.h>
#include <curses.h>
#include <time.h>
#include <signal.h>
#include <gbatch.h>

#define MAXJOBSATONCE 10
#define MAXVARSATONCE 7
#define V_START (MAXJOBSATONCE+2)

int jslotnums = -1, /* Number we are monitoring */
 jslotlast = -1, /* Last number of jobs on list */
 vslotnums = -1, /* Number of variables we are monitoring */
 vslotlast = -1, /* Last number of vars on list */
 jobchanges = 0, /* Changes noted in jobs */
 varchanges = 0, /* Changes noted in variables */
 vnamecnt, /* Number of variables we asked about */
 apifd; /* "File descriptor" for api */

slotno_t jslotno[MAXJOBSATONCE], /* Slot numbers of jobs being monitored */
 vslotno[MAXVARSATONCE]; /* Slot numbers of vars being monitored */

char **vnames, /* Names of variables we want */
 hostname, / Machine we want to talk to */
 queuename; / Queue name */

static char *statenames[] = {
 "",
 "Done",
 "Error",
 "Aborted",
 "Cancelled",
 "Strt1",
 "Strt2",
 "Running",
 "Finished"
};

/* Invoked in the event of a signal */

void quitit()
{
 gbatch_close(apifd);
 endwin();
 exit(0);
}

/* Fill up the screen according to jobs and variables. */

void fillscreen()
{
 intcnt, row;

Page 55

GNUbatch API

 time_t now = time((time_t *) 0);

 /* Clear the existing text on the screen */

 erase();

 /* For each job.... */

 for (cnt = 0; cnt < jslotnums; cnt++) {
 const char*tit;
 char tbuf[16];
 apiBtjobjob;

 /* Read the job, if it has disappeared, forget it */

 if (gbatch_jobread(apifd, GBATCH_FLAG_IGNORESEQ, jslotno[cnt], &job) <
0)
 continue;

 /* Extract title */

 tit = gbatch_gettitle(apifd, &job);

 /* If time applies, print time, or date if not in 24 hours */

 if (job.h.bj_times.tc_istime) {
 struct tm *tp = localtime(&job.h.bj_times.tc_nexttime);
 if (job.h.bj_times.tc_nexttime < now ||
 job.h.bj_times.tc_nexttime > now + (24L*60L*60L))
 sprintf(tbuf, "%.2d/%.2d", tp->tm_mday, tp->tm_mon+1);
 else
 sprintf(tbuf, "%.2d:%.2d", tp->tm_hour, tp->tm_min);
 }
 else
 tbuf[0] = '\0';
 mvprintw(cnt, 0, "%.7d %-16s %-5.5s %s", job.h.bj_job, tit, tbuf,
 statenames[job.h.bj_progress]);
 }

 row = V_START;

 for (cnt = 0; cnt < vslotnums; cnt++) {
 apiBtvar var;
 if (gbatch_varread(apifd, GBATCH_FLAG_IGNORESEQ, vslotno[cnt], &var) <
0)
 continue;

 /* Print variable name, value and comment string */

 if (var.var_value.const_type == CON_LONG)
 mvprintw(row,
 0, "%-15s %ld %s", var.var_name,
 var.var_value.con_un.con_long, var.var_comment);
 else
 mvprintw(row,
 0, "%-15s %s %s", var.var_name,
 var.var_value.con_un.con_string, var.var_comment);
 row++;

Page 56

GNUbatch API

 }

 move(LINES-1,COLS-1);
 refresh();
}

void readjlist()
{
 intnjs, cnt;
 slotno_t*jsls;

 jobchanges = 0;

 /* Read the list of jobs in the queue. */

 if (gbatch_joblist(apifd, GBATCH_FLAG_IGNORESEQ, &njs, &jsls) < 0)
 return;

 /* If the number of jobs is the same as last time,
 we can assume that no new ones have been created. */

 if (njs == jslotlast)
 return;

 jslotlast = njs;

 /* If we have more than we can fit on the screen,
 skip the rest */

 if (njs > MAXJOBSATONCE)
 njs = MAXJOBSATONCE;

 jslotnums = njs;

 for (cnt = 0; cnt < njs; cnt++)
 jslotno[cnt] = jsls[cnt];
}

void readvlist()
{
 int nvs, cnt, cnt2;
 slotno_t *vsls;

 varchanges = 0;

 /* Read the list of variables available to us. */

 if (gbatch_varlist(apifd, GBATCH_FLAG_IGNORESEQ, &nvs, &vsls) < 0)
 return;

 /* If the number of variables is the same, we can assume that
 we haven't created or deleted any. */

 if (nvs == vslotlast)
 return;

 /* Reset the pointer of slot numbers we are interested in */

Page 57

GNUbatch API

 vslotlast = nvs;
 vslotnums = 0;

 /* Look through the list of variables we got back for the
 ones we are interested in. */

 for (cnt = 0; cnt < nvs; cnt++) {
 apiBtvar var;

 /* Read the variable */

 if (gbatch_varread(apifd, GBATCH_FLAG_IGNORESEQ, vsls[cnt], &var) < 0)
 continue;

 /* Look through the list of names.
 If we find it, remember the slot number. */

 for (cnt2 = 0; cnt2 < vnamecnt; cnt2++)
 if (strcmp(vnames[cnt2], var.var_name) == 0) {
 vslotno[vslotnums++] = vsls[cnt];
 break;
 }
 }
}

void catchjob(const int fd)
{
 jobchanges++;
}

void catchvar(const int fd)
{
 varchanges++;
}

void process()
{
 apifd = gbatch_open(hostname, (const char *) 0);
 if (apifd < 0) {
 fprintf(stderr, "Cannot open API\n");
 exit(250);
 }

 gbatch_setqueue(apifd, queuename);

 initscr();
 noecho();
 nonl();

 readjlist();
 readvlist();
 fillscreen();

 /* Let the user abort the program with quit or interrupt */

 sigset(SIGINT, quitit);
 sigset(SIGQUIT, quitit);

Page 58

GNUbatch API

 /* Get signals to detect changes to jobs and variables */

 gbatch_jobmon(apifd, catchjob);
 gbatch_varmon(apifd, catchvar);

 for (;;) {

 /* Any changes to jobs or variables cause
 a reread and refill. */

 while (jobchanges || varchanges) {
 if (jobchanges)
 readjlist();
 if (varchanges)
 readvlist();
 fillscreen();
 }

 /* Wait for a signal */

 pause();
 }
}

main(int argc, char **argv)
{
 if (argc < 3) {
 fprintf(stderr,
 "Usage: %s hostname queuename var1 var2\n", argv[0]);
 exit(1);
 }

 hostname = argv[1];
 queuename = argv[2];

 vnamecnt = argc - 3;

 if (vnamecnt > MAXVARSATONCE) {
 fprintf(stderr, "Sorry to many variables at once\n");
 exit(2);
 }

 vnames = &argv[3];

 process(); /* Does Not Return */
 return 0; /* Silence compilers */
}

Page 59

