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Abstract—Portfolio optimization is a task that investors use to
determine the best allocations for their investments, and fund
managers implement computational models to help guide their
decisions. While one of the most common portfolio optimization
models in the industry is the Markowitz Model, practitioners
recognize limitations in its framework that lead to suboptimal
out-of-sample performance and unrealistic allocations. In this
study, I refine the Markowitz Model by incorporating machine
learning to improve portfolio performance. By using a hierar-
chical clustering-based approach, I am able to enhance portfolio
performance on a risk-adjusted basis compared to the Markowitz
Model, across various market factors.
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I. INTRODUCTION

In the financial industry, portfolio optimization remains a
significant point of focus among practitioners and academics
alike. With portfolio optimization being a growing sector in fi-
nance over the past few years, the need for new computational
methods to guide investors’ asset allocations and improve
accuracy has never been greater [1].

One of the most common portfolio optimization models
used in industry is the Mean-Variance Model, also known
as the Markowitz Model, created by Harry Markowitz in
1952. Published as part of his paper “Portfolio Selection,” [2]
Markowitz founded the Modern Portfolio Theory, a method
that risk-averse investors use today to construct diversi-
fied portfolios that maximize their returns. In this theory,
Markowitz states that any investment’s risk and return charac-
teristics should not be evaluated by itself but by how it affects
the portfolio’s overall risk and return.

While this model is fundamentally sound and is still used
today to help investors fulfill their multi-million-dollar invest-
ments, asset allocators and portfolio managers recognize its
many limitations [11]. For starters, it is well known that the tra-
ditional Markowitz approach to portfolio optimization exhibits
high investment turnover, poor out-of-sample performance,
and odd weight allocations [6]. Furthermore, this model is
also known to make several incorrect assumptions, such as
assuming that all investors have the same credit and failing to
account for additional charges (i.e., brokerage and other taxes
that can sway investors’ decisions) [10]. Due to these several

constraints, many practitioners are looking for new models to
guide their decisions.

In recent years, advancements in machine learning have
opened up new possibilities for improving portfolio allocation
and optimization in the financial sector. As the demand for
more accurate and efficient asset allocation methods grows,
machine learning techniques have emerged as a promising
solution to address the limitations of traditional portfolio
optimization models.

Therefore, in this study, I aim to leverage the power
of machine learning to devise a new portfolio optimization
model. To improve on ex-ante portfolio optimization models, I
implement a machine learning technique known as hierarchical
clustering[9] to increase optimization accuracy and account for
the Markowitz model’s limitations.

To do this, I devise a clustering algorithm that groups assets
based on their correlations and similarities to form clusters [7].
These clusters are then sub-clustered using recursive bisection,
and then rearranged to form the covariance matrix using a
Quasi-Diagonalization, in order to increase robustness in the
portfolio [14]. Finally, I allocate and build the portfolio by
using a long-short strategy which allows me to take advantage
of both upward and downward market movements.

To evaluate the model’s performance, I assess the portfolio
performance of the clustered model against the Markowitz
Model under common model metrics[13] such as Average
Monthly Excess Returns, Standard Deviation, and Sharpe-
Ratios to see if higher out-of-sample risk-adjusted returns are
attainable.

II. METHODOLOGY

A. Data Used

In this research, I used the monthly returns of common
stocks listed on the three major U.S. stock exchanges: NYSE,
AMEX, and NASDAQ, as reported by the Center of Research
in Security Prices (CRSP) from 1965-2022. To ensure the real-
world implementation and practicability of the findings in this
paper, I applied several filters to the data so that the stocks
available for allocation are liquid and realizable for investment.
Using these filters, I specifically obtained data concerned with
price, return, shares out, CFACPR, and weighted value returns,
for thousands of companies in various sectors. Additionally, I
also obtained monthly risk-free data from Ken French’s data
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library that gave us market excess returns, the risk-free rate,
size (SMB), value (HML), profitability (RMW), investment
(CMA), and momentum (MOM) factors. In this research, I
analyze the covariance matrix using three different look-back
times, a 12-month, 60-month, and 120-month look-back time.

B. Algorithm

1) Distance Equation: In this analysis, I use the following
standard distance metric, proposed by Marcos de Prado[3], to
devise a distance matrix:

Equation 1: Standard Distance Metric

To calculate the distances between the stocks in the cross-
sections of my data, I used Equation 1 to conduct my cluster-
ing. This distance equation quantifies the pairwise distances
between all data points, reflecting how closely related or
distinct they are from one another.

2) Hierarchical Clustering: In this research, I used the
hierarchical clustering machine learning approach to group
stocks that are similar to one another and then placed them on
a hierarchy based on their performance. This approach allows
for a more sophisticated analysis of correlations and similari-
ties. By grouping stocks based on their inherent relationships,
the model can capture complex market dynamics and depen-
dencies that may not be evident in traditional optimization
techniques. This improves risk management by enabling the
identification of coherent clusters that respond differently to
market conditions, allowing investors to better understand
potential sources of risk within their portfolios and make
more informed decisions in varying market environments. For
example, stocks can be grouped based on industries, which
leads to a more robust and diversified portfolio by removing
sector bias and thus resulting in improved portfolio turnover
rates, which is one of the significant flaws in the Markowitz
Model.

In this framework, I start by taking each company’s monthly
return values from the CRSP data and subtracting them from
the risk-free rates I received from the Ken French data library
to get the data’s excess return value, which is what I analyzed.
Since excess return rates represent the returns achieved above
the risk-free rate, which is the return an investor would earn
on a risk-free asset like a government bond, by subtracting
the risk-free rate from the actual returns of the portfolio, I
can isolate the additional returns generated by taking on risk
through investments in stocks.

Next, to determine the correlations to use for my distance
matrix, I heat-mapped the data points from various stocks to
find the similarities and differences between them. Then, using
the distance equation, I created a distance matrix based on
the correlations between stocks in the cross-section at a given

time. Finally, using the test data sets of sixty years worth
of financial stock data, I clustered the stocks based on their
correlations. The relationship clustering can be seen in Figure
1:

Fig. 1: Hierarchical Clustering Dendogram

(a) Figure 1 demonstrates the clustering of the stocks that the
model aims to do. When given a random group of stocks, the
hierarchical clustering model clusters the stocks based on their

distances determined by their correlations.

As seen in Figure 1, stocks A and B are first clustered
together as they are the most similar, followed by stocks E
and F being clustered together as well. Then, the clustering
algorithm includes stock D into the clustering pair of stocks
E and F and then includes stock C into the next pair. Finally,
the asset pair A and B are clustered with the rest of the assets
in the last step of our clustering.

3) Recursive Bisection: The next step is to conduct re-
cursive bisection, which involves assigning actual portfolio
weights to assets in a recursive manner to refine the clustering
solution further and create a more robust portfolio allocation
strategy. After the initial hierarchical clustering step groups
stocks based on their similarities, recursive bisection helps
break down the resulting clusters into smaller sub-clusters,
allowing for a more detailed and granular allocation of stocks
within each cluster. Furthermore, by creating sub-clusters,
recursive bisection reduces the number of stocks competing
for weight allocation, meaning that assets within a sub-cluster
will be more closely related, and their performance is likely to
be more aligned. As a result, the allocation decision becomes
less complex and may lead to more stable and reliable portfolio
performance.

4) Quasi-Diagonalization: Once all stocks are hierarchi-
cally clustered and sub-clustered, we move on to performing
quasi-diagonalization to our algorithm to build our covariance
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matrix and enhance the interpretation of the clustering results.
I initially clustered all the stocks into a hierarchical tree based
on previously defined similarity; however, I now rearranged
the rows and columns of the covariance matrix of stocks so
that similar stocks are placed together, and the stocks dis-
playing the most variance are placed further apart. This quasi-
diagonalization approach should now rearrange the covariance
matrix so that the more significant covariances in the matrix
are placed across the diagonal, with the smaller ones spread
around the diagonal.

5) Building the Portfolio: Our last step is to build the
portfolio. In this analysis, I implement a long-short portfolio
which allows me to take advantage of both upward and down-
ward market movements. By incorporating short positions, I
can analyze declining stock prices, thus enhancing the over-
all risk-adjusted returns and offering a more comprehensive
strategy to capture market inefficiencies. To do this, I added a
side weights parameter to signify stocks intended to be short
versus long. For example, a -1 indicates going short on a stock,
and a 1 indicates going long.

III. EMPIRICAL TESTS AND RESULTS

By using a hierarchical clustering-based approach, I find that
I can achieve improved out-of-sample portfolio performance
on a risk-adjusted basis compared to the Markowitz Model by
comparing them across various market conditions.

Fig. 2: Stock Example

(a) This figure plots the covariance matrix for the devised
hierarchical clustering model and the covariance matrix for the

traditional Markowitz model. The covariance matrices are heat-map
colored by the correlation of the stocks. It is important to note that

closely clustered stocks are grouped closer to the diagonal line.

Figure 2 represents an illustrated example of where ran-
domly selected stocks were used to depict correlation dif-
ferences. Through the covariance matrices, we can see that
the hierarchical clustering matrix can heat-map the correlation
of the stocks much better than the Markowitz model can, as
seen based on the color correlations. For example, on the
clustered matrix, we can see that similar colored stocks are
seen closer to each other on the hierarchy, indicating that
similar stocks are being clustered together. Conversely, the
stocks are less correlated on the Markowitz matrix, indicating
incorrect allocations. Therefore, it is evident that the clustered
portfolio groups stock better than the Markowitz Model does,
allowing for a more robust correlation in a covariance matrix
and a more diversified portfolio.

Table 1: Portfolio Performance Analysis

(a) In this study, portfolios were analyzed using a 3-month
buy-and-hold, long-short strategy, using the side weights parameter.

The following analysis was conducted using CRSP monthly data
from 1965-2022. Using a 12-month, 60-month, and 120-month

look-back period[12], the analysis is based on out-of-sample return
performance. To conduct my analysis of the portfolio performance,

I look at the following three measures: Average Monthly Excess
Returns, Standard Deviation, and the Sharpe-Ratios

Average monthly excess returns, standard deviation, and
Sharpe-ratios are commonly used metrics to determine a port-
folio allocation model’s efficacy because they provide valuable
insights into the risk and return characteristics of the portfolio
[8]. For starters, excess returns refer to the returns achieved by
a portfolio above the risk-free rate or a benchmark index and
measures the portfolio’s performance relative to a baseline.
By calculating the average monthly excess returns, investors
can assess how well the portfolio is performing compared to
the risk-free rate or a benchmark. Standard deviation, on the
other hand, is a measure of the dispersion of returns around the
portfolio’s average return that quantifies the volatility or risk
of the portfolio. A higher standard deviation indicates greater
price fluctuation, implying higher risk. Finally, the Sharpe-
ratio is a risk-adjusted performance metric that measures
the amount of return per unit of risk taken, and enables
investors to compare different portfolios’ risk-adjusted returns
and choose the one that offers the best trade-off between
risk and return. Thus, Table 1 depicts the average monthly
excess returns, standard deviation, and Sharpe-ratios for the
clustered portfolio, the Markowitz portfolio, and the standard
market portfolio. As evident by the results, when looking at
a 12-month, 60-month, and 120-month look-back period, the
clustered portfolio merits better measures when compared to
the Markowitz Model. Comparing these values to the market,
we can see that the clustered portfolio can produce higher
risk-adjusted returns and Sharpe-ratio measures by roughly
0.34% and 0.08%, respectively, while maintaining comparable
standard deviation measures, thus indicating improved port-
folio performance. The same, however, cannot be said for
the Markowitz portfolio, which has a lower average monthly
excess return rate and lower Sharpe-ratios, with a difference
of 0.15% and 0.32%, respectively, while having significantly
higher standard deviation rates of 5.29%, when compared to
the clustered portfolio. While it is beneficial for our model
to be analyzed using recent data that mimics the trends seen
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in the stock market more closely, I also aimed to see how
the model fares when being compared over a more extended
look-back period, and thus, studied the portfolio performance
of both models when using a 60-month and 120-month look-
back window to better approximate the covariance matrix.
With the 60-month and 120-month look-back windows, we
can see that the trend continues where the clustered portfolio
produces average monthly excess returns, standard deviation,
and Sharpe-ratios that outperform the market value while
notably exceeding the values produced by the Markowitz
portfolio.

Table 2: Portfolio Performance Analysis During Market
Downturns

(a) In this study, portfolios were analyzed using a 3-month
buy-and-hold, long-short strategy, using the side weights parameter.

The following analysis was conducted using CRSP monthly data
from 1965-2022, but only using data from market downturns. Using

12-month, 60-month, and 120-month look-back periods, the
analysis is based on out-of-sample return performance. To conduct
my analysis of the portfolio performance, I look at the following

three measures: Average Monthly Excess Returns, Standard
Deviation, and the Sharpe-Ratios.

To further ensure the accuracy and usability of this model, I
compared the clustered model and the Markowitz model using
specifically a time series of returns from market downturns
while looking at the same metrics seen in Table 1 of Average
monthly excess returns, standard deviation, and Sharpe-ratios.
Market downturns refer to periods of significant decline in the
overall value of financial markets, which can have a profound
impact on investors’ portfolios, and thus are important to
consider when evaluating models. As seen in Table 2, the
clustered model relays the same trends as in Table 1, where
the clustered model performs better than the Markowitz model
along those same measures. When looking at the 12-month
look-back period, precisely that of the clustered portfolio and
the market, we can see that the clustered portfolio can produce
higher risk-adjust returns by roughly 0.24% while maintaining
comparable standard deviation measures and Sharpe-ratios,
thus indicating improved portfolio performance. On the other
hand, the Markowitz portfolio has a lower average monthly
excess returns and lower Sharpe-ratios, with a difference of
0.73% and 0.13, respectively, while having significantly higher
standard deviation rates of 0.68%, when compared to the clus-
tered portfolio. I similarly studied the portfolio performance of
both models when using a 60-month and 120-month look-back
window to better approximate the covariance matrix. With

the 60-month and 120-month look-back windows, we can see
that the trend continues where the clustered portfolio produces
average monthly excess return rates, standard deviation, and
Sharpe-ratios that outperform the market value while notably
exceeding the values produced by the Markowitz portfolio.
Therefore, on a risk-adjusted metric, the clustered portfolio
has better excess returns during market downturns.

IV. CONCLUSION

Through this study, I was able to find significant and robust
evidence of improved portfolio performance using a hierarchi-
cal clustering approach compared to the standard Markowitz
approach. Using out-of-sample portfolio performance, studied
using a large cross-section of U.S. traded stocks over the
past sixty years, the clustered model shows improvements in
portfolio allocation, which is vitally important to investors
worldwide. By ensuring that results are not spurious, through
the improvements in risk volatility and portfolio performance,
I find a significant improvement in result consistency in our
model compared to that of a Markowitz approach, which
is of paramount importance when using real money in real
time. The empirical tests and analyses conducted in this
research demonstrate that the hierarchical clustering model
outperforms the traditional Markowitz model across various
market conditions. Notably, the clustered portfolio consistently
yields higher risk-adjusted returns, better standard deviation
rates, and improved Sharpe-ratios, even during market down-
turns, across several look-back periods, thus reinforcing the
robustness and effectiveness of the approach. Furthermore, by
incorporating a long-short strategy, the model allows investors
to capitalize on both upward and downward market move-
ments, offering a comprehensive strategy to exploit market
inefficiencies.

V. IMPLICATIONS

This research contributes to financial economics and ma-
chine learning literature by providing an analysis of portfolio
performance when using a clustered covariance matrix versus
a traditional Markowitz covariance matrix, thereby improv-
ing asset allocation and portfolio optimization. As investors
face the constant challenge of dividing their investments
among various assets to optimize their portfolios, the need
for improved computational methods has become increasingly
evident. By utilizing machine learning in the asset allocation
domain, this study presents an interesting approach to using
hierarchical clustering to enhance optimization accuracy by
introducing other model constraints to test the model’s validity.

By shedding light on the effectiveness of the hierarchical
clustering technique in portfolio optimization, this study im-
proves our understanding of portfolio performance and pre-
dictions about market behavior and offers valuable insights to
investors worldwide. The findings pave the way for developing
more sophisticated and accurate numerical models in the
future, supporting practitioners and academics in making better
money allocation decisions, especially in today’s dynamic and
complex financial landscape.



5

VI. FUTURE WORK

In the future, I aim to test my model across various
other models used in the industry and other risk management
techniques. While the Markowitz model is the most common
framework investors use to allocate their portfolios, I aim to
test the clustered approach against similar models, such as the
Black-Litterman Model and other Bayesian-based approaches.
Similarly, evaluating the effectiveness of risk management
techniques, such as using hedging strategies in combination
with the hierarchical clustering approach, could be an exciting
avenue for future research as it would provide insights into
enhancing risk-adjusted returns and minimizing downside risk
during market downturns.

Furthermore, I also plan to test alternate portfolio con-
straints. In this study, I used a long-short strategy for portfolio
allocation, however, in the future, I aim to explore the impact
of different constraints, such as maximum and minimum
allocation limits for individual assets or sectors, and how
these constraints affect portfolio performance. Additionally,
while this study considers factors like size, value, profitability,
investment, and momentum, future research could explore
other variables or macroeconomic indicators that influence
asset returns that can lead to more accurate and robust portfolio
allocation strategies.

Finally, I also look towards dynamic portfolio optimization,
where allocation strategies adapt based on changing market
conditions. The current study focuses on out-of-sample perfor-
mance using a fixed look-back period. However, incorporating
real-time data and dynamically adjusting portfolio weights
could lead to more adaptive and responsive investment strate-
gies.
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