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THE COMPLEXITY OF EXCHANGE*

Robert Axtell

The computational complexity of two classes of market mechanisms is compared. First the
Walrasian interpretation in which prices are centrally computed by an auctioneer. Recent
results on the computational complexity are reviewed. The non-polynomial complexity of these
algorithms makes Walrasian general equilibrium an implausible conception. Second, a decen-
tralised picture of market processes is described, involving concurrent exchange within tran-
sient coalitions of agents. These processes feature price dispersion, yield allocations that are not in
the core, modify the distribution of wealth, are always stable, but path-dependent. Replacing the
Walrasian framing of markets requires substantial revision of conventional wisdom concerning
markets.

1. Markets and the Emergence of Prices

Consider the following strategic environment. There is a heterogeneous popula-
tion of autonomous entities, each of whom has internal states that describe its self-
interest as well as certain external states. Each entity is engaged in purposive
activity to further its interests, including altering its external state in exchange for
alterations in the external states of other agents. Each individual receives infor-
mation from other individuals directly, and has access to some global state infor-
mation as well, although no agent has complete information on the global state.
Calling these entities agents, we imagine that each one engages in more or less
strategic behaviour. That is, each agent has some internal model for how the indi-
viduals in the population will behave and uses this model in order to decide how
best to act subsequently. Finally, there exist performance measures, both subjective
and objective, for the individuals as well as for the overall system of agents.

At a very high level of abstraction, this picture of interacting agents can describe
a great variety of human activity, economic activity in particular. It might be a story
about consumption behaviour insofar as the agents are humans who exchange
money for goods, making decisions at least partly on the basis of information — on
product quality, say — received from others. It could also be a framework for
studying the operation of firms, in which individual actions are sufficiently
coordinated that economic goods result from the interactions. Here, agents must
communicate the nature of their productive actions to their peers and adapt their
behaviour as external data arrives and their internal models are updated. This
abstract depiction of interacting agents can also be a model of markets, in which
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the agents exchange items of value about which each individual has its own, typ-
ically private, assessments. Such private valuations may not depend significantly on
how other agents value the good, as when the item provides a service from which
the agent benefits, e.g., the transportation service a car provides. Alternatively, the
items being traded may have value to a particular agent that depends in an
essential way on how other agents value it, e.g., the resale value of a car. This is the
case of financial markets, in which the items being exchanged provide little utility
intrinsically but rather have value insofar as they can be exchanged for con-
sumption goods at later times.

Beyond purely economic activity, this abstract conception of interacting, self-
interested entities is also a credible portrait of other complex adaptive systems,
both natural and artificial. In an ant colony each individual ant performs a func-
tion, using local, socially-transmitted information in order to do its task. In the
human immune system heterogeneous cell types interact to synthesise antibodies
in order to neutralise invaders. In engineered systems, like computer networks, it is
increasingly common for individual nodes to have well-defined objective functions
(e.g., keep busy) and a behavioural repertoire that attempts to further that
objective. Indeed, consider the general problem of distributed computing in
which a single task is divided into pieces so that it can be worked on by several
computers at once. Each individual computer in the network works on its piece of
the larger task while communicating intermediate results to other computers. In
such circumstances each node may locally adapt its behaviour as its instantaneous
duties change, attempting to achieve a balanced load across the population of
processors for instance (Bertsekas and Tsitsiklis, 1989). Alternatively, the load
might be balanced from the top down, perhaps by a dedicated processor that is
otherwise off-line, not part of the main distributed computation. Performance
measures for such systems increase in the speed of obtaining a solution to the
problem, a metric that is typically an increasing function of the quality of load
balancing achieved.

This paper is primarily concerned with drawing out the connections between
economic exchange, on the one hand, and distributed computation on the other,
linked through this abstract picture of interacting, purposive agents. We shall
argue that actions by self-interested agents in economic markets have much in
common with the decentralised interactions of processors in distributed compu-
tation environments (Brewer, 1999; Cheng and Wellman, 1998). Using the asyn-
chronous model of distributed computing, we shall study the performance of
market systems as a function of their scale, i.e., the number of agents in the
marketplace and the number of commodities being traded. The computational
complexity of such systems is analysed and compared to that of conventional
market models having centralised price determination, i.e., the Walras-Arrow-
Debreu model.

A more practical motivation of this paper arises from a class of market models
known as ‘agent-based artificial markets’. In agent-based computational models a
population of software objects is instantiated and each agent is given certain
internal states (e.g., preferences, endowments) and rules of behaviour (e.g., seek
utility improvements) (Epstein and Axtell, 1996; Delli Gatti et al., 2000). The agents
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are then permitted to interact directly with one another and a macrostructure
emerges from these interactions. Patterns in this macrostructure may then be
compared with empirical data, agent internal states and rules revised, and the
process repeated until an empirically plausible model obtains. Models of this type
are capable of reproducing both stylised features of financial markets (Arthur et al.
(1997), Chen and Yeh (1997) and LeBaron (2001a—c), as well as many quantitative
facts (Lux 1998; Levy et al.,, 2000; Darley et al., 2001; Zawadowski et al., 2002).

An important aspect of these agent market models is the price formation pro-
cess.! Through the interactions of the agents prices emerge in such models, either
mediated by middlemen or market makers or not. In financial market models,
agents use past prices to form idiosyncratic forecasts of future prices, and trade
accordingly. New prices are created. Over time forecasting rules evolve, unprofit-
able ones are replaced by speculative ones, and the population of agents co-evolves
to one another. In more traditional, non-financial market models prices are
similarly emergent from the local interactions of self-interested agent. Interesting
dynamics can result from the evolution of preferences, or shocks to supply chains,
inventories, or technology, to name but a few possibilities. This distributed price
formation process seems much closer to what happens in real world markets than
the metaphor of the Walrasian auctioneer.

There is another notion of complexity at work here, one more in the spirit of the
other papers in this Feature. Agent computing lies at the heart of the complex
adaptive systems approach to complexity in economics. For such agent models are
capable of producing perpetual dynamics at the agent level that yield coherent
macrostructure that is at least very difficult to analyse analytically. From the per-
spective of agent modelling, the focus of analytical models on fixed points is mere
mathematical expediency. For when one places purposive agents in economic
environments of significant complexity, rarely do they stumble into any kind of
equilibrium configuration. Rather, they engage in a kind of perpetual co-evolution
to one another’s strategies and there emerges more or less stable ‘ecologies’ of
strategies. These ecologies may display quasi-stationary states but eventually such
configurations are ‘tipped’ into other arrangements, i.e., the macro-equilibria are
punctuated by periods of rapid transition.

In what follows we compare the computational complexity of the Walrasian
model of exchange with a radically more decentralised one. In particular, Section
2 recapitulates recent results on the computational complexity of algorithms for
computing Brouwer and Kakutani fixed points. It turns out that these algorithms
fall into a complexity class that makes them among the hardest problems in all of
computer science. Section 3 first describes the analytical structure of a general
model of local exchange between agents, demonstrates that it can produce equi-
librium allocations that are Pareto optimal, although not in the core and path
dependent, and that the rate of convergence is geometric. Then, in Section 4 the
complexity of this exchange process is investigated both analytically and compu-

! A more conventional title for this paper would have been ‘Markets and Price Formation” but I feel
there is a subtle bias in this terminology. For ‘price formation’ seems to presuppose that a single price
characterises most exchange activity, and this is precisely what I wish to deny in the distributed,
decentralised view of markets presented here.
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tationally. It is demonstrated that the number of interactions required to produce
an epsilon approximation of general equilibrium is polynomial in the number of
agents and commodities. Section 5 summarises these results.

2. The Complexity of Walrasian Exchange

Fixed-point theorems were ostensibly introduced into economic theory by von
Neuman (1945-6) in his work on the input-output model that bears his name.
Since then, many domains of economic theory have come to depend on fixed
point theorems to prove the existence of equilibria, notably general equilibrium
theory but also Nash equilibria in game theory. For a recent perspective on this,
see Geanakopolos (2003).

Now, the existence of an equilibrium is not the same as its achievement. That is,
the achieving equilibrium requires a mechanism for converging to (an epsilon
approximation of) a fixed point in a finite length of time, using a bounded
(presumably small) amount of resources. Without such a mechanism there is little
reason to believe that a fixed point would ever be observed.

The ‘tatonnment’ process of price adjustment is a mechanism for producing
Walrasian general equilibrium. However, it is not a particularly realistic mechan-
ism — among its several unreasonable requirements are that (1) agents truthfully
reveal their preferences, (2) no trading takes place before the market-clearing
price vector is announced, and (3) all agents trade at exactly the same prices. But
the Walrasian mechanism has many nice properties: (1) it is determinate in the
sense that the final prices and allocations are completely determined from agent
preferences and endowments, and (2) the agent behaviour it requires is very
simple, involving nothing more than truthful reporting of demands at announced
prices.

Unfortunately, the job of the Walrasian ‘auctioneer’, who must compute prices,
is extremely hard. The lower bound for worst-case computation of Brouwer fixed
points is exponential in the dimension of the problem (Hirsch et al., 1989) — the
dimension being the size of the commodity space in the Arrow-Debreu version of
general economic equilibrium. Furthermore, it has recently been shown that the
computational complexity of Brouwer and Kakutani fixed points are closely related
to the complexity of the parity argument the connection between the two being
Sperner’s lemma (Papadimitriou, 1994).> The constructive problem arising from
the application of Sperner’s Lemma to the Brouwer and Kakutani fixed points of
the Walrasian equilibrium model is that there are no polynomial time algorithms
for the general case with nonlinear utility functions.” Polynomial time algorithms

? The Brouwer fixed point f(x*) = x* can be shown to involve the generalisation of Sperner’s Lemma
for the Mdimensional simplex which guarantees the existence of x* at the limit of the centre of the
panchromatic simplices obtained by finer and finer triangulations, Papadimitriou (1994). See, Markose
in thls Feature, for further discussion on this and polynomial time or class-P algorithms.

> More recent work of Papadimitriou and co-workers (Devanur et al., 2002 and Deng et al., 2002)
pertain to linear utilities and demonstrate that polynomial algorithms exist for this restricted class of
economies.
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referred to as class-P problems are those that can be realistically solved by com-
puters. These results can be summarised as

ProPOSITION 1: Arrow-Debrew equilibria are sufficiently difficult to compute that the
Walrasian picture of market behaviour is simply not plausible.

There are at least two possible responses to this state of affairs. One is to simply
dismiss theoretical complexity results, in the same way that exponential worst case
complexity for linear programming does not vitiate use of the simplex algorithm
for practical problems. Typical running times for particular general equilibrium
codes have been estimated. Scarf (1973), for example, reports that the number of
function evaluations required to equilibrate a computable general equilibrium
(CGE) model via his algorithm scales like the size of the commodity space to the
fourth power.* While not as bad as exponential dependence, this result means that
an economy with 1,000 commodities requires 10,000 times as many computations
to equilibrate as compared with one with but 100 commodities. Such results seem
unrealistic as a description of actual market behaviour.

A very different response is to argue that the Walrasian model, which has no
empirical underpinnings (Hausman, 1992, p. 55), is not a reasonable picture of
how an exchange economy works. For indeed, there are a variety of non-Walrasian
exchange mechanisms that yield equilibrium allocations that are Pareto optimal.
In particular, mechanisms that are radically more decentralised® than the Walra-
sian one, with its single, uniform price vector, display greater fidelity to real eco-
nomic processes. As Rust (1998) has written:

The reason why large scale computable general equilibrium problems are
difficult for economists to solve is that they are using the wrong hardware
and software. Economists should design their computations to mimic the
real economy, using massively parallel computers and decentralised
algorithms that allow competitive equilibria to arise as ‘emergent com-
putations’...[T]he most promising way for economists to avoid the com-
putational burdens associated with solving realistic large scale general
equilibrium models is to adopt an ‘agent-based’ modelling strategy where
equilibrium prices and quantities emerge endogenously from the decen-
tralised interactions of agents.

We will show that such decentralised exchange processes can have complexity
properties that are better (less complexity) than the Walrasian process. If so, a
further argument against Walras is a simple evolutionary one: if computation is
costly then when two equally efficient (i.e., Pareto optimal) market mechanisms
having significantly different computational complexity are competing, the one

* The number of function evaluations does not depend on the number of agents, since the auc-
tioneer uses only aggregate demand functions. However, this does not mean that the complexity of
Walrasian equilibrium is independent of the number of agents. Rather, if one also accounts for how
these demand functions are built up from the demands of individual agents then one gets that Walr-
asian equilibrium has complexity that is linear in the size of the population.

5 There is a long tradition here following the classic papers of Feldman (1973), Fisher (1972, 1989),
Goldman and Starr (1982).
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ultimately selected will be the least costly one, i.e., the one requiring the least
number of computations — the market institution having the lower Complexity.b

3. Decentralised Exchange Processes

This Section shows that a particular process of decentralised exchange in a pop-
ulation of agents having continuous, strictly convex preferences converges to an
equilibrium. The bilateral exchange process is stable in the sense that starting
from any initial conditions it always converges. Furthermore, convergence occurs
at a geometric rate. Conditions under which such equilibria are Pareto optimal are
given. In formulating these results a variety of previous work is synthesised.

Note the set of agents by A = {1,..., A} and the set of commodities by N' = {1,...,
N}. Exchange occurs at a set of times 7= {1, 2 ,..., t}; elements of 7 represent the
indices of the sequence of physical times at which trade takes place. Each agent
possesses an allocation x'(t) € Rf at each time ¢ € 7; x'(0) is agent ¢s endowment.
Each agent has continuous, strictly convex preferences, represented for agent i by
utility function U" Rf — R. Some number of agents, k, group to trade some
number of goods at each period ¢ € 7. In general, multiple groups of agents can
trade multiple goods at a particular time, but no agent can be a member of more
than one trade group at a particular time. Call 7’ the set of all agent groups that
engage in trade at time ¢ € 7. A trade history, I1 = {rn',n%,..., 1"}, gives the agent
groups that trade particular goods at particular times; IT may be either exogenous
or endogenous to the exchange process. Overall, the exchange process is given by
the history-parameterised mapping 7p: RﬂN — RﬁN, that is

x(t+1) = Ta[x(1)). (1)

Exchange between agents is required to be individually rational, that is, for each
agent group, ) € ', Uk[xk(t + 1] > Uk[xk(t)] for all ke€y, and or
UMkt + 1)1 > U'*(t)] for some ke y. Exchange does not alter the total
quantity of commodities. Define exchange to be feasible in a population of agents if
there exists an agent group such that an individually rational exchange between
the agents is possible. The agent population is in economic equilibrium when
exchange is not feasible.

3.1. Existence of k-lateral Exchange Equilibria

Existence of klateral exchange equilibrium is easily demonstrated through con-
struction of a Lyapunov function V: R?Y — R for the exchange process (Uzawa,
1962):

VIx(0] =Y U ().

i€

5 It is worth pointing out that Walras’ notion of ‘groping’ for market-clearing prices more closely
resembles the kind of decentralised exchange processes described below, so it is the Arrow-Debreu
formalism that is being argued against here.
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PROPOSITION 2: k-lateral exchange equilibria exist since

(¢) VIx(t)] increases monotonically as long as trade takes place;
(22) the allocation path, x[t, x(0)]1, is bounded, thus V{x(t)] is bounded above,
(@i2) therefore

flg& V{x[t, x(0)]} = V*,

and x[t, x(0)] has a subsequence converging on x* such that V(x*) = V¥*.

Note that this result does not depend on any particular bargaining algorithm
studied in for example Lengwiler (1994). As long as each trade is individually-
rational then V(¢) is an increasing function.

3.2. Rate of Convergence of k-lateral Exchange Processes

The existence of equilibria is of little practical value if such equilibria are difficult
to achieve, such as when prices cycle in the Walrasian adjustment process as first
described by Scarf (1960). In the case of klateral exchange no such difficulties are
encountered. Since each exchange makes at least one agent strictly better off, i.e.,
U[xi(t +1)] > U[xi(t)] for some ¢ and each ¢ it is also true that
VIx(¢t + 1)] > V[x(¢)] for all &. Define a convergence parameter, f§, as

lim su V- Vidt+ 1)) — Vix(e+ 1)

e T I

As tincreases, the above yields a non-increasing sequence of quotients, each less
than one, implying that f < 1. Therefore,

VE=Vix(e+ D] < BV = Vix(0)]}

ARy (2)
< BTV = VIx(0)]}-

We have demonstrated:

PrROPOSITION 3: The rate of convergence of k-lateral exchange processes is geometric.

This result will serve as the basis for the results on the computational complexity of
decentralised in Section 4 below.

3.3. Stability of k-lateral Exchange Processes

It is usual in economic theory to talk about the stability of an exchange process,
not of the allocations resulting from such a process. For example, in the context of
the Walrasian model an auctioneer’s rule is called globally stable if a price path
approaches an equilibrium for all initial price vectors (Arrow and Hahn, 1971,
p- 271). In the case of klateral exchange the existence of a Lyapunov function for
the dynamics guarantees that every initial allocation will result in an equilibrium
allocation.
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PROPOSITION 4: The k-lateral exchange process is globally stable.

The more usual notion of stability — that of a perturbed dynamic system
returning to equilibrium — never obtains for economic equilibria, since displace-
ments in allocations that yield utility increases for some at the expense of others do
not have individually rational paths back to the original equilibrium.

3.4. Optimality of k-lateral Exchange Equilibria

After two agents engage in welfare-improving trade their marginal rates of sub-
stitution (MRSs) in the exchanged commodities will be closer together than before
trade. When the agents trade all the way to the contract curve their post-exchange
MRSs will be identical and the allocations are optimal. What are sufficient condi-
tions such that klateral optimal allocations throughout a population are equival-
ent to Pareto optimal allocations?

There are a variety answers to this question in the literature. The first was
given by Rader (1968) and amounts simply to the requirement that one agent
must have positive quantities of all commodities. This result is usually interpreted
as the importance of having middlemen, market makers, and other types of
agents who facilitate trade. The second answer was given by Feldman (1973). He
showed that as long as all agents possessed some non-zero amount of a particular
commodity then pairwise optimality implied Pareto optimality. Such a com-
modity is commonly interpreted as money. These results can be summarised in
the following proposition, which is a kind of welfare theorem of decentralised
exchange:

PROPOSITION b (First welfare theorem for decentralised exchange): k-lateral exchange

equilibria are Pareto optimal if either

(7)) A is.t x]l >0

(i) I js.t. x>0
The first condition may be interpreted as the existence of a middleman who holds
all goods, while the second is the existence of money. These older results apply
primarily to a population in which all agents can interact with one another, i.e., a
perfectly mixed population. More recently, Bell (1997) gives analogous results for
agents who interact over fixed networks.

This result is directly analogous to the first welfare theorem of neoclassical
economics. But note that the distributed, decentralised character of the ‘invisible
hand’ is manifest here. Indeed, the fact that the Smithian ‘hand’ is ‘invisible’ means
that this version of it is much more in keeping with its intuitive meaning (Nozick,
1994; Rothschild, 1994).

The second welfare theorem states that any Pareto optimal allocation is a
Walrasian equilibrium from some endowments, and is usually taken to mean that a
social planner/society can select the allocation it wishes to achieve and then use
tax and related regulatory policy to alter endowments such that subsequent market
processes achieve the allocation in question. We have demonstrated above that the
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job of such a social planner would be very hard indeed, and here we ask whether
there might exist a computationally more credible version of the second welfare
theorem.

First, note that the second welfare theorem invites the interpretation that
endowments can be modified. In addition to preferences and endowments, in
decentralised trade models the history of interaction determines final prices and
allocations. Therefore, if we could somehow specify or alter the trade history the
equilibrium outcome could be modified.

PROPOSITION 6: (Second welfare theorem for decentralised exchange) : Any Pareto optimal
and individually rational allocation can be achieved via some decentralised exchange process.

Results of this type are often found under the title of ‘accessibility of Pareto
optima’ and are an active topic of research, see Bottazzi (1994). Note that Propo-
sition 6 is more like a true converse of Proposition 5 than in the Walrasian model.

3.5. Non-core Character of k-lateral Exchange Processes

Although Klateral exchange allocations are Pareto optimal, it is easy to see that
they are not in the core (from initial endowments). Start two agents out with
identical preferences and endowments and let them trade to equilibrium but
with distinct interaction sequences. It would be mere coincidence if they ended up
with identical allocations and thus a non-core allocation has been generated.7
Feldman (1973) first pointed this out for the bilateral exchange case.

ProPpoOSITION 7: Allocations resulting from k-lateral exchange processes are not in the

core

It is ‘wealth effects’ which are the subject of the next subsection.

3.6. Wealth Effect in k-lateral Exchange Processes

While Walrasian exchange has no effect on the wealth of individual agents — that is,
Walras’ law holds — in distributed exchange environments some agents gain wealth
while others lose it. This is so because exchange at non-equilibrium prices alters
agent wealth with respect to the equilibrium price. While the overall amount of
wealth in the agent population is constant (at final market prices), the general
effect of klateral exchange is to disperse wealth.

PrOPOSITION 8: k-lateral exchange processes disperse wealth if the following condition
holds:

A
Z {Aw'(1)[2w'(0) + Aw'(1)]} > 0.
i=1

To establish this, compute the change in the variance as

7 Core allocations always have the equal treatment property, Green (1972).
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var[w(i)] > var[w(0)]

EDA

=1

{[ < (0] xl‘(O)f}zo

M>

Il
—

M- 11-

{[p'(6) = ' ()] [p' (1) + px'(0)]} > 0

Il
—

-

Il
—

{Aw'()[2w'(0) + Aw'(2)] } > 0.

2

Thus, under certain conditions the distribution of wealth can be expected to
increase as a result of decentralised exchange.

3.7. Path Dependence of k-lateral Exchange Processes

Each distinct trade history will in general produce a distinct equilibrium. Since
there are a combinatorially huge number of histories, there will exist vast numbers
of klateral exchange equilibria. The vast majority of these are not accessible via a
Walrasian mechanism (unless one rearranges endowments) since they do not
satisfy the equal treatment property.

ProroSITION 9: Equilibrium allocations and prices depend on the history of exchange.

The simple example mentioned above — of agents with identical endowments and
preferences — well illustrates this path dependence.

4. Complexity of Decentralised Exchange

In this Section the complexity of bilateral exchange models is investigated. We
present results on the number of computations required to achieve bilateral
exchange equilibria as a function of the number of agents and the number of
commodities. First some formal results are developed. Then computational results
which support the formal analysis are given, for economies as large as a million
agents and 20,000 commodities per agent.

4.1. Analytical Results

From the basic iteration (1) above, together with the fact that § < 1, we know that
convergence is geometrically fast. It remains to figure out how f depends on the
number of agents and the size of the allocation space, AN. Since this is a conser-
vative system the operator T always has a unit eigenvalue, and so the rate of
convergence, f3, is controlled by the sub-dominant eigenvalue. For particular
exchange processes it is possible to compute f explicitly. In general it is possible to
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place an upper bound on the number of interactions required to equilibrate a
market by noting that each application of T requires no more than 0[(AN)2]
operations. Define

Ve — V[x(t)]

o) =P

&

and solve for 7 the number of time steps required to produce an ¢ approximation
of equilibrium. This quantity is clearly bounded from above by

In(1/e)
In(1/p)

T <

This leads naturally to

ProOPOSITION 10: The number of interactions is bounded from above by AZNZT(S,ﬁ ),
therefore the computational complexity of k-lateral exchange is P.

Furthermore, in the case of bilateral exchange it is possible to develop a sharper
result.

ProprosITION 11: The computational complexity of bilateral exchange is bounded from
above by AN?t(e, p).

There are at least three ways to understand these results heuristically. First,
because the dimension of the allocation space is AN, each interaction shrinks the
set of feasible bilateral exchanges by

1/AN

0 ’
where f; is some constant. But this is not the whole story, for it is also true that
as N gets larger, the number of MRSs increases linearly. Thus, the number
of interactions required to converge a norm of the vector of MRSs to within ¢
of equilibrium scales like &“. Therefore, calling I the maximum number of
bilateral interactions necessary to reach an ¢ approximation of equilibrium, we
have

i< ln(l/sf;\’)r _ NInQU/w) e n(1/5)

In (l/ﬁ(l)//m> 1/ANIn(1/B,) In(1/,)
Opverall, this upper bound on the requisite number of interactions is proportional
to the number of agents and the number of commodities squared.

The second intuitive rationale for these results relates to the dependence on A.
Imagine an economy composed of very large numbers of both agents and com-
modities, and consider two experiments. First, randomly divide the population
into two equal-sized groups of agents, each of whom has preferences over the
entire commodity space. Now equilibrate each one via bilateral exchange with
agents in its own group. Each of these sub-economies converges to very similar
prices. In fact, if the overall economy is large enough then the two sub-economies
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converge to exactly the same price, in which all agents have the same MRSs. Thus,
combining the two groups of agents subsequently there are very few further trades
that can be arranged and the economy is quickly put in equilibrium.

The third thought experiment that conveys the general character of the result
consists of converging the economy across all agents for two commodities and
measuring the number of total interactions required — call it /5. Now, to this
equilibrium configuration add 1 commodity and re-equilibrate. Intuitively, the
number of interactions necessary should be proportional to 2, since the new
commodity must be equilibrated with each of the original two. Next, add a fourth
commodity, requiring interactions proportional to 3, and so on until the com-
modity space consists of all N commodities. Overall, the total number of interac-
tions necessary for this process is

N N-1 N‘

N 2
S i-k=5L> (i—1) :@Zz’:IQ?.
=2 =1

=2
Thus, the quadratic dependence on N.

Example 1: Bilateral exchange on a circle

Albin and Foley (1990) studied exchange of 2 commodities in parallel among
agents with homogeneous Cobb-Douglas preferences arranged in a circle. Consi-
der such a ring, composed of A agents, an even number, indexed from 1. In any
period all even numbered first agents trade with odd numbered agents whose
index is less than theirs, e.g., agent no.4 trades with agent no.3. Then, even
numbered agents trade with the odd indexed agents just above them. Overall, this
double set of trades constitute one time period. Call 7;(x) the algorithm by which
even-numbered agents trade with those directly below them, and 75(x) the other
exchange process. Then the overall exchange algorithm is T(x) = To[T7(%)]. It
can be shown that this leads to a tridiagonal set of equations, for which the
eigenvalues can be calculated explicitly; the subdominant one is strictly less than
unity.

4.2. Computational Results

In this Section results from a variety of computational experiments are described
involving bilateral exchange at local Walrasian prices. Overall, some one trillion
exchange transactions are summarised here. These results support the analytical
results obtained above.

4.2.1. Dependence on the number of agents

How many agent-agent interactions are required to produce a bilateral exchange
equilibrium?® This depends on many things, including how good an approxima-
tion to equilibrium we wish to compute. But the general character of the

8 We will use the number of interactions as a surrogate for the complexity of the exchange process.
This is reasonable since each interaction involves a fixed number of computations.
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dependence of the number of interactions on the number of agents will not be
sensitive to the accuracy of the approximation.

Example 2: Heterogeneous Cobb-Douglas agents

Figure 1 gives the number of interactions necessary to equilibrate a heteroge-
neous population of agents having Cobb-Douglas preferences distributed uni-
formly over (0, 1). Endowments are distributed uniformly over [50, 150]. Agents
are paired at random, truthfully report their preferences, and trade directly to the
contract curve. All exchange is terminated once the largest standard deviation in
the In(MRS) distribution falls below 10~2. Results are shown for three distinct sizes
of the commodity space, N = 2, 10 and 50, varying the number of agents from 10
to 1,000,000.

Note that the effect of increasing the number of commodities is merely to
increase the number of interactions necessary for equilibration, but does not
change the nature of the dependence on the number of agents. Each line in the
figure has a slope of 1.000, meaning that as the number of agents increases the
number of interactions required to produce equilibrium increases linearly. If 10°
bilateral interactions are necessary to equilibrate a population of 107 agents then
10° agents require 107 interactions, and so on. The number of interaction /agent is
independent of the size of the population.

Similar results obtain for different values of the termination criteria. The overall
effect of decreasing ¢ is to require more agent-agent interactions, as shown in
Figure 2 for N = 2.

Interactions
108 f N=50

107

100
100,000
10,000

1,000

100

L L L L Lo Agents

100 1,000 10,000 100,000 100

Fig. 1. Number of Interactions Required for Market Convergence as a Function of the Number of
Agents, A, parameterised by the number of commodities, N; termination occurs once
[variance [In(MRS)]|* < ¢ = 0.01
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Interactions

N=2

107 f

100 F

100,000

10,000

1,000 ¢

100

L Lo Lo in Lo L1 R EERTE Agents
10 100 1,000 10,000 100,000 100

Fig. 2. Number of Interactions Required for Convergence as a Function of the Number of Agents,
A, parameterised by the termination criterion ¢, such that termination occurs once
|variance [In(MRS)]|> < & 2 commodities

For other specifications of preferences (e.g., CES) and different interaction
topologies (e.g., parallel instead of serial) we have obtained results identical in
character, i.e., the number of interactions required to produce bilateral exchange
equilibria is linear in the population size.

This result has important implications. Imagine if it were not true, but rather
that the number of interactions/agent increased as the total number of agents
increased. Then, as each new agent were added to the society the economic com-
plexity for each extant agent would grow, independent of whether or not any
particular agent even interacted with the new agent. This seems unreasonable.
Rather, bilateral trade produces a kind of social computer which endogenously
decentralises economic computations.

4.2.2. Dependence on the Number of Commodities

The dependence of the number of interactions on the number of commodities is
similar. In the example below we find that as the commodity space, N, increases
the number of bilateral interactions required to produce equilibrium increases in
proportion to N°.

Example 2 (continued):

We instantiate various populations of Cobb-Douglas agents, as above, having
heterogeneous preferences and endowments, pair them randomly, and track the
number of interactions necessary to produce bilateral exchange equilibria having a
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variance of no more than 10~2 in the final In(MRS) distribution, all as a function
of the number of commodities (N from 2 to 20,000). The results are shown in
Figure 3.

The slope of each curve in Figure 3 is 2.000, meaning that the required number
of interactions scales like N°. The effect of increasing the number of agents,
holding the number of commodities constant, is merely to increase the number of
interactions required for equilibrium.

The effect of tightening approximation is to require additional interactions, as
shown in Figure 4.

An interesting open question is ‘Does there exist an exchange process for pro-
ducing Pareto optimal allocations that has complexity linear in the number of
commodities?” From the computational evidence above it would appear that the
answer is ‘no’ for bilateral exchange.

5. Summary and Conclusions

It has been argued that the Walrasian model of exchange is problematical on a
variety of grounds. Notably, recent results on the computational complexity of
Brouwer and Kakutani fixed points suggest that real markets cannot possibly
operate according to the Walrasian model. A decentralised exchange model has
been offered as an alternative to the Walrasian picture. In particular, klateral
exchange equilibria have much better computational complexity than do Walra-
sian equilibria. Differences between the models are summarised in Table 1.

Interactions

A=100
1010 A=10
A=1000
108
106
10,000
100
L L L L L Commodities
1 10 100 1,000 10,000

Fig. 3. Number of Interactions Required for Convergence as a Function of the Number of
Commodities, N, parameterised by the number of agents, A; termination occurs once
| |variance[ln(MRS)] || < & = 0.01.
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Interactions A=100
=102
e=10"
10°°F
107 F
10,000
LOOO T, L L L L Commodities

1 10 100 1,000 10,000

Fig. 4. Number of Interactions Required for Convergence as a Function of the Number of
Commodities, N, parameterised by the termination criterion ¢, such that termination
occurs once |lvariance [In(MRS)]||* < & 100 agents

As described above, Scarf has observed that for general CGE models the number
of computations scales like N*. Call k,N? the number of computations required to
equilibrate a N commodity economy via bilateral exchange, while IchN4 is
the corresponding number for Walrasian exchange. Clearly, if k, < ky then the
bilateral exchange process is always more efficient computationally than the
Walrasian one. Consider the opposite case, k, > ky. Then for small numbers of
commodities the Walrasian process requires fewer computations but as N grows

Table 1

Comparison of Walrasian and Decentralised Exchange Equilibria

Walras-ArrowDebreu k-lateral Exchange
Price formation Global Local
Price determination OR problem (ostensibly solved DAI problem® (‘solved” by market
by auctioneer) of agents)
Existence of equilibrium Fixed point theorems Lyapunov function
Character of equilibrium Determinate (depends on Indeterminate (depends also on
preferences, endowments) interaction history)
Welfare of equilibrium Pareto optimal Pareto optimal
Stability of equilibrium Ambiguous Globally stable
Dynamics One-shot (no trade out of Path-dependent
equilibrium)
Wealth effect None (Walras’ law holds) Dispersive (Walras’ law violated)
Complexity Exponential (worst case) N Polynomial (quadratic in A and N)

(average case)?

 DAI stands for Distributed Artificial Intelligence.
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the bilateral exchange process quickly becomes more efficient. There is some
critical number of commodities, N, such that

kyN? = k,N*.

For N > N, = Vk,/ky, the bilateral exchange process is superior to the Walrasian
one computationally. Note that even if the Walrasian algorithms are 100 times
more efficient for small problems —i.e., k,/ky = 100 — bilateral exchange will be
more efficient for N greater than 10.

Walrasian markets in their Arrow-Debreu conception are an ideal type, in the
terminology of the philosophy of science, a caricature of reality that abstracts from
many details of real markets in order to provide a home for our intuitions and a
point of departure for deeper exploration of market processes. Unfortunately, the
embodiment of this ideal type in CGE software, especially when utilised for policy
purposes, institutionalises a series of propositions that more behaviourally realistic
and decentralised models reveal to be false, namely, that markets do not disperse
wealth, yield allocations that are determined solely by preferences and endow-
ments and are not history-dependent. Luckily, the unreality of this ideal type is
given away by its computational intractability.

In the end we advocate not the jettisoning of this useful abstraction but merely
its circumspect use whenever focused on questions for which it has limited ability
to adjudicate an appropriate answer, e.g., distributional issues, actual prices. But
because policy-focused model deal always and everywhere with just these issues, a
direct consequence of the results described above is to at least cast a pale on the
utility of such analyses, if not to vitiate them altogether.

The Brookings Institution
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