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Abstract

We study a sequential trading financial market where there are gains from trade, that is, where
informed traders have heterogeneous private values. We show that an informational cascade (i.e., a
complete blockage of information) arises and prices fail to aggregate information dispersed among
traders. During an informational cascade, all traders with the same preferences choose the same
action, following the market (herding) or going against it (contrarianism). We also study financial
contagion by extending our model to a two-asset economy. We show that informational cascades
in one market can be generated by informational spillovers from the other. Such spillovers have
pathological consequences, generating long-lasting misalignments between prices and fundamen-
tals.
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1 Introduction

The last two decades have witnessed a series of major international financial
crises, for example, in Mexico in 1995, Southeast Asia in 1997-8, Russia in
1998 and Brazil in 1998-9. These episodes have revived interest among
economists in the study of the financial system fragility. A common finding
in much of the empirical work on financial crises (see, e.g., Kaminsky, 1999)
is that the fundamentals of an economy help to predict when a crisis will
occur, but crises may occur even when the fundamentals are sound or may
not occur even when the fundamentals are weak. A possible explanation
for why sound fundamentals may not be reflected in asset prices is that
information about these fundamentals is spread among investors, and prices
may fail to aggregate it. In particular, this would happen if investors,
instead of acting according to their own private information, simply decided
to herd.
The herd-like behavior of market participants is often linked to another

feature of financial markets, that is, the strong co-movements among seem-
ingly unrelated financial assets. In 1997, for instance, financial asset prices
plunged in most emerging markets, following the financial crisis that hit
some Asian economies. This high degree of co-movement across markets
that differ in size, structure and location around the world is not a pecu-
liarity of the Asian crisis. Indeed, it is a common and well-documented
regularity of financial markets.
In this paper, we show that, in contrast with previous findings in the lit-

erature, informational cascades (i.e., situations in which every agent chooses
the same action regardless of his own private information) can indeed arise
in financial markets. As a consequence, financial markets can fail to ag-
gregate private information efficiently, and misalignments of the price with
respect to the fundamental can occur. Furthermore, we show that infor-
mational cascades can spread from one market to another, thus generating
financial contagion. While the case of financial crises serves to motivate our
work, we do not consider our study descriptive of any particular episode of
crisis. The central aim of the paper is instead to offer a theoretical contri-
bution by showing how informational cascades can occur in a market and
transmit from one market to another.
To discuss informational cascades and financial contagion, we study an

economy à la Glosten and Milgrom (1985) in which privately informed
traders, in sequence, trade an asset with a market maker. Traders are het-
erogenous, for example, because of differences in endowments or intertem-
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poral preferences. Therefore, trading can be mutually beneficial; that is,
there are gains from trade. Traders trade for two reasons: they have an
informational advantage over the market maker (due to private informa-
tion), and they have a gain to trading. We find that, eventually, as trades
accumulate, the gain from trade overwhelms the importance of the infor-
mational advantage; therefore, traders choose their action independently
of their information on the asset value, that is, an informational cascade
occurs. During an informational cascade, all informed traders choose the
same action; they either follow the market (herding) or go against it (con-
trarianism). Given that agents do not use their own information, private
information is not aggregated, and prices may not reflect the true value of
the assets.
After illustrating our argument for informational cascades, we discuss

how cascades can lead to financial contagion. We study an economy in
which traders trade two correlated assets. The history of trades in one
market can permanently affect the price path of the other; as a result,
the price converges to a different value from that to which it would have
otherwise converged. Informational spillovers are to be expected between
correlated asset markets. With gains from trade, however, these informa-
tional spillovers can have pathological outcomes. Informational cascades in
one market generate cascades in another, pushing the prices, even in the
long run, far from the fundamentals. This long-lasting spillover represents
a form of contagion: a crisis or a boom in one market transmits itself to
the other without regard to the fundamentals.
Our paper is part of the theoretical literature on social learning. Several

models of social learning have shown that herding is not necessarily an
irrational phenomenon, and cascades can indeed occur in societies. Their
explanation, however, cannot be directly applied to financial markets. The
theoretical research on herd behavior started with the seminal papers by
Banerjee (1992), Bikhchandani et al. (1992), and Welch (1992).1 These
papers do not discuss herd behavior in financial markets, but in an abstract
environment, where agents with private information make their decisions in
sequence. They show that, after a finite number of agents have chosen their
actions, all following agents disregard their own private information (i.e.,

1Note that here we only consider models of informational herding. We do not discuss
models of herding due to reputational reasons (see, e.g., Scharfstein and Stein, 1990) or
payoff externalities. In a recent paper, Dasgupta and Prat (2008) show that reputational
concerns generate herding in a financial market with sequential trading.
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an informational cascades arises) and herd.2 This is an important result
because it provides a rationale for the imitating behavior that we observe
in consumers’ and investors’ decisions. In these first models of herding,
however, the cost of taking an action (e.g., investing in a new project) is
held constant. In other words, these models do not analyze situations where
the price of a good changes when agents make the decisions to buy or sell
it. Therefore, they are not appropriate for a discussion of herd behavior in
financial markets, where prices are certainly flexible and react to the order
flow.
More recently, Avery and Zemsky (1998) have studied herd behavior in

a financial market where the price is efficiently set by a market maker ac-
cording to the order flow. They show that the presence of an efficient price
mechanism makes an informational cascade impossible.3 Agents always find
it optimal to trade on the difference between their own information (the
history of trades and the private signal) and the commonly available infor-
mation (the history of trades only). For this reason, the price aggregates
the information contained in the history of past trades correctly.4

The difference between Avery and Zemsky’s (1998) results and ours
stems from a crucial assumption. In their model, informed traders are
all homogeneous so the market does not help them to realize any gain
from trade. In contrast, in our work, informed traders are heterogeneous

2This early work has been extended in many directions: for instance, Chamley and
Gale (1994) allow agents to choose their position in the sequence; Smith and Sørensen
(2000) generalize the results on cascades by considering different distributions of private
beliefs and heterogeneous agents. For a critical review see, e.g., Gale (1996), Bikhchan-
dani and Sharma (2001), Hirshleifer and Theo (2003), Chamley (2004), and Vives (2008).

3Avery and Zemsky (1998) show that, when there there is multidimensional uncer-
tainty (i.e., uncertainty not only on the direction of a shock to the asset fundamental,
but also on the existence of the shock itself), herd behavior can arise even in their frame-
work. Their definition of herding, however, is not the standard one in the literature (see
footnote 24). Even with multidimensional uncertainty, informational cascades cannot
arise in their study (see their Proposition 2 and their comments at page 733). See also
the considerations of Brunnermeier (2001, p. 179), Chari and Kehoe (2004, p. 144) and
of Hirshleifer and Teoh (2003, pp. 39-40).

4The theoretical contributions on informational herding in financial markets are few
(see, e.g., Lee, 1998; Chari and Kehoe, 2004; Décamps and Lovo, 2006; and Park and
Sabourian, 2008). For empirical evidence, see, e.g., Lakonishok et al. (1992), Grinblatt
et al. (1995), Wermers (1999), Sias (2004), Cipriani and Guarino (2006) and the other
references in Hirshleifer and Teoh (2003). For experimental evidence, see Cipriani and
Guarino (2005a, 2005b, 2008a, 2008b), Drehmann et al. (2005, 2007) and Park and Sgroi
(2008).
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because they value the asset differently. Traders’ private values originate
from differences in time preferences or from liquidity and hedging reasons
to trade. As a result of traders’ heterogeneity, there are gains from trade
that can be realized in the market; the presence of gains from trade makes
the aggregation of private information inefficient.
Our paper also offers a contribution to the literature on financial conta-

gion. This literature tries to explain why, in financial markets, we observe
co-movements across asset prices and clustering of financial crises that are
difficult to explain in terms of common shocks (such as a change in the level
of the international interest rate or in the price of commodities). The closest
paper to ours is that by King and Wadhwany (1990), which studies conta-
gion due to correlated information in a rational expectation model. In their
model, asset values depend on a common component and an idiosyncratic
one. In the presence of asymmetric information, changes in one asset’s
idiosyncratic component will affect the other asset’s price (since, with some
probability, they will be interpreted as changes in the common component).
In our paper contagion is due to information spillovers and informational
asymmetries as well. In contrast to King and Wadhwany (1990), however,
we study a sequential trading model. This allows us to show how, because
of informational cascades, the sequence of trades matters for financial con-
tagion: specific sequences of trades, through informational spillovers from
one market to the other, generate informational cascades and have long-
lasting pathological effects in the other market. Moreover, we show that
such contagious effects can also occur when the fundamental values of the
assets are independent, as long as there are other channels through which
informational spillovers occur from one market to the other (e.g., because
of correlated liquidity shocks).
Other papers have explained financial market contagion through differ-

ent channels. Calvo (1999) presents a model of contagion through liquidity
shocks: when agents are hit by a liquidity shock in one market, they also
liquidate assets in other markets in order to meet a call for additional col-
lateral, thus transmitting the shock to other markets. Kodres and Pritsker
(2002) and Yuan (2005) study contagion in a rational expectations model
of financial markets. In Kodres and Pritsker (2002), contagion happens
through cross-market rebalancing: when agents are hit by a shock in one
market, they need to rebalance their portfolio of assets; the presence of
asymmetric information exacerbates the price co-movements resulting from
this rebalancing. In Yuan (2005), contagion arises because of the inter-
action between asymmetric information and borrowing constraints. Kyle
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and Xiong (2001) show how financial contagion can also be due to wealth
effects. Fostel and Geanakoplos (2008) show that financial contagion can
arise as a result of the interplay between market incompleteness, agents’
heterogeneity and margin requirements. Mondria (2006) shows that finan-
cial contagion can arise even when two markets are independent because of
investors’ shifts of attention toward regions hit by a financial crisis. Other
authors (e.g., Corsetti et al., 1999; Kaminsky and Reinhart, 2000; Rigobon,
2002) focus on currency crises and study the factors (e.g., incorrect mon-
etary or fiscal policies) that lead to simultaneous speculative attacks. Fi-
nally, the literature on financial contagion is part of the broader literature
on contagion. For instance, Allen and Gale (1998, 2000, 2007) and Lagunoff
and Shreft (2001) study financial system fragility due to contagious effects
among financial institutions.
The structure of the paper is as follows. Section 2 presents the model

for the case of a one-asset economy. Section 3 discusses the main results
on informational cascades and herd behavior. Section 4 illustrates cascades
and financial contagion in a two-asset economy. Section 5 concludes. The
Appendix contains all the proofs.

2 The Model

The Market An asset is traded by a sequence of traders who interact
with a market maker. Time is represented by a set of trading dates indexed
by t = 1, 2, 3, .... At each time t, a trader can exchange the asset with the
market maker. The trader can buy, sell or decide not to trade. Each trade
consists of the exchange of one unit of the asset for cash. The trader’s
action space is, therefore, A ={buy, sell, no trade}. We denote the action
of the trader at time t by xt ∈ A. Moreover, we denote the history of trades
and prices until time t− 1 by ht.
At any time t, the market maker sets the prices at which a trader can

buy or sell the asset. When posting these prices, he must take into account
the possibility of trading with agents who (as we see below) have some
private information on the asset value. Therefore, he sets different prices
at which he is willing to sell and to buy the asset; that is, there will be a
bid-ask spread (Glosten and Milgrom, 1985). We denote the ask price (i.e.,
the price at which a trader can buy) at time t by at and the bid price (i.e.,
the price at which he can sell) by bt.

5

Cipriani and Guarino: Herd Behavior and Contagion in Financial Markets

Published by The Berkeley Electronic Press, 2008



The Asset Value Market participants assign random utility KV to one
share of the asset, where V represents the common component (or the “fun-
damental”) of the asset value and K its private component. The common
component, V , is a random variable taking values vL and vH (vH > vL)
with probabilities (1−p) and p.5 6 The private componentK, which reflects
agents’ heterogeneity, is a positive discrete random variable.
The common component of the asset value reflects the present value of

the security’s cash flow and is realized after the trade has occurred. The
private values, in contrast, are known in advance of the trade. Trading in the
market can happen because of informational reasons (i.e., because traders
have private information on V ) or because of non-informational reasons
(i.e., because traders and market maker have different private values).
Of course, in actual markets there can be several sources of heterogeneity

(i.e., of different private values) among market participants, and these could
be microfounded in different ways. For instance, heterogeneity can stem
from different preferences of traders over present and future consumption,
in which case K would represent traders’ and market maker’s subjective
discount factors (for a formal microfoundation, see the Appendix).
Another source of heterogeneity among traders could be differences in

endowments. For instance, in Bhattacharya and Spiegel (1991) or Wang
(1994), traders are endowed with non-tradable labor income or with private
investment opportunities correlated with the asset payoff.7 Therefore, they
have a non-informational motive to trade, since they need to hedge the
risk of the non-tradable payoff. Similarly, in Dow and Rahi (2003), traders
have a non-informational reason to trade as they hedge the risk stemming
from a stochastic endowment. Such a non-informational reason to trade is
summarized in our model by the private component of the asset value.
Finally, we can also interpret the parameterK as “the result of imperfect

5Note that, throughout the paper, we use capital letters to indicate random variables
and lowercase letters to indicate their realizations. Note also that, although xt can equal
buy, sell or no trade, for convenience, we treat it as the realization of a real-valued
random variable Xt (as if it took values in {−1, 0, 1}). The same comment applies to ht.

6In presenting our model with only two values, we have followed much of the lit-
erature in both social learning and market microstucture. It is conceptually easy but
algebraically quite costly to show the results in a set up with a finite set of values and of
signals. The interested reader can find the proofs for this more general case in Cipriani
and Guarino (2004).

7This source of heterogeneity is also studied in Décamps and Lovo (2006). They
analyze the case in which heterogeneity arises from shocks to the wealth of risk-averse
traders in a model similar to that of Glosten (1989).
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access to capital markets or ... differential subjective assessments of the
distribution of the random variable ....” (Glosten and Milgrom, 1985). For
the rest of the paper, we do not restrict ourselves to any of these different
interpretations, but just use the reduced form of gains from trade presented
above.

The Market Maker As in Glosten and Milgrom (1985) and in the re-
lated literature, we assume that unmodeled potential (Bertrand) compe-
tition forces the market maker to set prices so as to make zero expected
profits in each period t. The market maker observes the history of traders’
decisions and prices until time t− 1, ht. When setting the prices, the mar-
ket maker takes into account not only the information conveyed by ht, but
also the information conveyed by the time t decision to buy or to sell the
asset. Bertrand competition implies that the equilibrium bid (ask) will be
the highest (lowest) price satisfying the zero expected profit condition.
As a normalization, we set the private component K for the market

maker equal to 1. Hence, the equilibrium bid and ask prices at time t has
to satisfy the following conditions:

bt := max{b ∈ [vL, vH ] : b = E(V |ht, Xt = sell, at, b)}, (1)

at := min{a ∈ [vL, vH ] : a = E(V |ht, Xt = buy, a, bt)}. (2)

Note that the expected values are conditioned on the bid and the ask prices
themselves, since the traders’ decisions (and, therefore, the informational
content of a trade) depend on the bid and ask prices that the traders face.8

Therefore, the equilibrium ask and bid prices are fixed points.
Finally, we denote the expected value of asset V at time t, before the

trader in t has traded, by pt, that is,

pt = E(V |ht). (3)

We will refer to pt as the “price” of the asset.9 In some cases, we will find
it convenient to abstract from the bid-ask spread and discuss our results in
terms of pt.

8The market maker posts the bid and ask prices at t before the trader at time t makes
his decision.

9Note that pt is the price at which a transaction takes place at time t− 1 if at t− 1
there was a transaction (i.e., if the trader did not abstain from trading). Moreover, as
we see below, pt is always between the bid and ask price of the asset, thus resembling a
mid-price.
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The Traders There are a countably infinite number of traders. Traders
act in an exogenously determined sequential order. Each trader, indexed
by t, is chosen to take an action only once, at time t. Traders are of
two types, informed and uninformed (or noise). The trader’s type is not
known publicly, that is, it is his private information. At each time t, with
probability μ, the trader arriving in the market is an informed trader and,
with probability (1− μ), he is a noise trader.

Noise traders Uninformed (or noise) traders trade for unmodeled (e.g.,
liquidity) reasons: they buy, sell or do not trade the asset with exogenously
given probabilities. For convenience, we assume that in each period in
which they are called to trade, they buy, sell or do not trade with equal
probability.10

Informed traders Informed traders know their own private component
and have private information on the asset value’s common component. If
at time t an informed trader is chosen to trade, he observes a private signal
St on the realization of V . St is a symmetric binary signal, taking values
sL and sH with precision q > 1

2
; that is, Pr(St = sL|V = vL) = Pr(St =

sH |V = vH) = q. Note that, conditional on the realization of V , the random
variables St are i.i.d. In addition to his signal, an informed trader at time t
observes the history of trades and prices. Therefore, his expected value of
the asset is E(V |ht, st).
For simplicity’s sake, we assume that each informed trader’s private

component K can take only two values, l, g, with l < 1 < g. In other
words, a trader either has a gain (K = g) or suffers a loss (K = l) from
holding the asset. We denote the private component K of a trader trading
at time t byKt, assume that the sequence ofKt is i.i.d. and thatKt equals l
or g with equal probability.11 Obviously, the realization ofKt is not publicly
known; that is, it is private information to the trader.
The informed traders’ payoff function U : {vL, vH} × A × [vL, vH ]2 ×

10Noise traders with inelastic demand are a common feature of market microstructure
models. Their presence guarantees that the market does not collapse because of the
asymmetric information between informed traders and the market maker. Note that,
although in our model informed traders are heterogeneous, their demand functions are
not inelastic with respect to the price (as we see below). The heterogeneity of informed
traders is not sufficient to assure that the market does not collapse after any history of
trades.
11Note that the assumption that Kt are i.i.d. is introduced only for convenience. All

our results are trivially robust to relaxing the assumption.
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{l, g}−→R+ is defined as12

U(v, xt, at, bt, kt) =

⎧⎨⎩ktv − at if xt = buy,
0 if xt = no trade,
bt − ktv if xt = sell.

(4)

Informed traders choose xt to maximize E(U(·)|ht, st). Note that we are
assuming that the event “the trader is informed” and the event “the trader
has a private value l or g” are independent of the realized value of V .
Therefore, the knowledge of these events does not convey any information
on the asset value to the trader.
An informed trader’s payoff depends on his private component Kt. In

particular, an agent with a gain g from holding the asset buys whenever
gE(V |ht, st) > at and sells whenever gE(V |ht, st) < bt. Analogously, a
trader with a loss l from the asset buys whenever lE(V |ht, st) > at and
sells whenever lE(V |ht, st) < bt. Finally, if bt < ktE(V |ht, st) < at, the
trader does not trade. If a trader is indifferent between not trading and
buying (i.e., ktE(V |ht, st) = at) or between not trading and selling (i.e.,
ktE(V |ht, st) = bt), he randomizes between the two actions.

Parametric assumptions Throughout the paper, we make two assump-
tions on the parameter values. First, we assume that vL > 0. The assump-
tion guarantees that the agents’ expectations are bounded away from zero.
If expectations were allowed to converge to zero, the non-informational rea-
sons to trade would vanish, and there would be no heterogeneity in the

market. Second, we assume that l, g ∈ (v
H + vL

2vH
,
vH + vL

2vL
). With this con-

dition, we rule out the case where there exist bid and ask prices at which
the private component determines a trader’s choice, no matter what the
precision of his private information is.13

12In the case of a sale, the payoff can result either from the trader being endowed with
the asset or from the trader being allowed to short sell the asset.
13To see this, let us discuss what happens when the assumption does not hold. Consider

a trader with a gain g >
vH + vL

2vL
. Even if he knew that the asset value is vL, his

evaluation of the asset would, nevertheless, be greater than
vH + vL

2
. Similarly, a trader

with a loss l <
vH + vL

2vH
would value the asset less than

vH + vL

2
even if he knew that

the asset value is vH . As a result, as long as the bid and ask prices are close to
vH + vL

2
,
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In other words, the two assumptions exclude two extreme (and uninter-
esting) cases. The first assumption excludes that non-informational reasons
to trade (modeled as a multiplicative parameter) vanish as the expectations
converge towards one of the possible realizations of the asset value. The
second excludes that non informational reasons to trade are so strong that
they overwhelm informational reasons to trade, no matter how precise the
private signal.
Finally, the two assumptions imply that the traders’ expectations and

private values are all strictly positive. As a result, an informed trader’s
payoff from the asset, ktE(V |ht, st), is increasing in both kt and E(V |ht, st).
This rules out both the case where some traders value the asset more if its
realization is vL than if it is vH and the case where g represents a gain for
one realization of the asset value and a loss for the other.

2.1 Preliminary Results
Before proceeding to the main analysis, let us provide some results on the
properties of the market prices:

Proposition 1 (Existence and Uniqueness of Bid and Ask Prices)
At each time t, there exists a unique bid and ask price. Moreover, bt ≤ pt ≤
at.

It is also useful to remark that the sequence of prices is a martingale
with respect to the history of trades and prices, since pt is an expectation
conditional on all public information available until time t.14 This property
will be important to prove some of our results.

3 Informational Cascades and Herd Behavior

In this section, we show how in our economy the prices fail to aggregate
private information correctly. Indeed, there will be a time when information
stops flowing to the market, and the prices may remain stuck at a level far
from the fundamental value of the asset. This blockage of information is
called an informational cascade.
In order to present our results, let us first introduce a formal definition:

the private component always overwhelms the informational reasons to trade for any
precision of the signal.
14The result immediately follows from the law of iterated expectations and from the

fact that the price is a bounded random variable (because it is the expected value of the
fundamental, which is itself bounded).
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Definition 1 An informational cascade arises at time t when all informed
traders act independently of their own signal.

During an informational cascade, an informed trader makes the same
trading decision whatever signal he may receive: the probability of an action
is independent of the private signal, that is, Pr(Xt = x|ht, at, bt, St = s) =
Pr(Xt = x|ht, at, bt) for all x and all s. Hence, a trader’s private information
is not revealed by his action. As a result, the market maker will be unable to
infer the traders’ private information from their actions and will be unable
to update his beliefs on the asset value. In other words, in an informational
cascade, trades do not convey any information on the asset value.
We now show that, as more trades arrive in the market, an informational

cascade arises almost surely. Early on in the process of trading, when there
is a fair amount of uncertainty and, therefore, traders are relatively well-
informed compared to the market maker, their expected gain from acting
upon their signal is greater than their exogenous gain from trade. As a
result, they follow their signal, and there is no informational cascade in
the market. Over time, as the prices aggregate private information, the
informational content of the signal becomes relatively less important than
that of the history of trades. After a long enough sequence of trades, the
valuations of the traders become so close to the bid and ask prices that the
expected gain from acting upon private information becomes smaller than
the gain from trade. At this point, all informed traders with a gain g from
the asset decide to buy independently of their signal, and all traders with
a loss l from holding the asset decide to sell, thus an informational cascade
arises.

Proposition 2 (Almost Sure Occurrence of Informational Cascades)
In equilibrium, an informational cascade arises almost surely if and only if
q < 1.

It is instructive to outline the main steps of the proof of this proposition.
We first present two lemmas. Lemma 1 shows that the price, the bid and the
ask converge almost surely to the same random variable.15 This happens
because, as more information is aggregated by the market prices, the degree

15Following most of the literature in market microstructure and social learning, we
have not explicitly characterized the probability space with respect to which the random
variables are defined and almost sure convergence occurs. Because of the complexity
of the model, the characterization is notationally cumbersome. We refer the interested
reader to an appendix available on the authors’ webpages and upon request.
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of asymmetric information in the market decreases, and the bid-ask spread
shrinks to zero. In Lemma 2, we show that, as long as q < 1, the probability
that, after any history of trade, a buy or a sell order comes from an informed
trader is bounded away from zero. The condition q < 1 rules out perfectly
informative signals. If signals were perfectly informative, a trader would
disregard even a very long history of trades, and his expectation would
diverge from that of the market maker.16 Finally, we use the two lemmas
to prove that, if an informational cascade did not occur, over time traders’
expectations would become arbitrarily close to the bid and ask prices. In
such a case, however, the traders would find it optimal to stop following
their private information and trade according to their gain or loss from
holding the asset, which is a contradiction.17

Note the difference between this channel of informational cascade and
that described in the standard models of informational cascades with a
fixed price (Bikhchandani et al., 1992; Banerjee, 1992). In those models,
a cascade occurs because private information is eventually overwhelmed by
public information. In contrast, in our economy with flexible prices, private
information is never overwhelmed by public information; nevertheless, a
cascade occurs since private information is eventually overwhelmed by the
private values (i.e., the gains from trade).
It is also useful to note that Lee (1998) showed that, in a similar financial

market, transaction costs can also cause a blockage of information. With
transaction costs, however, when a cascade occurs, traders stop trading.
Therefore, information ceases to flow into the market only because the
market shuts down. Chari and Kehoe (2004) present a model of cascades
in financial markets with endogenous timing. In their work, agents make a

16Our condition on the signal is equivalent to saying that beliefs must be “bounded”
(Smith and Sørensen, 2000), a standard condition in the social learning literature (see,
e.g., Chamley, 2004).
17Smith and Sørensen (2000) also study informational cascades in an economy with

heterogeneous types (in a setup without prices). In their model, in addition to informa-
tional cascades, another phenomenon occurs: confounded learning. Confounding learning
refers to a situation where, although agents use their private information, no inferences
can be made by observing their actions (because different types use private information
differently). A necessary condition for confounding learning is that agents have “opposite
preferences,” that is, they order outcomes differently (in our setup, this would arise if
some agents valued vH more than vL). Such preferences are not natural in financial mar-
kets, where the common value component reflects the present value of the security’s cash
flow, and they are ruled out by our parametric assumptions. For this reason, confounded
learning never arises in our setup.

12

The B.E. Journal of Theoretical Economics, Vol. 8 [2008], Iss. 1 (Contributions), Art. 24

http://www.bepress.com/bejte/vol8/iss1/art24



real investment decision in addition to trading in the market. A cascade of
investment or no investment occurs in their model. When a cascade occurs,
however, no one trades in the market. For this reason the market does
not aggregate information. In our model, in contrast to both Lee (1998)
and Chari and Kehoe (2004), a cascade in the financial market occurs and
information stops flowing to the market despite the fact that agents keep
trading.
Since during an informational cascade a trader’s action does not convey

any information on the asset value, the market maker’s expected value of
the asset conditional on receiving a buy or a sell order is the same, and
the bid-ask spread collapses to zero. Moreover, the market maker will not
update his belief after observing a trade. The prices remain stuck at the
level reached when the cascade started. Finally, since during a cascade
agents face the same decision problem in each period, an informational
cascade never ends.

Corollary 1 (Cascades last for ever) Suppose an informational cascade
occurs at time t. Then, it lasts for ever and bt+i = pt+i = at+i for all
i = 0, 1, 2, ....

An informational cascade may be incorrect; that is, the prices may re-
main stuck at a level far from the fundamental value. We show this through
a simple example.

Example 1 (Incorrect Informational Cascade) Let us consider an econ-
omy in which the asset can take values 1 or 2 with equal probabilities, and
its realization is 2. The probability that a trader is informed is 0.5, and the
precision of the signal is 0.8. The private values are g equal to 1.05 and l
equal to 0.95. Suppose that a sequence of sell orders arrive in the market.
Figure 1 shows the bid and ask prices set by the market maker (black lines),
the asset valuation of a trader with a low signal and a gain from the asset
(gray line), and the valuation of a trader with a high signal and a loss from
holding the asset (dotted gray line).18

Phase 1 At times 1 and 2, the valuation of a trader with a high signal
is higher than the ask (even when he has a loss from holding the asset), and
the valuation of a trader with a low signal is smaller than the bid (even with

18The valuations of a trader with a low signal and a loss from the asset and the
valuation of a trader with a high signal and a gain from holding the asset are not shown
in the figure because they are trivially always outside the bid-ask spread.
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Figure 1: Informational Cascade. The figure shows the bid and ask prices, the
valuations of traders with a high signal and a loss from holding the asset and
those of traders with a low signal and a gain from the asset. A sequence of sell
orders generates an informational cascade in the market. The parameter values
for this and for all the other figures are summarized in a table at the end of the
Appendix.

a gain from the asset). As a result, all informed traders find it optimal to
follow their private information. As the sell orders arrive in the market,
both the traders and the market maker update their valuations downward;
moreover, the valuations of the traders and those of the market maker be-
come closer to one another.
Phase 2 Between times 3 and 5, the valuation of a trader with a low

signal and a gain from the asset is higher than (or equal to) the equilibrium
bid price and lower than the equilibrium ask; therefore, the trader would
abstain from trading if called to trade.19 Of course, the market maker takes
this into account, when updating the price.
Phase 3 At times 6 and 7, the valuation of a trader with a low signal

and a gain from holding the asset is higher than the equilibrium ask price;
this trader would therefore buy if called to trade. Note that between times 3
and 7, the market maker still updates the price downward after a sale since
a selling decision can either come from a noise trader or an informed trader

19More precisely, at times 4 and 5, the trader would abstain from trade with probability
1 since his valuation is strictly higher than the bid. At time 3, instead, the equilibrium
bid requires mixed strategies. The market maker sets the bid equal to the valuation of a
trader with a low signal and a gain from the asset, and, at that bid, such a trader mixes
between selling and not trading.
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with a low signal (all traders with high signals buy).
Phase 4 After seven sells, the valuation of a trader with a high signal

and a loss from holding the asset is lower than the bid; the valuation of a
trader with a low signal and a gain from the asset is higher than the ask. At
this point, informed traders stop following their private information and buy
or sell according to their private values: an informational cascade starts,
and the bid and ask prices remain stuck forever at a level close to 1, far
from the fundamental value of the asset, V = 2.

In the example, the incorrect cascade occurs when enough information
has accumulated in the market and market participants attach a high prob-
ability to the asset value being equal to vL. As we said before, for a cascade
to occur, the expected gain from acting upon private information must be
smaller than the gain from trade; this happens only when the public belief
that V = vH is close to zero or one. In such cases, the private signal con-
veys little additional information to the trader, and he finds it optimal not
to use it. In a nutshell, a cascade only occurs when the public belief that
V = vH has reached either an upper or a lower bound. We show this in the
following proposition:

Proposition 3 (Informational Cascades Regions) Let bpt denote the pub-
lic belief at time t that V = vH, that is, bpt := Pr(V = vH |ht). An informa-
tional cascade occurs when either

bpt > M

or bpt < m,

where m := min{α, β}, M := max{α, β}, and (α,α) and (β, β) are the real
roots of the following two quadratic equations in bpt:20µ

lq

qα+ (1− q)(1− α)
− 1
¶
α =

vL(1− l)

(vH − vL)
(5)

and µ
g(1− q)

(1− q)β + q(1− β)
− 1
¶
β =

vL(1− g)

vH − vL
. (6)

20If both equations have complex roots, then a cascade occurs for any value of bpt. If
one has real roots and the other complex roots, then only the first is relevant to define
the cascade regions. Finally, the roots are relevant only if belonging to (0, 1).
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Note that the two equations (and, as a result, the thresholds after which
a cascade arises) only depend on the parameters g, l and q (and, of course
on vL and vH). The reason is simple: a cascade starts when the private
value (which depends on g and l) overwhelms the informational gain from
trading (which, for a given public belief, only depends on the precision of
the private signal, q). Inspection of the two equations immediately shows
that the relation between these parameters and the thresholds is what one
would expect: the closer g and l are to 1, or the higher q is, the closer the
thresholds are to 0 or 1. In other words, the cascade regions shrink when
the private values become less relevant and when the precision of private
information becomes higher.
We now show how to compute the probability of an incorrect cascade,

that is, the probability that the cascade occurs at the low threshold when
the realized value is high or vice versa.

Proposition 4 (Probability of An Incorrect Cascade) When V = vH,
the probability of an incorrect cascade (i.e., a cascade occurring at the lower
threshold) is approximately equal to (M−p)m

p(M−m) . Similarly, when V = vL, the
probability of an incorrect cascade (i.e., a cascade occurring at the higher
threshold) is approximately equal to (p−m)(1−M)

(M−m)(1−p) .

The probability of an incorrect cascade is computed using the fact that,

when the asset value is vH , the likelihood ratio
Pr(V = vL|Ht)

Pr(V = vH |Ht)
is a martin-

gale with respect to the history Ht.21 Therefore, its unconditional expected

value is equal to its value at time 0,
1− p

p
. As we know from Proposition

3, when t converges to infinity, Pr(V = vH |Ht) converges either (close) to
m or (close) to M . This allows us to compute the two possible asymptotic
values of the likelihood ratio. The probability of an incorrect cascade when
V = vH can, therefore, be easily calculated by equating the asymptotic
expected value of the likelihood ratio to its value at time 0.22

21See Doob (1953) and Cripps (2007).
22Our result is approximate since m and M are only bounds for the cascade regions.

Due to the Bayesian updating, the price moves in discrete steps. A cascade may therefore
start at a price slightly higher thanM or lower than m. The approximation is, obviously,
very small unless very few buys or sales are enough to reach the cascade regions. As
an alternative method, one can easily find an upper bound on the probability of an
incorrect cascade. To explain, note that the lowest value that the public belief can reach
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Figure 2: Probability of an incorrect cascade for different values of q.

Figure 2 shows the probability of an incorrect cascade for different values
of q for an economy in which V is equal to 1 or 2 with equal probability, g =
1.075 and l = 0.925. The probability of the incorrect cascade is computed
for the case in which V = 2. The probability is decreasing in the precision of
the signal q and, of course, tends to zero when q converges to 1. Given this
probability, we can compute another measure of the degree of asymptotic
informational inefficiency in the market: the expected value of the distance
between the asymptotic price and the fundamental value. Figure 3 shows
this distance for different levels of q, under the same parametrization used
for Figure 2: as q increases from 0.65 to 0.80, the expected distance decreases
from 0.30 (30 percent of the maximum distance) to 0.08.
In the Introduction we mentioned that, according to empirical analyses,

fundamentals do help in predicting financial crises, but that crises may still
occur even though the fundamentals are good. Similarly, in our model,
fundamentals do help since the probability that the asset price is stuck at
a low level (a “crisis”) is lower when the asset value is high than when it is
low. Nevertheless, crises happen even when the realized asset value is high.

is Pr(sell|V=vH ,ht)m
Pr(sell|V=vH ,ht)m+Pr(sell|V=vL,ht)(1−m) =: m

0 where Pr(sell|V = vL, ht) = μq+(1−μ)13
(in the most extreme case). One can show that the probability of reachingm0 conditional
on V = vH is bounded above by m0

p . This result can be proven, for instance, using the
“right ballpark property” discussed in Cripps (2007).
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Figure 3: Expected distance between the asymptotic price and the fundamental
value for different values of q.

3.1 Herd Behavior
In the social learning literature, a herd is said to take place if all agents in the
economy choose the same action. In an economy with homogenous agents,
during an informational cascade, all agents choose the same action, that is,
they herd.23 In our economy, because of trader heterogeneity, uniformity
of actions only occurs for traders of the same type. In particular, during a
cascade, all informed traders with the same private value choose the same
action, either conforming to the established pattern of trade or going against
it. In the first case, we say that informed traders act as “herders,” in the
second case, that they act as “contrarians.”24

23The converse is not necessarily true. That is, under some conditions on the signal
space, herding can also arise when there is no informational cascade (see Smith and
Sørensen, 2000).
24The distinction between “herders” and “contrarians” based on whether traders

conform to or trade against the established pattern of trade is also present in Avery and
Zemsky (1998). Note, however, that Avery and Zemsky (in contrast to our notion of
herding and that of most of the social learning literature) define a herder only as the
informed trader who conforms to the established patter of trade despite his signal (the
same definition is adopted by Park and Sabourian, 2008). Therefore, according to this
definition, a trader who follows both his private information and the established pattern
of trade would not be herding. Note also that Smith and Sørensen (2000) define herd
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For instance, consider the case in which a cascade happens when the
public belief reaches the higher threshold (i.e., more buys than sells have
arrived in the market). In such a case, all informed traders with a positive
gain from the asset g buy independently of their signal. By doing so, they
herd because they conform to the established pattern of trade. In contrast,
all informed traders with a loss from holding the asset l sell independently
of their signal. Since these informed traders act against the history of past
trades independently of their signal, they behave as contrarians. During the
cascade, herders and contrarians execute trades of the opposite sign with
the market maker. Nevertheless, since their actions are independent of their
private information, no new information is aggregated by the price.25

Our analysis contributes to the understanding of what drives traders’
decisions to act as herders or as contrarians. The prevalent view is that
herders and contrarians disagree about the asset’s fundamental value. Our
paper shows that herding and contrarianism can arise through a different
mechanism: in our economy, herders and contrarians agree about the fun-
damental value of the asset; the reason for their different decisions is that
they have different private values.

4 Informational Cascades and Financial Contagion in
a Two-Asset Economy

In order to study financial contagion, we now extend our model to a two-
asset economy. We denote the two assets by Y and W ; their fundamental
values, V Y and V W , are both distributed on {vL, vH}. Given that we are
interested in studying the informational spillovers between the two markets,
we concentrate on the case in which the two random variables V Y and V W

are not independent.
Assets Y and W are traded in two markets, market Y and market W ,

respectively. In each market, there is a different market maker setting the
bid and ask prices at which traders can trade. We denote the history of

behavior as conformity of actions conditional on an agent’s type. According to their
definition, therefore, in our economy, during a cascade all informed traders would be
herding.
25This means that the trading activity of herders and contrarians does not contribute

positively to the informational efficiency of financial markets. On the other hand, the
fact that in our model herding and contrianism arise does not imply that the economy
exhibits excess price volatility with respect to the fundamentals. In particular, since the
price is the conditional expected value of the asset, its variance is bounded above by the
variance of the asset value itself.
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trades and prices in market Y until time t− 1 by hYt . Similarly, the history
of trades and prices in market W is denoted by hWt , and the history in
both markets is defined by ht := {hYt , hWt }. Both market makers observe
ht, which they use to form their conditional expectation.
As in the one-asset economy, there are both informed and noise traders

(who are chosen to trade with probability μ and 1− μ). At each time t, a
trader is exogenously chosen to trade in market Y or in market W . We do
not impose any restriction on the stochastic process according to which a
trader is chosen to trade in one of the two markets. We only assume that
such a process is known to the traders and to the market makers, and the
event “a trade occurs in market Y (or W )” is independent of the realized
values of V Y and V W .
If a noise trader is chosen to trade, he buys, sells or does not trade with

equal probability. If instead an informed trader is chosen to trade, he first
receives a signal on the value of the asset that he can trade and then makes
a trading decision, exactly as in the one-asset economy.26

The time t signal on the value of asset J ∈ {W,Y } is represented by a
random variable SJ

t . In particular, as in the previous setup, the signal is
symmetric and binary, taking values sL and sH with precision qJ :

qJ = Pr(SJ
t = sL|V J = vL, V I = vH) = Pr(SJ

t = sL|V J = vL, V I = vL),
(7)

qJ = Pr(SJ
t = sH |V J = vH , V I = vH) = Pr(SJ

t = sH |V J = vH , V I = vL),
(8)

for I, J ∈ {W,Y }, I 6= J . Note that, according to the two expressions
above, the conditional probability of a signal on one asset value is indepen-
dent of the value of the other asset. This is the sense in which the signal is
on one of the two values. Nevertheless, since the two asset values are not
independent, a signal on one asset also indirectly provides some information
on the value of the other.
As in the one-asset economy, there are gains from trade. For ease of

exposition, we assume that the private component of traders’ valuations
takes value l or g with equal probability for both the informed traders
trading in market Y and those trading in market W .
26We do not allow traders to place orders in both markets contemporaneously because

we are interested in the informational spillovers from one market to the other. Allowing
agents to trade at the same time in both markes would make it more complicated to
disentangle the spillover effects without offering further insights.
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The presence of another market does not alter the characteristics of the
equilibrium prices that we have already studied in the one-asset economy.
In particular, it is straightforward to show that, as in the one-asset economy,
in equilibrium there exists a unique bid and a unique ask in both markets.
Furthermore, in each market, at any time t, bJt ≤ pJt ≤ aJt , and the sequence
of prices for each asset {P J

t : t = 1, 2, ...} is a martingale with respect to
the history Ht.27

Before we start analyzing informational cascades and financial conta-
gion, it is worth noting that in our economy, if V Y and V W are positively
correlated, after any order, the prices in the two markets move in the same
way. It is never the case that one price goes up and the other goes down.28

We formalize this result in the following proposition:

Proposition 5 (Cross-market Updating) Suppose the asset values are
positively correlated. If, after an action xJt in market J = Y,W , pJt+1 ≥ pJt
(pJt+1 ≤ pJt ), then pIt+1 ≥ pIt (p

I
t+1 ≤ pIt ), for I 6= J . In particular, after

a buy order in market J, pIt+1 ≥ pIt , and after a sell order in market J,
pIt+1 ≤ pIt .

4.1 Informational Cascades
In a two-asset economy, an informational cascade occurs in either market
for the same reasons already discussed for the one-asset economy. With
one asset, however, an informational cascade never ends. In contrast, with
two assets, a cascade can be broken. Even when there is an informational
cascade in one market, the history of trades in the other reveals some in-
formation. As a result of the trades in the other market, the asset price
moves despite the informational cascade. This can make the valuations of
the traders and of the market maker diverge and break the cascade. We
show this through a simple example.

Example 2 (Broken Cascade) Let us consider an economy where both
assets Y and W can take values 1 or 2 with equal probabilities. The two

27Note that the market makers post a bid and an ask in each market at any time t.
Even if a trade does not occur in a market at time t, the market maker updates the
prices after the trade in the other market because that reveals information on the value
of the asset.
28If, instead, the two asset values are negatively correlated, the prices always move in

opposite directions. In general, all our results obtained by assuming positive correlation
also hold with negative correlation (inverting the relation when it is obvious to do so).
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Figure 4: Broken cascade. The figure shows, for market Y, the bid and ask
prices, the valuations of traders with a high signal and a loss from holding the
asset and those of traders with a low signal and a gain from the asset. A buy
order in market W at time 6 breaks the cascade in market Y.

asset values are positively correlated, in particular

Pr(V W = 1|V Y = 1) = Pr(V W = 2|V Y = 2) = 0.63.

The probability of a trader being informed is 0.74. The precision of the
signal on the value of asset Y is 0.7, whereas the precision of the signal on
the value of assetW is 0.97. The gain from holding the asset is g = 1.1, and
the loss is l = 0.9. Suppose that the realized value of both assets is 2, and
that in the first five periods there are five sell orders in market Y . Figure 4
shows, for market Y , the bid and ask prices set by the market maker (black
lines), the valuation of a trader with a low signal and a gain from the asset
(gray line), and the valuation of a trader with a high signal and a loss from
holding the asset (dashed gray line).
Phase 1 At the beginning of trading activity, in market Y , the valua-

tion of a trader with a high signal and a loss is within the bid-ask spread.
Similarly for the valuation of a trader with a low signal and a gain from
the asset. The valuations for traders with a high signal and a gain and for
traders with a low signal and a loss (not shown in the figure) are both out-
side the spread. Since the traders’ actions depend on their signal, the market
maker sets a positive bid-ask spread and updates the prices downward as sell
orders arrive in the market.
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Phase 2 At time 5, the valuation of a trader with a low signal and a
gain becomes greater than the ask, and that of a trader with a high signal
and a loss becomes smaller than the bid. At this point, an informational
cascade occurs in market Y .
Phase 3 At time 6, a buy order arrives in market W . The buy order

conveys information to both the traders and the market maker in market
Y . Since the two assets’ fundamental values are positively correlated, the
traders and the market maker update their expectations on asset Y upward.
As a result, the importance of informed traders’ private information in-
creases. That is, as the expectations of the traders and those of the market
maker are updated upward, they also move apart. Therefore, it is no longer
true that all informed traders in market Y find it optimal to disregard their
private information. The buy order in market W has broken the informa-
tional cascade in market Y .

It is worth mentioning that our result (i.e., a cascade in one market can
be broken by the history of trades in the other) does not depend on the
assumption that traders are exogenously chosen to trade in one of the two
markets. Indeed, in the example above, even if traders could choose the
market in which to trade, they would always find it optimal to trade the
asset on which they receive the signal.29

At a more general level, our model gives some insights on how financial
markets may recover from a crisis. In a crisis, gains from trade in a market
can make trading completely uninformative. Without observing trading
in the other market, the price of an asset would remain undervalued even
though traders receive new, positive information. By revealing some new
information, however, trading in the other market can help the market
to recover. A positive history of trades in the other market leads to an
increase in the price of the asset. After the price starts to rally, gains from
trade cease to be binding and the normal flow of information to the market
resumes.
Given this result, it is important to distinguish the case of an informa-

tional cascade in only one market from the case of an informational cascade
in both markets. In the latter case, no new information will reach the mar-
kets and the cascades will last forever. We refer to the case of informational
29This is true although the traders have the same private values in both markets.

Obviously, to check the robustness of the example to endogenous market choice, we
assumed that, when choosing between the two markets, traders maximize the expected
return on the asset.
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cascades in both markets as an “informational breakdown.”

Definition 2 An informational breakdown arises at time t if there is an
informational cascade in both markets.

We can show that an informational breakdown occurs almost surely.

Proposition 6 (A.s. Occurrence of Informational Breakdowns) In
equilibrium, an informational breakdown occurs almost surely if and only if
qJ < 1 for J = Y,W .

An informational breakdown occurs for the same reasons an informa-
tional cascade occurs in either market. Over time, the valuations of the
traders become so close to those of the market makers that, even in this
two-asset economy, the expected gain from acting upon private information
becomes smaller than the gain from trade.
Whereas in a two-asset economy an informational cascade blocks the

flow of information only temporarily, the informational breakdown, once
arisen, never ends; therefore, the prices remain stuck forever at the levels
reached when the breakdown started. Moreover, using the same argument
as in the one-asset economy case, a breakdown is incorrect with positive
probability, that is, the price of either or both assets may remain stuck at
a level far from the fundamental values. If the informational breakdown
is incorrect, the markets can never correct their valuations and can never
learn the assets’ fundamental values.

4.2 Financial Contagion
We will now show that, in the presence of gains from trade, informational
spillovers across markets can have long-lasting pathological effects on the
behavior of prices. The fact that traders and market makers are able to ob-
serve the trading activity in another market can cause the price mechanism
to fail in aggregating information. As a result, the flow of information to
the market can stop early, and the price can remain stuck at a wrong level.
We regard this as a form of contagion. More precisely, we say that there is
a contagious spillover at time t when an informational cascade occurs in a
market and would have not occurred if the agents were able to observe only
the history of trades in their own market. That is, the informational cascade
happens only because agents observe the history of the other market.
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Definition 3 A contagious spillover from market J to market I (I, J =
Y,W ; I 6= J) occurs at time t if
1) an informational cascade occurs in market I at time t and
2) the cascade would not have occurred if the agents had been able to

observe only the history of trades and prices in their own market.

Recall from the previous section that during an informational cascade
the probability of an action is independent of the private signal: Pr(XI

t =
x|ht, aIt , bIt , SI

t = sI) = Pr(XI
t = x|ht, aIt , bIt ) for all x and all s. The cascade

is due to a contagious spillover when it is generated by the observation of the
history in the other market. This means that, if the market were isolated
from the other (i.e., only hIt were observable), there would exist an action x
and a realization of the signal sI such that Pr(XI

t = x|hIt , aIt , bIt , SI
t = sI) 6=

Pr(XI
t = x|hIt , aIt , bIt ).

The contagious spillover can have permanent effects. If the informa-
tional cascade in marketW , caused by the spillover effect, happens together
with an informational cascade in market Y , an informational breakdown
arises and the price remains stuck at a wrong level.
We now present an example in which a contagious spillover arises. If

traders in market Y were not able to observe the history in market W , the
price of asset Y would converge to a value close to its fundamental. Given
that traders are able to observe the history in both markets, however, the
initial sales in market W cause an informational cascade in both markets
Y and W , that is, an informational breakdown. The price of asset Y is
stuck forever at a level below the fundamental value, and its initial fall is
not reversed even in the long run.

Example 3 (Contagious Spillover) Let us consider an economy where
both assets Y and W can take values 1 or 2 with equal probabilities. As
in the previous example, the two asset values are positively correlated, in
particular

Pr(V W = 1|V Y = 1) = Pr(V W = 2|V Y = 2) = 0.72.

The probability of a trader being informed is 0.40. The precision of the
signal on the value of asset Y is 0.65, whereas the precision of the signal on
asset W is 0.70. The gain from holding the asset is g = 1.10 and the loss is
l = 0.90. Suppose that the realized value of both assets is 2 and that in the
first eight periods there are eight sell orders in market W followed by buy
orders in market Y . Figure 5 shows, for market Y , the bid and ask prices
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Figure 5: An example of contagious spillover. The figure shows, for market Y,
the bid and ask prices, the valuations of traders with a high signal and a loss
from holding the asset and those of traders with a low signal and a gain from the
asset. A sequence of 8 sales in market W generates a cascade in market Y.

set by the market maker (black lines), the valuations of a trader with a low
signal and a gain from the asset (gray line), and the valuations of a trader
with a high signal and a loss from holding the asset (dashed gray line).
Phase 1 As in the previous example, at the beginning of the trading

activity, traders’ actions in market Y depend on the signal they observe.
However, as sell orders arrive in market W , the traders and the market
maker in market Y revise their valuations downward; furthermore, their
valuations become closer to one another.
Phase 2 At time 9, after eight sell orders in market W , an informa-

tional breakdown occurs. As a result, the market maker in market Y does
not update the price upward (towards the realized value of the fundamental)
as buy orders arrive in market Y from period 9 onward. That is, observing
the history in market W prevents the correct aggregation of private infor-
mation in market Y .

Figure 6 shows a simulated price path for market Y under two different
scenarios: when the traders and the market maker in market Y are not
able to observe the history of marketW (solid line) and when they are able
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Figure 6: Contagious spillover. Simulated price path in market Y when agents
in that market are (solid line) or are not (dotted line) able to observe the trading
activity in market W. The figure also shows the price path in market W (dash-
dotted line) when agents observe the history in both markets.

to do so (dotted line).30 When both histories of trades are observed, the
fall in asset W ’s price makes the price of Y fall to the level at which an
informational breakdown arises. The price of asset Y remains stuck there,
far below its fundamental value, 2. On the other hand, if the traders and
the market maker in market Y do not observe the history in marketW , the
price of Y remains above the level at which an informational cascade arises
and eventually converges to 1.9, a value close to the fundamental.
It is also interesting to see how the spillover effects across market af-

fect the ex-ante long-run distribution of prices in the two markets. As we
know, in contrast to what happens in an one-asset economy, in a two-asset
economy the price of an asset does not necessarily stop being updated when
the market enters a cascade region. As a result, the asymptotic prices are
not always close to the two thresholds illustrated for a one-asset economy.
Instead, there are two intervals, one above the high threshold and one below
the low threshold, where the prices can settle. In the following proposition,

30The dash-dotted line, instead, shows the history of prices in market W . The para-
meters of the simulation are as follows: the probability of an informed trader is 0.7; the
precision of both signals is 0.7; the gains from trade are g = 1.1 and l = 0.9; finally,
p = 0.5 and Pr(VW = vH | V Y = vH) = Pr(VW = vL| V Y = vL) = 0.7. The realized
fundamental values for V Y and VW are 2 and 1, respectively.
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we characterize the asymptotic levels that the public belief can take. From
these, one can easily find the asymptotic levels of the asset prices, as we see
below.

Proposition 7 (Asymptotic Level of the Public Belief) Let bpIt denote
the public belief at time t that V I = vH, i.e., bpIt := Pr(V I = vH |ht), and let
mI andM I be the thresholds at which an informational cascade arises in an
one-asset economy. In a two-asset economy, if an informational breakdown
occurs at time t, then:
a) bpJt ∼= mJ and bpIt ∼= M I, or
b) bpJt ∼= mJ and mI −∆I

L ≤ bpIt ≤ mI, or
c) bpJt ∼= MJ and M I ≤ bpIt ≤M I +∆I

H,
where ∆I

L = mI(1−mJ) and ∆I
H =MJ(1−M I).

When the breakdown occurs, if the beliefs in the two markets have
moved in opposite directions (i.e., one above 0.5 and the other below 0.5),
they remain stuck at the thresholds already illustrated in a one-asset econ-
omy (letter a of the Proposition). Otherwise (letters b and c), one of the
two beliefs remains stuck at the low (high) threshold and the other in an
interval adjacent to and below (above) it. By characterizing the asymptotic
levels of the public beliefs, the proposition also characterizes the asymptotic
behavior of the prices, given that pIt = bpIt (vH − vL) + vL.
In a two-asset economy, since the price can converge to different levels,

the probability of an incorrect cascade by itself does not characterize the
level of asymptotic informational inefficiency in the market. For such a char-
acterization, we look, instead, at the expected distance between the price
and the fundamental value. This distance is always smaller in a two-asset
economy than in a one-asset economy, as illustrated in the next proposition:

Proposition 8 (Second Market and Informational Inefficiency) The
expected time-t price of asset I (I = Y,W ) conditional to the realized value
of the fundamental, E(pIt |V I), is closer to the fundamental value when
agents in market I observe the history in both markets (ht), than when
they only observe the history in their own market (hIt ).

Note that our result holds for any t and not only asymptotically. The
result shows that although contagious, pathological effects do occur for some
histories of trades, informational spillovers from one market to the other are
benign in expected value.
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4.3 Excess Correlation
In the empirical literature, contagion is sometimes defined as correlation
between asset prices in excess to that between fundamentals. It is important
to understand whether the contagious effects shown above also lead to excess
correlation. Interestingly, excess correlation is present in our sequential
trading economy with gains from trade. To illustrate this point, we first offer
an analytical characterization of the covariance between the asset prices and
then turn to the analysis of the correlation.

Proposition 9 (Bound on the Covariance between Prices) Suppose
the asset values are positively correlated. The unconditional covariance of
the asset prices, Cov(P Y

t , P
W
t ), is monotonically increasing over time:

Cov(P Y
t , P

W
t ) ≤ Cov(P Y

t+1, P
W
t+1). Furthermore, it is bounded above by the

covariance of the asset fundamentals: Cov(P Y
t , P

W
t ) ≤ Cov(V Y , V W ) for

any t.

The monotonic increase of the covariance over time is a direct conse-
quence of the prices always being updated in the same direction after any
action (as shown in Proposition 5). The bound on the covariance is remi-
niscent of the bound on the variance of the price and stems from the fact
that the asset prices are conditional expectations of the asset values.
Whereas the covariance between asset prices can be found analytically,

the study of the correlation turns out to be analytically difficult. Therefore,
we studied it through a simulation, whose results are described in Figure
7.31 The three-dimensional chart shows the correlation between asset prices
over time as q changes and compares it with that of the fundamentals. The
unconditional correlation between prices is monotonically decreasing over
time and is always greater than the correlation between fundamentals.32

Note that, with no gains from trade, the correlation between prices
would converge towards the correlation between fundamentals. This is be-
cause in such a case the prices themselves converge almost surely to the

31The parameters of the simulation are identical to those used for Figure 6, with the
exception of q, which here takes values in the range [0.65, 1] (we do not consider values
lower than 0.65 since for those values a cascade occurs immediately at time 1). The
correlation between the asset values is 0.4, since p = 0.5 and Pr(VW = vH | V Y = vH) =
Pr(VW = vL| V Y = vL) = 0.7. The simulation was run for 300 periods and was repeated
for one million runs.
32We have repeated the analysis also for many different values of the other parameters

(the probability of an informed trader, the gains from trade, the correlation between
fundamentals), and the results do not change.
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Figure 7: Price correlation. The monotonically decreasing curves represent the
correlation between asset prices over time for different values of q. The correlation
between fundamentals is represented by the straight lines (i.e., the plane) lying
below the asset price correlation (at the level of 0.4).

fundamental values, as shown by Avery and Zemsky (1998). In contrast,
when traders have gains from trade, informational breakdowns arise, and
the true values of the assets are never discovered. As a result, the cor-
relation between the prices is in excess of that between the fundamentals
even in the long run. Therefore, with sequential trading and gains from
trade, contagion–defined as excess correlation–can also occur as a long-
run phenomenon. Many empirical studies on contagion have documented
this excess correlation among financial asset prices. Our finding suggests
that excess correlation is not necessarily the result of irrational behavior or
frictions in the markets, but may be the result of the learning process of
rational agents.
To clarify what generates excess correlation, we study what happens

when the two markets are isolated from each other, that is, agents in a
market do not observe what occurs in the other market. Since the two
markets operate in isolation, the analysis is similar to that of Section 3
(with the qualification that the correlation between fundamentals creates
asset price correlation). We are able, therefore, to find the (approximate)
asymptotic distribution of the asset prices in the two markets. In particular,
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we know that, in each market, the price settles at one of two threshold levels.
Given that the markets are isolated, the probability that the price in a
market settles on either threshold is independent of what occurs in the other
market. We exploit this fact to find the joint asymptotic distribution of the
two prices and compute their asymptotic correlation. The next proposition
shows that the asymptotic correlation is indeed lower than the fundamental
correlation. For convenience, we restrict our attention to the case in which
the joint distribution of asset values is symmetric (in the sense indicated
below), and the gains from trade are such that the two thresholds for the

cascade regions are symmetric around
1

2
.33

Proposition 10 (Price Correlation between Independent Markets)
Suppose that agents in each market J = Y,W can only observe the history
of trades and prices in their own market, hJt . Suppose the two assets take
values vL and vH with equal probability, and Pr(V W = vL|V Y = vL) =

Pr(V W = vH |V Y = vH) >
1

2
. Furthermore, suppose that in both markets

the thresholds m and M defining the cascade regions are symmetric around
1

2
, that is,

m+M

2
=
1

2
. Then the asymptotic correlation between prices is

lower than the asymptotic correlation between the fundamentals.

By comparing this finding with the previous simulation result, it is clear
that excess correlation is indeed due to the informational spillovers across
markets. Only because traders and market makers observe the trading ac-
tivity in both markets, prices are more correlated than fundamental values.

4.4 Other Channels of Financial Contagion
So far we have shown that when the two asset values are correlated, in-
formational cascades can spill over from one market to the other and can
have long-lasting pathological effects. It is, however, important to highlight
that the mechanism identified in the paper is more general than the specific
channel of contagion that we have analyzed. Gains from trade remain im-
portant irrespective of the type of shock generating informational spillovers
from one market to the other. For instance, let us consider an economy
in which the transmission of shocks across markets happens not because
asset values are correlated, but because of the correlation in noise trading

33This simplifies the exposition a great deal. It is easy to show, however, that our
argument extends to the general case.
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Figure 8: Contagious spillover in the case of independent asset values. The
figure shows the price and the traders’ valuations in market Y. A sequence of 10
sales in market Y is followed by a sequence of 10 sales in market W and then by
buy orders in market Y. Note that trades on the X axis are labelled only every
other period. If agents in market Y observe the trading activity in the other
market, an informational breakdown occurs at time 20 and the price of asset Y
remains stuck at a low level (while the fundamental value is 2). If they cannot
observe the trading activity in the other market, the price converges towards the
fundamental value.

activity (i.e., liquidity shocks are correlated across markets). We will now
show that, in such an economy, even though the fundamental values are
uncorrelated, a contagious spillover occurs.

Example 4 (Contagious Spillover with Independent Fundamentals)
Let us consider an economy where the two assets Y and W can take values
1 or 2 with equal probabilities. In contrast to previous sections, the asset
values are independently distributed. The probability of a trader being in-
formed is 0.35. The precision of the signal on the asset value is 0.7 for both
assets. The gain from holding the asset is g = 1.1 and the loss is l = 0.9.
For the purpose of studying this different channel of contagion, the most

important departure from the previous analysis is that noise traders do not
buy and sell with equal probabilities. On the contrary, in each market, there
are two possible noise trading regimes: “high noise buying regime” (HNB)
and “high noise selling regime” (HNS), each occurring with equal probabil-
ity. In HNB, when noise traders do not abstain from trading, they buy with
probability 0.7 and sell with probability 0.3; the opposite occurs in HNS. For
simplicity’s sake, we assume that when one market is in HNB the other is
in HNS: Pr(HNBY |HNSW ) = Pr(HNSY |HNBW ) = 1.
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Suppose that the realized values of both assets are 2. Suppose also that at
the beginning of trading activity there are sell orders in market Y , followed
by sell orders in market W . Figure 8 shows, for market Y , the price set
by the market maker (black line),34 the valuations of a trader with a low
signal and a gain from the asset (gray line), and the valuations of a trader
with a high signal and a loss from holding the asset (dotted gray line). Note
that the figure shows the behavior of the asset price and of the traders’
valuations under two different scenarios, one in which the traders and the
market makers in market Y are able to observe the history in market W
and the other in which they are not.
Phase 1 At the beginning of the trading activity, ten sell orders in mar-

ket Y cause the price to fall. As this happens, expectations of traders and
market makers become close to one another. Nevertheless, there is no in-
formational cascade in the market, because a proportion of informed traders
use their private information when trading. In particular, the valuations of
a trader with a high signal and a loss are always above the equilibrium price.
Phase 2 Starting from time 11, ten sell orders arrive in market W .

Because of the sell orders, traders and market makers update the probability
of HNS in market W upward. This also affects the price in market Y . In
particular, since the activity of the noise traders is inversely related in the
two markets, traders and market makers update the probability that we are in
HNB in market Y upward. In doing so, they attach a higher probability to
the event that the initial sales in market Y came from informed traders and,
as a result, the price in market Y falls. As this happens, the valuations of
the traders and the market maker in market Y become closer to one another,
and, at time 15, also the valuations of traders with a high signal and a loss
fall below the equilibrium bid price. All informed traders in market Y now
find it optimal to follow their private value component and disregard their
private signal, that is, there is an informational cascade.35

Phase 3 Starting from time 21, buy orders arrive in market Y . Because
of the informational cascade, however, the price is not updated after the
buys, and remains stuck at a low level, far from the fundamental value of
the asset (2).
The figure also shows what happens in market Y if the traders and the

market maker do not observe the trading activity in market W (in Phase

34For simplicity, we show only the asset price and not the bid and the ask.
35Note that the sell orders in marketW also generate an informational cascade in that

market, i.e., the economy is in an informational breakdown.
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2). Since in Phase 1 the sell orders in market Y did not start a cascade, the
buy orders arriving in Phase 3 do convey information to the market maker
and, as a result, the price is updated upward. As more and more buy orders
arrive in the market, the price converges close to the fundamental value of
the asset.

The example focuses on the case in which the liquidity shock is inversely
related in the two markets. Obviously, the logic applies as well to the case
in which the liquidity shock affects both markets in the same way (i.e.,
because of a liquidity shock, some traders liquidate their positions in both
markets). The correlation in liquidity shocks is what creates correlation
between prices.
Our example shows that a contagious spillover similar to that described

in the previous sections can occur even though the correlation between the
asset values is zero. That is, in an economy with gains from trade, the
cross-market spillovers can have pathological consequences (i.e., they can
generate incorrect cascades) irrespective of the specific mechanism through
which they occur.

5 Conclusion

In this paper, we have obtained two main results. The first result is on in-
formational cascades. In financial markets, when agents are heterogeneous
so that trade can be mutually beneficial, informational cascades arise. In-
formation stops flowing to the market, which is, therefore, unable to infer
traders’ private information and to discover the true values of the assets.
The asset prices can remain stuck at levels different from the fundamental
values. The probability of these incorrect cascades depends on the preci-
sion of private information and on the degree of heterogeneity across market
participants. Informational cascades imply that all informed traders choose
the same action, either following the market (herding) or going against it
(contrarianism).
The second result is on contagion. Because of gains from trade, the

history of trades on one asset can significantly affect the price of the other.
It can generate informational cascades in the other market, pushing its
price far from the fundamental value even in the long run. This creates
correlation between asset prices in excess of the correlation between the
fundamentals. The pathological effects of spillovers across markets happen
when the asset fundamental values are correlated and even when they are
not, provided that there is correlation in liquidity trading activity.
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6 Appendix

6.1 Microfoundation of Gains from Trade: An Exam-
ple

The reduced form of gains from trade that we used in the paper can be mi-
crofounded in the following way. As is standard in the market microstruc-
ture literature, we can interpret the trading times t = 1, 2, ... as the times at
which traders trade during the trading day. The asset value, V , is realized
at the end of the day. If the trader trades the asset during the day, he will
obtain the payoff at the end of the day and consume it the day after. The
trader has an endowment of c units of cash and of 1 unit of the asset. The
prices at which he can buy or sell the asset are denoted by a and b.
The trader’s utility function over realized levels of consumption is
u(c1, c2) = c1 + ρc2,
where c1 and c2 indicate consumption in days 1 and 2.
The trader maximizes his expected utility
E(C1 + ρC2)
subject to the following budget constraints:
C1 = c− χx=1a+ χx=−1b, and
C2 = (1 + x)V ,
where C1 and C2 are the two random variables indicating consumption,

x takes value −1 if the agent sells, 0 if he decides not to trade and 1 if he
buys, and χx is an indicator function. The trader’s maximization problem
is equivalent to

Max
x∈{−1,0,1}

E
£
c− χx=1a+ χx=−1b+ ρ(1 + x)V

¤
.

It is straightforward to see that the trader buys the asset if ρE(V ) > a,
sells it if ρE(V ) < b, and does not trade if b < ρE(V ) < a. Moreover, he
can randomize when an equality holds. In the paper, we have normalized
the discount factor of the market maker to 1 and assumed that the discount
factor for a trader is ρ ∈ {l, g}, with l < 1 < g. Therefore, a trader with
gain from trader l is more impatient than the market maker, while a trader
with gains from trade g is less impatient than the market maker.

6.2 Proof of Proposition 1
First, we prove the existence of the ask price. Because of unmodeled po-
tential Bertrand competition, the ask price at time t, at, must satisfy the
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condition

at := min{a ∈ [vL, vH ] : a = E(V |ht, Xt = buy, a, bt)}.

Let us denote by it the event that the agent buying at time t is informed.
The expected value of the asset at time t, given a buy order at the ask price
at is

E(V |ht,Xt = buy, at, bt) =

E(V |ht, Xt = buy, at, bt, it) Pr(it|ht, Xt = buy, at, bt)+

E(V |ht)(1− Pr(it|ht,Xt = buy, at, bt)).

Let us now consider the correspondence ψ : [vL, vH ] ⇒ [vL, vH ] de-
fined as ψ(y) := E(V |ht, Xt = buy,At = y, bt). The correspondence ψ
is piecewise constant. In particular, it is constant everywhere except for
y = lE(V |ht, St = sL), y = gE(V |ht, St = sL), y = lE(V |ht, St = sH), and
y = gE(V |ht, St = sH). To see this, let us order these values in an increas-
ing way and denote them by y1, y2, y3, and y4. For y > y4, Pr(it|ht, Xt =
buy, at, bt) = 0; therefore, ψ(y) = E(V |ht). For any y3 < y < y4, the corre-
spondence takes valueE(V |ht, Xt = buy, at, bt, i

4
t ) Pr(i

4
t |ht, Xt = buy, at, bt)+

E(V |ht)(1−Pr(i4t |ht, Xt = buy, at, bt)), where i4t denotes the event that the
agent in t is informed with valuation of the asset y4. A similar analy-
sis applies to the other cases. When y = yi (for i = 1, 2, 3, 4), an in-
formed trader with valuation yi can randomize between buying and not
trading. Hence, ψ(y) takes all the values belonging to the interval connect-
ing E(V |ht, Xt = buy,At = yi− ε, bt) and E(V |ht,Xt = buy, At = yi+ ε, bt)
for a small ε.
From these observations, it is immediate to see that the correspondence

ψ(y) is non-empty, convex-valued and has a closed graph. By Kakutani’s
fixed point theorem, the correspondence has a (finite number of) fixed
points. The smallest fixed point is the equilibrium ask price.
The proof of the existence of the bid price is analogous.

Now we prove that bt ≤ pt ≤ at. We prove that pt ≤ at; the proof that
bt ≤ pt is analogous.
We can write the ask and the price at time t as follows:
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at = E(V |ht,Xt = buy, at, bt) =

Pr(V = vH |ht, Xt = buy, at, bt)(v
H − vL) + vL,

and

pt = E(V |ht) = Pr(V = vH |ht)(vH − vL) + vL.

Therefore, in order to prove the proposition, we only need to show that

Pr(V = vH |ht,Xt = buy, at, bt) ≥ Pr(V = vH |ht).

Now,

Pr(V = vH |ht, Xt = buy, at, bt) =

Pr(Xt = buy|V = vH , ht, at, bt) Pr(V = vH |ht, at, bt)
Pr(Xt = buy|ht, at, bt)

and
Pr(V = vH |ht) = Pr(V = vH |ht, at, bt).

Therefore, we must show that

Pr(Xt = buy|V = vH , ht, at, bt) ≥ Pr(Xt = buy|ht, at, bt),
which is true if and only if, for any given history, the probability of

observing a buy is not lower if the asset value is high than if the asset value
is low.
We have that

Pr(Xt = buy|V = vH , ht, at, bt) =

q Pr(Xt = buy|St = sH , ht, at, bt) + (1− q) Pr(Xt = buy|St = sL, ht, at, bt)

and, similarly,

Pr(Xt = buy|V = vL, ht, at, bt) =

(1− q) Pr(Xt = buy|St = sH , ht, at, bt) + q Pr(Xt = buy|St = sL, ht, at, bt).

Since q > 1
2
, Pr(V = vH |St = sH , ht) ≥ Pr(V = vH |St = sL, ht). It is

immediate to see that this implies that Pr(Xt = buy|St = sH , ht, at, bt) ≥
Pr(Xt = buy|St = sL, ht, at, bt). Hence, Pr(Xt = buy|V = vH , ht, at, bt) ≥
Pr(Xt = buy|V = vL, ht, at, bt). This concludes the proof.
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6.3 Proof of Proposition 2
To prove the Proposition, we first prove two lemmata.

Lemma 1 The ask, the bid and the price, At, Bt and Pt, converge al-
most surely to the same random variable (i.e., the bid-ask spread converges
almost surely to 0).
Proof of Lemma 1
The proof of this lemma can be found in Glosten and Milgrom (1985,

pp. 86-88).

In order to introduce Lemma 2, let us define the random variable Ut

that takes value 1 if at time t an uninformed trader arrives in the market
and value 0 if at time t an informed trader arrives in the market.
Lemma 2 At any time t, if q < 1, the probability that, after any history

of trade, a buy or a sell order comes from an informed trader is bounded
away from zero:

Pr(St= sH , Ut = 0|ht, Xt = buy, at, bt) ≥
1

2
μ(1− q) > 0,

Pr(St= sL, Ut = 0|ht, Xt = sell, at, bt) ≥
1

2
μ(1− q) > 0.

Proof of Lemma 2
Let us prove the first part:

Pr(St = sH , Ut = 0|ht, Xt = buy, at, bt) ≥
1

2
μ(1− q).

By Bayes’s rule,

Pr(St = sH , Ut = 0|ht,Xt = buy, at, bt) =

Pr(Xt = buy|ht, St = sH , at, bt, Ut = 0)Pr(St = sH , Ut = 0|ht, at, bt)
Pr(Xt = buy|ht, at, bt)

.

First, note that
Pr(St = sH , Ut = 0|ht, at, bt) = Pr(St = sH |ht, at, bt, Ut = 0)μ =
μ(qPr(V = vH |ht, at, bt, Ut = 0)+(1−q) Pr(V = vL|ht, at, bt, Ut = 0)) ≥

μ(1− q), which is greater than 0 since q < 1.
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We now show that Pr(Xt = buy|ht, St = sH , at, bt, Ut = 0) is also
bounded away from 0.
Indeed,
Pr(Xt = buy|ht, St = sH , at, bt, Ut = 0) =
Pr(Xt = buy|ht, St = sH , at, bt, Ut = 0,Kt = g)1

2
+

Pr(Xt = buy|ht, St = sH , at, bt, Ut = 0,Kt = l)1
2
.

Note that Pr(Xt = buy|ht, St = sH , at, bt, Ut = 0, Kt = g) = 1 since the
market maker’s zero profit condition implies that E(V |ht, St = sH) > at.
Hence,
Pr(Xt = buy|ht, St = sH , at, bt, Ut = 0) ≥ 1

2
, and

Pr(St = sH , Ut = 0|ht, Xt = buy, at, bt) ≥ 1
2
μ(1− q).

Analogous steps prove that

Pr(Xt = sell|ht, St = sL, at, bt, Ut = 0) ≥
1

2
μ(1− q).

This concludes the proof of Lemma 2.

Now, we prove Proposition 2. Let us first note that at time t, there is
an informational cascade if the following two conditions hold:
1) Condition 1:

at − gE(V |ht, St = sL) ≤ 0.
and, if the above expression holds as an equality, in equilibrium an

informed trader with a gain g from holding the asset and a signal sL buys
with probability one.

2) Condition 2:

lE(V |ht, St = sH)− bt ≤ 0.
and, if the above expression holds as an equality, in equilibrium an

informed trader with a loss l from holding the asset and a signal sH sells
with probability one.
Conditions 1 and 2 imply that, whatever his signal, a trader always

follows his gain from trade (i.e., buys when Kt = g and sells when Kt = l)
because buying is strictly preferred to any other action or, in the case of
indifference, because it is the strategy that the trader plays in equilibrium.
In equilibrium, during an informational cascade, at = bt = pt, since buying
or selling is independent of a trader’s private information. As a result, it is
easy to prove that a cascade occurs if and only if:
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1) Condition (A1):

pt − gE(V |ht, St = sL) ≤ 0.
and, if the above expression holds as an equality, in equilibrium an

informed trader with a gain g from holding the asset and a signal sL buys
with probability one.

2) Condition (A2):

lE(V |ht, St = sH)− pt ≤ 0.
and, if the above expression holds as an equality, in equilibrium an

informed trader with a loss l from holding the asset and a signal sH sells
with probability one.
Let us write the conditions for the equilibrium ask and bid prices at

time t:

(at − E(V |ht)) Pr(Ut=1|ht,Xt = buy, at, bt) +X
s=sH ,sL

(at − E(V |ht, St= s)) Pr(St = s, Ut = 0|ht, Xt = buy, at, bt) = 0,

(E(V |ht)− bt) Pr(Ut = 1|ht, Xt = buy, at, bt)+X
s=sH ,sL

(E(V |ht, St = s)− bt) Pr(St = s, Ut = 0|ht, Xt = sell, at, bt) = 0.

As we have proved in Lemma 1, Bt, Pt = E(V |Ht) and At converge
almost surely to the same random variable. Therefore, it is immediate to
show that, for every ε > 0, there exists a time T such that, for any t > T ,
−
P

s=sH , sL(pt−E(V |ht, St = s)) Pr(St = s, Ut = 0|ht, Xt = buy, at, bt) <
ε
and

−
P

s=sH , sL(E(V |ht, St = s)−pt) Pr(St = s, Ut = 0|ht, Xt = sell, at, bt) <
ε.

This implies that
(E(V |ht, St = sH)−pt)(Pr(St = sH , Ut = 0|ht,Xt = buy, at, bt)−Pr(St =

sH , Ut = 0|ht, Xt = sell, at, bt))+
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(E(V |ht, St = sL)−pt)(Pr(St = sL, Ut = 0|ht,Xt = buy, at, bt)−Pr(St =
sL, Ut = 0|ht, Xt = sell, at, bt)) < 2ε
Note that both terms on the left of the inequality are positive.
The proof is by contradiction. Let us consider now the case in which

condition (A2) is violated. This means that a trader with a high signal
never sells; therefore, Pr(St = sH , Ut = 0|ht,Xt = sell, at, bt) = 0.36

From Lemma 2, Pr(St = sH , Ut = 0|ht, Xt = buy, at, bt) ≥ 1
2
μ(1−q) > 0.

From the above inequality, E(V |ht, St = sH) − pt < 2ε
1
2
μq
, which can be

written as
E(V |ht, St = sH)

pt
<

4ε

μqpt
+ 1.

Note that pt ≥ vL > 0. By choosing ε ≤ 1
4

¡
1
l
− 1
¢
vLμq, the inequality

becomes
E(V |ht, St = sH)

pt
< 1

l
. This implies that (A2) holds, a contradic-

tion. Similar contradictions are obtained if (A1) is violated or both (A1)
and (A2) are.
Until now, we proved that, if q < 1, an informational cascade arises

almost surely. To conclude the proof, we must show that, if instead q = 1,
it is never the case that all informed traders disregard their private infor-
mation. If q = 1, for any history of trades, E(V |ht, St = sH) = vH and
E(V |ht, St = sL) = vL. Let us consider a trader with a loss l from holding
the asset. Obviously, whatever the bid and ask prices are, if the trader
receives a signal sL, he sells. If, instead, the trader receives a signal sH ,

his private valuation of the asset is lvH . Since l >
vH + vL

2vH
, the trader’s

valuation is greater than or equal to
µ
vH + vL

2vH

¶
vH =

vH + vL

2
; therefore,

the trader would sell (thus disregarding his own private information) only

if the bid price were greater than
vH + vL

2
.

Let us now consider a trader with a gain g from holding the asset.
Obviously, whatever the bid and ask prices are, if the trader receives a

36Observe that condition (A2) is also violated when a trader with a high signal and
a loss from the asset has a valuation equal to the price pt and sells with a positive
probability lower than 1. This, however, cannot occur in equilibirum. It is easy to show
that, if at time t either (A1) or (A2) is violated, the bid-ask spread is strictly positive
(i.e., bt < pt < at). As a result, a trader with a high signal and loss from holding the
asset whose valuation equals the price will not sell with positive probability. Therefore,
if (A2) is violated, it is always the case that
Pr(St = sH , Ut = 0|ht,Xt = sell, at, bt) = 0.
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signal sH , he buys. If the trader receives a signal sL, his private valuation

of the asset is gvL. Since g <
vH + vL

2vL
, the trader’s valuation is smaller

than or equal to
µ
vH + vL

2vL

¶
vL =

vH + vL

2
; therefore, the trader would buy

(thus disregarding his own private information) only if the ask price were

smaller than
vH + vL

2
. Since the ask is always greater than the bid, for any

price either the action of a trader with a loss or the action of a trader with
a gain depends on his private signal. Therefore, it is never the case that an
informational cascade arises.

6.4 Proof of Corollary 1
The proof that in a cascade at = pt = bt is already contained in the proof of
Proposition 2. When conditions (A1) and (A2) in the proof of Proposition
2 hold at time t, the expectations of the market maker and of the traders
(for any signal realization) remain unchanged at time t+ j for j = 0, 1, 2...,
which implies that (A1) and (A2) also hold at t+ j.

6.5 Proof of Proposition 3
As shown in the proof of Proposition 2, an informational cascade occurs
when

lE(V |ht, sH) < pt and

gE(V |ht, sL) > pt.

Recall that

E(V |ht, sH) = vH Pr(V = vH |ht, sH) + vL Pr(V = vL|ht, sH) =
(vH − vL) Pr(V = vH |ht, sH) + vL,

and note that pt = (vH − vL)bpt + vL.
Then, the first inequality can be written as

l(vH − vL) Pr(V = vH |ht, sH) + lvL < (vH − vL)bpt + vL,

i.e.,

l(vH − vL)
qbpt

qbpt + (1− q)(1− bpt) + lvL < (vH − vL)bpt + vL
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or µ
lq

qbpt + (1− q)(1− bpt) − 1
¶ bpt < vL(1− l)

(vH − vL)
.

It is straightforward to check that this inequality is quadratic in bpt.
Similarly, the second inequality can be written as

g(vH − vL) Pr(V = vH |ht, sL) + gvL > (vH − vL)bpt + vL,

i.e., µ
g(1− q)

(1− q)bpt + q(1− bpt) − 1
¶ bpt > vL(1− g)

vH − vL

which is again quadratic in bpt. If the associated quadratic equations only
have complex roots, then the inequalities are always satisfied. If, instead,
one or both have real roots, then the solutions are those indicated in the
proposition, as it is immediate to check.
When bpt is higher thanM := max{α, β} or lower than m := min{α, β},

the market is in an informational cascade. Note that, since the public belief
moves in discrete steps, m and M are only bounds for the cascade regions.

6.6 Proof of Proposition 4
We compute the probability that the public belief bpt reaches the cascade
region [0,m) given that V = vH .
To this aim, we first prove the following lemma:

Lemma Given V = vH ,
Pr(V = vL|Ht)

Pr(V = vH |Ht)
is a martingale with respect to

the history Ht.
Proof of lemma
Let us express bpt+1 as a function of bpt using Bayes’s rule

bpt+1=Pr(V = vH |ht+1) =

Pr(V = vH |ht, xt) =
Pr(xt|ht, V = vH)bpt

Pr(xt|ht)
.

Therefore,

1− bpt+1 = 1− Pr(xt|ht, V = vH)bpt
Pr(xt|ht)

=

Pr(xt|ht)− Pr(xt|ht, V = vH)bpt
Pr(xt|ht)

=
Pr(xt|ht, V = vL)(1− bpt)

Pr(xt|ht)
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Hence,

1− bpt+1bpt+1 =
Pr(xt|ht, V = vL)(1− bpt)
Pr(xt|ht, V = vH)bpt .

Finally,

E(
1− bPt+1bPt+1

|Ht, V = vH) =
X
xt

Pr(xt|Ht, V = vH)
Pr(xt|Ht, V = vL)(1− bPt)

Pr(xt|Ht, V = vH) bPt

=

X
xt

Pr(xt|Ht, V = vL)(1− bPt)bPt

=
(1− bPt)bPt

X
xt

Pr(xt|Ht, V = vL) =
1− bPtbPt

,

which ends the proof.

Given the lemma, the following equality must be satisfied

(1−Pr( bPt = m|Ht, V = vH))
1−M

M
+Pr( bPt = m|Ht, V = vH)

1−m

m
=
1− p

p
.

whose solution gives the expression in the proposition.

6.7 Proof of Proposition 5
We first prove the following lemma:
Lemma For any history ht, Pr(V Y = vH |V W = vH , ht) > Pr(V Y =

vH |V W = vL, ht).
Proof of lemma We prove the lemma in a recursive way.
For h1 = ∅, the result is clearly true by assumption.
Take now h2 = xY1 . Note that we consider the action in market Y

because if it were in market W the action would be uninformative, given
the value of V W , and the result would hold by assumption. Then:

Pr(V Y = vH |V W = vH , xY1 ) =

Pr(xY1 |VW=vH ,V Y =vH)Pr(V Y =vH |VW=vH)

Pr(xY1 |VW=vH ,V Y =vH)Pr(V Y =vH |VW=vH)+Pr(xY1 |VW=vH ,V Y =vL)Pr(V Y =vL|VW=vH)
=

Pr(xY1 |V Y =vH)Pr(V Y =vH |VW=vH)

Pr(xY1 |V Y =vH)Pr(V Y =vH |VW=vH)+Pr(xY1 |V Y =vL)Pr(V Y =vL|VW=vH)
.

and
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Pr(V Y = vH |V W = vL, xY1 ) =

Pr(xY1 |VW=vL,V Y =vH)Pr(V Y =vH |VW=vL)

Pr(xY1 |VW=vL,V Y =vH) Pr(V Y =vH |VW=vL)+Pr(xY1 |VW=vL,V Y =vL) Pr(V Y =vL|VW=vL)
=

Pr(xY1 |V Y =vH) Pr(V Y =vH |VW=vL)

Pr(xY1 |V Y =vH)Pr(V Y =vH |VW=vL)+Pr(xY1 |V Y =vL)Pr(V Y =vL|VW=vL)
.

It is immediate to see that the second probability is lower than the
first, since we know from the previous step that Pr(V Y = vH |V W = vL) >
Pr(V Y = vH |V W = vL). The same procedure applies to the next steps.

Now we prove the proposition for the case of a buy order. We must
show that Pr(V Y = vH |ht, buyWt ) > Pr(V Y = vH |ht).
Note that

Pr(V Y = vH |ht, buyWt ) =
Pr(buyWt |V Y = vH , ht) Pr(V

Y = vH |ht)
Pr(buyWt |V Y = vH , ht) Pr(V Y = vH |ht) + Pr(buyWt |V Y = vL, ht)(1− Pr(V Y = vL|ht))

.

Hence, Pr(V Y = vH |ht, buyWt ) > Pr(V Y = vH |ht) if and only if
Pr(buyWt |V Y = vH , ht) > Pr(buy

W
t |V Y = vL, ht).

The left hand side of the inequality is equal to:

Pr(buyWt |V Y = vH , ht) =

Pr(buyWt |V Y = vH , V W = vH , ht) Pr(V
W = vH |V Y = vH , ht)+

Pr(buyWt |V Y = vH , V W = vL, ht) Pr(V
W = vL|V Y = vH , ht) =

Pr(buyWt |V W = vH , ht) Pr(V
W = vH |V Y = vH , ht)+

Pr(buyWt |V W = vL, ht) Pr(V
W = vL|V Y = vH , ht).

Similarly,

Pr(buyWt |V Y = vL, ht) =

Pr(buyWt |V W = vH , ht) Pr(V
W = vH |V Y = vL, ht)+

Pr(buyWt |V W = vL, ht) Pr(V
W = vL|V Y = vL, ht).
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Since Pr(buyWt |V W = vH , ht) > Pr(buyWt |V W = vL, ht), and we also
know that Pr(V Y = vH |V W = vH , ht) > Pr(V

Y = vH |V W = vL, ht) (as we
have shown in the proof of Result 1 above), the result immediately follows.
The proof in the case of a sell or a no trade follows identical steps.

6.8 Proof of Proposition 6
By following the same steps as in the proof of Proposition 2, we can prove
that there exists a time T such that almost surely for all t ≥ T ,

E(V Y |ht, XY
t = buyY )− gE(V Y |ht, SY

t = sL) ≤ 0.

lE(V Y |ht, SY
t = sH)− E(V Y |ht,XY

t = sellY ) ≤ 0

E(V W |ht,XW
t = buyW )− gE(V W |ht, SW

t = sL) ≤ 0.

lE(V W |ht, SW
t = sH)− E(V W |ht,XW

t = sellW ) ≤ 0
When these conditions are satisfied, in both markets a trader with a

gain g from the asset buys and a trader with a loss l sells independently
of their signals. Therefore, in both markets, the probability of a trade is
independent of the realization of the signal. This means that there is an
informational cascade in both markets; that is, an informational breakdown
occurs.

6.9 Proof of Proposition 7
Let us first prove letter a. We know from Proposition 4 that, when bpIt ≤ mI

or bpIt ≥ M I , market I is in an informational cascade. We want to prove
that if the breakdown occurs when the public beliefs in the two markets
are one below 0.5 and the other above 0.5, then the breakdown occurs
at the same (approximate) thresholds that we computed for the one-asset
economy. Without loss of generality, suppose that a cascade starts in market
I at time T when bpIT ∼=M I , and a breakdown occurs at a later time T 0 > T ,
when bpJT 0 < 0.5. By using the same logic of the one-asset economy, it must
be that bpJT 0 ∼= mJ . Moreover, by definition, bpJt does not change after T 0.
Hence, to prove our result, it only remains to show that the price in market
I does not increase between T and T 0; that is, bpIT 0 ≤ bpIT . To prove this,
note that
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bpIT = Pr(V I = vH |hT ) =
Pr(V I = vH |hT , V J = vH) Pr(V J = vH |hT )+
Pr(V I = vH |hT , V J = vL) Pr(V J = vL|hT ),

and

bpIT 0 = Pr(V I = vH |hT 0) =
Pr(V I = vH |hT 0, V J = vH) Pr(V J = vH |hT 0)+
Pr(V I = vH |hT 0 , V J = vL) Pr(V J = vL|hT 0).

Since between T and T 0 market I is in a cascade, the only informative
actions are those in market J . Hence, Pr(V I = 2|hT , V J = vH) = Pr(V I =
2|hT 0 , V J = vH) and Pr(V I = vH |hT , V J = vL) = Pr(V I = vH |hT 0, V J =
vL). Furthermore, since market J is in a cascade at time T 0 but not at time
T , Pr(V J = vH |hT 0) ≤ mJ < Pr(V J = vH |hT ). It is, therefore, immediate
to see that bpIT ≥ bpIT 0.
We now prove letter c. The proof for letter b is analogous. Suppose

that bpIT−1 < M I and bpIT ≥ M I . If at time T market J is in a cascade too,
then the economy is in a breakdown and bpIt remains stuck forever close to
M I , which proves the first inequality. If, instead, at T market J is not in a
cascade, the history in market J affects the price in market I. In particular,
for some sequences of decisions in market J , bpIt keeps increasing above the
threshold M I until market J itself is in a cascade. To find an upper bound
on the level that bpIt can reach, let us consider a history in which market I
remains in the cascade for t > T ; let us denote the time when market J
reaches its cascade region too by T 0 (T 0 > T ). Then, note that

Pr(V I = vH |hT 0)
Pr(V I = vH |hT 0, V J = vH) Pr(V J = vH |hT 0)+
Pr(V I = vH |hT 0, V J = vL) Pr(V J = vL|hT 0) =

Pr(V I = vH |hT 0 , V J = vH)MJ + Pr(V I = vH |hT 0 , V J = vL)(1−MJ).

Moreover,

Pr(V I = vH |hT 0, V J = vH) ≤ 1,
Pr(V I = vH |hT 0 , V J = vL) ≤M I ,
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where the second inequality comes from the fact that the asset values are
positively correlated.
Therefore,

Pr(V I = vH |hT 0) ≤MJ +M I(1−MJ)

and
∆I

H =MJ +M I(1−MJ)−M I = (1−M I)MJ ,

which ends the proof.

6.10 Proof of Proposition 8
We will prove the proposition for the case in which V I = vH . Consider a
particular realization for the sequence of random variables determining, in
market I, for each time t, whether the trade occurs in the market, whether
the trader is informed or not, his private signal and private value if he is
informed, and his decision if he is uninformed. Consider the set of times
when a decision occurs in market I and denote this set by T I . Let us
compute the sequence of prices in T I assuming that the traders and the
market maker in the market only observe hIt , and denote it by

©
pI∗t
ª
t∈T I .

Now, let us consider the price at time t0 ∈ T I for the case in which agents
in market I observe the history in both markets, ht0 (i.e., pIt0 = E(V I |ht0)).
Let us compute the expected value of the price conditional on V I = vH and
hIt0, namely, E(p

I
t0|V I = vH , hIt0) by integrating over all possible histories in

market J . This expectation is always higher than pI∗t0 since, for any t < t0

and t /∈ T I , in expectation, the decision in market J increases the price of
asset J and, as a result, of asset I. Note that this inequality will hold for
any hIt0 . Hence, E(p

I
t |V I = vH) > pI∗t . The proof for the case V

I = vL is
analogous.

6.11 Proof of Proposition 9
First we prove that the covariance between prices is bounded by the covari-
ance between fundamentals.
Note that

E(E(V Y |Ht)E(V
W |Ht)) =P

ht

¡P
vY v

Y Pr(vY |ht)
P

vW vW Pr(vY |ht)
¢
Pr(ht).

By the lemma in the proof of Proposition 5, it is easy to show that, for
any history ht, Cov(V Y , V W |ht) > 0. Therefore,
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P
ht

¡P
vY v

Y Pr(vY |ht)
P

vW vW Pr(vY |ht)
¢
Pr(ht) ≤P

ht

¡P
vY v

Y vW Pr(vY , vW |ht)
¢
Pr(ht) = E(V Y V W ),

which ends the proof.

Now let us shows that the covariance is increasing over time. Let us
define ∆P J

t =: P
Y
t − P Y

t−1. We prove the statement in two steps.
Step 1 E(∆P Y

t ∆PW
t ) ≥ 0.

Proof of Step 1 Note that

E(∆P Y
t ∆PW

t ) =P
xYt

Pr(xYt |hh)[E(V Y |ht, xYt )−E(V Y |ht)][E(V W |ht, xYt )−E(V W |ht)].

We know from Proposition 5 that

sign[E(V Y |ht, xYt )−E(V Y |ht)] = sign[E(V W |ht, xYt )−E(V W |ht)].

Therefore, all the terms in the above sum are greater than zero and
E(∆P Y

t ∆PW
t ) ≥ 0.

Step 2 Cov(P Y
t , P

W
t ) is greater than zero and increasing.

Proof of Step 2

Cov(P Y
t , P

W
t ) = Cov(P Y

0 +
tX

i=1

∆P Y
i , P

W
0 +

tX
∆

i=1

PW
i ) =

E

"
(P Y

0 +
tX

i=1

∆P Y
i )(P

W
0 +

tX
i=1

∆PW
i )

#
−

E(P Y
0 +

tX
i=1

∆P Y
i )E(P

W
0 +

tX
i=1

∆PW
i ) =

= E(
tX

i=1

∆P Y
i ∆PW

i ) =

=
tX

i=1

E(∆P Y
i ∆PW

i ), (A9)

where the second equality holds because prices are martingales; therefore,
E(∆P Y

t ) = 0, E(∆PW
t ) = 0, and E(∆P Y

i ∆PW
i+k) = 0 (for k 6= 0).

Since, as shown in Step 1, all the terms in the sum are greater than zero,
Cov(P Y

t , P
W
t ) is greater than zero and increasing.
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6.12 Proof of Proposition 10
Recall that the public belief bP I

t is a linear transformation of the price ( bP I
t =

P I
t −vL

vH−vL ), and, as a result, the correlation between
bP Y
t and bPW

t is the same
as that between P Y

t and PW
t . Therefore, to prove the proposition, we must

prove that the correlation between the asymptotic values of bP Y
t and bPW

t is
lower than that between the fundamentals. Let us define r := Pr(V W =
vL|V Y = vL) = Pr(V W = vH |V Y = vH), which we know by assumption to
be greater than 1

2
. It is straightforward to see that the correlation between

V Y and V W is equal to 2r − 1.
Moreover, since, in both markets, the thresholdsm andM are symmetric

around
1

2
and since bP I

t is a martingale, the same logic used in Proposition

3 implies that bP I
t converges to m and M with equal probability. This

means that, in both markets, the asymptotic variance of bP I
t is equal to

1
2
(m2 +M2)− 1

4
. Furthermore, the asymptotic covariance between bP Y

t andbPW
t is equal tom2 π

2
+(1−π)mM+M2 π

2
− 1
4
, where π

2
is the probability that

both beliefs converge to m (or both toM). Using the fact thatM = 1−m,
it is easy to show that the asymptotic correlation between beliefs is equal
to 2π − 1. Since the agents in each market can only observe the history
of trades and prices in their own market, given the realizations of V Y and
V W , the probability that the belief in a market converges to M (or m) is
independent of where the price converges in the other market. Therefore,
the value of π can be computed by using the same methodology used in
Proposition 4 to find the probability of an incorrect cascade in a one-asset
economy. In this way, one finds that π is equal to r

2
(2m)2+(1− r

2
)(1−2m)2+

r
2
(1 − r

2
)(2m)(1 − 2m), which is lower than r. As a result, the correlation

between beliefs (equal to that between asset prices), is 2π − 1, lower than
that between the fundamentals, 2r − 1.
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6.13 Parameter Values

vH vL p μ q g l r
Figure 1 1 2 0.5 0.5 0.8 1.05 0.95
Figure 2 1 2 0.5 1.075 0.925
Figure 3 1 2 0.5 1.075 0.925
Figure 4 1 2 0.5 0.74 0.7/0.97 1.1 0.9 0.63
Figure 5 1 2 0.5 0.4 0.65/0.7 1.1 0.9 0.72
Figure 6 1 2 0.5 0.7 0.7 1.1 0.9 0.7
Figure 7 1 2 0.5 0.7 1.1 0.9 0.7
Figure 8 1 2 0.5 0.35 0.7 1.1 0.9 0

When two values are indicated for q, the first refers to the signal on
asset Y and the second to that on asset W . Furthermore, for Figures 4 to
7, r := Pr(V W = vL|V Y = vL) = Pr(V W = vH |V Y = vL), while for Figure
8 r := Pr(HNBY |HNSW ) = Pr(HNSY |HNBW ).
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