Inventing modern invention: the professionalization of technological progress in the US

Matte Hartog, Andres Gomez-Lievano, Ricardo Hausmann \& Frank Neffke

Papers in Evolutionary Economic Geography

 \# 24.08
Inventing modern invention: the professionalization of technological progress in the US

Matte Hartog ${ }^{1 *}$, Andres Gomez-Lievano ${ }^{1,3}$, Ricardo Hausmann ${ }^{1}$, Frank Neffke ${ }^{2,1}$
${ }^{1}$ Growth Lab, Harvard University; 79 JFK Street, Cambridge, MA 02138, USA
${ }^{2}$ Complexity Science Hub; Josefstädter Str. 39, 1080 Wien, Austria
${ }^{3}$ Analysis Group; 111 Huntington Ave 14th floor, Boston, MA 02199, USA

*To whom correspondence should be addressed; E-mail: matte_hartog@hks.harvard.edu

Between the mid-19th and mid-20th century, the US transformed from an agricultural economy to the frontier in science, technology and industry. We study how the US transitioned from traditional craftsmanship-based to today's science-based innovation. To do so, we digitize half a million pages of patent yearbooks that describe inventors, organizations and technologies on over 1.6 M patent and add demographic information from US census records and information on corporate research activities from large-scale repeated surveys on industrial research labs. Starting in 1920, the 19th-century craftsmanship-based invention was, within just 20 years, overtaken by a rapidly emerging new system based on teamwork and a new specialist class of inventors, engineers. This new system relied on a social innovation: industrial research labs. These labs supported high-skill teamwork, replacing the collaborations within families with professional ties in firms and industrial research labs. This shift had wide-ranging consequences. It not only altered the division of labor in invention, but also reshaped the geography of innovation, reestablishing large cities as epicenters of technological progress and introduced new barriers to patenting for women and foreign-born inventors that have persisted into the 21st century.

1 Introduction

Sustained technological progress requires overcoming, what Jones (2009) refers to as, the burden of knowledge. Accordingly, shifting the frontier of our knowledge requires ever
deeper investments in learning. This is particularly the case for technological innovation, which often involves combining existing ideas and technologies in new ways (Schumpeter, 2017; Weitzman, 1998; Youn et al., 2015). In such a world, innovation is limited by our ability to search out and evaluate the opportunities encapsulated in an ever expanding set of increasingly complex technological combinations (Weitzman, 1998). This has led to a concern over a slowdown in the rate of technological progress (Gordon, 2016). However, it also means that changes in the way a society organizes knowledge and learning can have out-sized impacts on the pace of technological progress. For instance, Hanlon (2022) shows that part of the explanation for the British origins of the industrial revolution is the emergence of engineers as a new class of inventors. These engineers relied on the application of scientific principles to specialize in innovation and design. By the mid19th century, engineers had become a dominant force in British invention. We will argue that 100 years later US invention is similarly pushed to new heights, but this time by an organizational innovation: the industrial research lab.

The burden-of-knowledge hypothesis is supported by various trends: the age at which inventors start patenting steadily rises (Jones, 2009) and team sizes increase (Jones, 2009; Jung and Ejermo, 2014), whereas research productivity decreases such that technological progress requires increasing research and development ($\mathrm{R} \& \mathrm{D}$) expenditures (Bloom et al., 2020). However, as society's collective body of knowledge grows, it also inevitably gets distributed across more and more people. The concomitant specialization increases the interdependencies among team members (Neffke, 2019), leading to rising coordination costs (Becker and Murphy, 1992). Consequently, overcoming an increasing burden of knowledge requires more than individual learning; it also requires organizational innovations that help coordinate the vast amounts of distributed knowledge that specialized learning generates.

This draws attention away from the increasing demands on the skills and experience of individual researchers and toward organizational arrangements that manage an invention process increasingly characterized by teamwork. We will show that a particularly prominent example of this is the industrial research lab (Furman and MacGarvie, 2007; Mowery, 1990; Mowery and Rosenberg, 1999; Reich, 1985). In their heydays, these research labs were a core component of the US innovation system. Corporate labs, such as AT\&T's Bell Labs or Dupont's Experimental Station, employed hundreds of researchers with PhD degrees across engineering, physics, chemistry and mathematics. They produced various Nobel prize winners and sometimes even entirely new academic disciplines, such as the pioneering work on information theory by Bell Lab's Claude Shannon. These labs were not just better funded than most universities, offering state-of-the-art research facilities, but also connected to broad long-term missions that took their cues from their parent firms' markets. This allowed corporate labs to connect basic research to real-world problems. Arora et al. (2020) even attribute the acceleration in US labor productivity growth between 1920 and 1970, as well as its subsequent decline, to the rise and fall of industrial research labs.

In this paper, we provide evidence that supports Arora et al.'s contention that industrial research labs played a key role in the success of US invention in the first half of the 20th century. Using information on all but the universe of patents granted between 1856 and 1945, linked to census records and repeated economy-wide industrial research lab surveys, we show that these labs played a pivotal role in a rapid increase in the share of patents listing radically new combinations of technologies. We furthermore show that industrial research labs are part of a broader systemic shift in the US innovation system that historians of technological change have described as a move to science-based invention (Mowery and Rosenberg, 1999). Moreover, we locate this change at a reasonably precise point in time: the start of the 1920s.

In this decade, we witness a confluence of changes. When it comes to inventors, we observe a rapid rise of engineers on patents, the emergence of academic patenting and a sudden transition to teamwork. In terms of the inventions themselves, this coincides with an explosion of new combinations of technologies listed on patents. Furthermore, we show that the new approach to invention that took shape in the 1920s was exclusionary, with drastically lower participation rates of women and foreign-born inventors.

When we turn to the organizational context in which patents are produced, we find that almost all of the rise in teamwork between 1920 and 1945 can be attributed to the emergence of research organized in firms and labs. Moreover, our analysis suggests that industrial research labs facilitated teamwork, supporting repeat- and long-distance collaborations. Finally, we show that research labs were disproportionately associated with inventions that relied on radically new combinations of technologies. Importantly, whereas this pattern is very pronounced for team-based patents, it is not apparent in patents of engineers. Taken together, we interpret this as evidence that research labs helped overcome a burden of knowledge bottleneck in the 1920s by offering new ways to coordinate highly skilled inventor teams.

Our paper contributes to various debates in the literature on innovation and technological change. First and foremost, it highlights the importance of organizational innovation and how changes in the coordination of teamwork can reverberate throughout the economy, from specialization and the division of labor to the geography of innovation. Methodologically, it relates to large-scale efforts to study historical US patents (Esposito, 2023) and to link them to census data (Akcigit et al., 2017a). Seen through the lens of economic history, we are able to corroborate several narratives about how the US transformed technologically and economically, such as the increasing dominance of large firms (Chandler Jr, 1993) and their industrial research labs (Gertner, 2012), as well as the rise of the Rustbelt (Lamoreaux et al., 2007). Our contribution to this literature is that we quantify these phenomena and pinpoint them relatively precisely in time. For instance, Lamoreaux and Sokoloff (2001) describe how in the 19th century, firms often outsourced their R\&D to contract-inventors, whereas only in the 20th century do they start doing more research in-house. We corroborate this: whereas, already in the late 19th century, patents are often assigned to firms, the take-off of patenting by engineers and teams in
large corporate labs was exceedingly rare before 1920. Furthermore, our data allow us to relate research inputs (the people - including their occupations and ages - and teams involved in a patent) and the organizational context in which they operate (research labs, firms, families) to the technological content that is patented. This shows that although associating radical innovation with the genius of lone inventor-entrepreneurs and more incremental innovation with organized corporate $R \& D$, as in the literature on Schumpeterian regimes (Winter, 1984), may have been accurate post World War II, it does not reflect the nature of invention in the period when corporate R\&D first emerged. Finally, we contribute a historical perspective to the contemporary literature on gender in innovation (Bell et al., 2019; Delgado and Murray, 2022; Ding et al., 2006; Ross et al., 2022), showing that the new science-based innovation regime exacerbated the exclusion of women from patenting.

2 Research labs

Research laboratories play an important role in the history of science. Scientist workplaces had existed for hundreds of years. However, the scientific research laboratory as a physical place custom built for scientific inquiry, experimentation and teaching is a much more recent phenomenon. Although there were many precursors in, for instance, England and France, the scientific laboratory to some extent only truly came into being in early 19th century German chemistry (Rocke, 2021). The canonical example is Justus von Liebig's chemical laboratory founded in the German town of Giessen in the 1820s (Michaelis, 2003). This lab acted as an inspiration for scientists in- and outside Germany, attracting scores of visitors who came to study its layout and operations (Schmidgen, 2021).

Toward the end of the 19th century, the idea of a research lab had also spread to the private sector. As in the academic laboratories, an important role was played by German chemistry. In the 1870s and 1880s, large companies in the German dye industry, such as BASF and Hoechst, established laboratories devoted to research as integral parts of their corporate structures (Travis et al., 1992). These labs were part of a system of university research programs, government and industry-sponsored research institutes, such as the Kaiser Wilhelm Society, forerunner of today's Max Planck institutes, and industrial R\&D programs that had developed in the German-speaking territories (Lenoir, 1998; Pithan, 2021). A key aspect of this system was the industrial sponsorship of research within universities, which aimed to benefit firms by collaborating with professors and their graduate students. Such collaborations were leveraged to establish in-house R\&D organizations that set the standard for future science-based industries. For instance, Hounshell (1996) describes how Friedrich Bayer A.G. (later I.G. Farben) had developed a comprehensive R\&D structure by 1891. This consisted of a central research laboratory equipped with cutting-edge scientific instruments, a scientific and patent library, and a seminar room, complemented by more specialized application laboratories, staffed by
scientists with doctorates from German research universities.
These highly organized corporate laboratories stood in stark contrast to the laboratories of famous inventor-entrepreneurs elsewhere, such as Thomas Edison in the US or William H. Perkin in the UK (Travis et al., 1992). Although their laboratories were very productive in terms of inventions, they were not created as organizational units within large industrial firms to further the activities and competitive position of these firms. On the contrary, in the US, many of the inventor-entrepreneurs did not aim to commercialize their inventions themselves, but rather to sell them as independent inventors on a welldeveloped market for technology (Lamoreaux and Sokoloff, 2001). Consequently, in the 19th century, most US research labs resembled, and were extensions of, workshops of such individual inventors. For instance, Edison's "invention factory" at Menlo Park (NJ) was controlled by Edison himself, not by his company, General Electric (GE). In fact, when GE set up its own research lab in 1900, it had no direct connection to Edison's lab (Travis et al., 1992).

This changed in the early 20th century with the rise of the kind of corporate research labs that had been pioneered in Germany. At start of the 20th century, a wave of mergers in the wake of the 1890 Sherman Antitrust Act had led to the formation of very large corporations (Chandler Jr, 1993). The increased scale of operations of these firms had made technological improvements, which could be applied to the entire production volume, much more valuable, providing a strong rationale for investments in corporate R\&D (e.g., Klepper, 1996). At the same time, World War I (WWI) changed how the US perceived corporate research. The war and its boycotts of German products dramatically exposed the reliance on German labs and their chemicals, dyes, and other key materials (Carlson, 2013). In response, the US government initiated a program to help firms compete with German companies after the war. For instance, based on his study of DuPont and Kodak, Hounshell concluded that "without question, then, World War I led to a widespread quickening of interest in and enthusiasm for industrial R\&D in the United States" (Hounshell, 1996, p. 21). The result was a flurry of dedicated industrial research labs, physically separated from manufacturing sites and staffed by workers with expertise in science and advanced engineering. After WWI, the number of labs thus grew rapidly: by 1931, 1,600 companies reported operating labs with a total of 33,000 employees (Carlson, 2013). As a consequence, by the 1930s, the role of the individual inventor had been largely supplanted by teams of researchers working in corporate labs (Reich, 1985).

3 Data

To study long-term changes in US invention, we focus on inventive activity between 1856 and 1945. We combine information from three different sources: patent yearbooks, the complete US Census from 1850 to 1940 (with the exception of the 1890 census, which was destroyed in a fire), and large-scale surveys of industrial research labs between 1920 and
1950. To extend our analysis until the year 2000, we supplement these data with records from EPO-PATSTAT and PatentsView. In this section, we give a high-level overview of how we collect, process and merge these data, providing further details in Appendix A.

3.1 Patents

We start our data collection by digitizing scans of the Annual Reports by the Commissioner of Patents, henceforth referred to as (patent) yearbooks. ${ }^{1}$ These yearbooks contain information on all patents granted by the USPTO in a given year, including the name and location of residence of inventors and the individuals or organizations to whom a patent's intellectual property was assigned ("assignees"). Using multiple copies of each yearbook, we collect about half a million scanned pages. We convert these images to text strings, using image processing and optical character recognition (OCR) algorithms. Next, we apply named-entity recognition algorithms to identify patent numbers, grant dates, names and places of residence of inventors, as well as the names and locations of assignees. The result is a structured dataset that describes $1,591,361$ million patents granted by the USPTO between 1856 and 1953.

The structure of the patent yearbooks changes in 1954, omitting grant dates, assignees and inventor locations. For the period 1954-1968, we therefore use information from the European Patent Office's EPO-PATSTAT database (European Patent Office, 2020). This dataset provides inventor and assignee names, but omits information on inventors' locations of residence. Moreover, from 1969 to 1975, EPO-PATSTAT no longer reliably reports countries of residence, which renders the data unusable for our purposes. For the period 1976-2000, we use the USPTO's own PatentsView database (USPTO, 2022), which provides names and locations of inventors, as well as of assignees.

3.2 Technology classes

Each patent application receives a set of technology codes from the United States Patent Classification (USPC classes) to assign applications to so-called "art units" within the USPTO and to help patent examiners in these units search the prior art (Righi and Simcoe, 2019). Importantly, these USPC classes are neither determined by the inventors, nor by the examiners of a patent, but by outside contractors.

At the highest level of aggregation, the USPC classification consists of 3-digit classes. In our datasets, we identify 474 such classes. Classes are further subdivided into about 150,000 unique subclasses. ${ }^{2}$ We refer to these subclasses as " 6 -digit" codes, even though some subclasses may contain more or fewer digits. The USPTO regularly expands and

[^0]Table 1: Vintage technology classes (3-digit)

code	3-digit technology	vintage
532	Organic compounds - part of the class 532-570 series	2001
726	Information security	1997
506	Combinatorial chemistry	1992
709	Multicomputer data transferring	1992
717	Data processing, software dev.	1992
295	Railway wheels and axles	1836
190	Trunks and hand-carried luggage	1836
142	Wood turning	1836
2	Apparel	1836
384	Bearings	1836

modernizes the USPC system to reflect changes in technology. When it does so, it retroactively reclassifies all patents. This ensures that technology codes are harmonized across the entire period of analysis.

We use these technology codes for two purposes. First, following Hall et al. (2001) and Marco et al. (2015), we group patents into six broad technological sectors, based on a patent's primary technology code. ${ }^{3}$ Second, we use the combination of primary and secondary classes (without making a distinction between the two) as a high-level description of the invention's content.

Finally, we determine the "vintage" of technology classes. To do so, we ask in which year each class reached a cumulative 1% of all patents that list this class by 2015. Because the number of patents increases rapidly over time, we use a weighted cumulative count that weights each patent by the inverse of the total number of patent grants in a year, such that each year is weighted equally in the determination of technological vintages. Tables 1 and 2 show the five most and least recent technology classes in terms of this vintage.

3.3 Demographic information of inventors

To learn more about the inventors on a patent, we merge them to US census records. To do so, we make use of the full-count non-anonymized census records between 1850 and 1940 provided by IPUMS (Ruggles et al., 2021).

[^1]Table 2: Vintage technology classes (6-digit)

code	6-digit technology	vintage
$359 / 200.3$	Optical: systems and elements - Grooved shaft	2013
$351 / 159.36$	Optics - Means to limit movement	2012
$185 / 41 \mathrm{C}$	Motors: spring, weight, or animal powered - Centrifugal	2012
$705 / 339$	Data processing - Central recipient pick	2011
$348 / 287$	Television - Conductive grid at target	2011
$295 / 4$	Railway wheels and axles - Rack rail	1836
$126 / 506$	Stoves and furnaces - With food cooker	1836
$144 / 36$	Woodworking - Planing and matching	1836
$408 / 71$	Cutting by rotating axially moving tool - Rotary, work	1836
$144 / 69$	Woodworking - Auger cutter	1836

3.3.1 Census matching

We proceed in three steps. First, we find for each inventor a set of candidate matches in the two census waves closest to the patent's grant date. For instance, for a patent granted in 1902, we try to find matches in the 1900 and 1910 censuses. At this point, candidate matches are based exclusively on how similar their last names are to the inventor's last name. Next, we generate a set of distances between the inventor and these candidate matches, including string distances for first names, initials and last names and kilometer distances between an inventor's place of residence as listed on the patent and the place of residence of each match candidate in the census.

Second, we create a ground truth dataset, by matching a small number of inventors by hand whose patents are listed on Wikidata. The additional information we gain this way about inventors' places of birth, dates of birth and names of family members makes it much easier to select the correct match among the candidate matches.

Third, we train two xgboost algorithms on this ground truth sample. The first produces match plausibility scores, based on name and place of residence information. The second adjusts these scores to differentiate between inventors with multiple highly plausible matches, and those that have a unique plausible match, downgrading the former relative to the latter. We repeat these steps for match candidates in both census waves and then select the overall best match. In the analyses below, we rely on a sample of high-confidence matches. The exact procedure and the out-of-sample performance of the xgboost models are described in Appendix A.3.

3.3.2 Gender, family ties and ethnicity

The census records allow us to study how socio-demographic characteristics of inventors change over time. Of particular interest are an inventor's occupation, age and place of birth. In principle, the census also records an individual's gender. However, we opt to infer the most likely gender from inventors' first names. This allows us to analyze gender dynamics also for inventors that could not be matched to census records, including inventors of patents granted after 1945.

Similarly, although census records contain family ties, we instead infer such ties from inventors' sharing the same last name. Doing so may result in some false positives, especially when last names are very common. To assess this problem, we construct null models in which last names are shuffled across patents. ${ }^{4}$ This exercise suggests that the likelihood of two inventors' sharing the same last name by chance is negligible in our main period of interest. ${ }^{5}$

At the same time, family members need not share the same last name. Hereafter, "family ties" will therefore refer to family relations in which last names are typically shared (e.g., married couples, brothers, father and son, etc.). ${ }^{6}$

For the period after 1945, we have no country-of-birth information for inventors. Therefore, we also proxy ethnic backgrounds using algorithms trained on Wikipedia and recent census data to infer the origins of last names (for details, see Appendix B.5). We focus on Hispanic and East-Asian surnames, because these are relatively easy to identify using such algorithms.

3.4 Organizational context

The patent yearbooks provide some information on the organizational context in which an invention was developed. In particular, we know whether at the moment of the patent grant, the patent's intellectual property rights were transferred to an assignee or retained by the inventors. Using named-entity recognition, we distinguish between patents assigned to individuals and those assigned to organizations. It is not straightforward to distinguish between different types of organizations based on the information at hand.

[^2]However, a closer inspection of assignee names suggests that before the 1950s the vast majority of organizational assignees were firms. Therefore, in our analysis, we refer to all organizational assignees as firms. In some robustness checks, we drop patents for which we could establish that they were assigned to non-firm organizations, such as governments, military entities or universities.

To gain additional information on how firms organize their inventive activity, we turn to a series of surveys conducted by the National Research Council: the Industrial Research Laboratories of the United States reports. To be included in these surveys, firms had to operate a dedicated "laboratory" with "separate and permanently established research staff and equipment", excluding "firms that indicated they only occasionally carry out research, using teams temporarily recruited for the purpose or assembled from their operating staffs" (p. 2 National Research Council, 1956, see also Furman and MacGarvie (2007)).

Separate reports of this survey were published in 1920, 1927, 1931, 1933, 1938, 1940, 1946, 1948, 1950 and 1956. Each report contains the name of each lab, a short description of its main activity, the lab's city or address, the (managing) directors and important researchers and, in some editions, the lab's major equipment and number of employees (Fig. A1C). Furthermore, the 1940 and 1946 editions also record founding years of labs. We will use these surveys to assess whether a patent assignee operated a research lab at the time the patent was granted.

To do so, we obtain scanned versions of these reports from the Hathi Trust Foundation. Next, we use OCR to digitize their contents and subsequently apply named-entity recognition to extract the name of each lab. We then match labs to assignees on patents based on string similarity between lab and assignee names. This yields a total of 2,504 assignees for which we can establish that they operated an industrial research lab.

In the remainder, we will refer to patents as "firm-based" if they are assigned to organizations. Furthermore, if the organizational assignee had a known industrial research lab in operation at the time the patent was granted, we refer to the patent as "lab-based". All other patents, i.e., patents that are unassigned or assigned to individuals, are called "standalone" patents.

It is important to note that the reason why inventors assigned their patents to firms changes throughout the 19th and 20th century. For instance, whereas 19th century inventors often had no employment relation with their assignees, selling intellectual property rights to partners that provided capital or who were better positioned to commercialize the technology, 20th century inventors were typically employed by the assignee, often in corporate research units (Lamoreaux and Sokoloff, 2001). Moreover, especially in this later period, the above definitions are likely to underestimate the number of patents in which firms or labs played a significant role in coordinating the innovation process. First, the definitions above do not take into account that some inventors may not assign their patents to their employers. The opposite is in principle also possible: firms may commission (a team of) inventors, without employing them. However, this practice was most
common in the 19th century. Second, to identify lab-based patents, we have to be able to match research labs to patent assignees. However, our surveys do not represent a complete census of research labs, but focus on the most prominent labs in the US. Moreover, we may fail to match assignees to their research labs whenever patents are assigned to entities with names that are very different from their firm's research lab. ${ }^{7}$ To mitigate some of these problems, we manually checked whether we managed to identify correct matches for the largest assignees in our patent records, as well as for the most prominent research labs of this period.

3.5 Sample restrictions

To match patents to technology codes, we rely on patent numbers. Because these numbers are only listed in the patent yearbooks since 1856, our analysis starts in that year. Furthermore, we focus on the period 1856-1945, for which we can merge demographic information from the census, as well as information on labs from the industrial research lab surveys.

Because we can only match inventors to the US census, we drop patents for which not all inventors reside in the US. Furthermore, we require that patent numbers and grant dates allow us to identify a patent's technology classes. This means that we have to drop patents between 1969 and 1975, for which we lack country of residence information.

When analyzing census-derived variables, we rely on a sample of well-matched inventors, aged 16 and older. For questions that involve inferred genders, we limit the sample to inventors whose gender can be inferred from their first names with high confidence (see Appendix B.4). For all other analyses, we impose no further restrictions.

Finally, we refrain from analyzing inventors' individual careers, which would require disambiguating inventors across patents. We leave this as a task for future research, but, instead, create a sample of disambiguated co-inventor dyads. This is easier than disambiguating inventor names, because it is very unlikely that we observe the same pair of last names on multiple patents by chance. An exception are pairs of inventors with very common last names. Furthermore, if co-inventors are related, their last names are not independent. Therefore, we drop all inventor dyads where one of the two last names is found in over 500,000 of the 650 M census records, ${ }^{8}$ or, for same-name dyads, where the shared last name is found in over 50,000 records. Details are provided in Appendix B.3.

3. 6 Time windows

Because the number of granted patents grows at a roughly exponential pace, data are much sparser for earlier than for later periods. This complicates striking a balance between

[^3]temporal resolution and precision of estimates. To resolve this, we create windows, based, not on calendar time, but on temporal rank. To do so, we sort all patents by their grant dates and divide observations into groups of identical size, each containing N_{w} observations. Each window is then associated with the average grant year of the patents it spans. This allows us to plot changes in point estimates with standard errors that are roughly constant across windows. Note that we can choose N_{w} for each time series separately, which allows different precision-resolution trade-offs within a single graph.

4 US patenting: novelty and inventors

The number of patents granted by the USPTO has grown rapidly over the course of the 19th and 20th century. To analyze how the nature of inventions changed, we focus on their novelty. The novelty of patented inventions has been assessed in various ways, ranging from qualitative assessments by experts to analyses of forward and backward citations (Verhoeven et al., 2016). However, these approaches either scale poorly - as in the case of expert assessment - or require data that are not available for the period we analyze - as in the case of patent citations, which only become used in the mid 1940s and truly widespread in the 1980s. Therefore, we infer how novel an invention is from a patent's technology classes. In particular, we ask whether a combination of technology classes had already been reported on an earlier patent, as originally proposed by Fleming (2001, see also, Clancy (2018); Pezzoni et al. (2022); Strumsky and Lobo (2015)). ${ }^{9}$ While providing an admittedly limited assessment of an invention's novelty, because technology codes are determined by independent contractors, not by the inventors or other interested parties, the advantage is that this assessment is objective.

We assess novelty at the level of 3-digit and 6-digit combinations of technology classes. Whereas new combinations of 6-digit technology classes often represent incremental innovations, new combinations of 3-digit technology classes should on average mark more radical departures from the existing state of the art.

Fig. 1 shows how the share of incrementally and radically novel patents changes over time. After falling in the late 19th and early 20th century, the share of patents that list new technological combinations rapidly increases between 1920 and 1950, a period which Akcigit et al. (2017b) refer to as a "golden age of innovation" that witnesses the "rise of American ingenuity". Moreover, the rapid rise in novel combinations is not limited to a specific technological area, but visible in all six of Hall et al.'s (2001) broad technological sectors (Fig. 2). Interestingly, the likelihood that patents list radically novel technological combinations starts falling again in the 1950s, whereas novelty that

[^4]

Figure 1: Novelty. Share of patents that list new combinations of 3-digit (blue) or 6-digit (red) technology classes.
includes more incremental change keeps rising until at least the 1980s. We return to this observation in section 6.4. However, we first analyze how the population of inventors changes.

4.1 Age and learning curves

In line with Jones' (2009) burden-of-knowledge hypothesis, we find an increase in the average inventor age in the late 19th and early 20th century that accelerates in the 1920s (Fig. 14c). ${ }^{10}$ This acceleration coincides with a change in the relation between inventors' age and the number and vintage of the technology classes on their patents. We interpret these relations as "learning curves" that reflect how long it takes inventors to become able to combine a large number of technologies or to use the most recent technologies.

We estimate learning curves for four different cohorts - inventors born between 1840 and 1859, 1860 and 1879, 1880 and 1899 and 1900 and 1919 - fitting the following regression equation:

$$
\begin{equation*}
y_{p(i)}=\alpha_{t(p(i))}+\sum_{c \in \mathcal{C}} \beta_{c} A_{i t(p(i))} C_{c(i)}+\varepsilon_{p(i)}, \tag{1}
\end{equation*}
$$

[^5]

Figure 2: New combinations by broad technology class. Each graph shows the share of new 3 -digit (black) and 6 -digit (gray) technologies by the six broad primary classes defined in Hall et al. (2001).
where $y_{p(i)}$ is either the number of distinct technology codes listed on inventor i 's patent $p(i)$, or the most recent technological vintage among them, i.e., the vintage of the "youngest" technology code listed on the patent. Increases in y are thus associated with the use of more, or, more recent, technologies. As regressors, we include year fixed effects, α_{t}, and interactions of the age, $A_{i t(p(i))}$, of inventor i in the year the patent was granted, $t(p(i))$, with cohort dummies, $C_{c(i)} \in \mathcal{C}$, where \mathcal{C} is the set of cohorts. ${ }^{11}$ To ensure that our sample covers the same age range for all cohorts, we restrict the analysis to inventors aged 15 to 35. This means that we study patents of, for instance, the 1880-1899 birth cohort between 1895 and 1935.

Results are shown in Table 3. Cohorts that enter the labor market in the 20th century display markedly different learning curves compared to earlier cohorts. Whereas for the 1880-1899 and 1900-1919 cohorts, the number and vintage of technologies increases with age, learning curves of earlier cohorts are flat. ${ }^{12}$

[^6]

Figure 3: Average age of inventors.

Table 3: Learning curves

	Vintage		\#technologies	
	3 digits	6 digits	3 digits	6 digits
$\mathbf{1 8 4 0}$	$0.0054(0.0277)$	$0.0082(0.0344)$	$-0.0015(0.0017)$	$0.0009(0.0035)$
$\mathbf{1 8 6 0}$	$-0.0135(0.0142)$	$0.0096(0.0192)$	$0.0019(0.0008)^{*}$	$0.0016(0.0018)$
$\mathbf{1 8 8 0}$	$0.0602(0.0154)^{* * *}$	$0.0699(0.0206)^{* * *}$	$0.0024(0.0008)^{* *}$	$0.0054(0.0016)^{* * *}$
$\mathbf{1 9 0 0}$	$0.4657(0.0277)^{* * *}$	$0.4273(0.031)^{* * *}$	$0.0063(0.0012)^{* * *}$	$0.0137(0.0026)^{* * *}$

Parameter estimates for age effect of eq. (1). Cohorts are listed in rows, dependent variables in columns. Robust standard errors in parentheses. ${ }^{*}: p<0.05,{ }^{* *}: p<0.01,{ }^{* * *}: p<0.001$.

Figure 4: Learning curves. Each panel displays learning curves, fitted within-sample, for four different cohorts: 1840-1959 (blue), 1860-1879 (orange), 1880-1899 (green), 19001919 (red). The top panels show learning curves in terms of technological vintage, the bottom panels in terms of the number of technologies on a patent. The left column shows results at the level of 3-digit, the right column of 6-digit technology classes. The shaded areas represent 95% confidence intervals, using robust standard errors.

Fig. 4 repeats the analysis, widening the age range to $15-65$ and adding quadratic terms to allow for nonlinearities. This corroborates the findings in Table 3. In the earliest cohorts, young inventors tend to use more, and more modern, technologies than their older contemporaries. However, as they age, these cohorts fall behind younger inventors. In the 1880-1899, and even more so in the 1900-1919 cohort, this changes drastically. In these cohorts, which enter the labor market in the 20th century, at a young age, inventors use fewer technologies and less recent vintages than the older cohorts they coincide with. However, as they grow older, they overtake older cohorts, peaking in their thirties. This suggests that, after 1900, and even more so, in the 1920s, inventors need more time to become acquainted with modern technologies and to combine them in larger - presumably more complex - combinations.

4.2 Occupations

The 1920s also mark an abrupt change in the occupational backgrounds of inventors. Whereas 19th century invention was still dominated by blue collar workers and mechanics, in the 1920s, a new type of inventor emerges: the engineer. Engineers quickly come to dominate US invention: in the 1940s they are responsible for 25% of patents, while accounting for only 0.7% of the US labor force (Fig. 5a and 5 b). ${ }^{13}$

The rise of engineers coincides with the fledgling start of academic patenting. Fig. 5 c shows the share of patents granted to inventors who are identified as professors in the census. Interestingly, these "academic patents" often represent early examples of university-industry collaboration. Of the 1,462 patents granted to professors between 1900 and 1945, 49% were assigned to organizations. However, in 91% of such cases, the organizations were firms. In contrast, only 9% of academic patents had been assigned to universities. In fact, universities only meaningfully start claiming ownership of patents in the 1940s (Fig. 5d, see also Arora et al., 2021). Moreover, these first university patents were not, as in later decades (e.g., Henderson et al., 1998), predominantly held by the largest research universities, but by universities in the American Rustbelt (see Table 4).

[^7]

Figure 5: Labor inputs in invention. a: Share of inventors who are engineers. b: Overrepresentation of occupational sectors among inventors vis-à-vis the US population: $\sigma_{o t}^{p} / \sigma_{o t}^{p o p}$, where $\sigma_{o t}^{p}$ is the share of patents held by inventors with occupation o in year t and $\sigma_{o t}^{p o p}$ the share of workers in the US population with occupation o in year t, interpolating between census waves in non-census years c: Share of inventors that list professor as their occupation ("academic patents"). d: Share of academic patents assigned to universities. Shares are calculated in samples where inventors could be matched with high confidence to census records. Lines display 95% confidence intervals.

Table 4: Share of academic patents by university (1900-1945)

University	share
Purdue University	0.206
Iowa State University	0.114
University of Wisconsin-Madison	0.063
Stanford University	0.057
Dartmouth College	0.048
University of Minnesota	0.044
University of Illinois	0.038
University of Tennessee	0.032
University of Michigan	0.025
Ohio State University	0.022

Share of patents by university between 1900 and 1945 that were (1) granted to inventors identified as professors in the US census and (2) assigned to a university.

4.3 Teamwork

With the shift to engineering occupations, we also witness the start of the steady rise in teamwork that would persist throughout the 20th century (see, for instance, Wuchty et al., 2007, for the period 1975-1995). Fig. 6 shows that this process was not gradual, but took off abruptly in the early 1920s. Until then, the share of patents granted to teams had, if anything, been slightly decreasing.

Not only the prevalence of teams changed, but also their nature. To show this, we create a dataset of coinventor dyads, i.e., of all pairwise combinations of inventors listed on a patent. ${ }^{14}$ Note that until 1945 , the vast majority of team patents, over 90%, are filed by teams of two inventors, with another 6% filed by teams of 3 inventors. Most teams are therefore represented by a single dyad. ${ }^{15}$

Table 5 shows the most frequent combinations of occupations in inventor teams. ${ }^{16}$ Whereas 19th century collaborations tend to take place between between senior and junior roles - such as between skilled craftsmen and operators or between operators and common laborers - in the 1920s, collaboration shifts to teams of similarly, highly skilled

[^8]

Figure 6: Teams. Share of patents granted to teams of inventors. Lines display 95% confidence intervals.
professionals, such as teams of two engineers, a chemist and a chemical engineer or a draftsman and a mechanical engineer.

Further analyzing the sample of coinventor dyads, we observe two quantitative changes in team composition. First, the age difference between team members shrinks in the early decades of the 20th century (Fig. 7a). Second, teams become more homogeneous over time in terms of their areas of expertise. This is shown in the share of dyads where both inventors share the same occupation (Fig. 7b) and in the increase in skill relatedness between a dyad's occupations (Fig. 7c). Both measures suggest that teams become more homogeneous in occupational backgrounds, with the skill relatedness analysis showing that this process starts in the early 1920s.

5 Corporate research and the rise of teamwork

What is driving these changes in US invention? In this section, we argue that a key role is played by the emergence of organized corporate research, with the industrial research lab as its embodiment. These labs were responsible for much of the increased role of engineers: by $1940,40 \%$ of patents by inventor-engineers came out of industrial research labs (Fig. 8). More importantly, these labs were key facilitators of teamwork. To support this claim, we show that:

1. the rise in teamwork between 1920 and 1945 is almost completely due to teamwork in firms and even more so in firms with labs,

Table 5: Most common occupational pairs in coinventor dyads

occupation 1	occupation 2	frequency
$1856-1900$		65
Machinists	Operative and kindred workers (n.e.c.)	30
Operative and kindred workers (n.e.c.)	Salesmen and sales clerks (n.e.c.)	27
Laborers (n.e.c.)	Operative and kindred workers (n.e.c.)	27
Operative and kindred workers (n.e.c.)	Carpenters	17
Laborers (n.e.c.)	Machinists	
$1920-1945$	Engineers, mechanical	110
Stationary engineers	Engineers, mechanical	106
Engineers, electrical	Engineers, mechanical	98
Draftsmen	Chemists	91
Professional, technical and kindred workers (n.e.c.)	Engineers, chemical	66
Chemists		

Five most common occupation pairs in coinventor dyads, excluding same-occupation pairs (1856-1900: 57; 1920-1945: 74) and occupation pairs with missing occupations, managerial occupations (1856-1900: 126; 1920-1945: 160) or occupations in farming (1856-1900: 153; 1920-1945: 108).

Figure 7: Team composition. Samples are restricted to inventor dyads for which both inventors can be matched to the census. a: Average age difference in coinventor dyads. b: Share of coinventor dyads in which both inventors record the same occupation in the census records. c: Average skill relatedness between the occupations in a dyad. Values larger than one signify that occupations are skill related (see Appendix B.1): labor flows between the occupations exceed their random benchmark. Values below one signify that occupations are unrelated: labor flows fall short of the random benchmark.

Figure 8: Workplaces of engineers. Share of inventors with engineering occupations who work as standalone inventors (red), for firms without research labs (blue) or for firms with research labs (green).
2. labs are associated with more frequent repeat-collaborations,
3. labs allow teams to collaborate over longer distances, and
4. teams are more likely to patent radical innovations, but only if they work for firms, and especially for firms with research labs.

The rise of teamwork. In support of the first claim, Fig. 9a shows that today's widespread practice of team-based invention originally relied on a remarkable early-20th century organizational innovation: the industrial research lab. Whereas in the 19th century, teamwork was often supported by family ties, firm-based teamwork gained prominence only in the 20th century. Then, in the 1920 s, team-based invention shifted to industrial research labs. These labs quickly diffused and became dominant: in the 1940s over 40% of team patents came from firms that operated research labs. ${ }^{17}$ What is more, lab-based inventors were 20% more likely to work in teams than inventors in firms without known research labs and over two times as likely as standalone inventors. In fact, Fig. 9b

[^9]shows that the sudden rise in teamwork in the 1920s is wholly driven by increased teamwork in corporate research: whereas, after 1920, firm- and, especially, lab-based patents increasingly rely on teamwork, the prevalence of teamwork in standalone patents barely changes.

Figure 9: Team coordination. a: Share of team patents that are coordinated by firms without labs (blue), firms with labs (green) or family ties (red). b: Share of patents that are team patents.

Repeat-collaborations. Firm- and lab-based teams were also more likely to engage in repeated collaborations than standalone teams. This is shown in Fig. 10a, which plots the likelihood that two co-inventors patent repeatedly together in the same decade, using the disambiguated inventor dyads described in section 3.5. That is, we calculate which share of disambiguated co-inventor dyads occurs on multiple patents in the same decade. Repeat-collaborations are almost twice as likely for team patents assigned to firms or labs than for patents produced by standalone teams.

Long-distance collaboration. To show that firms and labs support long-distance collaboration, we collapse the sample of team patents to the level of city pairs, counting how many collaborations take place between any given pair of US cities. Next, we analyze the spatial decay in patent collaborations between city o and city d, estimating gravity models with city of origin and city of destination fixed effects. To do so, we use Pseudo-Poisson Maximum Likelihood (PPML) estimation (Silva and Tenreyro, 2006) for:
a.

b.

Figure 10: Team facilitation. a: Stability of inventor dyads: likelihood of repeated collaboration in a decade (i.e., that two inventors patent together more than once in the same decade), using the disambiguated inventor dyads described in section 3.5. Markers are centered on the average observed grant year. b: Estimated distance decay parameters for collaborations between US cities. Vertical lines display 95% confidence intervals. Colors: team patents coordinated by firms without labs (blue), firms with labs (green) or family ties (red).

$$
\begin{equation*}
C_{o d}=\exp \left[\gamma_{o}+\eta_{d}+\delta d_{o d}\right]+\varepsilon_{o d}, \tag{2}
\end{equation*}
$$

where γ_{o} and η_{d} are origin and destination fixed effects and $d_{o d}$ is the logarithm of the Haversine distance between o and d. We estimate this model separately for standalone teams, teams in firms without research labs and teams in industrial research labs. We do so repeatedly over a moving time window that covers 10 years before and after the year reported on the horizontal axis.

The fact that the estimated distance decay parameter is uniformly negative shows that collaboration is constrained by distance. However, distance is much less of a constraint for lab-based and, to a lesser extent, for firm-based teamwork.

Novelty. Do research labs also patent more novel inventions? To analyze the drivers of the changes in novelty of Fig. 1, we loosely follow a knowledge production function approach (Pakes and Griliches, 1980). In particular, we ask whether the new labor inputs that emerge in the 20th century (engineers and teams) are associated with a higher propensity for a patent to list novel technological combinations and to what extent this depends on the organizational context (firms or research labs) in which these inputs are used.

To do so, we proxy labor inputs with dummies that capture whether or not one or more of the patent's inventors are engineers and whether the invention was granted to a single inventor or to a team of inventors. We then interact these inputs with dummies that code the patent's assignee type, distinguishing between standalone patents, firms, and firms with industrial research labs. Next, we fit linear probability models with as a dependent variable a dummy that indicates whether or not a patent lists a novel combination of technology classes:

$$
\begin{equation*}
y_{p}^{d}=\alpha_{t(p)}+\beta_{e} E_{p}+\beta_{t} T_{p}+\sum_{o \in f, l} \beta_{o} O_{o p}+\sum_{o \in f, l} \beta_{o \times E} O_{o p} E_{p}+\sum_{o \in f, l} \beta_{o \times T} O_{o p} T_{p}+\varepsilon_{p} \tag{3}
\end{equation*}
$$

where y_{p}^{d} is a dummy variable for whether or not a patent lists a new combination of either 3- or 6 -digit technology classes $(d \in\{3,6\}), t(p)$ is the year in which patent p was granted, E_{p} a dummy for whether or not any of the inventors were engineers and T_{p} a dummy for team patents. Furthermore, O_{p} is a dummy group that describes the organizational arrangement (assignee type) behind the patent, where f indicates firms and l industrial research labs. The omitted category refers to standalone patents.

We estimate this model in a sample of patents for which at least one inventor could be matched to census records. Full regression tables are reported in Appendix D. Here, we summarize outcomes by describing how novelty effects differ across organizational contexts. The left panel of Fig. 11 shows how the engineering effect varies across organization types (i.e., $\hat{\beta}_{e}+\hat{\beta}_{o}+\hat{\beta}_{o \times E}$). The right panel does the same for the team effect (i.e.,
$\left.\hat{\beta}_{t}+\hat{\beta}_{o}+\hat{\beta}_{o \times T}\right)$. Effect estimates are always relative to a baseline of patents by standalone, solo inventors in non-engineering occupations.

Figure 11: Novelty of patents and labor inputs. The left panel analyzes patents by engineers, the right panel team-based patents. Markers plot the difference in mean novelty at the 3-digit level between patents by engineers, respectively, teams and a baseline composed of standalone patents by solo inventors who are not engineers. Red: standalone patents, blue: patents of firms without industrial research labs, green: patents of industrial research labs. Estimates refer to one of three samples: patents granted between 1856 and 1920, patents granted between 1920 and 1945 and patents granted between 1856 and 1945. Vertical lines display 95% confidence intervals.

Both, engineers and teams, are more likely to patent new technological combinations. However, whereas the engineering effect differs little across assignee types, ${ }^{18}$ the team effect is contingent on the organizational context. In fact, standalone teams are no more likely to patent a new technological combination than the baseline of standalone, nonengineer, solo inventors. Once teams work for firms - and even more so once they work for firms that operate industrial research labs - the likelihood that a patented invention is novel goes up substantially. To put our estimates into context: in the period 1856-1945, on average 5.4% of inventions list novel technological combinations. Lab-based teams are 3.3 percentage points more likely to do so, representing an over 60% increase over this average.

[^10]This analysis shows that, although firms and labs lead the shift to patenting by engineers and teams, when it comes to novelty generation, they only seem to have an impact on teams, not on engineers. This points to the importance of the organizational innovation in coordinating teams that the modern research lab represented.

These findings are robust to a number of changes in the regression design. First, we do not see much difference in effects estimated in different time periods. This suggests that what changes in the 1920s is not the nature of engineering- or team-based patents, but rather their prevalence and the changing prevalence of firms and labs in coordinating inventor teams. Second, controlling for technology-time fixed effects that interacting year dummies with the six broad technology classes defined by Hall et al. (2001) does not qualitatively change outcomes (see Appendix D). ${ }^{19}$

6 Consequences for the US innovation system

6.1 System 1 and system 2 invention

Taken together, our findings suggest that the shift to engineers and lab-based teamwork played an important role in the rapid combinatorial exploration that started in the 1920s. To describe the spatial and societal consequences of this shift, we define two archetypal systems of invention. System 1, representing the craftsmanship-based system that dominates the 19th century, consists of patents by solo, standalone inventors without engineering backgrounds. System 2, representing the science-based system that only really takes off in the 1920s, consists of patents that are either invented by engineers, or created in research labs or by firm-based teams. ${ }^{20}$

These definitions somewhat mimic the innovation literature's distinction between Schumpeter Mark I and Mark II innovation patterns. However, whereas Schumpeter Mark I innovation is typically associated with creative destruction and radical change and Mark II innovation with cumulative progress and incremental change (Breschi et al., 2000), our findings suggest the opposite: in the first half of the 20th century, it is the organized teams in firms and labs of system 2 that introduce radically new combinations of technologies, not the solo, standalone inventors of system 1.

[^11]

Figure 12: Geography. a: Concentration of inventive activity: effective number of cities - defined as e^{H}, where H is the entropy of the distribution of patents across cities - divided by the effective number of cities in terms of population. b: Share of patents in the 25 most populous cities in the US. c: Correlation between vectors that reflect the overrepresentation (location quotients) of patenting across cities vis-à-vis their population. Gray: all patents, red: system 1 patents, green: system 2 patents.

6.2 Geography

System 1 and 2 invention are not only associated with different degrees of novelty, but also exhibit divergent spatial patterns. In Fig. 12a, we show changes in the geographical concentration of patenting. To do so, we calculate the effective number of cities in US patenting. That is, we calculate the exponentiated entropy of the distribution of patents across cities: ${ }^{21}$

$$
\begin{equation*}
H_{t}^{p}=e^{-\sum_{r \in R} \sigma_{r t}^{s} \log \sigma_{r t}^{s}}, \tag{4}
\end{equation*}
$$

where $\sigma_{r t}^{s}$ is the share of patents of system $s \in\{1,2\}$ filed by inventors residing in city r in period t. We normalize H_{t}^{p} by the analogous quantity for the distribution of population across cities to account for the large population shifts taking place in this period.

Relative to how population spreads out across the US, patenting becomes more spatially concentrated over the course of the 19th century. However, in the 20th century, this process reverses and invention starts diffusing to more and more cities, first in system 2 and then somewhat later also in system 1.

This pattern is mimicked by the role that large cities play in innovation. Fig. 12b shows the share of patents filed by inventors in the 25 largest cities in the US. ${ }^{22}$ Whereas in the 19th century, these cities slowly become less dominant in the patent record, at the

[^12]1856-1899

1900-1919

1920-1945

over-representation system 1
over-representation system 2

Figure 13: Overrepresentation of system 1 and 2 across US cities. Graphs show which system is overrepresented in each of 933 US cities, where overrepresentation is defined as the ratio of the city's share of patents in one system over the share of the city's patents in the other system. Green colors mean that system 2 is overrepresented, red colors system 1. The less transparent the color, the greater the overrepresentation. Marker sizes depict the city's share of all US patents.
turn of the century, this trend reverses. By 1940, large cities have regained their mid-19th century primacy. Again, the reversal is led by system 2, with system 1 following some years later.

Fig. 12c further illustrates how system 2 leads a geographical shift in invention, that is later followed by system 1. It plots the correlation between the vectors of location quotients, $L Q_{r t}^{s}=\sigma_{r t}^{s} / \sigma_{r t}^{p o p}$ of system 1 and system 2 , where $\sigma_{r}^{p o p}$ is city r 's share of US population. The locational vectors of system 1 and 2 diverge until the mid-1920s, but then start converging again.

Finally, Fig. 13 plots maps of the geography of system 1 and system 2. Cities with an overrepresentation of system 1 patents (i.e., whose share of system 1 patents exceeds their share of system 2 patents) are colored red, whereas green markers indicate that system 2 patents are overrepresented in the city. These maps show that system 2 is overrepresented in an area that is nowadays known as the "American Rustbelt", but that at the time represented the cutting edge of the US economy. In this sense, system 2 invention was an integral part of this emerging hotspot of US innovation (see also Lamoreaux et al., 2007).

6.3 Demographics and unequal participation

Immigrants play and have played an important role in US innovation (Akcigit et al., 2017b; Kerr, 2013; Lissoni and Miguelez, 2024). In line with this, Fig. 14a shows that immigrants are overrepresented in the population of inventors for most of the period we study. However, this is not uniformly the case. In fact, in the late 19th century, immigrant inventors' overrepresentation diminishes and for a short period, foreign-born inventors are underrepresented in the patent records. From the 1920s on, foreign-born inventors once again become strongly overrepresented. Moreover, as shown in Fig. 14b, which plots the
overrepresentation of inventors from the six most important countries of birth in terms of inventors, this aggregate dynamic hides much variation. For instance, unlike UK-born inventors, inventors born in Sweden or Germany, both of which industrialized relatively late, rose to prominence only in the early 20th century. Similarly, we see an inflection point in the time-series of Russian-born inventors after the Russian revolution (Fig. 14b).

Figure 14: Demographics. a: Overrepresentation of foreign-born individuals in patent records: $\sigma_{f t}^{p} / \sigma_{f t}^{p o p}$, where $\sigma_{f t}^{p}$ is the share of patents held by foreign-born inventors in year t and $\sigma_{f t}^{p o p}$ the share of foreign-born individuals in the US population in year t, interpolating between census waves in non-census years. b: Overrepresentation of foreign-born individuals in patent records for the six largest countries of origins among US inventors: $\sigma_{b t}^{p} / \sigma_{b t}^{p o p}$, where $\sigma_{b t}^{p}$ is the share of patents in year t held by inventors born in country b and $\sigma_{b t}^{p o p}$ their share in the US population in year t, interpolating between census waves in non-census years.

If we instead distinguish patents by their organizational contexts, we observe remarkable differences between the firm- and lab-based patents of system 2 and the standalone patents of system 1 (see Fig. 15a). In the 1920s, the share of foreign-born inventors rapidly decreases across the board, mostly reflecting a relative decline of foreign-born individuals in the US population. However, foreign-born inventors' patenting shares drop much faster in firms and labs than on standalone patents.

To expand this analysis beyond the years for which we have census records, we analyze the patents of inventors with Hispanic and East Asian surnames, using the geographical origins of last names as proxies for inventors' ethnicity. Moreover, because we lack information about research labs after 1945, we can only distinguish between standalone and firm-based patents. Comparing these two types of patents, we observe stark differences

Figure 15: Immigrant participation rates in system 2. a: share of foreign-born inventors by assignee type (1856-1945). b: upper panel: share of inventors with Hispanic surname, lower panel: share of inventors with East-Asian surnames (1856-2000). Colors: red: standalone patents, purple: firms; blue: firms without research labs; green: research labs.
between inventors with Hispanic and East Asian surnames: whereas, relative to standalone patenting, inventors with Hispanic surnames are underrepresented in firm-based invention, inventors with East-Asian surnames are overrepresented (Fig. 15b).

In contrast to immigrants, women are notoriously underrepresented in patenting (e.g., Ding et al., 2006). Fig. 16 shows that this was even more so in the past. Based on inventors' inferred genders, we find that, although the share of female inventors slowly increases over time, it remains below 2% throughout the $1856-1945$ period. ${ }^{23}$ Moreover, this rise comes to an abrupt halt at the end of WWI, after which female inventor shares start falling again.

However, when we distinguish between different organizational contexts, this drop turns out to be wholly attributable to firm- and lab-based patents (Fig. 17a). In contrast, the share of women on standalone patents keeps rising. In fact, women are drastically underrepresented in firm and lab-based patents compared to standalone patents. In the 1940s, female inventor shares are about a factor 5 lower among firm-based inventors than among standalone inventors. In labs, the female share is a factor 7 below the standalone share. ${ }^{24}$ The gender gap between the share of firm-based patents and standalone patents

[^13]

Figure 16: Share of women. Share of women among all inventors whose first name allows to infer gender with high confidence.
only starts closing in the late 1970s (Fig. 17b). However, in 2000, the share of female inventors is still about 25% lower in firms than among standalone inventors.

Scholars have identified a number of potential drivers of gender gaps in patenting. For instance, women may have fewer ties to industrial partners (Ding et al., 2006), lack successful mentors (Delgado and Murray, 2022) or role models (Bell et al., 2019). Other explanations refer to a lower patentability of inventions in fields where women are most active (Ding et al., 2006) or to outright biases that exclude women from being listed as coinventors (Ross et al., 2022). Although we cannot determine their deeper causes, our analysis suggests that gender gaps in patenting materialize in part through women's lack of access to lab-based and firm-based R\&D.

6.4 Novelty in the 1945-2000 period

We have so far mostly focused on the period 1856-1945, where we were able to enrich the patent record with information about inventor demographics and about industrial research labs. The rapid increase of patents that list new technological combinations in
with as dependent variable a dummy that evaluates to one if we can identify at least one inventor with a first name that we identify as likely to be female among the patent's inventors. Focusing on the fully interacted model in column (5), we find that the likelihood of finding female inventors on a patent is lower in firm- and, even more so, lab-based patents. Also patents that list engineers are less likely to list women. However, women were more likely to be listed on team-based patents. This suggests that system 2 was biased against women, both because of the fact that there were very few female engineers and that women often did not participate in firm- or lab-based invention. Although teamwork counteracted this bias, it did not eliminate it.

Figure 17: Participation of women in system 2. a: share of inventors with first names that are predominantly used by women in different organizational contexts (1856-1945) b: share of inventors with first names that are predominantly used by women in standalone versus firm-based patents (1856-2000).
this period seems to be mostly driven by a rise of patents by teams and engineers in firms and research labs. However, if we extend our knowledge-production function approach to the period 1856-2000, we find that the link between novelty and teamwork in corporate R\&D gets severed after the 1950s.

For this longer period, we can still observe whether or not patents are filed by teams and whether or not they are assigned to firms. Fig. 18a shows results based on a simplified version of the regression models used in the right panel of Fig. 11. After 1945, the greater propensity of firm-based teams to patent novel combinations of technologies shrinks. This reduction is greatest in the case of the radical novelty associated with new combinations of 3-digit technologies. On this metric, in the last quarter of the 20th century, firm-based teams even underperform standalone teams. After 1945, firms therefore no longer enhance teams' propensity to generate novel technological combinations. ${ }^{25}$

[^14]

Figure 18: Novelty of team patents: 1856-2000. Markers plot the difference in mean novelty at the 3 -digit level (left panel) or 6 -digit level (right panel) between teams and a baseline composed of standalone patents by solo inventors. Red: standalone team patents, blue: firm-based team patents. Estimates refer to one of five time periods: 1856-1920, 1920-1945, 1946-1968, 1976-2000 or 1856-2000.

7 Discussion and conclusion

The 1920s are a pivotal point in the history of US invention, rapidly shifting from craftsmanship-based to science-based innovation. This decade marks the start of a 30 -year period of exploration of new technological combinations, supported by systemic changes in the way the US innovates. A number of these trends that can be interpreted as symptoms of an increasing burden of knowledge: the average age of inventors rises, learning curves become steeper, and a new type of science-based innovation specialist arrives: the engineer.

The 1920s also mark the start of the long ascent of teamwork in invention. This teamwork was supported by the emergence of a new organizational entity: the industrial research lab. Originating from Germany, these labs were not only responsible for some of the rise in teamwork, but they also seemed particularly apt at coordinating teams in repeated collaborations and over long distances. In fact, the research lab's effect on innovation seems to have operated more through facilitating teamwork than through the scores of engineers they employed: although industrial research labs employed both disproportionally many engineers and teams, only the latter were more likely to produce novel combinations when working for labs. The organizational innovation that was the research lab quickly diffused and was soon adopted by the most prolifically innovating firms: between 1940 and 1945, out of a total of about 17,000 patenting firms, 25% of all patents and 43% of all firm-based patents in the US were assigned to just 1,244 firms that operated research labs.

Our results likely understate the true importance of these labs. First, we will not have been able to match all patent assignees to their labs, especially when firms filed patents under names sufficiently distinct from those listed in our surveys. Second, firms may have adopted research labs or similar organizational units, without being listed in the survey. Third, inventors will not have assigned the intellectual property rights to all of their inventions to their employers. In fact, employees often only had to assign such rights for inventions related to the firm's main line of business (see, for instance, Hertz, 1950, pp. 327-328).

Similar limitations apply to other aspects of our study. For instance, we were only able to match about 46% of inventors to census records and, given the decennial nature of the census, for those inventors we could match, these records may not always have offered up-to-date and accurate information.

Another class of limitations has to do with the fact that patents do not capture the full extent of innovation nor of the efforts that individuals and firms put in. On the one hand, it is well-known that much innovation goes unpatented (Archibugi, 1992). On the other hand, in spite of legal obligations to do so, patents may not list all contributors. This would offer a partial explanation for the low share of patents by women. However, it would also mean that a number of solo-inventor patents were in reality the result of teamwork. Such miss-measurement likely biased estimated coefficients towards zero, making most of
our estimates conservative.
Third, our study focused on US invention, ignoring inventions that were the result of international collaborations. Although the majority of US inventor teams were entirely based in the US, international collaborations can be observed already in the 19th century. Although this is an interesting aspect of the evolution of US invention, we believe it deserves a study of its own.

Fourth, our analysis sketches trends and correlations and can only hint at causal relations. For instance, we don't know whether the turn to science-based invention was a result of technological change, increasing levels of education or driven by corporate strategy. Our view is that these factors all played a role in enabling the emerging sciencebased innovation system, reinforcing one another. For instance, the division of labor in the growing teams that industrial research labs coordinated relied on the availability of specialized inventors, who themselves were the product of expanded education in the engineering schools of the Morrill Land Grant Acts. ${ }^{26}$ Moreover, organized corporate research became much more profitable after a wave of mergers had created very large firms in various sectors of the economy.

Finally, our study suggests a number of questions that could be studied in more detail in future research. For instance: is organized corporate research conducive to radical innovation? Taken at face value, our study contradicts the canonical view that the highly organized nature of Schumpeter Mark II innovation is best suited for incremental, not radical innovation, at least for the period in which this type of innovation first emerged. In fact, the industrial research lab may have played a similar role in the golden age of American ingenuity as Hanlon's (2022) engineers did in the early industrial revolution of the UK. In fact, engineers only become a dominant force in US invention in the 1920s, a century after their counterparts had revolutionized UK invention, and at that point, they did so as part of the growing workforce of industrial research labs.

However, we also observe that from 1950 on corporate R\&D shifts toward incremental innovation, with firms and in particular firm-based teams becoming less likely to produce radically new combinations of technologies. This resonates with the finding in Wu et al. (2019) that today's very large research teams struggle to generate radically new ideas in science and technology. One challenge of running large teams is that the number of bilateral links increases with the square of the number of team members. A potential explanation for the reduced capacity of corporate inventor teams to create radically new technological combinations is that existing organizational forms cannot meet the rising complexity of coordination. If so, overcoming the current burden of knowledge to accelerate technological progress may require another round of organizational innovation. Possible examples are new collaboration technologies, such as Slack, Zoom and other online platforms. To play a similar role as the 1920s industrial research labs, these platforms would have to help overcome current organizational bottlenecks in teamwork to set

[^15]in motion a new wave of radical technological change.

Acknowledgements

Acknowledgements: The computations in this paper were run on the FASRC Cannon cluster supported by the FAS Division of Science Research Computing Group at Harvard University. We appreciate Sergio Petralia and Riccardo Crescenzi for bringing the existence of historical books on patents and R\&D labs to our attention, Ana Grisanti for helping us create ground truths for optical character recognition purposes, and Mali Akmanalp for programming and data engineering advice. We gratefully acknowledge the feedback we received from Llewellyn Thomas, Stefania Scrofani, James McNerney and Lingfei Wu, as well as from participants at the 2022 DRUID conference, Growth Lab Seminar at Harvard University, UNU-Merit seminar at Maastricht University, the Structure of Technology workshop at the Santa Fe Institute, the Complexity Economics Seminar Series at Oxford University, the MORS seminar at Berkeley Haas School of Business and the IPL seminar at the Toronto Munk School of Global Affairs and Public Policy.

Funding: Frank Neffke gratefully acknowledges financial support from the Austrian Research Promotion Agency (FFG), project \#873927 (ESSENCSE).

References

Akcigit, U., Grigsby, J., and Nicholas, T. (2017a). Immigration and the Rise of American Ingenuity. American Economic Review, 107(5):327-331.

Akcigit, U., Grigsby, J., and Nicholas, T. (2017b). Immigration and the rise of american ingenuity. American Economic Review, 107(5):327-331.

Almeida, P., Phene, A., and Li, S. (2015). The influence of ethnic community knowledge on indian inventor innovativeness. Organization Science, 26(1):198-217.

Ambekar, A., Ward, C. B., Mohammed, J., Male, S., and Skiena, S. (2009). Nameethnicity classification from open sources. In Knowledge Discovery and Data Mining.

Archibugi, D. (1992). Patenting as an indicator of technological innovation: a review. Science and public policy, 19(6):357-368.

Arora, A., Belenzon, S., Kosenko, K., Suh, J., and Yafeh, Y. (2021). The rise of scientific research in corporate america. Technical report, National Bureau of Economic Research.

Arora, A., Belenzon, S., Patacconi, A., and Suh, J. (2020). The changing structure of american innovation: Some cautionary remarks for economic growth. Innovation Policy and the Economy, 20(1):39-93.

Becker, G. S. and Murphy, K. M. (1992). The division of labor, coordination costs, and knowledge. The Quarterly journal of economics, 107(4):1137-1160.

Bell, A., Chetty, R., Jaravel, X., Petkova, N., and Van Reenen, J. (2019). Who becomes an inventor in america? the importance of exposure to innovation. The Quarterly Journal of Economics, 134(2):647-713.

Bloom, N., Jones, C. I., Van Reenen, J., and Webb, M. (2020). Are ideas getting harder to find? American Economic Review, 110(4):1104-1144.

Breschi, S., Malerba, F., and Orsenigo, L. (2000). Technological regimes and schumpeterian patterns of innovation. The economic journal, 110(463):388-410.

Campello, R. J., Moulavi, D., and Sander, J. (2013). Density-based clustering based on hierarchical density estimates. In Pacific-Asia conference on knowledge discovery and data mining, pages 160-172. Springer.

Carlson, W. B. (2013). Innovation and the modern corporation: From heroic invention to industrial science. In Science in the twentieth century, pages 203-226. Routledge.

Chandler Jr, A. D. (1993). The visible hand. Harvard university press.
Clancy, M. S. (2018). Inventing by combining pre-existing technologies: Patent evidence on learning and fishing out. Research Policy, 47(1):252-265.

Delgado, M. and Murray, F. (2022). Faculty as catalysts for new inventors: Differential outcomes for male and female phd students. In Academy of Management Proceedings, number 1, page 17297. Academy of Management Briarcliff Manor, NY 10510.

Ding, W. W., Murray, F., and Stuart, T. E. (2006). Gender differences in patenting in the academic life sciences. science, 313(5787):665-667.

Esposito, C. R. (2023). The geography of breakthrough invention in the united states over the 20th century. Research Policy, 52(7):104810.

European Patent Office (2020). Patstat - worldwide patent statistical database - spring 2020.

Fleming, L. (2001). Recombinant uncertainty in technological search. Management science, 47(1):117-132.

Furman, J. L. and MacGarvie, M. J. (2007). Academic science and the birth of industrial research laboratories in the U.S. pharmaceutical industry. Journal of Economic Behavior 8 Organization, 63(4):756-776.

Gertner, J. (2012). The idea factory: Bell Labs and the great age of American innovation. Penguin Press, New York.

Gordon, R. J. (2016). The rise and fall of american growth. In The Rise and Fall of American Growth. Princeton University Press.

Hall, B. H., Jaffe, A. B., and Trajtenberg, M. (2001). The NBER Patent Citation Data File: Lessons, Insights and Methodological Tools. Working Paper 8498, National Bureau of Economic Research.

Hanlon, W. W. (2022). The Rise of the Engineer: Inventing the Professional Inventor During the Industrial Revolution. Technical Report w29751, National Bureau of Economic Research, Cambridge, MA.

Henderson, R., Jaffe, A. B., and Trajtenberg, M. (1998). Universities as a source of commercial technology: a detailed analysis of university patenting, 1965-1988. Review of Economics and statistics, 80(1):119-127.

Hertz, D. B. (1950). The theory and practice of industrial research.
Hounshell, D. A. (1996). The evolution of industrial research in the united states. In Rosenbloom, R. S. and Spencer, W. J., editors, Engines of Innovation. Harvard Business School Press, Boston, MA.

Jones, B. F. (2009). The burden of knowledge and the "death of the renaissance man": Is innovation getting harder? The Review of Economic Studies, 76(1):283-317.

Jost, L. (2006). Entropy and diversity. Oikos, 113(2):363-375.
Jung, T. and Ejermo, O. (2014). Demographic patterns and trends in patenting: Gender, age, and education of inventors. Technological Forecasting and Social Change, 86:110124.

Kaltenberg, M., Jaffe, A., and Lachman, M. E. (2021). Matched inventor ages from patents, based on web scraped sources.

Kerr, W. R. (2013). Us high-skilled immigration, innovation, and entrepreneurship: Empirical approaches and evidence. Technical report, National Bureau of Economic Research.

Klepper, S. (1996). Entry, exit, growth, and innovation over the product life cycle. The American economic review, pages 562-583.

Lamoreaux, N. R., Levenstein, M., and Sokoloff, K. L. (2007). Financing invention during the second industrial revolution: Cleveland, ohio, 1870-1920.

Lamoreaux, N. R. and Sokoloff, K. L. (2001). Market trade in patents and the rise of a class of specialized inventors in the 19th century united states. American Economic Review, 91(2):39-44.

Lenoir, T. (1998). Revolution from above: the role of the state in creating the german research system, 1810-1910. The American Economic Review, 88(2):22-27.

Li, Y. and Neffke, F. (2023). Evaluating the principle of relatedness: Estimation, drivers and implications for policy. Technical report, Center for International Development at Harvard University.

Lissoni, F. and Miguelez, E. (2024). Migration and innovation: Learning from patent and inventor data. Journal of Economic Perspectives, 38(1):27-54.

Marco, A. C., Carley, M., Jackson, S., and Myers, A. F. (2015). The uspto historical patent data files: Two centuries of innovation. SSRN working paper.

McInnes, L., Healy, J., and Melville, J. (2018). Umap: Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426.

Michaelis, A. R. (2003). Justus von liebig, frs: creator of the world's first scientific research laboratory. Interdisciplinary Science Reviews, 28(4):280-286.

Mowery, D. C. (1990). The Development of Industrial Research in U.S. Manufacturing. American Economic Review, 80(2):345-349.

Mowery, D. C. and Rosenberg, N. (1999). Paths of innovation: Technological change in 20th-century America. Cambridge University Press.

Muneepeerakul, R., Lobo, J., Shutters, S. T., Goméz-Liévano, A., and Qubbaj, M. R. (2013). Urban economies and occupation space: Can they get "there" from "here"? PloS one, 8(9):e73676.

National Research Council (1956). Industrial Research Laboratories of the United States, Including Consulting Research Laboratories. National Research Council, Washington, D.C.

Neffke, F. and Henning, M. (2013). Skill relatedness and firm diversification. Strategic Management Journal, 34(3):297-316.

Neffke, F. M. (2019). The value of complementary co-workers. Science advances, 5(12): eaax3370.

Neffke, F. M., Otto, A., and Weyh, A. (2017). Inter-industry labor flows. Journal of Economic Behavior \& Organization, 142:275-292.

Pakes, A. and Griliches, Z. (1980). Patents and r\&d at the firm level: A first report. Economics letters, 5(4):377-381.

Pezzoni, M., Veugelers, R., and Visentin, F. (2022). How fast is this novel technology going to be a hit? antecedents predicting follow-on inventions. Research Policy, 51(3):104454.

Pithan, D. (2021). Corporate research laboratories and the history of innovation. Routledge.

Reich, L. S. (1985). The making of American industrial research: science and business at GE and Bell, 1876-1926. Studies in economic history and policy. Cambridge University Press, Cambridge [Cambridgeshire] ; New York.

Righi, C. and Simcoe, T. (2019). Patent examiner specialization. Research Policy, 48(1):137-148.

Rocke, A. (2021). 41The Rise of Academic Laboratory Science: Chemistry and the 'German Model' in the Nineteenth Century. In History of Universities: Volume XXXIV/1: A Global History of Research Education: Disciplines, Institutions, and Nations, 18401950. Oxford University Press.

Ross, M. B., Glennon, B. M., Murciano-Goroff, R., Berkes, E. G., Weinberg, B. A., and Lane, J. I. (2022). Women are credited less in science than men. Nature, 608(7921):135145.

Ruggles, S., Flood, S., Foster, S., Goeken, R., Pacas, J., Schouweiler, M., and Sobek, M. (2021). IPUMS USA: Version 11.0 [Dataset]. Minneapolis. IPUMS Minnsesota: MN.

Schmidgen, H. (2021). Laboratory. Encyclopedia of the History of Science, 4(1).
Schumpeter, J. (2017). Theorie der wirtschaftlichen Entwicklung. Duncker und Humblot.
Silva, J. S. and Tenreyro, S. (2006). The log of gravity. The Review of Economics and statistics, 88(4):641-658.

Sood, G. and Laohaprapanon, S. (2018). Predicting race and ethnicity from the sequence of characters in a name.

Strumsky, D. and Lobo, J. (2015). Identifying the sources of technological novelty in the process of invention. Research Policy, 44(8):1445-1461.

Travis, A. S., Hornix, W. J., Bud, R., and Homburg, E. (1992). The emergence of research laboratories in the dyestuffs industry, 1870-1900. The British journal for the history of science, 25(1):91-111.

USPTO (2022). PatentsView. https://www. patentsview.org/download/.
van Dam, A., Gomez-Lievano, A., Neffke, F., and Frenken, K. (2023). An informationtheoretic approach to the analysis of location and colocation patterns. Journal of Regional Science, 63(1):173-213.

Verhoeven, D., Bakker, J., and Veugelers, R. (2016). Measuring technological novelty with patent-based indicators. Research policy, 45(3):707-723.

Weitzman, M. L. (1998). Recombinant growth. The Quarterly Journal of Economics, 113(2):331-360.

Winter, S. G. (1984). Schumpeterian competition in alternative technological regimes. Journal of Economic Behavior \& Organization, 5(3-4):287-320.

Wu, L., Wang, D., and Evans, J. A. (2019). Large teams develop and small teams disrupt science and technology. Nature, 566(7744):378-382.

Wuchty, S., Jones, B. F., and Uzzi, B. (2007). The Increasing Dominance of Teams in Production of Knowledge. Science, 316(5827):1036-1039.

Youn, H., Strumsky, D., Bettencourt, L. M., and Lobo, J. (2015). Invention as a combinatorial process: evidence from us patents. Journal of the Royal Society interface, 12(106):20150272.

A Data sources

Our analyses combine three different types of data. The main data set contains information on patents issued by the United States Patent and Trademark Office (USPTO). We add to this existing datasets from European Patent Office's (EPO) PATSTAT and the USPTO's PatentsView. For US-based inventors, we combine these patent data with demographic information from the US population censuses between 1850 and 1940. Finally, for US assignees, we add information on industrial research labs. Fig. A1 provides a schematic overview of all data processing and merges that were carried out.

Figure A1: A: Sample page of the 1880 Annual report of the Commissioner of Patents. B First page of patent number 2018/0282392 A1. C Sample page of 1931 edition of "Industrial Research Laboratories of the United States". D Sample page of US Census form. E Identification of most likely national origin of surnames. Hispanic surnames are identified using models trained on the 2000 US Census (Sood and Laohaprapanon, 2018), East-Asian surnames using models trained on Wikipedia (Ambekar et al., 2009). F: Projection of cross-occupation labor flow network on 2-dimensional UMAP embedding. G First names are associated with genders by majority vote in about 650 M census records. We focus on a sample where first names display little ambiguity in gender, requiring that at least 90% of census records list the same the gender for the first name. H: Histogram of $\hat{y}_{i}^{(a)}$ (blue) and $\hat{y}_{i}^{(b)}$ (red) in a random sample of about 68 M potential matches. Some potential matches of seemingly high quality when using only name- and geographical distances are downgraded in the second-stage xgboost model, which also accounts for the quality of alternative matches. I: Match rate: share of inventors that can be matched with moderate accuracy ($\hat{y}_{i}^{(b)} \geq .95$, orange) and high accuracy $\left(\hat{y}_{i}^{(b)} \geq .99\right.$, green) to one of the two census waves closest in time to the patent's grant date.

A. 1 Patent yearbooks

Patent yearbooks have been scanned by different universities. ${ }^{27}$ For most years, we can therefore access multiple digital copies of the same yearbook. All image files for these scanned copies were accessed through the Hathi Trust Foundation, except for scans obtained from the Smithsonian Foundation, which were obtained directly from this foundation. Together, this amounts to about half a million scanned pages.

To convert scans to text, we apply image preprocessing and optical character recognition (OCR) algorithms. Next, we correct errors in the extracted text by cross-validating the output across different scans of the same yearbook, using a majority vote to decide on the correct string.

We further process these strings, using natural language processing (NLP) algorithms to separate inventor names and places of residence, assignee names and assignee locations, short descriptions of the invention, patent numbers and grant dates. To do so, we first manually create a ground truth that separates the aforementioned entities, which can be found in the online code appendices. Some reports only list first names in full for the first inventor, providing initials and last names for any additional inventors. However, these yearbooks typically contain additional lines that provide full first and last names for the other inventors as well. These lines can be identified by the string "(See <name of first inventor>)". Whenever possible, we supplement first-name information from these lines. However, in some cases and years only initials are provided for second and subsequent inventors, which complicates the merge to census records.

Patents can be assigned (i.e., transfer intellectual property rights) to individuals or organizations other than the original inventors. If this happened before or at the time the patent was granted, the yearbooks contain this information, following the string "assigned to". To distinguish between patents assigned to organizations (e.g., "assigned to Wright Metal Incorporated") and patents assigned to individuals (e.g. "assigned to Benjamin Reece and Neary Claflin"), we once again rely on NLP, manually creating a ground truth training set for named entity extraction. The vast majority of organizations in this period, over 99%, are firms.

Because the same organization may be listed in different yearbooks under different names (e.g. "General Electrics" versus "General Electric Inc." versus "General Electric Incorporated") we manually align common terms (e.g., replacing "Mfg." by "Manufacturing") and then apply a fuzzy name-matching algorithm that calculates string similarities across all assignees. We use this to disambiguate organization names, merging names likely to refer to the same organizations.

This process allows us to extract detailed information on patents, their inventors and assignees for the period 1856-1953. In the analysis, we exclude the years $1873,1874,1878$,

[^16]1908, 1909, 1951 and 1952. In 1874, yearbooks are missing altogether. In the other years, first names of inventors are not reported, which complicates the match to census data. Furthermore, we restrict the sample of patents to utility patents, excluding reissues or translations of existing patents, provisional patents, design patents and (organic) plant patents. Finally, we drop patents where one or more inventors are located outside the US.

The Python code of these procedures - including ground truth training data sets - is available in the Supporting Material, Repository 1.

A. 2 Technology classes

Technology classes and subclasses in the USPC classification system are provided by the USPTO for bulk download in the CASSIS Patents Assignments File and the Bulk Data Products repository (https://bulkdata.uspto.gov/). These data provide grant numbers and dates for all patents, as well as the list of primary and secondary technology codes.

We match the patents in the yearbooks to these data using the patent number. However, OCR errors may lead to ambiguous and/or imperfect matches. In these cases, we add the patent's grant date to improve the match.

Finally, we aggregate technology classes into broader categories using the classification of (Hall et al., 2001). Because this classification is not available for all patents, we infer a correspondence between NBER subcategories and USPC main classes, using the primary technology classes for patents that are classified in both systems. We use this correspondence to add the aggregated NBER classes to as many patents as possible.

A. 3 Census data

We obtain US census records from the Integrated Public Use Microdata Series, or IPUMS (Ruggles et al., 2021). These records, about 650 million in total, contain the answers to census questions for all US residents for the years 1850, 1860, 1870, 1880, 1900, 1910, 1920, 1930 and 1940. 1890 is unavailable because a fire destroyed most of the records of that year. In our analysis, we use information on first and last names, years of birth, places of residence, industries and occupations.

Matching inventors to the US census To match inventors to census records, we proceed in five steps:

1. For each inventor, we find a set of candidate matches based on the string distance between the inventor's last name and all last names in a US census wave. On average there are 326,697 candidate matches for each patent-inventor combination.
2. We create a ground truth for a subset of inventor-individual matches, relying on inventors whose patents are listed on Wikidata, which adds detailed information on date and place of birth, places of residence, as well as spouses, children and parents.
3. We train a first-round xgboost model on this ground truth that predicts correct matches from information on distances between an inventor and all candidate matches in the census, using as predictors string distances for first names, last names and initials, as well as the geographical distance between the place of residence in IPUMS and on the patent. This model provides for each inventor-candidate pair a score that describes the quality of each match candidate: \hat{y}_{a}.
4. We train a second-round xgboost model on a different set of ground truth observations that uses as predictors $\hat{y}_{i j}^{(a)}$, as well as the top $k \hat{y}_{i j^{\prime}}^{(a)}$ scores across all match candidates associated with inventor i. This yields for each inventor-candidate pair a second match score $\hat{y}_{i j}^{(b)}$.
5. We link inventors to individuals by choosing the individual in the US census with the highest $\hat{y}_{i j}^{(b)}$ across all candidates j.

The first-round model effectively decides how different distances between inventor and census individuals should be weighted when choosing among multiple match candidates. The second-round model helps determine how much confidence we should have in a match, taking into consideration that confidence should be low if either $\hat{y}_{i j}^{(a)}$ is low, or if there are multiple candidates j with more or less equal values of $\hat{y}_{i j}^{(a)}$.

Fig. A2 shows how well our models perform within our ground truth dataset. To do so, we split inventors into a 75% train and a 25% test dataset and then add all potential match candidates from the census to the corresponding inventors. We fit our models using the train dataset and use the fitted model to predict out-of-sample for each inventor in the test dataset which is the best match among all available candidates. We denote this match candidate by the subscript $j^{*}(i)$. Next, we calculate the deciles of $\hat{y}_{i j^{*}(i)}^{(b)}$ in the test sample, $\hat{y}_{d}^{(b)}$ for $d \in\{0.1,0.2, \ldots, 1.0\}$. Finally, we plot the share of correctly matched inventors on the y -axis against the share of the sample that we match if we choose $\hat{y}_{i j^{*}(i)}^{(b)} \geq \hat{y}_{p}^{b}$ in descending order of $\hat{y}_{d}^{(b)}$.

The graph shows that up to 60% of inventors can be matched with very high accuracy to census records. After this, the match rate starts falling. Our decision to match inventors to census individuals whenever $\hat{y}_{i j^{*}(i)}^{(b)} \geq 0.99$ amounts to a true positive rate of 0.92 in our ground truth data. in contrast, choosing a cut-off such that $\hat{y}_{i j^{*}(i)}^{(b)} \geq 0.95$ implies a true positive rate of 0.89 .

Fig. A1H shows the histograms of $\hat{y}_{i}^{(a)}$ and $\hat{y}_{i}^{(b)}$ in a random sample of about 68 M potential matches taken from the entire population of inventors and their match candidates (i.e., not limited to our ground truth data). In this paper, we only use matches

Figure A2: Out-of-sample performance of matching algorithm Vertical axis shows the true positive rate in out-of-sample matches between inventors and candidate matches in the US census for deciles of the top second-stage match scores across all of an inventor's match candidates, $\hat{y}_{i j^{*}(i)}^{(b)}$, in descending order of match quality. The horizontal axis shows the share of all inventors that were matched at the corresponding levels of $\hat{y}_{i j^{*}(i)}^{(b)}$ or higher.
for which $\hat{y}_{i}^{(b)} \geq$.99. Although the second stage xgboost estimates, $\hat{y}_{i}^{(b)}$, do not improve match quality, they do downgrade a number of seemingly high-quality matches. This typically happens when inventors with common names have multiple close matches in the census data. Because a multiplicity of good matches actually complicates selecting the right match, the second stage correctly lowers the estimated quality of such matches.

We repeat this analysis, matching each inventor to the two nearest census waves, except for patents after 1940, where inventors are matched only to the 1940 wave. Next, we select the match candidate with the highest $\hat{y}_{i}^{(b)}$ of all candidates in either wave, conditionally on the associated individual being at least 16 years old. In case one of the two matches is younger than 16 years, we select the other match, provided that $\hat{y}_{i}^{(b)} \geq .95$. If both matches involve individuals younger than 16 years, we do not match the inventor to the census. The match rate at both levels of accuracy over time is given in Fig. A1I.

A. 4 Industrial research labs

Data about industrial research labs are extracted from the National Research Council's Industrial Research Laboratories of the United States surveys (Fig. A1C). Waves of this survey were conducted in 1920, 1927, 1931, 1933, 1938, 1940, 1946, 1948, 1950 and 1956. These surveys provide information on the name of each lab, its main activity, location, (managing) directors and important researchers.

We digitize these surveys using OCR algorithms. Next, we clean the names by remov-
ing common words such as 'company' and 'limited' and we calculate the Jaro-Winkler string similarity between every lab and patent assignee. Finally, we match records if the similarity is greater than 0.95 or if the similarity is greater than 0.90 and at least one of the words in the names matches perfectly. ${ }^{28}$

To determine when a given assignee started operating a research lab, we use information on the founding years from the 1940 and 1946 editions. For labs that are not reported in these editions, we set the founding date to the year of the first survey that mentions these labs. Finally, when labs are mentioned in editions that predate the founding year, we override the founding years by the year of the earliest edition that mentions the lab.

The Python code and output of this exercise are available in the Supporting Material, Repository 2.

B Variable construction

B. 1 Occupations

The census data contain harmonized occupation codes in the occ1950 classification created by IPUMS from transcribed text that the census enumerator had originally noted down. With over 250 different job titles, the occ1950 classification is too detailed to use in the descriptive analyses of this study. Therefore, we aggregate these job titles into broader classes. One concern is that the prevalence of some occupational titles changes, even when jobs do not. In particular, the occupations that are reported in the census are ultimately based on self-reported jobs. As a consequence, the emergence of engineers in the census may not only be due to an actual expansion of engineers in the population, but also because more individuals start describing themselves as engineers. To address this concern, we group occupations into classes, based on an analysis of labor flows between the detailed occupations of the occ1950 classification.

To create labor-flow-based occupation groupings, we first create a matrix F with elements $F_{i j}$ that contain the total number of individuals who move from occupation i to occupation j in the subsequent census wave. To do so, we start by selecting all individuals with non-missing occupation codes. Next, the level of detail at which occupations are described can vary across census waves. This is the case for Professors (codes 10-29) and Scientists (codes 61-69), which in some census waves are subdivided by field and in others only reported as aggregates. We combine these two sets of occupations into the two aggregate classes of professors and scientists.

Next, we construct for each pair of sequential decades the total number of individuals who listed occupation i in the first decade and occupation j in the next decade. This provides us with decadal cross-occupational labor flows. Note that due to the loss of the

[^17]1890 census in a fire, labor flows that start in 1880 end in 1900. Because the population grows from 23 M in 1850 to 132 M in 1940, these counts will be dominated by job switches in later decades. To remedy this, we normalize the flows in each decade by the sum total of all flows in that decade to express them as shares that add up to 1 in each decade. Next, we multiply these shares with the grand total of all flows across all decades divided by eight, the number of decade pairs. This ensures that flows from each year are weighted equally, while retaining the total number of job switchers across all decades.

To turn the flow matrix, F, into a matrix of flow intensities, we calculate skill relatedness (Neffke and Henning, 2013). Skill relatedness quantifies whether an observed flow between two occupations surpasses a random benchmark. Here, we follow van Dam et al. (2023), who develop an information-theoretic framework to generate Bayesian estimates of the amount of surprise involved in observing a flow $F_{i j}$, given the total inflows into occupation j and the total outflows from occupation i. To be precise, we will estimate the point-wise mutual information $p m i(i, j)=\log \frac{q_{i j}}{q_{i} q_{j}}$, where $q_{i j}$ is the probability of observing an individual moving from occupation i to j, q_{i} the (marginal) probability that an individual leaves occupation i and q_{j} the marginal probability that an individual moves to occupation j. We collect these estimates in matrix $P M I$.

We convert this measure of relatedness into a measure of distance by subtracting matrix PMI from the maximum value across all its elements. Following recommendations of Muneepeerakul et al. (2013) and Li and Neffke (2023), we drop elements of PMI that are not significantly ($p=0.01$) larger than 0 , taking such occupations to be unrelated. ${ }^{29}$ In distance matrix, D, these unrelated entries are set to a value of ten times the maximum distance.

Using this distance matrix, we estimate a 10-dimensional Uniform Manifold Approximation and Projection (UMAP, McInnes et al., 2018) embedding on which we project all occupations (see Fig. A1F for a projection on a 2-dimensional embedding). Finally, we use the Python implementation of Campello et al.'s (2013) HDBSCAN algorithm to cluster occupations at two different, nested hierarchical levels. The resulting two-level clusters are provided in Table B1. In the analyses, we only use the first, highest-level clusters.

Table B1: Occupational classification - flow-based grouping

Mailmen

Mailmen: 84: Express messengers and railway mail clerks; 85: Mail carriers; 91: Telegraph operators; 93: Ticket, station, and express agents

Continued on next page

[^18]
Table B1: Occupational classification - flow-based grouping (Continued)

Transport Services

Transport Services: 64: Conductors, railroad; 78: Baggagemen, transportation; 83:
Dispatchers and starters, vehicle; 179: Brakemen, railroad; 180: Bus drivers; 182: Conductors, bus and street railway; 195: Motormen, street, subway, and elevated railway; 204: Switchmen, railroad; 225: Guards, watchmen, and doorkeepers; 230: Policemen and detectives; 236: Watchmen (crossing) and bridge tenders

Printing

Printing: 106: Bookbinders; 112: Compositors and typesetters; 116: Electrotypers and stereotypers; 117: Engravers, except photoengravers; 147: Photoengravers and lithographers; 151: Pressmen and plate printers, printing; 172: Apprentices, printing trades

Logging

Logging: 29: Foresters and conservationists; 52: Surveyors; 124: Inspectors, scalers, and graders, log and lumber; 201: Sawyers; 246: Lumbermen, raftsmen, and woodchoppers

White Collar

Government: 67: Inspectors, public administration; 70: Officials and administrators (n.e.c.), public administration; 96: Auctioneers; 228: Marshals and constables; 233: Sheriffs and bailiffs

Financial: 1: Accountants and auditors; 79: Bank tellers; 80: Bookkeepers; 81: Cashiers; 87: Office machine operators; 94: Clerical and kindred workers (n.e.c.)

Other White Collar: 7: Authors; 10: Clergymen; 11: Professors; 17: Editors and reporters; 28: Farm and home management advisors; 32: Librarians; 44: Recreation and group workers; 45: Religious workers; 46: Social and welfare workers, except group; 48: Psychologists; 50: Miscellaneous social scientists; 53: Teachers (n.e.c.); 62: Buyers and department heads, store; 66: Floormen and floor managers, store; 71: Officials, lodge, society, union, etc.; 72: Postmasters; 74: Managers, officials, and proprietors (n.e.c.); 75: Agents (n.e.c.); 76: Attendants and assistants, library; 82: Collectors, bill and account; 89: Stenographers, typists, and secretaries; 95: Advertising agents and salesmen; 99: Insurance agents and brokers; 101: Real estate agents and brokers; 102: Stock and bond salesmen; 103: Salesmen and sales clerks (n.e.c.)
N.E.C.: 31: Lawyers and judges; 39: Personnel and labor relations workers; 47: Economists; 49: Statisticians and actuaries; 65: Credit men; 92: Telephone operators

FARming

Continued on next page

Table B1: Occupational classification - flow-based grouping (Continued)

Farming: 60: Farmers (owners and tenants); 61: Farm managers; 238: Farm foremen; 239: Farm laborers, wage workers; 240: Farm laborers, unpaid family workers

Engineers

Engineers: 4: Architects; 16: Draftsmen; 18: Engineers, aeronautical; 19: Engineers, chemical; 20: Engineers, civil; 21: Engineers, electrical; 22: Engineers, industrial; 23:
Engineers, mechanical; 24: Engineers, metallurgical, metallurgists; 25: Engineers, mining; 26: Engineers (n.e.c.); 181: Chainmen, rodmen, and axmen, surveying

Service Work

Health Care: 9: Chiropractors; 13: Dentists; 37: Optometrists; 38: Osteopaths; 40: Pharmacists; 42: Physicians and surgeons; 54: Technicians, medical and dental; 55: Technicians, testing; 57: Therapists and healers (n.e.c.)
Low Skill Service: 15: Dietitians and nutritionists; 34: Nurses, professional; 35: Nurses, student professional; 77: Attendants, physicians and dentists office; 97: Demonstrators; 104: Bakers; 184: Dressmakers and seamstresses, except factory; 187: Fruit, nut, and vegetable graders, and packers, except factory; 190: Laundry and dry cleaning operatives; 192: Milliners; 210: Housekeepers, private household; 211: Laundresses, private household; 212: Private household workers (n.e.c.); 213: Attendants, hospital and other institution; 214: Attendants, professional and personal service (n.e.c.); 216: Barbers, beauticians, and manicurists; 217: Bartenders; 218: Bootblacks; 219: Boarding and lodging house keepers; 220: Charwomen and cleaners; 221: Cooks, except private household; 222: Counter and fountain workers; 223: Elevator operators; 226: Housekeepers and stewards, except private household; 227: Janitors and sextons; 229: Midwives; 231: Porters; 232: Practical nurses; 235: Waiters and waitresses; 237: Service workers, except private household (n.e.c.)
N.E.C.: 143: Opticians and lens grinders and polishers; 244: Gardeners, except farm, and groundskeepers

Arts And Design

Arts And Design: 5: Artists and art teachers; 14: Designers; 41: Photographers; 98: Hucksters and peddlers; 121: Furriers; 122: Glaziers; 158: Tailors and tailoresses; 198: Photographic process workers

Entertainment

Artists: 2: Actors and actresses; 12: Dancers and dancing teachers; 33: Musicians and music teachers

Sports And Farm Work: 6: Athletes; 27: Entertainers (n.e.c.); 51: Sports instructors and officials; 58: Veterinarians; 63: Buyers and shippers, farm products; 191: Meat cutters, except slaughter and packing house; 241: Farm service laborers, self-employed

Continued on next page

Table B1: Occupational classification - flow-based grouping (Continued)

N.E.C.: 215: Attendants, recreation and amusement

Shipyard Work

Nautical: 69: Officers, pilots, pursers and engineers, ship; 178: Boatmen, canalmen, and lock keepers; 200: Sailors and deck hands; 242: Fishermen and oystermen
Laborers: 245: Longshoremen and stevedores; 248: Laborers (n.e.c.)
N.E.C.: 111: Cement and concrete finishers

Textile Workers

Textile Workers: 131: Loom fixers; 185: Dyers; 202: Spinners, textile; 207: Weavers, textile; 209: Operative and kindred workers (n.e.c.)

Blue Collar

Locomotive Workers: 118: Excavating, grading, and road machinery operators; 129: Locomotive engineers; 130: Locomotive firemen; 155: Stationary engineers; 203: Stationary firemen; 224: Firemen, fire protection

Oilers And Hoistmen: 113: Cranemen, derrickmen, and hoistmen; 196: Oilers and greaser, except auto

Mining And Railroads: 125: Inspectors (n.e.c.); 137: Mechanics and repairmen, railroad and car shop; 177: Blasters and powdermen; 193: Mine operatives and laborers; 194: Motormen, mine, factory, logging camp, etc.
Carpentry: 110: Carpenters; 140: Millwrights; 146: Pattern and model makers, except paper; 165: Apprentice carpenters

Metal Workers: 105: Blacksmiths; 120: Forgemen and hammermen; 123: Heat treaters, annealers, temperers; 141: Molders, metal; 152: Rollers and roll hands, metal; 188: Furnacemen, smeltermen and pourers; 189: Heaters, metal
Machine Workers: 127: Job setters, metal; 132: Machinists; 160: Tool makers, and die makers and setters; 167: Apprentice machinists and toolmakers

Repair Office Machinery: 43: Radio operators; 135: Mechanics and repairmen, office machine; 136: Mechanics and repairmen, radio and television

Electrical: 115: Electricians; 128: Linemen and servicemen, telegraph, telephone, and power; 142: Motion picture projectionists

Table B1: Occupational classification - flow-based grouping (Continued)
Motorized Transportation: 3: Airplane pilots and navigators; 133: Mechanics and repairmen, airplane; 134: Mechanics and repairmen, automobile; 163: Apprentice auto mechanics
Motorized Transportation: 183: Deliverymen and routemen; 205: Taxicab drivers and chauffers; 206: Truck and tractor drivers; 243: Garage laborers and car washers and greasers; 247: Teamsters
Masonry: 108: Brickmasons, stonemasons, and tile setters; 149: Plasterers; 156: Stone cutters and stone carvers; 164: Apprentice bricklayers and masons
Other Construction: 144: Painters, construction and maintenance; 145: Paperhangers; 150: Plumbers and pipe fitters; 159: Tinsmiths, coppersmiths, and sheet metal workers; 161: Upholsterers; 170: Apprentices, building trades (n.e.c.); 173: Apprentices, other specified trades; 174: Apprentices, trade not specified; 197: Painters, except construction or maintenance
N.E.C.: 90: Telegraph messengers; 100: Newsboys; 107: Boilermakers; 109: Cabinetmakers; 114: Decorators and window dressers; 138: Mechanics and repairmen (n.e.c.); 148: Piano and organ tuners and repairmen; 154: Shoemakers and repairers, except factory; 162: Craftsmen and kindred workers (n.e.c.); 166: Apprentice electricians; 168: Apprentice mechanics, except auto; 169: Apprentice plumbers and pipe fitters; 171: Apprentices, metalworking trades (n.e.c.); 175: Asbestos and insulation workers; 176: Attendants, auto service and parking; 186: Filers, grinders, and polishers, metal; 199: Power station operators; 208: Welders and flame cutters; 234: Ushers, recreation and amusement

N.E.C.

N.E.C.: 8: Chemists; 30: Funeral directors and embalmers; 36: Scientists; 56: Technicians (n.e.c.); 59: Professional, technical and kindred workers (n.e.c.); 68: Managers and superintendents, building; 73: Purchasing agents and buyers (n.e.c.); 86: Messengers and office boys; 88: Shipping and receiving clerks; 119: Foremen (n.e.c.); 126: Jewelers, watchmakers, goldsmiths, and silversmiths; 139: Millers, grain, flour, feed, etc.; 153: Roofers and slaters; 157: Structural metal workers

The flow-based clustering of occupations yields one group of occupations that contains all engineering occupations. However, this group also includes three further occupations that have strong labor-flow connections to engineering jobs: Architects, Draftsmen and Chainmen, rodmen, and axmen, surveying (i.e., occupations related to land surveying).

To check the robustness of our results, we also consider a different way of grouping occupations into broad sectors, using the hierarchical structure of the occ1950 codes. Because of our interest in the rise of engineers among inventors, we subdivide the sector "Professional, technical," which contains the engineering occupations, into a number of smaller subclasses. Furthermore, we separate apprentices as a subclass of the sector

Table B2: Occupational classification - hierarchical grouping

Codes	Class name
$0-99$	Professional, technical
$41-49$	Engineers
$7,10,12-19,23-29,61-69,81-84$	Scientists
$1,4,6,31,51,57,74,77,91$	Artists
$8,32,34,58-59,70-71,73,75,97-98$	Health care
$0,9,55,72$	Office professionals
$2-3,33,92,94-96$	Technical workers
$36,52-54,56,76,78-79,93,99$	Other professionals
$100-123$	Farmers
$200-290$	Managers, Officials, and Proprietors
$300-390$	Clerical and Kindred
$400-490$	Sales workers
$500-594$	Craftsmen
$600-690$	Operatives
$600-621$	Apprentices
$622-690$	Operatives
$700-720$	Service Workers (private household)
$730-790$	Service Workers (not household)
$810-840$	Farm Laborers
$910-970$	Laborers
$595,979-999$	Missing

"Operatives". Table B2 summarizes these groupings. ${ }^{30}$
We can now determine which occupations are overrepresented in the patent records, by comparing their shares among inventors to their shares in the working-age population. To do so, we calculate the following quantity:

$$
\begin{equation*}
\rho_{o t}=\frac{N_{o t} / \sum_{o^{\prime}} N_{o^{\prime} t}}{P O P_{o t} / \sum_{o^{\prime \prime}} P O P_{o^{\prime \prime} t}} \tag{5}
\end{equation*}
$$

where $N_{o t}$ is the number of patents by inventors with occupation o in period t and $P O P_{o t}$

[^19]

Figure B1: Overrepresentation of broad occupation classes in patent records. a: Overrepresentation of flow-based occupational clusters. b: Overrepresentation of occupational sectors.
the number of working-age individuals in the census records with occupation o in period t. To determine $P O P_{\text {ot }}$ outside census years, we interpolate linearly between two census waves.

Fig. B1 plots the overrepresentation of flow-based clusters (B1a) and of broad occupational sectors (B1b) over time. It shows that engineers had always been heavily overrepresented among inventors, but that this overrepresentation increases even more in the 1920s. Another group of occupations that emerges in this period can be identified in the flow-based clusters: arts and design occupations. In contrast, blue collar workers and craftsmen become increasingly less overrepresented over time.

The Python code of this exercise is available in the Supporting Material, Repository 3.

B.2 Distinguishing family teams

There are two ways in which we can assess whether co-inventors are related in our dataset. First, for patents until 1953, the matched census records allow us to construct family ties. This approach has the advantage that it allows identifying a large variety of family ties, such as siblings, cousins, uncles and nephews, grandparents and grandchildren, etc.. However, the construction of these family ties relies on matching inventors to the census, and for more distant family ties, linking census individuals across multiple census waves.

However, both of these types of linkages are imperfect, complicating the use of census linkages to determine family ties.

Instead, therefore, we rely on a second approach and identify family ties based on shared last names. That is, we assume that two inventors are related if they share the same last name. Because not all family ties are necessarily associated with shared last names, this approach results in an under-count of family-based teamwork. Moreover, even when two inventors share the same last name, they are not necessarily related. Such spurious family ties will be particularly common for inventors with common last names. The nature of this problem changes over time. In the 1940s, the most common last name is Smith and inventors with that last name hold 0.78% of all patents. This is followed by Johnson (0.51%), Miller (0.47%), Brown (0.37%) and Anderson (0.35%). From the 1980s on inventors with last names that are common in certain East-Asian countries start dominating this list. For instance, the top 5 surnames on patents in 2010 is composed of Kim (1.17\%), Lee (1.15\%), Chen (.86\%), Wang (0.77\%) and Park (0.61\%). This reflects the high frequency of certain surnames in specific countries (especially in Asia). For instance, we find that 19.9% of inventors residing in Korea record the surname Kim and the five most common Korean surnames account for 49.3% of all inventors in Korea. Similarly high percentages are found for inventors residing in Taiwan (top 5 surnames: 33.1% of total), China (30.5\%), Malaysia (19.7\%), Hong Kong (18.8\%) and Denmark (14.4\%).

To correct our estimates of family-based team-patents, we create a random benchmark in which we shuffle inventor surnames across patents. However, we do this in such a way that inventors whose name suggests a certain "ethnicity" can only swap patents with inventors with the same inferred ethnicity. This acknowledges that inventors may be more likely to form teams within an ethnic community.

To construct the ethnicity variable, we drop all inventors residing in the US, Canada or Australia, because the populations of these countries have always included many migrants from all over the world. Furthermore, because China, Taiwan, Hong Kong, Singapore and Malaysia share many of the same last names, we group the inventors residing in these countries into a single category. Similarly, we group all inventors in Spain and Spanishspeaking Latin American countries, as well as Germany, Austria and Liechtenstein. Finally, countries with fewer than 100,000 patents are grouped in a residual category, RoW. For every surname, we now determine the most likely geographical origin as the country that accounts for the greatest share of inventors with that surname. ${ }^{31}$

Finally, we randomize surnames across inventor-patent combinations. To do so, we shuffle the surname column within (grant-year, name-origin) pairs. Fig. B2 shows that for the period reported in Fig. 9, these null-model shares are negligible.

The Python code of this exercise is available in the Supporting Material, Repository

[^20]

Figure B2: Null model comparison family teams. a: Share of teams that list inventors with the same last name. b: Share of firm patents that list inventors with the same last name. Blue: shares in observed data, red: shares in reshuffled data. Thin lines display 95% confidence intervals.

4.

B. 3 Disambiguated inventor dyads

Disambiguating inventor names is complicated, due to the size of the US population and the limited information that exists about each inventor. As long as first and last name combinations are rare, inventor disambiguation across patents would in principle be possible. However, the same individual may report slightly different names on different patents and in the census, a problem compounded by spelling mistakes and OCR errors. Because of this, we consider disambiguating inventors across patents to be beyond the scope of this paper.

However, disambiguating pairs of co-inventors is much easier. To see this, let p_{n} denote the share of individuals in the US census with surname n. Consequently, if we randomly pick two individuals from the census, the probability of observing a pair with surnames a and b equals $p_{a} p_{b}$. Furthermore, we drop inventors whose last name is very common, that is, we drop inventors with last names that are found over 500 k times across all 9 US censuses. Because there are roughly 650 M records in these censuses, if we were to pick two random individuals, the probability of drawing any given combination of two last names is at most $\left(\frac{600 \mathrm{k}}{650 \mathrm{M}}\right)^{2}=\frac{1}{1.69 \mathrm{M}}$.

However, in family-based teams, inventors often share the same last name. That is, for family-based pairs, surname draws are not uncorrelated. To disambiguate these inventor pairs, we drop all same-surname pairs if the surname is repeated over 50 k times across all censuses. Finally, we drop inventors with East-Asian or Indian surnames. This yields a total of 133 k unique inventor dyads across all patents granted between 1856 and 1949.

To explore the validity of this approach, we calculate the lifespan of each inventor dyad. That is, for dyads that are associated with more than one patent, we calculate the time between their first and last patent. We find that 99.9% of dyads that are listed on more than one patent have a lifespan shorter than 24 years, which we deem plausible.

In Fig. 9c, we use this disambiguated dyads sample, $S_{\text {disamb }}$, to analyze repeat collaborations. To do so we calculate for each decade the share of patents that resulted from repeated collaborations. That is, we sum all patents by the disambiguated dyads in $S_{\text {disamb }}$ that patent more than once in a given decade and divide this sum by the total number of patents that were granted to any disambiguated dyads in this decade.

B. 4 Gender

To assess the gender of inventors, we could rely on the matched census records. This approach has two disadvantages. First, we would only be able to determine a gender for the inventors that we can accurately match to the census records. Second, and more importantly, our census records only allow us to match inventors until 1945. Instead, therefore, we infer the most likely gender of an inventor based on their first names (see Fig. A1G). To do so, we calculate which share of individuals with a given first name listed

Figure B3: Robustness of female participation analysis. a: Share of inventors with a first name that is used in at least 50% of census records by individuals that list their gender as female, dropping all individuals whose first name coincides with male or female genders in at least 90% of records. b1: Share of surnames that are probably of Hispanic origin (i.e., with positive but below 90% probability). b2: Share of surnames that are probably of East-Asian origin (i.e., with positive but below 90% probability). Gray: all patents, red: standalone patents, purple: firm patents.
their gender as female or male in the US censuses between 1850 and 1940. Whenever this percentage (in the US population not among inventors) exceeds 90%, we infer that the first name is mostly used by women, respectively men. In these cases, we associate inventors with such first names with the most common gender for these names in the census records. Otherwise, we set gender to missing. We also set gender to missing if the first name is shorter than 3 characters, to avoid inferring genders from initials misidentified as first names.

To assess how consequential this choice is, we repeat the analysis in 17 for inventors whose first names were often used by both men and women (i.e., where fewer than 90% of individuals listed the same gender). For these cases, we now decide on the gender by majority vote, i.e., inventors are classified as female if at least 50% of census records with these first names list female as a gender, and otherwise as male. Fig B3a shows the evolution of female inventor shares using this more ambiguous sample, corroborating the patterns described in Fig 17.

B. 5 Surname national origins

To infer the national origins of surnames, we rely on predictions ${ }^{32}$ from models that have been trained on datasets that contain surnames and their associated nationality by Sood and Laohaprapanon (2018). We focus on Hispanic and East-Asian surnames, because these are relatively easy to identify. Hispanic surnames are identified from models trained on data from the 2000 US Census, and East-Asian surnames are identified from models trained on Wikipedia data (Ambekar et al., 2009).

Both algorithms yield an accuracy score that can be interpreted as the estimated probability that a given surname is of Hispanic or East-Asian origin respectively. Whenever this score doesn't surpass 0.9 , we refrain from labeling the surname as Hispanic or EastAsian. As a consequence, the estimated inventor shares are undercounts. However, our main interest is in how these shares differ between firm-based and standalone patents and how this difference evolves over time. For this purpose, we only need to assume that the degree of undercounting does not vary systematically over time or with whether or not an inventor patents on behalf of a firm.

To assess how robust this analysis is, we repeat the analysis for individuals with surnames that are probably of Hispanic or East-Asian origin (Fig B3b and B3c). That is, we calculate the shares of inventors whose surname suggest one of these two origins with a probability that is nonzero, yet below 90%. The findings corroborate those reported in Fig. 14.

C Graphs

C. 1 General

Many graphs in the main text display how average characteristics of patents and their inventors or assignees change over time. When choosing time windows over which to average observations, we need to balance a sufficiently high temporal resolution with reasonably precise point estimates of these means. This precision depends on the number of observations in a given time interval. Because the number of observations, i.e., the number of patented inventions, grows roughly exponentially, the width of the ideal time window shrinks over time.

To resolve this, we create windows, not based on time, but on temporal rank. That is, we sort all patents by their exact grant date and then divide the data into groups of identical size, each containing N observations. Next, we calculate the average grant year associated with each group and use this average year as the horizontal coordinate in the graph. Meanwhile, estimated quantities are are plotted along the vertical axis, with confidence intervals calculated as $\pm 1.96 \times$ (standard error of the mean). Note that the group size differs across, and sometimes even within graphs. This is due to the fact

[^21]that some types of observations are more numerous than others. For instance, patents by research labs are rather rare, especially in earlier years, whereas firm-based patents are more common in most decades. Therefore, striking a useful balance between precision of point estimates and time resolution leads to different group sizes for these two types of patents.

C. 2 Geography

In Fig. 12 panels a and c, we correct for the distribution of population across cities. In panel a, we do this by dividing the effective number of cities for the distribution of patents across cities by the effective number of cities for the distribution of population across cities. In panel c, we correct for population dynamics by first creating locational vectors. In particular, in each time window, we limit the set of cities to those that account for at least 0.1% of the overall US population. Next, we divide the share of patents that a city holds by the share of the US population it hosts. This locational vector captures the overrepresentation of a city in inventive activity:

$$
\begin{equation*}
\rho_{c s t}=\frac{N_{c s t} / \sum_{c^{\prime}} N_{c^{\prime} s t}}{P O P_{c t} / \sum_{c^{\prime \prime}} P O P_{c^{\prime \prime} t}} \tag{6}
\end{equation*}
$$

where $N_{c s t}$ is the number of patents in city c, system s and period t, and $P O P_{c t}$ the population of city c and period t. To determine $P O P_{c t}$ between census years, we interpolate linearly between two census waves.

We repeat this procedure once for the patents of system 1 and once for the patents of system 2. Next, we calculate the correlation between the locational vectors of system 1 and 2 . The result is plotted in Fig. 12c.

Furthermore, panel b of Fig. 12 shows the share of patents granted to inventors that reside in one of the 25 largest city in the US, using the city rankings of the grant year. Fig. C1 repeats this analysis for the largest 10 and 50 US cities, replicating the original analysis of Fig. 12b in the center panel.

D Additional regression results

This section presents full tables and robustness checks for the regression analyses in the main text. The regression models aim to associate the likelihood that a patent introduces a new technological combination to the labor inputs (engineers and teams) and coordination modes (firms and industrial research labs) of system 2. To proxy labor inputs, we ask whether or not at least one inventor on the patent is an engineer. Furthermore, we ask whether the patent was produced by a solo inventor or by a team of inventors. To assess the mode of coordination behind a patent, we distinguish between patents that were assigned to firms, patents that were assigned to firms with research labs and patents that were assigned to individuals (either the inventors themselves or other individuals). Our

Figure C1: Share of patents granted to inventors in the most populous US cities. a: Top 10 cities; b: Top 25 cities; c: Top 50 cities.
primary goal is to assess whether certain types of organization enhance the capacity of innovation inputs to produce novel combinations. That is, we are interested in interaction effects between inputs and organizational arrangements.

Furthermore, we distinguish between effects on radical and on incremental novelty. To do so, we run all analyses twice, once using novelty at the level of 3-digit technology codes and once at the level of 6-digit technology codes. Finally, to determine whether estimated parameters change over time, we split our data into four periods: the period before the take-off of research labs (1856-1919), the period in which research labs start dominating invention (1920-1945) and the periods 1946-1968 and 1976-2000. Results are summarized in Tables D1-D5.

D. 1 1856-1945

To assess the robustness of these findings, we run models without fixed effects (base models), models with year fixed effects (these are reported in the main text) and year-NBER-sector fixed effects, where the latter interact year dummies with the 6 technological sector dummies in Hall et al. (2001). This yields the following specifications:
(A) baseline model + year fixed effects (Table D1):

1. engineers: dummy for whether or not one of the inventors is an engineer;
2. team: dummy for whether or not the patent lists a team of inventors;
3. eng \times team: interaction of 1 and 2 ;
4. firm: dummy for whether or not the patent was assigned to a firm;
5. RnDlab: dummy for whether or not the patent was assigned to a firm with a research lab;
6. eng \times firm: interaction of 1 and 4 ;
7. eng \times RnDlab: interaction of 1 and 5 ;
8. eng \times team \times firm: interaction of 1,2 and 4 ;
9. eng \times RnDlab: interaction of 1 and 5 ;
10. team \times RnDlab: interaction of 2 and 5 ;
11. eng \times team \times RnDlab: interaction of 1,2 and 5 ;
(B) baseline model + year \times technological sector fixed effects (Table D2); ${ }^{33}$

Note that we restrict the sample when fitting these models to patents where we can match at least one inventor to census records.

The main focus of our analysis is on the role of engineers and teams as labor inputs into the invention process and how these labor inputs are enhanced by new coordination mechanisms. Gauging such interaction effects directly from the regression tables is complicated. ${ }^{34}$ To show the role of interaction effects more clearly, we plot some explicit comparisons derived from the regression results in Figs D1-D4. These figures show how the association of engineers or teams with the novelty of an invention depends on whether these engineers or teams work for firms or research labs. The omitted category against which effects are compared consists of solo inventors, who are not engineers and who patent outside firms and labs.

Our analysis corroborates that engineers tend to patent more often novel combinations, regardless of the organizational context in which they operate (Figs. D1 and D2). This shows that the results in the main text are robust when controlling for technology-year fixed effects. However, it should be noted that relatively few engineers file patents in a standalone capacity: in the period 1856-1945, firms account for 72% of engineers and 76% of teams that include engineers. Both shares rise over time, reaching over 80% by the 1920s.

Also the results on team patenting hold when controlling for technology-year fixed effects (Figs. D3 and D4). However, here we observe a slight reduction in point estimates for firm-based and lab-based teams in model B.

D. 2 1856-2000

Next, we analyze a smaller model to study how the effects on a patent's novelty change over the entire time period from 1856 to 2000. Because we don't observe demographic

[^22]Table D1: Novelty regression - Model A (year fixed effects)

	1856 - 1945						1856 - 1919						1920-1945					
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	18)
engineers team eng \times team firm eng \times firm team \times firm eng \times team \times firm RnDlab eng \times RnDlab team \times RnDlab eng \times team \times RnDlab Constant	0.010^{*+} (0.001) $0.054^{* * *}$ (0.000)	$\substack{0.005 \cdots \cdots \\(0.001)}$					$\underset{\substack{0.015 \cdots \\(0.002)}}{0.0}$	$\binom{0.001}{(0.001)}$					$\underbrace{(0.001)}_{\substack{0.009 . . .}}$	$\underset{\substack{0.008 \cdots \cdots \\(0.001}}{\substack{0}}$				
Observations	1508504	1508504	1508504	1508504	1508504	1508504	779970	779970	779970	779970	${ }^{779970}$	779970	728834	728534	728534	${ }^{728534}$	728854	${ }^{7285}$
				1945					185	- 1919						- 1945		
	(1)	${ }^{(2)}$	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
engineers team eng \times team firm eng \times firm team \times firm eng \times team \times firm RnDlab eng \times RnDlab team \times RnDlab eng \times team \times RnDlab Constant	$\underbrace{\substack{0.046 . \cdots \\(0.02)}}$	$0.019^{* * *}$ (0.001) $0.527^{* *}$ (0.000)					(0.005)						$0.041^{* * *}$ (0.002) $.583^{* *}$ (0.001)					
Observations	1508504	1508504	1508504	1508504	1508504	1508504	${ }_{779970}$	779970	779970	779970	${ }_{779970}$	779970	728534	${ }^{728534}$	${ }^{728534}$	${ }^{728534}$	${ }^{728534}$	${ }^{2285}$

Robust standard errors in parentheses. : ${ }^{*}: p<0.05,^{* *}: p<0.01,{ }^{* * *}: p<0.001$. Top panel: Dependent variable: Patent lists a new combination of 3 -digit technology codes. Bottom panel: Dependent variable: Patent lists a new combination of 6 -digit technology codes.
Table D2: Novelty regression - Model B (year×technology- sector fixed effects)

	1856-1945						1856-1919						1920-1945					
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
engineers	${ }^{0.006 \times \ldots}$	$\underset{\substack{0.003 \cdots}}{(0.001)}$	$0.006 \cdots$$(0.001)$$0.003 \cdots$$0.0 .001)$$(0.003$0.003$(0.003)$		${ }^{0.015 \cdots}$	${ }^{0.015} \cdots$	$\begin{gathered} \substack{0.012 \cdots \\ (0.002)} \end{gathered}$	$\begin{gathered} 0.001 \\ (0.001) \end{gathered}$	$0.014 \cdots$(0.002)0.001$0(0.001)$$0-0.013$$(0.006)$		0.020.*	$0.016 \cdots$	$\begin{gathered} 0.005 \cdots \cdots \\ (0.001) \end{gathered}$	$\underset{(0.001)}{0.006^{* *}}$			$0.013^{* * *}$ 0.002 (0.001) 0.011(0.007)	$\begin{gathered} 0.014^{+* *} \\ (0.002) \\ 0.003^{+} \\ (0.001) \\ (0.0 \end{gathered}$
team	(0.001)				$\underset{(}{(0.002)} 0$	${ }_{(0.0}^{(0.002)} 0$					$\underset{\substack{(0.003) \\ 0.001}}{(0.020}$	$\underset{\substack{\text { (0.003) } \\ 0.000 \\ 0.0}}{ }$						
					(0.001)	(0.001)					(0.001)	(0.001)						
eng \times toam					$\left(\begin{array}{c}-0.001 \\ (0.005) \\ (0.005\end{array}\right.$						$\xrightarrow{-0.024 *}(0.007)$							
firm					0.003^{*}	$0.003 \cdots$					${ }^{0.001}$	0.00					$0.005 \cdots$	$0.005 \cdots$
eng \times firm						- ${ }^{(0.000}$-0.013\%					${ }^{(0.0015}{ }^{(0.0}$	${ }^{-0.011}$ -					- ${ }_{-0.012 \cdots}^{(0.01)}$	
team \times firm					${ }_{0.005 *}^{(0.003)}$	${ }_{0}{ }_{0.005}^{(0.002)}$					0	${ }^{(0.003} 0$					$\stackrel{(0.003)}{ } 0$	$\underset{\substack{(0.003) \\ 0.004}}{(0.02)}$
					(0.001)	(0.001)					(0.002)	(0.002)					(0.002)	(0.002)
eng \times team \times firm					((0.012)						(0.008)	
RnDlab					${ }^{0.013 * *}$	${ }^{0.013 \cdots}$					0.009**	${ }^{0.009 \cdots}$					${ }^{0.013 \cdots}$	$0.012^{* *}$
eng \times RnDlab					${ }_{-0.009}$	${ }_{-0.007}$					${ }_{-0.018}$	${ }_{-0.020}$					${ }^{(0.007}$	${ }_{-0.006}{ }^{(0.0201)}$
team \times RnDlab					(0.003)	(0.002)					(0.011)	(0.010)					(0.003)	(0.003)
team \times RnDlab					$\stackrel{-0.001}{(0.002)}$	${ }^{\text {(0.002) }}$					(0.009)	${ }_{\text {(0.008 }}$					(0.003)	${ }_{(0)}^{(0.002)}$
eng \times team \times RnDlab					0.008						-0.016						0.010	
Constant	$\underset{(0.000)}{\substack{0.05+\cdots}}$	$\begin{gathered} 0.054 \cdots \cdots \\ (0.000) \end{gathered}$	$\underset{\substack{0.054 \cdots \\(0.000)}}{0}$	$\underset{\substack{0.052 \cdots \\(0.000)}}{0}$		$\begin{gathered} 0.052 \cdots \cdots \\ (0.000) \end{gathered}$	$\begin{gathered} \substack{0.044 \cdots \\ (0.000)} \end{gathered}$	$\begin{gathered} 0.045 \cdots \cdots \\ (0.000) \end{gathered}$	$\begin{gathered} 0.044^{0 .} \\ (0.000) \end{gathered}$	$\underset{\substack{0.044 \\(0.000)}}{ }$	$\begin{aligned} & 0.0 .04 . \\ & (0.000) \\ & (0.002 \end{aligned}$	$\begin{gathered} 0.044^{0 .} \\ (0.000) \end{gathered}$	$\begin{gathered} 0.065^{0.0}(0.000) \\ (0.0 \end{gathered}$	$\begin{gathered} 0.064^{0}+ \\ (0.000) \end{gathered}$	$\begin{gathered} 0.064^{0}+\cdots \\ (0.000) \end{gathered}$	$\begin{gathered} 0.060^{\circ+*} \\ (0.000) \end{gathered}$	$\begin{aligned} & 0.0 .00 \\ & (0.000) \\ & (0.00) \end{aligned}$	$\begin{gathered} 0.060 \cdots \cdots \\ (0.000) \end{gathered}$
Observations	1508504	1508504	1508504	1508504	1508504	1508504	779970	779970	779970	779970	779970	779970	728534	728534	728534	728534	728534	728534
			185	1945						1919						- 1945		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
engineers	$\begin{aligned} & 0.033^{* * *} \\ & (0.002) \end{aligned}$		$\begin{gathered} 0.032^{* *} \\ (0.002) \end{gathered}$	$\begin{gathered} 0.059 \cdots \cdots \\ (0.004) \end{gathered}$	$\begin{gathered} 0.061^{* * *} \\ (0.004) \end{gathered}$	$\begin{gathered} 0.059 \cdots \\ (0.004) \end{gathered}$	$\begin{aligned} & 0.050^{* * *} \\ & (0.005) \end{aligned}$		$\begin{gathered} 0.051^{* * *} \\ (0.005) \end{gathered}$	$\underset{(0.075 \cdots}{\substack{0.075}}$	$\begin{gathered} 0.075^{* *} \\ (0.007) \end{gathered}$	$0.071^{* * *}$	$\begin{aligned} & 0.029^{0 \cdots} \\ & (0.002) \end{aligned}$		$\begin{gathered} 0.028^{* * * *} \\ (0.003) \end{gathered}$	$\underset{\substack{0.052 \cdots * \\(0.005)}}{(0.0}$	$\xrightarrow{0.054 \cdots}(0.005)$	$\underset{\substack{0.052 \cdots * \\(0.005)}}{(0,0}$
team				-												${ }_{0} 0.016^{+1}$		
xteam		(0.001)	(0.001)	(0.002)	(0.002)	(0.002)		(0.002)	(0.002)	(0.002)	(0.002)	(0.002)		(0.002)	(0.002)	(0.003)	(0.003)	(0.003)
eng \times team			$(0005)(0001$	(${ }_{(0.013}^{(0.011)}$	(0.011)					((0.018)				(0.006)	(0.013)	(0.013)	
firm				$\underset{\substack{0.020 \cdots \\(0.001)}}{(0.013}$	$\underset{\substack{0.011 \cdots \\(0.001)}}{(0.013}$	$\xrightarrow{0.011 \cdots}$				$\xrightarrow{0.005^{* *}}(0.002)$	${ }_{\substack{0 \\(0.002 \\(0.002)}}$	$\stackrel{0}{0.002}$ (0.002)				$\underset{\substack{0.030 * * \\(0.001)}}{(0.008}$	$\xrightarrow[\substack{0.018 \cdots \\(0.001)}]{ }$	$\underset{\substack{0.018 \cdots \\(0.001)}}{ }$
eng \times firm						${ }^{-0.045 \%}$				-0.064 \cdots	${ }_{-0.068{ }^{\text {\% }}}$	${ }_{-0.059 \ldots}$				$-0.042 \cdots$	-0.040**	
team \times firm				(0.005)	(0.005)	(0.005)				${ }^{(0.011)}$	(0.011)	(0.010)				${ }_{(0}^{(0.006)} 0$	(0.007)	${ }_{(0}^{(0.006)} 0$
				(0.003)	(0.003)	(0.003)				(0.005)	(0.005)	(0.005)				(0.004)	(0.004)	(0.004)
eng \times team \times firm				$\left(\begin{array}{l}0.018 \\ (0.012)\end{array}\right.$	(0.013)						(0.060)					(0.015)	0.002 (0.016) 0	
RnDlab					${ }^{0.049 * * *}$	${ }^{0.049 \cdots}$					0.044**	${ }^{0.044 * *}$					${ }^{0.047}{ }^{\circ}$.	
eng \times RnDlab						${ }_{-0}{ }_{-0.0014^{*}}^{(0.02)}$					${ }_{\substack{(0.006) \\ 0.018}}^{0.020}$	${ }_{\substack{\text { a }}}^{(0.0066)}$						${ }^{(0.002)}{ }_{-0.013}$
team \times RnDlab					(0.006).	(0.005)					(0.027)	(0.025)					${ }^{(0.006)}$	(0.006)
						${ }_{(0000}^{-0.015}$					(0.021 (0.021)	$\xrightarrow{(0.020)}$					$\xrightarrow{-0.020 \times 1}(0.005)$	$\xrightarrow{-0.0150^{*}}(0.005)$
eng \times team \times RnDlab					${ }_{\left(0.027^{0}\right.}^{(0.014)}$						$-0043(l(0071)$						$\underset{(0.003)^{0.03 *}}{(0.014)}$	
Constant	$\begin{gathered} 0.528 \cdots \cdots \\ (0.000) \end{gathered}$	$\begin{gathered} 0.528 \cdots \cdots \\ (0.000) \\ (0.028 \end{gathered}$	$\begin{gathered} 0.57 \cdots \cdots \\ (0.000) \end{gathered}$	$\begin{gathered} 0.521 \cdots \\ (0.001) \end{gathered}$	$\begin{gathered} 0.520 \cdots \\ (0.001) \end{gathered}$	$\begin{gathered} 0.520 \cdots \cdots \\ (.001) \end{gathered}$	$\begin{gathered} 0.476 \cdots \cdots \\ (0.001) \end{gathered}$	$\begin{gathered} 0.476 \cdots \\ (0.001) \end{gathered}$	$\begin{gathered} \begin{array}{c} 0.475 \cdots \\ (0.001) \end{array} \end{gathered}$	$\begin{gathered} 0.475 \cdots \cdots \\ \substack{0.001)} \end{gathered}$	$\begin{aligned} & 0.475 \cdots \\ & (0.001) \end{aligned}$	$\begin{gathered} 0.475 \cdots \\ (0.001) \\ (0.01) \end{gathered}$	$\underset{(0.583 \cdots}{0.583}\left(\begin{array}{c} 0.001) \end{array}\right.$	$\underset{\substack{0.583 \cdots \\(0.001)}}{ }$	$\substack{0.581 \cdots \\(0.001)}$	$\begin{gathered} 0.568 \cdots \\ (0.001) \end{gathered}$	$\begin{aligned} & 0.567 \ldots \\ & (0.001) \end{aligned}$	$\begin{gathered} 0.567 \cdots \\ (0.001) \end{gathered}$
Observations	1508504	1508504	1508504	1508504	1508504	1508504	779970	779970	779970	779970	779970	779970	728534	728534	728534	728534	728534	728534

Robust standard errors in parentheses. : *: $p<0.05,{ }^{* *}: p<0.01,{ }^{* * *}: p<0.001$. Top panel: Dependent variable: Patent lists a new combination of 3 -digit technology codes. Bottom panel: Dependent variable: Patent lists a new combination of 6 -digit technology codes.

Figure D1: Summary of regression analyses: Engineer effects (3-digit novelty). Omitted category is patents by solo inventors outside firms. Vertical spikes display 95% confidence intervals. Model A: baseline + year fixed effects (reported in main text). Model B: baseline + sector \times year fixed effects. Vertical spikes display 95% confidence intervals.

Figure D2: Summary of regression analyses: Engineer effects (6-digit novelty). Omitted category is patents by solo inventors outside firms. Model A: baseline + year fixed effects (reported in main text). Model B: baseline + sector \times year fixed effects. Vertical spikes display 95% confidence intervals.

Figure D3: Summary of regression analyses: Team effects (3-digit novelty). Omitted category is patents by solo inventors outside firms. Model A: baseline + year fixed effects (reported in main text). Model B: baseline + sector \times year fixed effects. Vertical spikes display 95% confidence intervals.

Figure D4: Summary of regression analyses: Team effects (6-digit novelty). Omitted category is patents by solo inventors outside firms. Model A: baseline + year fixed effects (reported in main text). Model B: baseline + sector \times year fixed effects. Vertical spikes display 95% confidence intervals.
information or research labs in this period, we limit the analysis to estimating effects of teams and firms. Furthermore, so far, we have grouped all assignees other than individuals into one category, which we labelled "firms". However, some of these assignees are actually better classified as other types of organizations, such as universities and government agencies. This is only an issue after 1945: before 1945, fewer than 1% of organizational patents are assigned to other organizations than firms. Therefore, when expanding the sample from 1856 to 2000, we test the robustness of our results, dropping all patents that were assigned to non-firm organizations and rerun our regression analyses. This yields the following specifications:
$\left(A^{*}\right)$ baseline model + year fixed effects (Table D3):

1. team: dummy for whether or not the patent lists a team of inventors;
2. firm: dummy for whether or not the patent was assigned to a firm;
3. team \times firm: interaction of 1 and 2 ;
$\left(\mathrm{B}^{*}\right)$ baseline model + year \times technological sector fixed effects (Table D4); ${ }^{35}$
$\left(\mathrm{C}^{*}\right)$ baseline model after dropping patents assigned to non-firm organizations (Table D5).

Tables D3-D5 describe the outcomes. We summarize the results in figures that show how the team effect changes between firm-based and standalone patents (Fig. D5-D6). These figures illustrate the robustness of the findings reported in Fig. 18 of the main text. Neither adding technology-year fixed effects, nor dropping patents assigned to non-firm organizations changes results by much.

[^23]Table D3: Novelty regression - Model A* (year fixed effects)

	1856-2000			1856-1919			1920-1945			1946-1968			1976-2000		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
team	$\begin{aligned} & 0.007 \cdots \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.007 \cdots \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.008 \cdots \\ & (0.001) \end{aligned}$	$\begin{gathered} 0.001 \\ (0.001) \end{gathered}$	$\begin{aligned} & 0.005 \cdots \\ & (0.001) \end{aligned}$	$\begin{gathered} 0.000 \\ (0.001) \end{gathered}$	$\begin{aligned} & 0.008 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.013 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.004 \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.016 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.021 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.020 \cdots \\ & (0.002) \end{aligned}$	$\begin{aligned} & 0.004 \cdots \\ & (0.000) \end{aligned}$	$\begin{gathered} -0.006 \cdots \\ (0.001) \end{gathered}$	$\begin{aligned} & 0.008 \cdots \\ & (0.001) \end{aligned}$
firm			$\begin{aligned} & 0.007 \cdots \\ & (0.000) \end{aligned}$			$\begin{aligned} & 0.005 \\ & (0.001) \end{aligned}$			$\begin{aligned} & 0.012 \cdots \\ & (0.001) \end{aligned}$			$\begin{aligned} & 0.021 \cdots \\ & (0.001) \end{aligned}$			$\begin{gathered} -0.008 \cdots \\ (0.001) \end{gathered}$
team \times firm			$\begin{aligned} & -0.004 \cdots \\ & (0.001) \end{aligned}$			$\begin{gathered} 0.003 \\ (0.002) \end{gathered}$			$\begin{gathered} 0.005 \\ (0.002) \end{gathered}$			$\begin{array}{r} -0.010^{\cdots} \\ (0.002) \end{array}$			$\begin{aligned} & -0.003 \\ & (0.001) \end{aligned}$
Constant	$\begin{aligned} & 0.063 \cdots \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.061 \cdots \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.060 \cdots \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.045 \cdots \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.044 \cdots \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.044 \cdots \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.064 \cdots \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.059 \cdots \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.058 \cdots \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.091 \cdots \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.080 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.078 \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.059 \cdots \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.066 \cdots \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.064 \cdots \\ & (0.001) \end{aligned}$
Observations	3398183	3398183	3398183	779970	779970	779970	728534	728534	728534	675001	675001	675001	1214678	1214678	1214678
	1856-2000			1856-1919			1920-1945			1946-1968			1976-2000		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
team	$\begin{aligned} & 0.025 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.044 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.019 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.006^{*} \\ & (0.002) \end{aligned}$	$\begin{aligned} & 0.018 \cdots \\ & (0.002) \end{aligned}$	$\begin{gathered} 0.003 \\ (0.002) \end{gathered}$	$\begin{aligned} & 0.031 \cdots \\ & (0.002) \end{aligned}$	$\begin{aligned} & 0.048 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.021 \cdots \\ & (0.003) \end{aligned}$	$\begin{aligned} & 0.040 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.078 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.037 \cdots \\ & (0.003) \end{aligned}$	$\begin{aligned} & 0.023 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.031 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.022 \cdots \\ & (0.002) \end{aligned}$
firm			$\begin{aligned} & 0.042 \cdots \\ & (0.001) \end{aligned}$			$\begin{aligned} & 0.016 \cdots \\ & (0.002) \end{aligned}$			$\begin{aligned} & 0.046 \\ & (0.001) \end{aligned}$			$\begin{aligned} & 0.076 \cdots \\ & (0.001) \end{aligned}$			$\begin{aligned} & 0.028 \\ & (0.001) \end{aligned}$
team \times firm			$\begin{aligned} & -0.002 \\ & (0.001) \end{aligned}$			$\begin{aligned} & 0.015 \\ & (0.005) \end{aligned}$			$\begin{gathered} 0.007 \\ (0.004) \end{gathered}$			$\begin{gathered} -0.014 \cdots \\ (0.003) \end{gathered}$			$\begin{gathered} -0.007 \cdots \\ (0.002) \end{gathered}$
Constant	$\begin{aligned} & 0.653 \cdots \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.635 \cdots \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.632 \cdots \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.476 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.473 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.473 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.582 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.563 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.561 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.727 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.686 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.681 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.768 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.755 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.750 \cdots \\ & (0.001) \end{aligned}$
Observations	3398183	3398183	3398183	779970	779970	779970	728534	728534	728534	675001	675001	675001	1214678	1214678	1214678

Table D4: Novelty regression - Model B* (year×technological sector fixed effects)

	1856-2000			1856-1919			1920-1945			1946-1968			1976-2000		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
team	$\begin{aligned} & -0.000 \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.007 \cdots \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.007 \cdots \\ & (0.001) \end{aligned}$	$\begin{gathered} 0.001 \\ (0.001) \end{gathered}$	$\begin{gathered} -0.001 \\ (0.001) \end{gathered}$	$\begin{gathered} 0.000 \\ (0.001) \end{gathered}$	$\begin{aligned} & 0.010 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.014 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.004 . \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.010 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.009 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.015 \cdots \\ & (0.002) \end{aligned}$	$\begin{aligned} & -0.001^{\prime \prime} \\ & (0.000) \end{aligned}$	$\begin{gathered} -0.010 \cdots \\ (0.001) \end{gathered}$	$\begin{aligned} & 0.005 \cdots \\ & (0.001) \end{aligned}$
firm			$\begin{aligned} & 0.010 \cdots \\ & (0.000) \end{aligned}$			$\begin{aligned} & -0.002 \\ & (0.001) \end{aligned}$			$\begin{aligned} & 0.013 \\ & (0.001) \end{aligned}$			$\begin{aligned} & 0.010^{\ldots} \\ & (0.001) \end{aligned}$			$\begin{gathered} -0.009 \cdots \\ (0.001) \end{gathered}$
team \times firm			$\begin{gathered} -0.013 \\ (0.001) \end{gathered}$			$\begin{gathered} 0.003 \\ (0.002) \end{gathered}$			$\begin{aligned} & 0.006 \\ & (0.002) \end{aligned}$			$\begin{gathered} -0.009 \\ (0.002) \end{gathered}$			$\begin{array}{r} -0.005 \cdots \\ (0.001) \end{array}$
Constant	$\begin{aligned} & 0.065 \cdots \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.061 \cdots \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.060 \cdots \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.045 \cdots \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.045 \cdots \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.045 \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.064 \cdots \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.058 \cdots \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.058 \cdots \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.092 \cdots \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.088 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.086 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.061 \cdots \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.068 \cdots \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.067 \cdots \\ & (0.001) \end{aligned}$
Observations	3398183	3398183	3398183	779970	779970	779970	728534	728534	728534	675001	675001	675001	1214678	1214678	1214678
	1856-2000			1856-1919			1920-1945			1946-1968			1976-2000		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
team	$\begin{aligned} & 0.082 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.114 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.048 \cdots \\ & (0.001) \end{aligned}$	$\begin{gathered} 0.003 \\ (0.002) \end{gathered}$	$\begin{aligned} & 0.008 \cdots \\ & (0.002) \end{aligned}$	$\begin{gathered} 0.000 \\ (0.002) \end{gathered}$	$\begin{aligned} & 0.033 \cdots \\ & (0.002) \end{aligned}$	$\begin{aligned} & 0.053 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.022 \cdots \\ & (0.003) \end{aligned}$	$\begin{aligned} & 0.029 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.054 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.028 \cdots \\ & (0.003) \end{aligned}$	$\begin{aligned} & 0.017 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.020 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.019 \cdots \\ & (0.002) \end{aligned}$
firm			$\begin{aligned} & 0.101 \cdots \\ & (0.001) \end{aligned}$			$\begin{aligned} & 0.007 \\ & (0.002) \end{aligned}$			$\begin{aligned} & 0.051 \cdots \\ & (0.001) \end{aligned}$			$\begin{aligned} & 0.053 \cdots \\ & (0.001) \end{aligned}$			$\begin{aligned} & 0.018 \cdots \\ & (0.001) \end{aligned}$
team \times firm			$\begin{aligned} & 0.009 \cdots \\ & (0.001) \end{aligned}$			$\begin{aligned} & 0.016 \\ & (0.005) \end{aligned}$			$\begin{gathered} 0.009 \\ (0.004) \end{gathered}$			$\begin{aligned} & -0.010^{*} \\ & (0.003) \end{aligned}$			$\begin{gathered} -0.007 \cdots \\ (0.002) \end{gathered}$
Constant	$\begin{aligned} & 0.638 \cdots \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.597 \cdots \\ & (0.000) \end{aligned}$	$\begin{aligned} & (0.591 \cdots \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.476 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.475 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.475 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.581 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.560 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.558 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.730 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.701 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.697 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.770 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.763 \cdots \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.759 \cdots \\ & (0.001) \end{aligned}$
Observations	3398183	3398183	3398183	779970	779970	779970	728534	728534	728534	675001	675001	675001	1214678	1214678	1214678

Table D5: Model C* (year fixed effects, dropping non-firm organizations)

Figure D5: Team effects 1856-2000 (3-digit novelty). Omitted category is patents by solo inventors outside firms. Model A*: year fixed effects (reported in the main text); Model B^{*} : sector \times year fixed effects. Model C*: year fixed effects, patents assigned to non-firm organization dropped. Vertical spikes display 95% confidence intervals.

Figure D6: Team effects 1856-2000 (6-digit novelty). Omitted category is patents by solo inventors outside firms. Model A*: year fixed effects (reported in the main text); Model B*: sector \times year fixed effects. Model C*: year fixed effects, patents assigned to non-firm organization dropped. Vertical spikes display 95% confidence intervals.

D. 3 Gender

Finally, we use the regression model of eq. (3) to analyze the likelihood, not that a patent lists a new combination of technologies, but that the patent lists an inventor that we identify as female based in their first name. Table D6 shows the results. Given that the three-way interactions are significant in these models, the results we refer to in footnote 24 in the main text refer to model (5) for the period 1856-1945.
Table D6: Gender regression (Model A, year fixed effects)

	56-1945						56-191						120					
	(1)	(2)	(3)	(4)	(5)	${ }^{(6)}$	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
enginoers	$\stackrel{-0.014 \cdots}{-0.0}$	$\left.\begin{array}{c} 0.013 \cdots \\ (0.000) \end{array}\right)$					$\underset{(0.01)^{-0.014 \cdots}}{(0.001)}$	$\begin{gathered} 0.010 .0 . \\ (0.001) \\ (0.01) \end{gathered}$				${ }^{-0.006}$	$\begin{gathered} -0.013^{* * *} \\ (0.000) \end{gathered}$	$\begin{gathered} 0.015 \cdots \cdots \\ (0.001) \\ (0.01) \end{gathered}$				$\begin{gathered} -0.024 \cdots \\ 0.02011 \\ 0.00231 \\ 0.0 .0011 \\ 0.001) \end{gathered}$
team																		
${ }_{\text {eng } \times \text { team }}$																		
firm												${ }_{\substack{0 \\ 0.0 .010 \\(0.00}}^{\text {a }}$					-	-
												(0.001)					(0.001)	(0.001).
${ }_{\text {eng }}^{\text {enteam } \times \text { firm }}$												${ }^{(0.001)}$						
RnDlab												-0.00					${ }_{\substack{(0.004) \\-0.000}}^{(0.00}$	
eng \times RnDlab																	(e.ane	
team \times RnDlab												${ }_{\substack{0.009 \\(0.006)}}^{(0.092}$					$\underset{\substack{-0.003 \\(0.001)}}{(0.002}$	$\underset{\substack{-0.003 \\(0.001)}}{(0.003}$
eng \times team \times RnDlab																		
Constant		$\xrightarrow{\substack{0.015 \cdots . \\(0.000)}}$	$\underset{\substack{0.015 \cdots \\(0.000)}}{\substack{\text { a }}}$	$\underset{\substack{0.021 \cdots \\(0.000)}}{\substack{\text { a }}}$		$\underset{\substack{0.002 \cdots \\(0.000)}}{\substack{\text { a }}}$	${ }_{\substack{0.016 . \cdots \\(0.000)}}$	$\underbrace{\substack{\text { a }}}_{\substack{0.014 \ldots \\(0.000}}$	$\underset{\substack{0.015 \cdots \\(0.000)}}{\substack{\text { a }}}$	$\underset{\substack{0.017 \cdots \cdots \\(0.000)}}{\substack{\text { a }}}$		$\underset{\substack{0.017 \cdots \cdots \\(0.000)}}{(0.0}$	$\underset{\substack{0.018 . \cdots \\(0.000}}{\substack{\text { a }}}$	$\underset{\substack{0.015 .0 . \\(0.000)}}{\substack{\text { a }}}$	$\underset{\substack{0.016 \cdots \\(0.000}}{\substack{\text { a }}}$	$\underset{\substack{0.025 \cdots \\(0.000}}{\substack{\text { a }}}$	$\underset{\substack{0.025 \% \\(0.000)}}{\substack{0.0}}$	$\underset{\substack{0 \\ 0.025 \cdots \\(0.000}}{(0.0}$
Observations	1423314	1423314	1423314	1423314	1423314	1423314	735254	${ }^{735254}$	735254	${ }_{735254}$	735254	${ }_{735254}$	688060	688060	688060	${ }_{688060}$	688080	688060

Robust standard errors in parentheses. ${ }^{*}: p<0.05,{ }^{* *}: p<0.01,{ }^{* * *}: p<0.001$. Top panel: Dependent variable: Dummy for at least one female inventor among the patent's inventors.

[^0]: ${ }^{1}$ A sample page of these yearbooks is provided in Fig. A1A.
 ${ }^{2}$ Classes tend to distinguish among technologies, whereas subclasses "delineate processes, structural features, and functional features of the subject matter encompassed within the scope of a class." https: //www.uspto.gov/sites/default/files/patents/resources/classification/overview.pdf, p I.1.

[^1]: ${ }^{3}$ These categories are: Mechanical; Chemical; Electrical \& Electronic; Computers \& Communication; Drugs \mathcal{E}^{3} Medical; and Other technologies. The primary class on which they are based "[...] is indicative of the invention as a whole or the main inventive concept using the claims as a guide." See https: //www.uspto.gov/sites/default/files/patents/resources/classification/overview.pdf, p I.5.

[^2]: ${ }^{4}$ That is, we estimate how often two inventors would share the same last name, had they been allocated to patents at random. To do so, we shuffle inventors' last names within a year and within groups of inventors whose last names have the same geographic origin. This ensures that each patent retains the same number of inventors, while allowing for higher copatenting rates among members of the same ethnic community (Almeida et al., 2015). This procedure is described in detail in Appendix B.2.
 ${ }^{5}$ The share of spurious family ties becomes significant only in the second half of the 20 th century, with the rise of, for instance, Indian and East-Asian surnames in the patent records (see Appendix B.2).
 ${ }^{6}$ Relying instead on family relations derived from the census is problematic in its own right. Census records only list family relations within a household. Therefore, identifying the full set of family relations not only requires matching multiple inventors on a patent to census records, but also matching different census waves to each other. Incomplete matches in either step reduce the number of identifiable family relations drastically and in possibly biased ways.

[^3]: ${ }^{7}$ Note that of the 7,990 research labs, we are able to match 2,504 to the assignees in the patent records.
 ${ }^{8}$ Note that we establish how common a last name is using census, not patent records. To do so, we pool census records across all available waves.

[^4]: ${ }^{9}$ We consider a combination as new, even if it had already been used as a subset of technology classes on earlier patents. For instance, if patent B is the first to list codes 142 ("Wood turning") and 173 ("Tool driving or impacting"), we regard this as a new combination of codes, even if an earlier patent A already listed the codes 142 and 173, while also listing 147 ("Coopering").

[^5]: ${ }^{10}$ Note that Jones studies an inventor's age at the time of their first patent. In contrast, our data refer to the average age of inventors on any patent. We therefore use data collected by Kaltenberg et al. (2021) to calculate the equivalent number for the period 1975-2018. In this period, average inventor age also rises, from about 40 to 50 . Interestingly, however, the average age of inventors in 1975 of about 40 is well below the age we record for the pre-WWII period. Inventor age must therefore have fallen some time after WWII. Jung and Ejermo (2014) document a similar fall in inventor age in the late 1990s and early 2000s for Sweden, attributing this to a change in technological paradigm.

[^6]: ${ }^{11}$ Note that, because we do not disambiguate inventors, our learning curves are defined at the level of cohorts, not individuals.
 ${ }^{12}$ These statements should be taken relative to other contemporaneous cohorts. Overall, vintage and

[^7]: number of technologies increase steadily over time, regardless of the cohort. However, by adding year fixed effects, we strip away such secular trends and instead compare individuals across cohorts in the same year.
 ${ }^{13}$ Because census occupations are self-reported, the observed rise of engineers may to some extent be artificial, merely reflecting a change in nomenclature or occupational identity, not a change in the actual occupational backgrounds of inventors. We explore this possibility in Appendix B.1, where we use census data to find potential precursors to engineering occupations. To do so, we look at how individuals change occupations across census waves. This yields a "skill-relatedness" network (Neffke and Henning, 2013; Neffke et al., 2017) that connects occupations between which exceptionally many individuals transition compared to a random benchmark. Including occupations that are closely related to engineering occupations does not change the pattern observed in Fig. 5a (see Fig. B1).

[^8]: ${ }^{14}$ This analysis is restricted to inventor dyads where we can match both inventors with high confidence to a census record.
 ${ }^{15}$ The share of team patents filed by two inventors drops from 94% in the 19 th century to 90% in the 1940s.
 ${ }^{16}$ We exclude same-occupation pairs, as well as occupation pairs that involve farmers and managers, because such pairs are less informative about the expertise that is combined in teams: farmers represent a very large share of 19th century employment and management occupations tell us little about the technical skills of team members.

[^9]: ${ }^{17}$ Note that this is likely an undercount, given that we will not have been able to identify all firms with research labs in our dataset.

[^10]: ${ }^{18}$ Note that this means that the engineering effects and the firm and lab effects are not additive. In fact, the interaction effect of firm and engineering dummies is negative and its size exactly offsets the engineering effect. As a consequence, in firms, engineers do not generate more novelty than their other colleagues. For labs, the engineering and lab effects are less than additive, but don't fully cancel out. Engineers in labs do therefore patent slightly more novel inventions than other types of inventors.

[^11]: ${ }^{19}$ Team effects are reduced by about one third when we add year-technology fixed effects, suggesting that firm and lab-based teams are more common in technological areas that witness more novel technological combinations.
 ${ }^{20}$ That is, to belong to system 1, a patent needs to fulfill all of the following three criteria: (1) list only one inventor, who (2) has no engineering occupation and (3) no organizational assignee. Instead, system 2 patents fulfill at least one of three criteria: the patent (1) lists an engineer among its inventors, or (2) is filed by a team and assigned to a firm, or (3) is assigned to a firm with a research lab.

[^12]: ${ }^{21}$ The "effective number of cities", H_{t}^{p}, quantifies the number of cities that would yield the same observed entropy, had patenting been distributed equally across them (Jost, 2006).
 ${ }^{22}$ Fig. C1 of Appendix C shows that focusing on the largest 10 or 50 US cities yields similar results.

[^13]: ${ }^{23}$ We restrict the sample here to inventors whose first name can be linked to a specific gender with high confidence, using census information. For details on this procedure, see Appendix B.4. When we repeat the analysis for inventors whose first names yield more ambiguous information on gender, female participation rates shift upward, probably reflecting a greater miss-classification rate. However, temporal patterns remain unchanged (see Fig. B3a).
 ${ }^{24}$ In Appendix D, Table D6, we study female participation rates using the regression model of eq. (3)

[^14]: ${ }^{25}$ A closer look at the regression tables in Appendix D shows that this is due to the interaction effect between the firm and team dummy turning negative. This happens already in the 1946-1968 period and it does so for novelty at the 3 -digit and 6 -digit level. However, the firm dummy's coefficient itself remains positive, except for radical novelty in the period 1976-2000. That is, whereas firm-based teamwork after WWII is less likely to result in new technological combinations, this holds for firm-based patents only in the last period and then only for radical, not incremental novelty. These findings remain unchanged when we drop patents assigned to organizations other than firms.

[^15]: ${ }^{26}$ In fact, seven of the ten universities listed in Table 4 are land-grant colleges.

[^16]: ${ }^{27}$ These are the following universities: Harvard University, Princeton University, University of California, University of Chicago, University of Illinois at Urbana-Champaign, University of Michigan and University of Wisconsin.

[^17]: ${ }^{28}$ Similar procedures using other similarity measures, e.g. using the Levenshtein distance, with different thresholds, yield similar results.

[^18]: ${ }^{29}$ Note that we retain the direction of the flows and do not symmetrize this relatedness matrix. Moreover, diagonal elements are treated the same as any other element.

[^19]: ${ }^{30}$ The missing category consists of the following occupation codes: Members of the armed services; Not yet classified; Keeps house/housekeeping at home/housewife; Imputed keeping house (1856-1900); Helping at home/helps parents/housework; At school/student; Retired; Unemployed/without occupation; Invalid/disabled w/ no occupation reported; Inmate; New Worker; Gentleman/lady/at leisure; Other non-occupational response; Occupation missing/unknown; and N / A (blank).

[^20]: ${ }^{31}$ This procedure leads to some problems for Indian surnames, which are also very common in the UK. For these names, we make a number of manual adjustments that can be found in the code in the accompanying Supporting Material.

[^21]: ${ }^{32}$ Obtained using the ethnicolr Python package by Sood and Laohaprapanon (2018).

[^22]: ${ }^{33}$ Technological sector refers to the 6 high-level groupings in Hall et al. (2001).
 ${ }^{34}$ For instance, to calculate the novelty effect of a lab-based team of non-engineers in model 6 of Table D1, we would need to add up the 2 nd, 4 th, 6 th, 8 th and 10 th coefficients and calculate the standard error of this sum.

[^23]: ${ }^{35}$ Technological sector refers to the 6 high-level groupings in Hall et al. (2001).

