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1The founding president of the American Economic Association, Francis A. Walker,
wrote a well-known article arguing in favor of restricting immigration (Walker, 1896).  Walker
believed that a particular problem was the changing nature of the “new” immigrants.  He wrote:
“Fifty, even thirty years ago, there was a rightful presumption regarding the average immigrant
that he was among the most enterprising, thrifty, alert, adventurous, and courageous of the
community from which he came. It required no small energy, prudence, forethought, and pains to
conduct the inquiries relating to his migration, to accumulate the necessary means, and to find his
way across the Atlantic. To-day the presumption is completely reversed”.  Walker’s view was
disputed by Paul H. Douglas (Douglas, 1919), who argued that cohort-based comparisons
showed no decline in immigrant “quality”.

2See U.S. Department of Commerce (2006). 
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Immigration has long been a controversial topic among economists.1  The issue nearly

disappeared in the 1960s, but over the past three decades professional interest has picked up as

immigrant inflows have surged.  The new immigration has attracted attention in part because of

its sheer size – approximately 1.25 million people per year over the first half of this decade – and

in part because of its composition.2   A third or more of the new arrivals are undocumented

immigrants from Mexico and Central America with low education and limited English skills

(Passel, 2005).  These immigrants presumably compete for the same jobs held by the least-skilled

native workers, contributing to a trifecta of economic factors – technology, trade, and

immigration – that are thought to have led to a rise in skill differentials in the U.S. economy

since the late 1970s.

This paper presents an overview and synthesis of research on the connection between

immigration and wage inequality, focusing on the evidence derived from comparisons across

major U.S. cities.  The appeal of this research design is illustrated in Table 1, which presents 

recent data on immigrant densities, education outcomes, and mean salaries for workers in 12 of



3Throughout this paper I identify “cities” with Metropolitan Statistical Areas (MSA’s), or
in the case of larger urban agglomerations, with the constituent Primary Metropolitan Statistical
Areas (MSA’s).  See the Data Appendix for details on how the data used in this paper were
constructed.

4The linear regression coefficient is 0.21 with a standard error of 0.02; the R-squared is
0.38.
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the nation’s largest cities.3  The immigrant share of the working-age population in these cities

ranges from about 10% in Philadelphia and Detroit to nearly 50% in Los Angeles.  These

differences in immigrant densities are correlated with large differences in the relative shares of

different skill groups.  Figure 1, for example, presents a scatter plot of the share of high school

dropouts in the working age population of the biggest 124 cities against the corresponding

immigrant share.  On average, each percentage point rise in the immigrant share is associated

with a 0.2% rise in the relative share of dropouts.4  Consistent with this general pattern, the

dropout share in Los Angeles is over twice as large as the share in Philadelphia or Detroit.  I

believe that there is something to be learned about labor markets in general, and the effects of

immigration in particular, by studying how wages and other outcomes respond to this variation.

Nevertheless, as emphasized by Borjas, Freeman and Katz (1997), cross-city comparisons

are far from a panacea.  Natives and immigrants can easily move between cities, and depending

on how sensitive these flows are to differences in local wages, naive cross-city comparisons may

reveal a lot or little about the underlying technological parameters that determine the effects of

immigration on native opportunities.  In fact,  Borjas, Freeman and Katz (1997) argue that

mobility rates are so sensitive to relative wages that intercity comparisons are essentially

uninformative.  Instead, they propose the use of aggregate time series models to estimate the

underlying parameters of interest.



5Fisher (1968, 1969) showed that the conditions for existence of a well-behaved aggregate
production function – even when all firms face identical prices for all inputs and outputs – are
extremely stringent.  In particular, the existence of a labor aggregate such as “high school labor”
requires the absence of specialization across firms. Nevertheless, simulations reported in Fisher,
Solow and Kearl (1977) suggest that economies made up of heterogeneous firms with different
CES production functions behave as if they were generated by an aggregate CES.  An interesting
issue for further research is under what conditions an aggregate economy made up of separated
markets – each containing heterogeneous CES firms, and each with potentially different relative
prices – behaves as a single aggregate CES, and whether the synthetic parameters at the market
and aggregate levels are related in any systematic way.
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This paper makes the case that appropriately identified parameters derived from cross-city

and aggregate time series comparisons are in fact mutually consistent.  In particular, estimates

from both data sources point to three key conclusions.  The first is that workers with less than a

high school education are perfect substitutes for those with a high school education.  This

conclusion is important because it means that the impact of low-skilled immigration is diffused

across a wide segment of the labor market (the roughly 60% of the population who are counted

as “high school equivalents” workers) rather than concentrated among the much smaller dropout

population (only 14% of the population).  The second conclusion is that “high school equivalent”

and “college equivalent” workers are imperfect substitutes, with an elasticity of substitution that

appears to be similar whether the relevant labor market is defined as the nation as a whole, or an

individual city.5  A third conclusion is that within broad education classes, immigrant and native

workers appear to be imperfect substitutes, with a large but finite elasticity of substitution.  As

was first pointed out by Ottaviano and Peri (2006), if immigrants and natives in the same skill

category are imperfect substitutes, the competitive effects of additional immigrant inflows are

concentrated among immigrants themselves, lessening the impacts on natives. 

When the demand side of the national labor market is parameterized with these three



6Lemieux’s (2008) comparisons of trends in residual wage inequality by sub-period and
within narrow occupations also seem to rule out a major role for immigration.
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assumptions, and capital is assumed to be perfectly elastically supplied, the net impact of

immigrant inflows over the past two decades on mean wages of different subgroups of native

workers are quite small (Ottaviano and Peri, 2008).  A similar parameterization of the demand

side of the local labor market implies that the effects of immigration on mean wages for different

groups of natives in most cities are also small.

Most of the existing research on immigration has focused on between-group inequality. 

A significant share of the overall rise in U.S. wage inequality is attributable to increases in

within-group or residual wage inequality - the variation that remains after controlling for

education, age, gender, race and ethnicity (see Lemieux, 2008 for a recent summary). 

Empirically, residual wage variation among native workers is significantly higher in cities with

more immigrants.  The relative level of residual wage inequality for natives in different skill

groups is uncorrelated with the relative fraction of immigrants, however, suggesting that

immigration has a relatively small causal effect.6  Taken together with the evidence on between-

group wage differentials,  I conclude that immigration has had very small impacts on wage

inequality among natives.

Nevertheless, when immigrants themselves are counted in the overall population their

effect on inequality is clearly positive.  Immigrants tend to be concentrated in the upper and

lower tails of the skill distribution.  Residual wage inequality among immigrants is also higher

than among natives.  A simple calculation suggests that the presence of immigrants can explain

about 5% of the rise in overall wage inequality between 1980 and 2000. 



7In the inequality context see for example Katz and Murphy (1992), Murphy and Welch
(1992), Autor and Katz (1999), and Goldin and Katz (2008), all of which focus exclusively on
demand side modeling.  In the immigration context see Johnson (1980), Grossman (1982), Borjas
(2003), and Ottaviano and Peri (2006), all of which likewise focus on the demand side.

6

I. Conceptual Framework

a. Overview

The main theoretical apparatus used in studies of wage inequality, and in studies of

immigration,  is a model of the demand side of the labor market.7   In both literatures the supply

side is usually simplified by assuming that per capita labor supply is perfectly inelastic, although

in models of local labor markets the number of workers can potentially vary (e.g., Card, 2001). 

Most often capital is assumed be to separable from labor inputs, and perfectly elastically

supplied, so the issue becomes one of specifying the relative demand for different skill groups.

As emphasized in international trade theory, some fraction of the overall response of

labor demand to relative wages presumably arises through sectoral adjustments (see Kuhn and

Wooten, 1991, for an illuminating analysis in the immigration context).  In the stark world of the

Heckscher-Ohlin model this channel is so important that relative demand curves are flat: changes

in the relative supplies of different skill groups lead to expansions and contractions of different

industries with no change in relative wage or relative skill utilization within any particular

industry.  One might guess that sectoral adjustments are particularly important in understanding

derived demand in local labor markets (e.g., at the city or state level).  Surprisingly, however, this

does not appear to be the case.  Lewis (2004) showed that differences in relative supplies of

different education groups across cities are almost entirely absorbed by within-industry changes



8Card and Lewis (2007) present a simplified version of Lewis’s analysis for the case of
Mexican immigrants and reach the same conclusion.

9Provided that capital is available at a fixed interest rate, such a “balanced” immigration
will have no effect on the level of wages for any group either.  Researchers sometimes simulate
the effect of immigration assuming that the U.S. capital stock is fixed (e.g., Borjas and Katz 2007
present some results with a fixed capital stock).  I believe it is plausible to assume that capital is
elastically supplied to the U.S.  See Ottaviano and Peri (2008) for more discussion. 
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in utilization.8  Likewise, Lewis (2008) concludes that sectoral shifts played a relatively small

role in the adjustment of the Miami labor market to the Mariel Boatlift.  In view of these results it

does not appear too unrealistic to adopt a one-sector model of the demand for labor at either the

national or local levels.

In a one-sector framework the properties of the relative demands for different skill groups

are derived from the properties of the relevant sectoral production function, which I will write in

general form as

(1) y = f( N1, N2, .... NS) ,  

where Ns represents labor input from skill group s=1,2,...S.  It is standard to assume that f

exhibits constant returns to scale, implying that the inverse demand functions for each type labor

are homogenous of degree 0 in the vector of quantities N1, N2, .... NS.  This has the important

implication that a “skill-balanced” inflows of immigrants – one with the same skill distribution

as the existing labor force – has no effect on the relative wage structure.9 

As a point of departure, it is helpful to think of the case where all labor types are perfect

substitutes, so f has the form:

(2) f( N1, N2, .... NS) = h(  Es 2s Ns)

for some set of (possibly time-varying) productivity weights 2s.  In this case the relative wage 



10Even with a perfect substitutes assumption it is still possible to have skill biased
technical change if the relative productivity of more highly skilled workers rises over time.

11I am not sure of the origins of this specification but it dates at least to Freeman (1976).
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between any two groups, say 1 and 2, is determined by the ratio 21/22 , and is independent of

relative supply.10  Moreover, if capital is freely available at a fixed price immigration has no

effect on the absolute level of wages for any group.  Although a one-skill model is extreme, there

is a long tradition in labor and macro economics of using such a model, and I believe it

represents a useful “null hypothesis.”   Under this model, relative demand curves are not

downward sloping, but are all flat.

The most widely used form for the production function is a “two–group CES” in which 

workers are partitioned into “high school equivalents” (H) and “college equivalents” (C).  Within

each subgroup workers are assumed to be perfect substitutes.  Thus

(3)  f( N1, N2, .... NS) =   [  "H LH
D   +   "C LC

D ] 1/D  

   LH =   Es0H 2s Ns

   LC =   Es0C 2s Ns

D = (Fe!1)/Fe ,

where Fe is the elasticity of substitution between high school and college labor.  Usually, high

school dropouts, high school graduates, and some fraction of people with 1-3 years of post-

secondary education are classified as high school equivalents.  College graduates and the

remaining fraction of those with some college education are classified as college-equivalents (see

e.g., Katz and Murphy, 1992).11  This simple specification has become a cornerstone of the wage

inequality literature (see e.g. Katz and Murphy, 1992; Autor and Katz, 1999; Acemoglu, 2002).
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 Estimates based on U.S. time series data up to the early 1990s suggested that with the

addition of a linear trend term (representing skill biased technical change), a model based on

equation (3) could provide a reasonable description of education-related wage differences in the

economy, with estimates for 1/Fe centered around 0.7.  Adding more recent data tends to lead to

smaller estimates of 1/Fe: for example Acemoglu(2002)  reports a value of 0.56 using data for

1939-96, while Ottaviano and Peri (2008) present a range of estimates between 0.3 and 0.7.  Katz

and Goldin (2008) argue recent estimates are confounded by a slowdown in the pace of skill-

biased technical change (i.e., the trend in "C/"H)  in the early 1990s.  Allowing for such a shift

they obtain estimates for 1/Fe close to the benchmark 0.7 number. 

The assumption embodied in (3) that there are only two distinct skill groups seems

relatively strong, and a number of extensions have been proposed.  Card and Lemieux (2001)

proposed a nested CES structure, allowing for imperfect substitution between different age or

experience groups within each of the H and C groups.  Their implied estimates of the elasticity of

substitution (Fx) are relatively large (10 or so) and the age structure of the immigrant labor force

is not so different from that of natives, so ignoring this form of imperfect substitution makes

relatively little difference in the immigration context (see Ottaviano and Peri, 2008 for

comparisons of various simulations).

A much more important distinction is whether two education classes is enough.  Borjas

(2003) and Borjas and Katz (2007) assume there are four: dropouts (D), high school graduates

(H), people with some college (S), and college graduates (C), implying a specification like:

(4)  f( N1, N2, .... NS) =   [ "D LD
D + "H LH

D +  "S LS
D   +   "C LC

D ] 1/D 

where LD, LH, LS, and LC are CES aggregates of labor inputs of different experience groups



12In the 2005/2006 American Community Survey the education distribution for working
age immigrants is 30.5% dropouts, 24.2% high school graduates, 18.6% some college, and
26.7% college graduates.  The corresponding fractions for natives are: 10.8%, 30.4%, 30.9% and
27.8%.  I assume that each dropout supplies 0.7 units of high school labor, that one half of those
with some college supply 1.2 units of high school labor, and that the other half supply 0.8 units
of college equivalent labor.
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within each education class, as in Card and Lemieux (2001).  Note that the elasticity of

substitution between any two of the groups (Fe=1/(1!D)) is assumed to be constant.  Thus, the

inverse relative demand function for any two education groups j and k has the simple form:

(5) log wj/wk   =    log "j/"k   !   1/Fe log Nj/Nk .

In the two-skill case an equation like (5) holds for college-high school wage premium, but not for

the relative wage differential between high school graduates and high school dropouts, which

depends only on the relative number of efficiency units of high school labor held by the two

groups (i.e., by the 2s’s in equation 3). 

Though seemingly innocuous, the switch from a two-skills model like (3) to a four-skills

model like (4) has extremely important implications for the potential effect of immigration on

native wage inequality.  This is because the U.S. immigrant population has a high fraction of

dropouts relative to natives (31% versus 11%) but a fairly similar fraction of high school

equivalents (63% versus 59%).12  In a four-skill model the relatively high fraction of dropouts in

the immigrant population distorts the relative share of dropouts and lowers the wage of dropouts

relative to other education groups. In a two skill model, however, the share of dropouts is

irrelevant.  What matters instead is the share of high school equivalent labor, which is unaffected

by immigration when immigrants have the same relative fractions of high school-equivalent and

college-equivalent labor as natives.



13Dustmann, Frattini, and Preston (2008) point out that the degree of substitution between
immigrants and natives will likely depend on how long immigrants have worked in the U.S., and
other factors, such as mother tongue and the quality of education in their home country. 
Arguably these should be taken into account by classifying immigrants into different subgroups. I
do not pursue this here.
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A second important question is whether immigrants and natives in the same education

(and experience) class are perfect substitutes, as is assumed in Borjas (2003), Borjas and Katz

(2007), or imperfect substitutes, as was implicitly assumed in the seminal studies by Grossman

(1982) and Borjas (1987).  Ottaviano and Peri (2006, 2008) and Manacorda, Manning and

Wadsworth (2006) propose an additional nest to the CES structure to allow for imperfect

substitutability.  In these studies there are three elasticities of substitution: one between

immigrants and natives with the same age and education (which I will denote by FI); one within

education classes between different experience groups (Fx), and the third (Fe) between education

groups.13 

Interestingly, even a modest degree of imperfect substitutability between natives and

immigrants can make a significant difference in the implied impacts of immigration on native

wages.  Loosely speaking, the higher is 1/FI the greater is the concentration of the wage impacts

caused by immigrant inflows on immigrants themselves, and the smaller is the spillover effect on

natives.  For example, in a two-education group model that ignores differences by age (i.e.,

1/Fx=0) the effect of an inflow of high-school equivalent immigrants on the college-high school

wage gap for natives depends on the difference [ 1/Fe ! 1/FI ], rather than on 1/Fe as in equation

(5).  (See Manacorda, Manning, and Wadsworth (2006), equation 12). 



14Strictly speaking the traditional two-education group model assigns some of the workers
with some college to the high school group and the remainder to the college graduate group.  
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b. Aggregate Time Series Evidence on the Relevant Elasticities

Before turning to the main evidence that I review here, drawn from cross-city

comparisons, it is useful to briefly summarize the state of the literature based on aggregate times

series studies.  Focusing first on the issue of the number of education groups, my reading is that

recent studies support a relatively simple two-group structure.  Goldin and Katz (2008, chapter 8)

present an analysis of the determinants of the high school graduate wage premium from 1914 to

2005, allowing the inverse elasticity of substitution between high school graduates and dropouts

to vary over time.  In a model with a simple linear trend interaction they find that the inverse

elasticity was 0.35 at the beginning of their sample and has steadily trended downward, reaching

0 in 1985.  Confirmatory evidence is presented by Ottaviano and Peri (2008), who use annual

data from 1963 to 2006, and obtain estimates for the inverse elasticity of substitution between

dropouts and high school graduates in the range of 0 to 0.04.  Ottaviano and Peri (2008) also

attempt to estimate the elasticity of substitution between workers with 1-3 years of college, and

those with a bachelors degree or more.14  Again, they obtain estimates of the inverse substitution

elasticity that are small and statistically insignificant (taking account of serial correlation). 

These findings shed some light on the difficulty that Borjas (2003) and Borjas and Katz

(2007) had in attempting to estimate a single inverse elasticity of substitution between four

education groups.  Borjas (2003) reports two estimates of 1/Fe:  0.74 (with a standard error=0.65)

and 0.76 (with standard error=0.58).  In a replication of Borjas (2003) that uses 2000 Census data

(instead of the 1999-2001 Current Population Surveys used in the original study), Raphael and
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Ronconi (2008) obtain an estimate close to 0. Borjas and Katz (2007) modify Borjas’ original

specification by adding a trend break in the pace of skill-biased technical change in the 1990s and

obtain an estimate of 0.41 (standard error=0.31).  I conjecture that an important reason for the

instability and imprecision of these estimates (apart from the relatively small number of time

series observations) is that the data do not support the four skills model.  In particular, the wage

gap between dropouts and high school graduates appears to be uncorrelated with the relative

supply of dropouts.  Moreover, judging from Katz and Murphy (1992), Acemoglu (2002) and

evidence in Goldin and Katz (2008, table 8.2), the college-high school wage gap appears to

depend on the relative number of people with 12 years or less of schooling, not just the number

with exactly 12 years of schooling, suggesting again that the four-group model is mis-specified.

There is somewhat less time series evidence on the elasticity of substitution between

immigrants and natives (FI).  Ottaviano and Peri (2006) originally reported estimates of 1/FI, on

the order of 0.10 to 0.20.  Some details of their analysis have been criticized by Borjas, Grogger

and Hanson (2008), and in the latest version of their paper Ottaviano and Peri (2008) present

estimates for 1/FI that range from 0.04 to 0.08.  Though small in magnitude the estimates are

quite precise.  Manacorda, Manning and Wadsworth (2006) present estimates based on aggregate

U.K. data that are larger in magnitude (around 0.15) but also relatively precise.  

II. Immigrant Settlement Patterns as a Source of Identifying Information

While the aggregate time series evidence is useful, I believe that additional information

on the critical parameters of the demand side of the labor market can be gleaned from cross-city

comparisons.  As noted above, the main issue in interpreting cross-city comparisons is that the
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supplies of labor in a city may respond to relative wages, leading to a classic identification

problem.  In this paper I present evidence based on instrumental variables (IV) specifications that

use earlier immigrant settlement patterns as a source of identifying information.  This section

briefly reviews the basis for this strategy.

As a starting point, Table 2 summarizes some of the main characteristics of immigrants

from different sending countries observed in the 2000 Census.  For reference the first two rows

compare natives and all immigrants.  As noted in the last section, a striking difference is in the

distribution of very low versus “middle” levels of education.  Immigrants are relatively clustered

at the lowest levels of education, while natives are clustered in the center.  The shares in the

upper quartile of the education distribution are more similar.  Comparisons across the different

rows of the table show that the education distributions vary widely by source country. 

Immigrants from Mexico – by far the largest source country – are very poorly educated, as are

those from El Salvador and Guatemala.  Immigrants from the Philippines and India (the second

and third largest source countries, respectively) are better-educated than natives. 

A well known fact about immigrants is that they tend to settle in country-specific

enclaves. Interesting examples include the clustering of Arab immigrants in Detroit (see

Abraham and Shryock, 2000), Polish immigrants in Chicago (Pacyga, 1991), and Mexican

immigrants in Los Angeles and Chicago.  Figure 2 illustrates the pattern using data for Filipino

immigrants in the 124 largest U.S. cities. The x-axis of this figure represents the ratio between 

the fraction of Filipino immigrants who lived in a specific city in 1980, and the average fraction

of all immigrants who were living in this city in 1980.  The y-axis represents the same relative

share, taken over the set of immigrants observed in the 2000 Census who arrived after 1980.  The



15The R-squared for the scatter of points in Figure 2 is 0.77.  The mean R-squared across
37 source countries/country groups is 0.36.  Other source countries with high enclave tendencies
include Mexico, Cuba, and Poland.  Immigrants from India, China, and Taiwan show relatively
low enclave tendencies.

16If Nmc and Pj are measured at the same time point then Nmj/Pj is just the fraction of
immigrants from source country m in city j at that point.  If the two variables are measured at
different time points then Nmj/Pj is the fraction of immigrants from country m in city j at the date
of measurement for Nmj, multiplied by the overall growth rate of the population of city j from that
date to the date of measurement of Pj. 
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graph suggests that cities where Philippine immigrants were clustered in 1980 (relative to the

locations of all immigrants) tended to attract an excess share of Filipino immigrants in the

following decades. Similar patterns hold across nearly all source countries.15

As a result of the tendency for new immigrants to move to the same cities as earlier

immigrants from the same country, the number and relative skill distribution of immigrants

arriving in a city over a given interval of time is fairly predictable.  If Mm immigrants arrive from

country m to the U.S. as a whole (say between 1990 and 2000), and the fraction of earlier

immigrants from country m who lived in city j at some previous date (say 1980) is 8mj, then a

naive clustering model predicts that 8mjMm immigrants from country m will move to city j. 

Letting Nm denote the earlier population of immigrants from country m in the U.S. as a whole,

and Nmj denote the number living in city j, the predicted inflow rate, as a fraction of the city’s

population (Pj) at some reference date is  

(6) ( Gm 8mj Mm) / Pj =      Gm [ Nmj/Pj ]  Mm/Nm 

which is just a weighted average of the national inflow rates from each source country, with

weights that depend on the shares of the country’s earlier immigrants in city j.16  If the national

inflow rates from each source country are exogenous to conditions in a specific city, then the
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predicted inflow based on (6) will be exogenous.  Assuming that a fraction *ms of immigrants

from country m are in skill group s, the predicted inflow rate of new immigrants in skill group s

is

(7) ( Gm 8mj Mm *ms ) / Pj =      Gm [ Nmj/Pj ] *ms  Mm/Nm ,

which again can be interpreted as a weighted average of the skill-group-specific inflow rates

from each source country.  Finally, note that a predicted relative inflow rate (for example of

college-equivalent versus high school equivalent immigrants) can be calculated by taking the

ratio of two expressions like the one in equation (7).  

In the analysis in the next section I use predicted relative inflows calculated in this way as

instrumental variables for the relative number of dropout workers in a city and the relative

number of college-equivalent workers in a city.  Given the very large unskilled inflows from

Mexico over the 1980s and 1990s, the calculated values of the instruments are significantly

correlated with the fraction of Mexican immigrants in a city in 1980, leading to a concern that the

instruments may be picking up other features about a city that are also correlated with the initial

fraction of Mexicans living there (even if the surge in national inflows of Mexicans was

exogenous to conditions in the city).  To address this concern I have refit many of the models

excluding Mexican immigrants from the calculation of the instrumental variables.  This does not

change the general pattern of the results in any of the tables reported below, though the point

estimates and precision are sometimes affected.

III. Cross-City Evidence on the Impacts of Immigration on Native Wage Differentials

a. Data Overview
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I use 1980-2000 Census data along with data from the combined 2005 and 2006

American Community Surveys (ACS) to construct a panel data set of city-level labor market

outcomes in 1980, 1990, 2000, and 2005/2006.   As noted in the discussion of Table 1, I define

“cities” as MSA’s or PMSA’s as of the 2000 Census.  I have used information on the changing

definitions of MSA’s and PMSA’s to attempt to match the 2000 boundaries as closely as possible

in 1990 and 1980.  (The ACS public use files use the same geographic coding as the 2000

Census).  Some of the boundary changes cannot be incorporated because the smallest geographic

units in the public use Census files (the so-called Public Use Micro Areas) are rather large

(100,000 people or more) and do not always correspond to the geographic units that define

MSA’s and PMSA’s (counties in most of the country and towns in New England).  Such

problems are likely to be more serious for relatively small cities.  For this reason, and because

immigrants mainly live in larger cities, I limit attention to the 124 largest MSA’s or PMSA’s in

the country as of 2000.

Table 3 presents some summary statistics on the characteristics of native and immigrant

men and women in the four sample years.  The data on education, experience, and employment

rates are based on samples that include people over the age of 18 with between 1 and 45 years of

potential experience.  The wage outcomes are constructed by dividing annual wage and salary

earnings by the product of weeks worked and usual hours per week.  To eliminate the influence

of outliers I have “Winsorized” hourly wages in each sample year at a lower value of 0.75 times

the Federal minimum wage, and an upper value of 50 times the minimum wage.  In calculating

wages I also exclude people who have positive self-employment income, since there is no

information on how they divide their hours of work between self-employment and non-self



17Wage residuals are obtained from a series of linear regression models fit separately by
gender, immigrant status, and year. The models for natives include a flexible combination of age,
education, and ethnicity variables (a total of 55 covariates).  The models for immigrants include
these controls as well as dummies for each of 38 countries of origin (or country groups),
interactions of the origin dummies with a measure of years in the U.S., and interactions of
education variables with broad country group dummies (a total of 168 covariates).  See the Data
Appendix.
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employment jobs.

The entries in the first column of Table 3 suggest that both natives and immigrants have

become better educated over the past 25 years, with a slightly bigger gain for natives.  Working-

age natives have also become older (a gain in over 2 years of potential experience since 1980),

while working-age immigrants’ experience levels have remained constant, reflecting the rapid

inflow of younger immigrants.  Employment rates of native men have drifted down (see Autor

and Duggan, 2003), while those of immigrant men have remained constant, and rates for women

have risen.  Mean real wages of native men have been roughly constant (using the CPI as a price

index) while those of immigrant men have fallen, and real wages of both native and immigrant

women have risen.

The last two columns of Table 3 show two simple measures of wage inequality: the

variance of log hourly wages, and variance of residual wage inequality.17  By these measures

wage inequality has risen for all groups, with a particularly large jump between 1980 and 1990.  

Hourly wages are measured with considerable error in the Census, so the levels of wage

inequality reported in Table 3 are too high (see Lemieux 2006 for a careful discussion of

measurement problems in the context of wage inequality).  The trends after 2000 may also be

affected by the switch between the Census questionnaire, which asks about earnings in the

previous calendar year, and the ACS questionnaire, which asks about earnings in the previous 12



18The focus on male wages is standard in the literature (e.g., Katz and Goldin, chapter 8),
and is meant to abstract from relative trends in female wages that are driven by changes in the
relative selectivity of female workers.  I have fit all the models in this paper using residual wages
for men and women: the results are very similar to those reported here.  
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months.  Presumably these measurement problems affect all groups, so comparisons of the

relative trends between immigrants and natives are still informative.

b. Analysis of the Dropout/High School Graduate Wage Gap

Perhaps the single most important issue for understanding how immigrant inflows have

affected native wage structures is the degree of substitutability between high school graduates

and dropouts.  Cross-city comparisons are potentially very useful here because the relative share

of dropouts varies widely across cities (see Figure 1).  If there is an important degree of imperfect

substitution, the relative wage of dropouts should be lower in high-dropout cities.  To address the

question, I estimate cross-city models of the form

(8) rDjt  !   rHjt   =    a    +    b Xjt     +   c  log [ SDjt / SHjt ]   + ejt 

where rDjt represents the mean residual log wage among native male dropout workers in city j and

year t, rHjt represents the mean residual log wage among native male high school graduates,  Xjt is

a vector of city-level control variables, SDjt and SHjt represent total annual hours of work by all

dropouts and high school graduates in city j and year t, and  ejt is an error term.18  As in equation

(5), the coefficient c is interpretable as the negative of the inverse elasticity of substitution

between dropouts and high school graduates, and is expected to be negative or 0 in the limiting

case of perfect substitutes.  Note that wages are measured for native men, but supplies are

measured over all workers present in city j.  Note too that I use residual wages from a model fit



19The average log wage differential between native male dropouts and high school
graduates in the Census samples was -17.5% in 1980, -22.9% in 1990, -25.4% in 2000, and -
26.6% in 2005/2006.  Much of the change over time can be attributed to changing composition of
the two groups: as discussed in Card (2005), the gap adjusted for differences in experience and
ethnicity is slightly declining over the 1980-2000 period.
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to the entire U.S. workforce.  Thus, rDjt is interpretable as the mean wage differential for native

male dropouts who work in city j, relative to the national labor market, after adjusting for

observed characteristics.19

A concern with (6) is that there may be some unobserved city-specific factor that shifts

the relative demand for dropout workers, leading to higher relative wages and higher relative

employment and confounding the estimation of the inverse substitution elasticity.  I use as an

instrumental variable for the relative supply ratio the log of the ratio of the predicted inflows of

dropout and high school immigrants to city j over the previous 10 years.  Specifically, I calculate

expressions like (7) for each city in 2000 using national inflows of immigrants from each of 38

source countries/country groups over the period from 1990 to 2000, and the shares of each group

observed in each city in 1980.   I use estimates for the skill shares (the *ms terms in equation 7)

derived from the skill shares of the national pool of immigrants from each country who arrived

between 1990 and 2000.  I then take the log of the predicted relative inflows for dropouts and

high school graduates.  This instrument has a relatively strong correlation with the actual ratio of

dropout to high school labor supply in 2000, with t-statistics in the first-stage equation on the

order of 14 (or 10 if Mexicans are excluded from the construction of the instrument).

Estimation results for various versions of equation (8) are presented in Table 4. An issue

for the specification is whether one should allow city fixed effects that capture any permanent

city-specific factors that account for differences in the mean (adjusted) wage gap between



20I fit some of these models using the lagged wage for native women as an instrument for
the lagged dependent variable and obtained coefficient estimates very similar to the ones reported
here. 

21The covariates are all individually insignificant except the mean residual wage in 1990,
which has a negative coefficient in all model (typical estimate = -0.15, typical standard error
=0.05).  The estimates imply that the high school/dropout wage gap is higher in high-wage cities.
This may reflect the upward pressure of the minimum wage in low-wage cities.
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dropouts and high school graduates. To probe this issue I include specifications with a lagged

dependent variable (estimated for the city in 1990).20  If there are permanent differences across

cities the coefficient of the lagged dependent variable will be close to 1.  As control variables I

include in some specifications the log of the city size in 1980 and 1990, the share of college

workers in the city in 1980 and 1990, the share of workers employed in manufacturing in 1980

and 1990, and the mean wage residual for all native workers in the city in 1980 and 1990.  The

latter are meant to pick up any potential correlation between the high school/dropout relative

wage, and the average level of wages in a city.

All the specifications point to the same conclusion, which is that elasticity of substitution

between dropouts and high school graduates is effectively infinite.  The conclusion is similar

whether controls are added to the model or not, and whether the model is estimated by OLS or

IV.21  Although not shown in the table, IV results based on predicted inflows that exclude

Mexicans are also very similar (and similarly precise).  Figure 3 illustrates the configuration of

the data underlying the IV results.  This figure plots the residual wage gap between dropouts and

high school graduates against the instrumental variable.  Clearly there is wide variation across

cities in the predicted relative inflow of dropouts to high school graduates.  But this variation is

uncorrelated with the residual wage gap for native dropouts.



22Very similar findings are also reported by Card and Lewis (2007) who look at the high
school graduate-dropout wage premium for a slightly larger set of cities in 2000 and between
1990 and 2000.  They report models that control for overall employment growth between 1990
and 2000, including IV specification that use employment levels in the 1982-90 period as an
instrument for employment growth between 1990 and 2000.  They find that the high school
premium is uncorrelated with employment growth rates.
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The estimates in Table 4 strongly support the conclusion from recent studies based on

aggregate time series data.  Both sources of evidence suggest that “dropout labor” is not an

independent factor of production.  Rather, wages of dropouts and wages of high school graduates

vary in proportion across cities, as predicted by the assumption that the two groups are perfect

substitutes.  I have fit many different versions of the models in Table 4, including specifications

using native female wages, and pooled male and female wages, and other models that exclude the

largest 3 or 10 cities in the country.  All of these models yield estimates of the inverse

substitution elasticity that are close to 0.22 

c. Analysis of the College/High School Wage Gap

Based on the preceding analysis I believe it makes sense to use a simple two-skill model,

with college-equivalent and high school-equivalent labor types, to study wage differentials at the

city level.  Following the literature, I fit models of the form

(9) rCjt  !   rHjt   =    a    +    b Xjt     +   c  log [ SCjt / SHjt ]   + ejt 

where rCjt represents the mean residual wage of native male workers with exactly 16 years of

education in city j and year t,  rHjt represents the mean residual wage for native male high school

graduates, and SCjt and Shjt represent the supplies of college equivalent and high school equivalent

labor employed in city j in year t. I define high school equivalent hours as the sum of hours
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worked by high school graduates, plus 0.7 times the hours worked by dropouts (assuming that

dropouts have 0.7 efficiency units of high school graduates) plus 1.2 times the hours worked by

one half of people with 1-3 years of post-secondary schooling (assuming that half of people with

some college are high school equivalents, and each has 1.2 efficiency units of high school labor).

I define college equivalent hours as the sum of hours worked by college graduates plus 0.8 times

the hours worked by one half of people with 1-3 years of post-secondary schooling (assuming

that half of people with some college are college equivalents, and each has 0.8 efficiency units of

college labor).  

Table 5 presents estimation results for a variety of alternative specifications.  One

immediate and important difference between the results in this table and those in Table 4 is that

city-specific values of the college-high school wage are highly correlated over time, with rather

complex dynamics.  As shown in column (1) of Table 5, when two lagged values (i.e., the wage

gaps in 1990 and 1980) are included, the sum of their coefficients is very close to 1, suggesting

that an appropriate model may be a first order autoregression in differences:

) (rCjt  !   rHjt )  .     $ ) (rCjt!1  !   rHjt!1 )   +  other terms ,

where $ is a number like -0.3.   Specifications that impose a first differences on both the lagged

dependent variables and the relative supply terms are reported in columns (4) and (8).

When dynamics are ignored, and no other covariates are included, the estimate in column

(2) of Table 5 suggests that the college-high school wage gap in a city is positively correlated

with the relative supply of college workers.  Adding two lags of the dependent variable, lagged

relative supply, and controls for city size and the employment share in manufacturing in 1980

and 1990 (column 3) pushes the coefficient on current relative supply into the negative range, but
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the point estimate is small in absolute value.   Imposing a first differences structure on the lagged

dependent variables and the relative supply variable (column 4) leads to estimates that are very

close to those from the corresponding unrestricted specification in column 3. 

One interpretation of these OLS estimates is that the relative supply of college workers is

responsive to relative wages, leading to a positive bias in the estimated inverse elasticity of

substitution.  This conclusion is consistent with existing work on relative migration flows of

different education groups (e.g., Dahl, 1998), which tends to find that mobility rates of college

workers are sensitive to group-specific wage levels. 

Columns 5-8 of Table 5 present instrumental variables estimation results, using predicted

relative inflows of college-equivalent and high school-equivalent immigrants from 1990 to 2000

as an instrument for the relative supply of college-educated workers.   This instrument is a lot

weaker than the instrument for the relative supply of dropouts used in Table 5, but when lagged

supply and control are added (columns 6-8) the t-statistic on the instrumental variable in the first

stage equation is over 4.5 (see the entries in the bottom row of Table 5).  The IV estimates of the 

inverse elasticity of substitution between college and high school workers range from 0.26 to

0.41 – not far below the estimates obtained in many recent aggregate time series studies, and

consistent with a value for Fe in the range of 1.5-2.5.  

My interpretation of the estimates in Table 5 is that relative demand for college versus

high school workers at the city level exhibits about the same elasticity with respect to relative

wages as relative demand at the national level.  However, relative supply is endogenous at the

local level, confounding simple observational comparisons across cities (like the simple

univariate model in column 2).  This does not mean that cross-city comparisons are



23Moretti (2004) presents an analysis of the effect of the college share on wages of
different education groups in a city, using the age structure of a city in 1970 as a predictor of the
change in the college share in a city between 1980-1990.  This is a reasonably powerful
instrument.  His estimates (Moretti, 2004, Table 5) imply that a 10 percent point increase in the
college share reduces the college-high school wage premium by about 0.12 log points.  This is
equivalent to an elasticity with respect to the log of the relative supply of college-equivalent
workers of about -0.25. 
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uninformative.  Rather, it means that researchers have to address the endogeneity problem to

obtain interpretable estimates. For this purpose the enclaving tendency of immigrants, coupled

with differences in the education distributions of immigrants from different origin countries, is

particularly helpful, although other identification strategies are certainly worth pursuing.23

d.  Analysis of the Immigrant/Native Wage Gap

A third key issue for understanding the impact of immigration is whether immigrants and

natives in the same broad skill class are perfect or imperfect substitutes.  Here, cross-city

comparisons are potentially very useful because there is enormous variation in the relative

fraction of immigrants across cities.  Assuming there are only two skill groups – high school

equivalents and college equivalents – I estimate models separately by skill group of the form:

(10) rMjt  !   rNjt   =    a    +    b Xjt     +   c  log [ SMjt / SNjt ]   + ejt 

where rMjt represents the mean wage residual for immigrant men in a particular skill group in city

j and year t, rNjt  represents the corresponding mean wage residual for native men, and SMjt and

SNjt represent the total hours of work by all immigrants and all natives in the skill group (i.e.,

including men and women).  The coefficient c in this equation is interpretable as an estimate of

the inverse elasticity of substitution between immigrants and natives in the particular skill group

(i.e. c = !1/FI).   Again there is a obvious concern that unobserved factors in a city may lead to



24The correlation of the instrument for the ratio of dropouts to high school graduates with
the share of immigrants in a city in 1980 is 0.43.  The correlation of the instrument for the ratio
of college- to high school-equivalent labor with the 1980 immigrant share is -0.55.  By
comparison the correlation of the instruments for the fractions of immigrants in the high school
or college workforces with the immigrant share in 1980 is 0.90.
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higher wages and employment levels of immigrants relative to natives, confounding the

estimation of the inverse substitution elasticity.  Following the strategy in Table 4 and 5, I use

predicted inflows of immigrants in the particular skill group (high school or college) to city j over

the 1990-2000 period (based on immigrant shares in 1980) to instrument for the share of

immigrants in 2000.

It is worth noting a potential difference between the IV strategy for the estimation of

equation (10) and the corresponding strategies for equations (8) and (9).  In the latter cases, the

instrumental variable is the ratio of predicted immigrant inflows in two skill groups (e.g., high

school equivalents versus college equivalents).  These ratios are not as strongly correlated with

the initial immigrant share in 1980 as the predicted immigrant inflows of high school- or college-

equivalent workers used as instruments for the estimation of (10).24  To the extent that initial

immigrant shares are correlated with other unobserved features that affect relative wage

differentials in a city, enclave-based instruments may be less attractive for estimating 1/FI  than

for estimating the inverse elasticity across education groups.  Assuming that OLS estimates of 

1/FI from a specification like (10) are biased toward 0 by endogeneity, and that the IV estimates

are not fully purged of endogeneity, both the OLS and IV estimates will tend to underestimate the

(absolute) magnitude of 1/FI.

Estimation results for equation (10) are shown in Table 6.  All the specifications include

measures of city size, college share, and manufacturing share in 1980 and 1990, as well as the



25The IV coefficient estimates from models without controls are -0.027 (standard
error=0.006) and -0.080 (standard error=0.010) respectively.
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mean wage residuals for all immigrants and all natives living in the city in 1980.  The latter are

meant to control for any attributes in a city that lead to persistently higher wages for immigrants

and/or natives, although the coefficients of these variables are generally small and statistically

insignificant.  Wage gaps between immigrants and natives in a city do not exhibit the complex

dynamics of the college-high school wage premium, and models with a lagged dependent

variable have a relatively small autoregressive coefficient (around 0.15).  The estimated relative

supply effects are also very similar whether or not the lagged dependent variable is included.

The estimated relative supply coefficients are generally bigger in absolute value when

estimated by IV than by OLS, suggesting some endogeneity in relative supply that is mitigated by

the IV strategy, although both OLS and IV estimates are uniformly negative.  The relative supply

coefficients are also bigger (in absolute value) for college workers than high school workers. 

Taken literally, this means that less-educated immigrants and natives are closer to perfect

substitutes (FI .40) than are more-educated immigrants and natives (FI .17).

The estimation results in Table 6 are very consistent with the range of estimates for 1/FI

obtained by Ottaviano and Peri (2008), which center around -0.04.  Specifications similar to the

ones in Table 6 fit for both men and women, and for women only, also confirm this conclusion,

with estimates for the inverse substitution elasticity in the same range.  IV estimates of the

inverse elasticity using predicted inflows that exclude Mexican immigrants are slightly larger in

absolute value (e.g., the estimate corresponding to the entry in column 4 is !0.031 with a

standard error of 0.008), as are estimates from specifications that exclude the control variables.25 



26The same patterns holds using women’s wages, or men’s and women’s pooled.  For
example, the correlation between immigrant share and the residual variance of college-equivalent
women’s wages is 0.62, versus 0.64 for men.  The correlation between immigrant share and the
residual variance of high school-equivalent women’s wages is 0.75, versus 0.77 for men.
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Overall, I conclude that there is strong time series and cross city evidence of a small but

detectable degree of imperfect substitution between immigrants and natives.

e. Within-Group Residual Inequality

Existing studies of the impact of immigration on the wages of natives have focused on the

effect on mean wage differentials between skill groups.  While much of the rise in wage

inequality over the past two decades has been driven by increases in between-group inequality –

especially the gap between high and low education groups – within-group inequality has also

risen substantially (Autor and Katz, 1999; Lemieux, 2006, 2008).  

Across major cities the level of within-group or residual wage inequality is strongly

correlated with immigrant densities.  This is illustrated in Figure 5, which plots the residual

variance of wages for college-equivalent and high school equivalent male workers in each of the

largest 124 cities in 2000 against the immigrant share.26  A 10 percentage point increase in the

immigrant share is associated with a 0.025 point rise in the residual variance of  high school

equivalent men’s wages (standard error = 0.002 points), and a 0.027 point rise in the residual

variance of college equivalent men’s wages (standard error = 0.003 points).  

To the best of my knowledge there is no well-developed theory of how the presence of

immigrants (or a more diverse workforce generally) affects residual wage inequality among

natives. If one assumes that the causal effect of higher immigration depends on the fraction of
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immigrants in a worker’s own skill group , however, then an appropriate empirical specification

will have the form

(11)   VCjt  !   VHjt   =    a    +    b Xjt     +   c  log [ ImmCjt / ImmHjt ]   + ejt ,

where VCjt represents the residual variance of wages among college-educated workers in city j

and year t,  VHjt represents the corresponding variable for high-school-educated workers, and

ImmCjt and ImmHjt denote the fractions of immigrants in the college-equivalent and high-school

equivalent workforces.

Table 7 presents estimation results for specifications based on equation (11).  For ease of

interpretation I use the difference in logs of the residual variances for native male college

graduates and high school graduates as the dependent variable in these models, although

specifications that use the difference in residual variances show the same patterns of sign and

significance.  The table includes both OLS and IV models that use the ratio of the predicted

number of college and high school immigrants moving to the city between 1990 and 2000 as an

instrumental variable for the relative immigrant fraction. 

Two main conclusions emerge from the results in Table 7.  First, the ratio of the residual

variances among college and high school workers is fairly persistent over time, with a coefficient

on the lagged dependent variable close to 0.5.  Second, there does not appear to be a large effect

of relative immigrant densities on the relative residual variances of college and high school

workers.

Tentatively, I conclude that the correlations exhibited in Figure 5 are not a causal effect of

immigration, but rather a consequence of unobserved city-wide factors that are associated with

higher immigration and a higher level of residual variance for both skill groups.  It should be
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noted, however, that a “relative” specification such as (11) is not the only possible causal model.

If a greater fraction of immigrants in one skill group has equal effects on the residual variance of

wages for workers in both groups, then a specification like (11) will fail to estimate the true

effect of immigration.  

IV. Summary and Discussion

Cross-city and time series comparisons of the effects of relative supplies of different skill

groups on relative wages are consistent with three key hypotheses:

(1) workers with below high school education are perfect substitutes for those with a high

school education

(2) “high school equivalent” and “college equivalent” workers are imperfect substitutes,

with an elasticity of substitution on the order of 1.5-2.5

(3) within education groups, immigrants and natives are imperfect substitutes, with an

elasticity of substitution on the order of 20.

These hypotheses imply that the structure of relative labor demand at the city or national level is

consistent with a simple nested CES sub-production function for labor inputs with two skill

groups at the upper level, each of which is itself an aggregate of immigrant and native labor

inputs in the appropriate skill group.  

The combination of these assumptions – plus the assumption of perfectly elastic capital

supplies – means that at the national level, immigration over the past two or three decades has

had very minor effects on relative wage differentials between natives in different skill groups

(see Ottaviano and Peri, 2008), and a negligible effect on between-skill group wage variability. 
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The main explanation for this somewhat surprising conclusion is that under a two-education-

group model, what matters for the structure of wages is the relative fractions of immigrants and

natives who are high school-equivalent and college-equivalent workers.  U.S. immigrants are

only slightly under-represented in the college-equivalent group relative to natives (36% versus

41%).  Compared to the distribution among natives alone immigrant arrivals have hardly

distorted the relative fraction of college-equivalent workers in the economy, and have therefore

had little impact on the college-high school wage gap.

The overall impact of immigration on native inequality depends on the effects on

between-group differentials and on the effects on within-group inequality.   There is little

existing research on the latter channel, although cross-city comparisons show a rather strong

correlation between immigrant density and the residual variation in native wages.  On the other

hand, the relative level of within-group inequality between college and high school educated

natives is uncorrelated with the relative density of immigrants in the local college and high

school workforces.  Assuming that any within-group impacts caused by immigrants are

concentrated among natives in the same skill group, this suggests that the causal effects of

immigration on within-group inequality are small.

Overall, I conclude that immigration has not had much effect on native wage inequality in

the U.S. as a whole.  Nevertheless, because immigrants are clustered at the high and low ends of

the education distribution, and because they also tend to have higher residual inequality than

natives (see Table 3), wage inequality over all workers in the economy is higher than it would be

in the absence of immigration.  Table 8 illustrates this point, showing data on wage inequality in

1980 and 2005/2006 for all workers, and for immigrants and natives.  In 1980, for example, the



27I have not attempted to decompose the rise in inequality within the immigrant workforce
into a components attributable to immigrants who were already in the country in 1980 and a
component for new immigrants.  Assuming imperfect substitutability between immigrants and
natives, however, the arrival of new immigrants has presumably lowered the wages of earlier
immigrants (Ottaviano and Peri, 2008; Manacorda, Manning, and Wadsworth, 2006).  
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variance of log hourly wages across all male workers was 0.390, versus 0.385 among native men. 

Likewise, the variance among all female workers was 0.318, versus 0.317 among native women. 

Over the past 25 years the gap between the variance of wages in the entire workforce and among

natives has widened: thus immigration can be said to have contributed to the rise of inequality in

the workforce even if it has had no effect on the inequality of native wages.  The effect is

relatively small, however. For men, native inequality rose by 0.137 while overall inequality rose

by 0.142.  If overall inequality had risen as fast as native inequality it would rise by 4% less.  For

women, native inequality rose by 0.139 while overall inequality rose by 0.148.  If overall

inequality had only risen as fast as native inequality it would rise by 6% less.  These comparisons

suggest that the presence of immigration can account for a relatively small share (4-6%) of the

rise in inequality in the past 25 or so years.27

While I believe that recent research using time series and cross city comparisons has

made significant progress in clarifying the effects of immigration on labor market outcomes for

natives, several important issues deserve further attention.  First, given the importance of the

degree of substitutability between dropouts and high school graduates, more research on the

types of jobs held by the two groups and further evidence on how excesses of dropout labor are

absorbed in high-immigrant cities would be useful.  Additional insights into the degree of

substitution between similar immigrants and natives are also needed.  Finally, more research is

needed to better understand why a simple 2-skill-group CES model seems to work so well at both
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the national and city levels.
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Data Appendix

A. Processing of 1980, 1990, 2000 Census and 2005/2006 ACS
1. I begin with the 5% public use files of the 1980-2000 Censuses and the two ACS’s.  I define
“immigrants” as all individuals whose citizenship status is either non-citizen or naturalized
citizen – thus people born abroad to U.S. parents are not considered immigrants.  From the
Census files I extract 100% of all immigrants and a 50% random sample of natives over the age
of 18.  From the ACS files I extract all individuals over the age of 18.  

2. I adjust the person weight variables for the 1990 and 2000 Censuses to account for the under-
sampling of natives. I define a 1980 weight equal to 1 for immigrants and 2 for natives. For the
ACS files I use the person weight.

3. For the 1980 and 1990 Census files, I make two adjustments to the MSA/PMSA code.  First, I
assign MSA or PMSA to county groups (1980) or PUMA’s (1990) that are not assigned an
MSA/PMSA code if more than one-half of the residents live in a single MSA/PMSA.  Second, I
attempt to add or drop county groups or PUMA’s to adjust for boundary changes between 1980
and 2000, for the 124 largest cities (as of 2000).  

4. For the 2000 Census I assign MSA or PMSA to PUMA’s that are not assigned an MSA/PMSA
code if more than one-half of the residents live in a single MSA/PMSA.  For the ACS files, I
assign the same MSA/PMSA to each PUMA as is assigned in 2000 Census (after adjusting for
unassigned MSA/PMSA codes). 

5. In the 1980 Census, I define “education” based on highest grade completed.  For the 1990 and
2000 Census and the ACS, I define “education” based on the reported grade variable.  An
important issue in this coding decision for the 2000 Census and ACS files is how to classify
people who report having attending college but not completing at least one year. Mean wages for
this group are relatively similar to those who have “some college” (e.g., for native men in 2000,
the mean log wage for this group is 2.672, versus 2.726 for those with some college, and 2.576
for those with exactly high school).  Thus, I classify these people as having some college. This
choice also makes the distribution of education outcomes between 1990 and 2000 more similar
than if the people who went to college but failed to complete a year are coded as high school
graduates.   

6. I define “experience” as age-16 for dropouts, age-19 for high school graduates, age-21 for
people with some college, and age-23 for people with a BA or higher.  I then restrict the sample
to people with 1-45 years of experience. 

Copies of the programs used to read and process the public use data sets are available on request.
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B.  Wages and Residual Wages

1. I define an hourly wage by dividing wage and salary earnings by the product of hours per week
and weeks worked. I set the wage to missing for anyone with positive self-employment or farm
income.  I “Winsorize” hourly wages at a lower bound of 0.75 times the minimum wage and an
upper bound of 50 times the minimum wage. 

2. I then perform linear regressions, separately by year, gender and immigrant/native status, of
log wages on a set of covariates. The residuals from these regressions are used to construct the
“adjusted” or “residual” wages used in the paper, and also to construct measures of “residual
wage inequality”.

3. The wage models for natives include the following variables:
- cubic in experience
- years of completed education
- complete interactions of dummies for 4 education groups (dropout, high school
graduate, some college, college graduate) with dummies for 5-year experience bins
- a dummy for people with an advanced degree
- a dummy for those who attended school last year
- dummies for people who worked full time (>1400 hours) or low hours (under 1000)
- interactions of dummies for black, Hispanic and Asian ethnicity with years of 
completed education and a dummy for college completion
- a dummy for living in an MSA/PMSA that is at least partially in one’s state of birth,
interacted with dummies for 4 education groups
- dummies for living in a smaller MSA/PMSA (not one of the top 124) or in a non-
metropolitan area.

4. The wage models for immigrants include the following variables:
- cubic in experience
- years of completed education
- complete interactions of dummies for 4 education groups (dropout, high school
graduate, some college, college graduate) with dummies for 5-year experience bins
- a dummy for people with an advanced degree
- a dummy for those who attended school last year
- dummies for people who worked full time (>1400 hours) or low hours (under 1000)
- interactions of years of education and a college dummy with 4 broad immigrant 
groups (Mexicans, Europeans, “high education” Asian source countries, “middle
education” Asian source countries) and an Hispanic indicator.
- dummies for 38 source countries and source country groups
- interactions of source country dummies with a quadratic in years in the U.S.
- dummies for living in a smaller MSA/PMSA (not one of the top 124) or in a non-
metropolitan area.



Figure 1: Immigrant Presence and Dropout Share
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Figure 2: Relative Shares of Filipino Immigrants in Major Cities
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Figure 3: Reduced Form Relationship: Inflow IV and Dropout Wage Gap
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Figure 4: Reduced Form: Inflow IV and Immigrant Wage Gap (College)
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Figure 5: Immigrant Density and Residual Wage Inequality (Native Men)
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Table 1:  Immigrant Presence, Education and Earnings in Large U.S. Cities

       Working Age       Share of  Education Distribution
        Population       US Pop. Percent Less Than College
      (thousands)      (percent) Immigrants High School or More Mean Salary

All US 174,870 100.0 16 14 28 39,806
Larger Cities (124) 116,748 66.8 21 14 31 43,102
Rest of Country 58,122 33.2        7 15 21 32,988

Los Angeles 5,828 3.3 48 24 27 41,260
New York City 5,687 3.3 44 17 35 49,613
Chicago 5,114 2.9 25 14 34 46,522
Washington DC 3,359 1.9 25 10 45 56,076
Atlanta 3,055 1.7 17 13 34 44,110
Philadelphia 3,017 1.7 11 11 33 46,149
Houston 2,904 1.7 31 22 27 41,688
Detroit 2,634 1.5 11 12 27 43,937
Dallas 2,516 1.4 26 20 30 42,545
Phoenix 2,348 1.3 22 17 26 40,949
Riverside County Ca 2,266 1.3 31 23 17 37,409
Boston 2,055 1.2 22 9 46 52,584

Notes: based on tabulation of 2005 and 2006 American Community Surveys.  Working age population
includes people age 18 or older with 1-45 years of potential experience.  Cities are primary metropolitan
statistical areas (PMSA's).  



Table 2:  Characteristics of Immigrants in 2000

  Working Age Share of All                         Educational Attainment:
    Population   Immigrants         Fraction Arrived:   Mean Years  12-15 College
   (thousands)    (percent)   After 1980  After 1990   Completed Dropouts  Years or More

Natives 141,272          --          --          -- 13.3 14.2 60.6 25.2
Immigrants 23,627 100.0 70.5 39.9 11.6 37.4 38.8 23.8
By Country of Origin:
   Mexico 7,267 30.8 75.1 43.8 8.6 69.8 26.5 3.7
   Philippines 1,078 4.6 66.1 31.5 14.1 9.2 43.7 47.0
   India 838 3.5 78.4 51.4 15.6 9.6 20.2 70.2
   Viet Nam   806 3.4 75.3 39.7 11.7 34.6 45.8 19.6
   China 715 3.0 82.0 50.1 13.6 24.2 29.2 46.7
   El Salvador 698 3.0 85.1 37.0 8.9 65.0 30.6 4.4
   Korea 664 2.8 66.4 33.1 14.0 10.6 45.8 43.6
   Cuba 586 2.5 52.3 29.1 12.5 30.0 48.3 21.7
   Dominican Rep. 536 2.3 74.2 38.1 10.8 48.8 41.9 9.3
   Canada 517 2.2 47.6 31.9 14.3 8.9 49.8 41.3
   Germany 455 1.9 32.6 21.0 13.9 8.3 59.3 32.4
   Jamaica 429 1.8 66.7 27.3 12.6 23.8 57.8 18.4
   Columbia 400 1.7 71.9 40.5 12.5 24.7 53.3 21.9
   Guatemala 400 1.7 84.0 45.9 8.8 64.5 30.4 5.1
   Haiti 333 1.4 75.1 34.5 11.8 35.2 51.3 13.5
   Poland 310 1.3 74.5 42.3 13.3 16.3 58.2 25.6
Notes: based on tabulation of 2000 Census.  Working age population includes people age 18 or older with 1-45 years 
of experience.



Table 3:  Summary Statistics for Samples from 1980, 1990, 2000 Census and 2005/2006 ACS

         Mean Years of: Employment     Mean     Variance(Log Wage)
Education Experience   Rate (%)    Wage     Overall   Residual

Native Men 1980 12.5 18.8 90.1 25.07 0.385 0.288
1990 12.9 18.7 88.5 23.72 0.462 0.322
2000 13.2 20.4 86.8 25.86 0.487 0.353

2005/6 13.4 21.4 86.2 25.35 0.522 0.361

Native Women 1980 12.2 19.6 65.4 16.75 0.317 0.269
1990 12.8 19.4 74.7 17.05 0.382 0.295
2000 13.3 20.7 77.1 19.51 0.408 0.313

2005/6 13.5 21.8 76.8 19.74 0.456 0.335

Immigrant Men 1980 11.6 19.1 87.5 24.49 0.444 0.321
1990 11.4 18.0 86.5 21.73 0.517 0.347
2000 11.6 18.8 86.5 23.21 0.557 0.390

2005/6 12.0 19.9 90.6 21.45 0.544 0.352

Immigrant Women 1980 11.0 20.6 60.0 17.15 0.343 0.291
1990 11.2 19.9 65.0 16.94 0.414 0.318
2000 11.7 20.0 64.8 19.27 0.484 0.367

2005/6 12.2 20.9 67.2 18.58 0.515 0.356
Note: samples include people age 18 or older with 1-45 years of potential experience. Wages are reported
in 2007 dollars.  Residual wage variance is based on linear prediction models, fit separately by year,
gender, immigrant status.



Table 4: Estimated Models for the Relative Wage Gap Between Native Male Dropouts and High School Graduates

  Estimated by OLS:              Estimated by IV:
       (1)       (2)       (3)       (4)       (5)       (6)       (7)

Log Relative Supply  -- 0.00 0.01 0.01 0.02 0.02 0.02
of Dropout vs. High School (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Lagged Dependent 0.29 -- -- 0.25 -- --
Variable (0.09) (0.08)

Controls for Log City Size,  no no yes yes no yes yes
College Share, Manufacturing
Share, and Mean Wage 
Wage Residuals for All Workers
in 1980 and 1990

R-squared 0.09 0.01 0.24 0.29 0.01 0.24 0.29

First-stage t-statistic  -- -- -- -- 14.82 14.03 14.16
Notes: standard errors in parentheses.  All models are estimated on cross section of 124 larger cities in 2000.
Estimates are weighted OLS or IV, using the 1990 population of the city as weight.  Dependent variable is the
difference between the mean adjusted log wage of high school dropouts, and the mean adjusted wage of high
school graduates.  Log relative supply measure is based on annual hours of all dropouts and all high school
graduates (men and women, natives and immigrants).   Instrumental variable for models in columns 5-7 is
the log of the ratio of predicted inflows of dropout immigrants and high school graduate immigrants over
the 1990-2000 period, based on national inflows of 38 source country groups and shares of each group
in a city in 1980.



Table 5: Estimated Models for the Relative Wage Gap Between Native Male College and High School Graduates

  Estimated by OLS:                        Estimated by IV:
       (1)       (2)       (3)       (4)        (5)       (6)       (7)       (8)

Log Relative Supply  -- 0.08 -0.04 -0.01 -0.42 -0.41 -0.26 -0.28
of College vs. High School (0.02) (0.05) (0.05) (0.28) (0.15) (0.12) (0.12)

Log Relative Supply  --  -- 0.12 0.01  -- 0.60 0.34 0.28
Lagged 10 years (0.08) ( -- ) (0.21) (0.17) ( -- )

Log Relative Supply  -- -- 0.01 -- -- -0.10 0.01 --
Lagged 20 years (0.04) (0.07) (0.07)

Relative Wage Gap 0.66 -- 0.66 0.68 -- 0.46 0.51 0.56
Lagged 10 years (0.08) (0.07) (0.06) (0.12) (0.10) (0.09)

Relative Wage Gap 0.29 -- 0.26 0.32 -- 0.45 0.35 0.44
Lagged 20 years (0.06) (0.06) ( -- ) (0.10) (0.09) ( -- )

Controls for Log City  no no no yes  no no yes no
Size and Mfg Share in 
1980 and 1990

R-squared 0.59 0.09 0.68 0.37 0.02 0.60 0.71 0.24

First-stage t-statistic  -- -- -- -- 1.98 4.73 4.87 4.66
Notes: standard errors in parentheses.  All models are estimated on cross section of 124 larger cities in 2000.
Estimates are weighted OLS or IV, using the 1990 population of the city as weight.  Dependent variable is the
difference between the mean adjusted log wage of college graduates and the mean adjusted wage of high
school graduates.  Log relative supply measure is based on annual hours of all college equivalent and high school
equivalent workers (men and women, natives and immigrants).  Models in columns (4) and (8) are fit in first
difference form.  Instrumental variable for models in columns 5-8 is the log of the ratio of predicted inflows of college
equivalent and high-school equivalent immigrants over the 1990-2000 period, based on national inflows of 38 source
countries and shares of each group in a city in 1980.



Table 6: Estimated Models for the Relative Wage Gap Between Immigrants and Natives within Skill Group

          High School Equivalent Workers            College Equivalent Workers
    Estimated by OLS    Estimated by IV     Estimated by OLS    Estimated by IV
       (1)       (2)       (3)       (4)        (5)       (6)       (7)       (8)

Log Relative Supply -0.019 -0.019 -0.023 -0.022 -0.036 -0.029 -0.060 -0.055
of Immigrants/Natives (0.006) (0.006) (0.008) (0.008) (0.011) (0.011) (0.014) (0.015)

Lagged Dependent  -- 0.159 -- 0.159  -- 0.200 -- 0.128
Variable (0.060) (0.060) (0.100) (0.106)

Controls for Log City Size,  yes yes yes yes  yes yes yes yes
College Share and Mfg.
Share in 1980 and 1990,
and Mean Wage Residuals
for All Natives and All 
Immigrants in 1980

R-squared 0.308 0.349 0.301 0.338 0.444 0.463 0.455 0.471

First-stage t-statistic  -- -- 11.67 11.68  -- -- 13.76 12.85
Notes: standard errors in parentheses.  All models are estimated on cross section of 124 larger cities in 2000.  Estimates 
are weighted OLS or IV, using the 1990 population of the city as weight.  Dependent variable is the difference between the
mean adjusted log wage of male immigrants and natives who are classified as "high school equivalent" workers (columns  
1-4) or "college equivalent" workers (columns 5-8).  Log relative supply measure is based on annual hours of all high 
school equivalent or college equivalent workers (men and women).  Instrumental variable for models in columns 3-4 is
is the predicted inflow of high school equivalent immigrants between 1990 and 2000, divided by city population in 2000.
Instrumental variable for models in columns 7-8 is the predicted inflow of college equivalent immigrants between 1990
and 2000, divided by city population in 2000.



Table 7: Estimated Models for the Effect of Immigration on Relative Within-Group Residual Variance for Native Men

 Estimated by OLS:               Estimated by IV:

       (1)       (2)      (3)      (4)     (5)        (6)     (7)
Log Relative Fraction of  -- 0.00 0.01 -0.03 0.07 0.03 0.06
   Immigrants (College/HS) (0.03) (0.03) (0.05) (0.05) (0.04) (0.22)

Lagged Log Relative Fraction -- -- -- 0.04 -- -- -0.02
    of Immigrants (1990) (0.04) (0.15)

Lagged Dependent 0.51 -- 0.47 0.45 -- 0.48 0.49
Variable (0.06) (0.06) (0.07) (0.07) (0.11)

Controls for Log City Size, no yes yes yes yes yes yes
College Share and Manufacturing
Share in 1980 and 1990

R-squared 0.34 0.21 0.46 0.47 0.21 0.46 0.46

First-stage t-statistic -- -- -- -- 9.46 9.89 2.32
Notes: standard errors in parentheses.  All models are estimated on cross section of 124 larger cities in 2000.  
Estimates are weighted OLS or IV, using the 1990 population of the city as weight.  Dependent variable is the log of the
ratio of the residual wage variance for native men with college or more versus exactly 12 years of education. 
Instrumental variable for models in columns 5-7 is the log of the ratio of predicted inflows of college-equivalent and
high school-equivalent immigrants over the 1990-2000 period, based on national inflows of 38 source countries and
shares of each group in a city in 1980.



Table 8: Summary of Changes in Variance of Log Wages for All Workers and Natives Only

         Variance of Log Hourly Wages:

  All Workers       Natives Immigrants
  Male Workers   
                    1980 0.390 0.385 0.444 6.9

                    2005/2006 0.532 0.522 0.544 18.0

                    Change 0.142 0.137 0.100 11.1

  Female Workers
                    1980 0.318 0.317 0.343 6.7

                    2005/2006 0.466 0.456 0.515 13.9

                    Change 0.148 0.139 0.172 7.2

Notes: samples include people age 18 or older with 1-45 years of potential experience who
have positive wage and salary earnings and no self-employment earnings.

   Percent 
Immigrants
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