
GNUbatch Release 1

Introduction and User Guide

GNUbatch User Guide

This manual is for GNUbatch (Introduction and User Guide).

Copyright 2009 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or any
later version published by the Free Software Foundation; with no
Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
Texts. A copy of the license is included in the GNUbatch reference manual
in the section entitled ``GNU Free Documentation License''.

Page 2

GNUbatch User Guide

1 What is GNUbatch?

GNUbatch is a job scheduler to run under Unix and GNU/Linux operating systems. It
executes jobs at specified dates and times or according to dependencies or interlocks
defined by the user.

Schedules of jobs may be run on just one processor, or shared across several
processors on a network with network-wide dependencies. Access to jobs and other
facilities may be restricted to one user or several users in a group as required.

Control of and access to all the GNUbatch facilities is made available through a
variety of interfaces including:

• Command line or "shell commands"

• Full screen text-based using "curses"

• X-Windows (Motif toolkit)

• X-Windows (GTK toolkit)

• MS Windows clients

• Web Browser interfaces (two variants)

• Unix or GNU/Linux based API (supporting C and C++)

• MS Windows based API (supporting C and C++)

In all cases apart from "command line" the access is fully interactive and the display is
automatically updated to take account of changes to jobs and other facilities on the
screen whether by the user, another user or by jobs starting and finishing.

A lot of effort has been made to make GNUbatch fully configurable on a per user or
system-wide basis. You can alter the format and content of screen displays, help
messages, command keystrokes and option names to suit your requirements such as
foreign language support or personal taste.

Common sets of options and parameters may be saved by the user to provide a local
or global set of defaults for particular tasks.

GNUbatch is implemented so as to minimally impact upon the system. In an idle
state, it typically uses less resources than cron. It is implemented in ANSI C, apart
from the MS Windows client, which is in C++, and parts of the web browser interfaces,
which are in JavaScript. All of the product was developed and written by Xi Software.
No additional third-party database or other software is used or relied upon.

All current Unix and GNU/Linux platforms are supported and different platforms may
run the product concurrently inter-networking with each other.

The original version was written by John Collins at Xi Software Ltd between 1990 and
2009 as “Xi-Batch” and GNUbatch is based on Release 6 of Xi-Batch. The names,
including most of the program and service names, have been changed to GNUbatch or
derivatives and the installation directories have been changed to conform to GNU
standards. (For this reason some of the diagrams may refer to Xi-Batch rather than
GNUbatch).

Page 1

GNUbatch User Guide

2 Jobs

The basic unit of GNUbatch operation is a job. A job consists of two parts:

• A list of scheduling parameters, conditions and a name of a program to run.

• A (possibly empty) script to be passed to the program specified by the other
part. This is usually a text file, but it does not have to be.

In the simplest cases (in many installations the only case) the program run by the job
is the Bourne shell and the script is a shell script, possibly including arguments
supplied by the job parameters.

A variety of interfaces are provided to create jobs, to edit them once submitted, and
to delete them, possibly retaining a copy. Such interfaces may be invoked from within
other jobs.

Jobs may be created on one host on the network, queued on another and executed on
yet another.

The program which is run, and to which the script is passed, is called the command
interpreter. Within reason, it may be any program, but is most often a shell such as
the Bourne Shell sh.

Page 2

GNUbatch User Guide

3 Variables

There is a second kind of object maintained by the GNUbatch system, called
variables.

Variables have a name and a value, which may either be a string or an integral
numeric value. There are a separate set of commands and interfaces to create, delete
and assign new values to variables. Variables may be "exported" or shared between
several hosts on the network.

An important feature of variables is that updates are interlocked across the network,
so that if two or more users or jobs anywhere on the network attempt to update the
same variable from the same starting value at the same time, only one will "succeed".

The main function of variables (although the synchronisation features enable them to
be used for other purposes as well) is to provide starting "conditions" for jobs. Jobs
may be set so that they will only start if one or more variables are set to certain
values.

Jobs can also be set so that as they start or as they finish they will "assign" values to
variables, so possibly releasing other jobs to run. It is possible to distinguish between
normal and error cases of job termination and handle them differently.

Page 3

GNUbatch User Guide

4 Queues

There is a single job queue as such on each machine. However a job can be given a
"queue name" as a prefix to its title. It is also possible to group sets of options and
parameters together with the queue name and achieve the effect of a logical queue
with standard sets of parameters. However more flexible ways of organising and
controlling sets of jobs are possible.

Page 4

GNUbatch User Guide

5 Getting Started

As an initial example, let us look at a very simple job submitted from the shell prompt.
The shell-level command to do this is called gbch-r.

$ gbch-r
Warning: Expecting Input from Terminal
echo hello
sleep 30
(ctrl-D)
$

In this simple example, the batch job consists of two commands echo and sleep.
GNUbatch will attempt to execute them as soon as possible (this may well be
immediately). You will probably get a mail message like the following:

From batch Tue Feb 6 11:45:57 2001
Date: Tue, 6 Feb 2001 11:45:56 GMT
From: GNUbatch Scheduler <batch@example.com>
To: guest@example.com

Subject: GNUbatch job number 27309 completed

Your batch job, job number 27309, completed satisfactorily
Standard output from your job was:

hello

Please note that the job scheduling program gbch-r displays a warning message if
input from the terminal is expected. It is to be terminated by the user's end-of-file
character, normally ctrl-D.

The actual input is passed to the command interpreter, which usually defaults to the
Bourne shell (sh). The input shell commands may be taken from Standard Input as in
the above example. Alternatively, they may be taken from one or more job files as
follows:

gbch-r job1 job2

The files job1 and job2 each consist of a "shell script" to be executed and a separate
job will be created for each file (if no "job title" is given, they will be given titles taken
from the file names).

A large number of options may be given to gbch-r to set numerous parameters for the
job. In many cases it is easier to set them all interactively, which may be done with
the graphical submission programs gbch-xr or gbch-xmr (for X-Windows) or btrw (for
Microsoft Windows).

You can also submit jobs from a web browser using the GNUbatch web interface, for
example to submit a job equivalent to the above you could invoke it from the browser
thus:

Page 5

GNUbatch User Guide

(An alternative mode of browser job submission allows the user to pass a file of
commands to the web server rather than typing in the script as in the above
example).

Often users just submit the basic job to the queue, holding it for the moment, and
then adjust the various parameters using one of the various job queue managers. To
do this, the job or jobs are submitted using the "-C" (cancelled state) option, thus:

gbch-r -C job1

This is the usual method of submission for the web browser interface.

Most of the examples given in this manual are given in this state.

Page 6

GNUbatch User Guide

6 Job Queue Management

Once jobs have been placed on the job queue, there are various ways of displaying
and updating them.

You can display the job status from the command line using the utility program gbch-
jlist:

$ gbch-jlist
1119 jmc job1 sh 160 1000 Run
1137 jmc job3 sh 150 1000 12/02
$

As is conventional with Unix-style commands, without options this is a terse list of
unexplained fields, however an option may be used to put a heading on each column:

$ gbch-jlist -H
Jobno User Title Cmd Interp Pri Loadlev Time Cond Progress
1119 jmc job1 sh 160 1000 Run
1132 jmc job2 sh 150 1000 08/02
1137 jmc job3 sh 150 1000 12/02
$

However there is a "remember my defaults" option for all commands which enables
you to say that you always want the "-H" option unless you specify something
different.

You can also tune which attributes of jobs are displayed and in which order and
remember those as your defaults.

gbch-jlist by default just displays jobs local to the host, but you can display other
hosts' jobs by using the "-R" option (which can likewise be saved as your own personal
default):

$ gbch-jlist -HR
Jobno User Title Cmd Interp Pri Loadlev Time Cond Progress
01119 jmc job1 sh 160 1000 Run
avon:24918 jmc newone sh 150 1000 Canc
01132 jmc job2 sh 150 1000 08/02
01137 jmc job3 sh 150 1000 12/02
avon:28156 jmc newtwo sh 140 1000 Run
$

Note that the external jobs have the host name (avon in this case) prefixed to the job
number. In all other respects, the external jobs can be displayed and manipulated in
the same way as local jobs.

All this is a bit inconvenient, as to manipulate the jobs you have to quote the job
numbers in an appropriate shell command, so most of the time you may want to
display the job list and update attributes of jobs using one of the four interactive job
queue managers.

A key feature of the interactive job queue managers is that the display is instantly
updated when any changes occur, whether as a result of your activities, another
user's, or merely because jobs start and finish.

Page 7

GNUbatch User Guide

6.1 Btq - character based terminals

An example display of the job queue listed above would be as follows:

This is the default display format, which again may be varied by the user and the
formats saved as her or her own personal defaults.

Various keystroke commands enable the user to select jobs and make changes to
various parameters. These are defined further in the reference manual.

Note that all the text strings such as Run and Canc may be changed by the user to
reflect his or her own terminology. Likewise the command keystrokes may be
changed.

6.2 Xmbtq - X-Windows

The same job queue would look like the following under the X-Windows interface:

Page 8

GNUbatch User Guide

Note how the jobs may appear in different colours depending on the state they are in.
The colours used may again be selected by the user.

This display is split between jobs and variables. The split may be adjusted by the user
as required.

6.3 Web Browser Interface

The following is the same job display as shown by the web browser interface
(Netscape Navigator was used in this example).

Page 9

GNUbatch User Guide

The check boxes at the start of each job row may be used to select one or more jobs
and the options on the frame on the left used to perform various operations.

Again the display formats and job attributes to be displayed may be selected by the
user and stored as a "cookie" for the next time the job list is accessed.

6.4 MS Windows Interface

The final interface style is the MS Windows client. A set of jobs similar to the jobs
displayed above might look like the following

Page 10

GNUbatch User Guide

Each host is separately identified.

Currently GNUbatch does not run as such on MS Windows, but there is an Agent
program which may be invoked by GNUbatch on a host which may be used to upload
and download files and run jobs on the Windows machine.

6.5 API

If none of those interfaces do what is required, and you want to devise your own, there
is an API available for C and C++ under Unix and GNU/Linux, and also under MS
Windows. All of the facilities described above are available using the API.

Page 11

GNUbatch User Guide

7 Load Levels

Load levels provide a simple method of controlling the number and types of jobs which
may be run at once.

Each job has a value associated with it called the load level, which is usually derived
from the command interpreter used. Suitably privileged users may vary this up or
down for individual jobs as required.

There is a system-wide maximum load level, and a total for each user. A job will not
be started on a given machine if the job's load level would cause the system-wide
maximum to be exceeded or the user's total to be exceeded. However it may be
possible for another machine to run the job if its values for those totals are not
exceeded.

This provides for a finer level of tuning than just a maximum number of jobs would
give. So if the maximum load level is 6,000, then 6 jobs of load level 1,000, 3 jobs of
load level 2,000 or some combination coming to 6,000 or less can be accommodated.

Page 12

GNUbatch User Guide

8 Time Settings

The examples discussed earlier are set to run "as soon as possible". Depending upon
the load level, this may be more or less immediately.

In many cases, a "time to run" is set, giving the earliest time and date at which the job
is to be run.

In addition a "repeat specification" can be set, indicating whether the job is to be
repeated and how the repeat time is to be calculated.

The repeat specification may be "run once and delete", "run once and retain" (so the
job has to be manually reset), or repeat in units of so many:

• Minutes

• Hours

• Days

• Weeks

• Months

• Years

In the case of months, the specification provides for "relative to the beginning", in
which case the same target day, such as the 1st or the 5th is selected each month, or
"relative to the end", in which case so many days from the end of the month are
selected.

At the same time you can say that you want to set "avoid days" such as weekends,
and set up a calendar of holidays and avoid those days. A later day is selected in all
cases except in the case of "months relative to the end", when an earlier day is
selected. This makes it easy to say you want to repeat something on the "second to
last working day of each month", taking weekends and holidays into account.

The next time to run is replaced by the time calculated from the repeat specification
at the end of a successful normal run.

There are two operations to override the time of a job if required, "force" which
performs an extra run of the job as soon as possible, and "force and advance" which
performs the next run of the job now, advancing the time.

Another option specifies what should happen if the job cannot be run at the required
time, whether it should be repeated or run at the next available time, together with
other options.

Page 13

GNUbatch User Guide

9 Conditions and assignments

One of the key features of GNUbatch is the ability to control the execution of jobs, so
that, for example, no more than one job of a given type may be executed, or a given
series of jobs may be executed in a given order.

To achieve this facility, GNUbatch variables are used. Any number of variables may
be created, and any user may create variables, provided that the names do not
conflict with existing variables.

Variables may be given a numeric or a string value, and a comment to explain to
other users the purpose of the variable.

Before a job starts, it is possible to check that up to 10 variables possibly on remote
machines have particular numeric or string values.

When a job does start, it is possible to change the values of up to 8 variables, possibly
on remote machines.

When a job finishes, it is likewise possible to change the values of up to 8 variables,
possibly by reversing what happened when the job started.

The type of facility this is describing might be illustrated thus:

As an extra feature, you can separately distinguish the cases where the job ends due
to

• Normal termination.

Page 14

GNUbatch User Guide

• Error termination (with exit code non-zero, or you can redefine what
constitutes error exit).

• Abort (signal or core dump etc).

• Cancellation - operator halt before the job has a chance to run.

There are various ways of creating and initialising variables, either from the command
prompt with btvar, or from the various full-screen and graphical interfaces or API.

As with jobs, variables may be listed and displayed using the shell command btvlist,
analogous to gbch-jlist, and with similar options, for example

CLOAD 1000 # Current value of load level
LOADLEVEL 20000 # Maximum value of load level
LOGJOBS # File to save job record in
LOGVARS # File to save variable record in
MACHINE avon # Name of current host
STARTLIM 5 # Number of jobs to start at once
STARTWAIT 30 # Wait time in seconds for job start
torres:fooo1 128 Export # Try this for export
fred9 23 #
newvar1 333 #
tryzzzz 3444 Export #
zz1 445 #

Certain of these variables are special and provide scheduling options for the system.
Any or all of them may be used to control jobs.

Note how the variables on remote machines have the machine name prefixing the
name of the variable.

9.1 Conditions on jobs

A job condition consists of the following:

A condition involving a variable on a remote host may be marked as "critical". In such
a case the job will be blocked if the remote host is unavailable. Otherwise the
condition will be ignored.

9.2 Job Assignment

A job assignment consists of the following

Page 15

GNUbatch User Guide

In the same way as for conditions, assignments to remote variables may be "critical".
If they are "critical", a job will not start if the referenced variable is on a machine
which is not available. (If it starts and the machine becomes unavailable whilst the job
is running, obviously not much can be done).

It is possible to set up and modify conditions and assignments from any host or client
using any of the various interfaces.

9.3 Conditions on Files

It is possible to monitor for a file or set of files being created or changed and to make
a job dependent upon that.

This is performed using a separate file monitoring process. The reason for doing this is
that there is no option in Unix to set an alarm to "wake me up when a file changes"
and consequently the monitoring process has to "poll" or look at the files at regular
intervals.

One of the key design features of GNUbatch is that wherever possible the software is
"event-driven", in other words the software does not use processor time and memory
when there is nothing to do.

However this commonly-required facility is provided as a standard but stand-alone
option to the software. There is no actual requirement for GNUbatch jobs to be
submitted or released by the file monitoring option, any task may be performed.

Page 16

GNUbatch User Guide

10 Permissions and security

A key feature of GNUbatch is the careful attention which has been paid to ensure
that no unauthorised access is made its facilities.

Each job and variable has an access mode defining which operations various users
may perform upon the file, including changing the access mode.

Each user has a set of permissions defining his rights of access to special facilities of
GNUbatch and a set of default access modes which apply to jobs and variables which
he or she creates, which may or may not be departed from, according to other
permissions.

The access rights and permissions for each user are controlled by various special
utilities and apply to the machine upon which the user is attempting to work.

The Web browser interface requires a correct user name and password to be quoted
before access rights are granted (although there is an option to set a default user,
usually with limited access rights).

Page 17

GNUbatch User Guide

11 Charges and logging

A log is kept of each user's use of the system each time a job is run on behalf of that
user and this can, if required, be the basis of accounting or logging of machine usage.

Additionally, a central log can be kept of each operation on each job or variable,
showing the time, date, nature of the operation and the user responsible.

Page 18

GNUbatch User Guide

12 Conclusion

This manual is intended to give you a brief overview of GNUbatch and some idea of
its facilities and what it can be used for.

To install and administer the product, please see the Administration Manual. For
details of the individual parts of the software, please see the Reference Manual. Some
of the options, such as the Windows client option, are described in separate manuals.

The product is under continuous development and enhancement and we greatly
welcome constructive suggestions for this.

Page 19

