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1   Introduction 
 
The long-period seismograph of the now obsolete WWSSN (Worldwide Standardized 
Seismograph Network) consisted of a long-period electrodynamic seismometer normally 
tuned to a free period of 15 sec, and a long-period mirror-galvanometer with a free period 
around 90 sec. (In order to avoid confusion with the frequency variable s = jω of the Laplace 
transformation, we use the non-standard abbreviation „sec“ for seconds in the present 
subsection.) The WWSSN seismograms were recorded on photographic paper rotating on a 
drum. The simple design of this system gives us an opportunity to write down several 
equivalent forms of the transfer function explicitly. Since input and output signals can be 
measured as displacements, it is natural to describe the system by its displacement response. 
The absolute value of this response is the frequency-dependent magnification. We assume the 
numerical damping to be 0.6 for the seismometer and 0.9 for the galvanometer. For 
simplicity, we ignore the small difference between the free periods and damping constants of 
the physical subunits and those that appear in the transfer function of the coupled system. We 
further assume that the effective generator constant of the electromagnetic velocity transducer 
in the seismometer is 200 V per m/s, and the photographic trace is deflected by 0.3935 mm 
per microvolt. 
 
 
2   Tasks 
 

• Write down the transfer function for displacement as a function of the Laplace 
variable s, using symbolic algebra (that is, representing free period and damping by 
mathematical symbols, not their numerical values) 

 
• Write down the formula for the “magnification curve” (amplitude response as a 

function of the angular frequency), using symbolic algebra 
 
• Represent the magnification curve as a “Bode plot”, that is, approximate it by 

asymptotic straight lines in a double-logarithmic plot (as in exercise EX 5.1) 
 
• Determine the poles and zeros of the transfer function in symbolic algebra, and 

evaluate them numerically 
 
• Sketch the position of poles and zeros in the complex s plane 
 
• Write down the transfer function as the ratio of two polynomials with numerical 

coefficients 
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3   Solution 
 
As shown in Chapter 5, section 5.2.8, Eq.(5.23), the transfer function of an electromagnetic 
seismometer (input: displacement, output: voltage) is 
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where ss T/2πω =  is the angular eigenfrequency and sh  the numerical damping. (see EX 5.2 
for a practical determination of these parameters.) The factor E is the generator constant of the 
electromagnetic transducer, for which we assume a value of 200 Vs/m.  

 
The galvanometer is a second-order low-pass filter and has the transfer function 
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Here γ is the responsivity (in meters per volt) of the galvanometer with the given coupling 
network and optical path. We use a value of 393.5 m/V, which gives the desired overall 
magnification. The overall transfer function Hd of the seismograph is obtained in our 
simplified treatment as the product of the factors  given in Eqs. (1) and (2): 
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The numerical values of the constants are C = Eγωg

2 = 383.6/sec, 2ωshs = 0.5027/sec,  
ωs

2 = 0.1755/sec2, 2ωg hg =0.1257/sec, and ωg
2 = 0.00487/sec2. 

 
As the input and output signals are displacements, the absolute value |Hd(s)| of the transfer 
function is simply the frequency-dependent magnification of the seismograph. The gain factor 
C has the physical dimension sec-1, so Hd (s) is in fact a dimensionless quantity. C itself is 
however not the magnification of the seismograph. To obtain the magnification at the angular 
frequency ω, we have to evaluate M(ω) = |Hd ( jω)|: 
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Eq. (3) is a factorized form of the transfer function in which we still recognize the sub-units of 
the system. We may of course insert the numerical constants and expand the denominator into 
a fourth-order polynomial 

 

 )000855.00245.02435.06283.0/(6.383)( 2343 ++++= ssssssHd  (5) 
 
but the only advantage of this form would be its shortness. 
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The poles and zeros of the transfer function are most easily determined from Eq. (3). We read 
immediately that a triple zero is present at s = 0. Each factor 2

00
2 2 ωω ++ hss  in the 

denominator has the zeros 
     )1( 2

00 hjhs −±−= ω   for h <1 

     )1( 2
00 −±−= hhs ω   for h ≥1 

so the poles of Hd (s) in the complex s plane are (see Figure 1): 
 

  )1( 2
1 sss hjhs −+−= ω  = -0.2513 + 0.3351j [sec 1− ] 
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2 sss hjhs −−−= ω  = -0.2513 - 0.3351j [sec 1− ] 
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3 ggg hjhs −+−= ω  = -0.0628 + 0.0304j [sec 1− ] 

   )1( 2
4 ggg hjhs −−−= ω  = -0.0628 - 0.0304j [sec 1− ] 

 
 

 
 

Figure 1  Position of the poles of the WWSSN-LP system in the complex s plane. 
 
 
In order to reconstruct Hd(s) from its poles and zeros and the gain factor, we write 
 

 
))()()((

)(
4321

3

ssssssss
CssHd −−−−

= . (5) 

 
 
It is now convenient to pair-wise expand the factors of the denominator into second-order 
polynomials:  
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This makes all coefficients real because ∗= 12 ss  and ∗= 34 ss . Since sshss ω221 −=+ , 
2

21 sss ω= , gg hss ω243 −=+ , and 2
43 gss ω= , Eq. (6) is in fact the same as Eq. (3). We may 

of course also reconstruct Hd (s) from the numerical values of the poles and zeros. Dropping 
the physical units, we obtain 
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in agreement with Eq.(4). 
 
Figure 2 shows the corresponding amplitude response of the WWSSN seismograph as a 
function of frequency. The maximum magnification is 750 near a period of 15 sec. The slopes 
of the asymptotes are at each frequency determined by the dominant powers of s in the 
numerator and denominator of the transfer function. Generally, the low-frequency asymptote 
has the slope m (the number of zeros, here = 3) and the high-frequency asymptote has the 
slope m-n (where n is the number of poles, here = 4). What happens in between depends on 
the position of the poles in the complex s plane. Generally, a pair of poles s1, s2 corresponds 
to a second-order corner of the amplitude response with 21

2
0 ss=ω  and 2102 ssh −−=ω . A 

single pole at s0 is associated with a first-order corner with 00 s=ω . The poles and zeros 
however do not indicate whether the respective subsystem is a low-pass, high-pass, or band-
pass filter. This does not matter; the corners bend the amplitude response downward in each 
case. In the WWSSN-LP system, the low-frequency corner at 90 sec corresponding to the 
pole pair s1, s2 reduces the slope of the amplitude response from 3 to 1, and the corner at 15 
sec corresponding to the pole pair s3, s4 reduces it further from 1 to -1. 

 

 

 
 
Figure 2   Amplitude response of the WWSSN-LP system with asymptotes (Bode plot). 
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Looking at the transfer function Hs in Eq. (1) of the electromagnetic seismometer alone, we 
see that the low-frequency asymptote has the slope 3 because of the triple zero in the 
numerator. The pole pair s1, s2 corresponds to a second-order corner in the amplitude response 
at sω  which reduces the slope to 1. The resulting response is shown in a normalized form in 
the upper right panel of Fig. 5.3 in Chapter 5. As stated there in section 5.2.6 under point 3, 
this case of  n<m can only be an approximation in a limited bandwidth. In modern 
seismograph systems, the upper limit of the bandwidth is usually set by an analog or digital 
cut-off (anti-alias) filter.  
 
As we have shown in section 5.2.8, the classification of a subsystem as a high-pass, band-pass 
or low-pass filter may be a matter of definition rather than hardware; it depends on the type of 
ground motion (displacement, velocity, or acceleration) to which it relates. We also notice 
that interchanging ωs, hs with ωg, hg will change the gain factor C in the numerator of Eq. (4) 
from Eγωg

2 to Eγωs
2 and thus the gain, but will leave the denominator and therefore the shape 

of the response unchanged. While the transfer function is insensitive to arbitrary factorization, 
the hardware may be quite sensitive, and certain engineering rules must be observed when a 
given transfer function is realized in hardware. For example, it would have been difficult to 
realize a WWSSN seismograph with a 15 sec galvanometer and a 90 sec seismometer; the 
restoring force of a Lacoste-type suspension cannot be made small enough without becoming 
unstable. 
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