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Abstract. With the increasing storage capacity of personal computing
devices, the problems of information overload and information fragmen-
tation become apparent on users’ desktops. For the Web, semantic tech-
nologies aim at solving this problem by adding a machine-interpretable
information layer on top of existing resources, and it has been shown
that the application of these technologies to desktop environments is
helpful for end users. Certain characteristics of the Semantic Web archi-
tecture that are commonly accepted in the Web context, however, are
not desirable for desktops; e.g., incomplete information, broken links, or
disruption of content and annotations. To overcome these limitations,
we propose the sile model, an intermediate data model that combines
attributes of the Semantic Web and file systems. This model is intended
to be the conceptual foundation of the Semantic Desktop, and to serve as
underlying infrastructure on which applications and further services, e.g.,
virtual file systems, can be built. In this paper, we present the sile model,
discuss Semantic Web vocabularies that can be used in the context of
this model to annotate desktop data, and analyze the performance of
typical operations on a virtual file system implementation that is based
on this model.

1 Introduction

A large amount of information is stored on personal desktops. We use our per-
sonal computing devices—both mobile and stationary—to communicate, to write
documents, to organize multimedia content, to search for and retrieve informa-
tion, and much more. With the increasing computing and storage power of such
devices, we face the problem of information overload : the amount of data we
generate and consume is increasing constantly, and because of the availability
of cheap storage space, each and every bit of information is stored. Another
problem is even more prevalent on the desktop than on the Web: information
fragmentation. Data of different kinds are stored in silos, and—contrary to the
Web, where hyperlinks between documents, and across site boundaries, can be
defined—there exist only limited means to define and retrieve relationships be-
tween different resources on the desktop.

The Semantic Web tries to deal with the problems mentioned before by
adding a layer on top of the existing Web infrastructure, in which descriptions
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about web resources are expressed in RDF using commonly accepted vocabular-
ies or ontologies. This allows machines to interpret the published data and thus
helps end users to find information more efficiently. A large number of data sets1

and vocabularies2 have already been published on the Semantic Web, forming a
solid data corpus that can be crawled by (semantic) search engines, or serve as
foundation for applications.

Recent research in the field of the Semantic Desktop [2, 10, 12] has shown that
a number of characteristics of Semantic Web technologies are also suitable for
the problem of information management on the desktop; especially, the provision
of unified identifiers, the ability to represent data in an application-independent
generic format, and the flexible usage of formalized vocabularies to describe
resources. It has been shown [15] that the inclusion of semantic technologies on
the desktop can significantly improve the user’s perceived quality of personal
information management, especially when they are applied during a longer time
period.

However there exist some significant differences between the Web and the
desktop contexts. First, in contrast to the World Wide Web, the desktop al-
ready has a de facto organization metaphor for data: hierarchical file systems.
File hierarchies have been in use for decades, and the vast majority of personal
information is stored in these structures. Therefore it is crucial for the Semantic
Desktop to smoothly integrate with file systems in a way that allows for the
annotation of files without breaking the behavior of existing desktop applica-
tions. As a second difference, while it is accepted on the Web that URLs may
be broken and web resources appear and disappear, this is not the case for the
desktop. Users rightfully expect their data to remain consistent and complete at
all times.

Since the RDF data model has by design a number of shortcomings that
may cause problems when a Semantic Desktop is to be efficiently implemented
(see Section 2), we propose in this paper the sile model, a data model that acts
as an intermediate layer between file systems and Semantic Web technology.
This model allows users and applications to annotate and interrelate desktop
resources, but preserves the possibility to be used as a hierarchical file system.
Thus, it maintains full backwards-compatibility to existing systems and appli-
cations.

Despite the number of existing differences between the sile model and RDF,
the former has been designed to be interoperable with vocabularies from the
Semantic Web. Interoperability between the desktop and the Web is desirable
in order to provide a unified data space to the user. Tools and applications are
enabled to operate on data both locally and globally, and data can be seamlessly
exchanged between these two worlds. Hence we propose to use Web vocabularies
for data representation wherever possible, and we support this requirement by
using URIs, which can refer to Semantic Web resources, as identifiers for all
annotations in our data model.

1
http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/DataSets

2
http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/CommonVocabularies

http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/DataSets
http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/CommonVocabularies
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This paper discusses the issues that arise when file systems and semantic
technologies are integrated in Section 2, and presents the design of the sile model
(Section 3) as a data abstraction layer for the desktop. We discuss how the sile
model can be used in applications, and which already existing Semantic Web
vocabularies can be used for the annotation of desktop data (Section 4). Finally,
we present our prototypical implementation (Section 5), which we have evaluated
under the assumption of realistic amounts of data (Section 6).

2 Integrating File Systems and RDF Descriptions

File Systems as Data Organization Metaphor. The majority of personal
information is stored within file systems, where we can observe three usage pat-
terns. We denote the first one as user-driven file structures: a large number of
applications do not use internal directory structures or file name conventions,
but allow the users to organize files in directories named and nested according to
their needs. Examples for this group include applications like word processors or
spreadsheet tools. A second group of applications establish application-driven file
structures, where directory hierarchies and files are managed entirely by appli-
cations, but still expose a certain meaning to end users. Examples of such appli-
cations are e-mail clients like Mozilla Thunderbird or media players like iTunes.
Typically, these applications do not operate on single files but on file collections,
and interpret the directory hierarchies and file names in a schematic manner.
A third group of applications do not expose a file structure to the user, but
rather operate on continuous data corpora; examples for this group include cal-
endar applications that store appointments in one large file, or database-driven
applications. We denote the data structures of such applications as hidden file
structures, because in the end even these data are stored in file systems.

For all three classes of applications it is desirable to make information ac-
cessible in a semantically meaningful, application-independent way. This has
two main benefits: first, it makes it possible to interrelate objects from different
sources, which otherwise form disjunct structures in one’s personal information
space [3]; and second, it extends the possibilities provided by file systems with
respect to search and retrieval [15]. All three classes of applications, as described
before, could benefit from such an integration: user-driven file structures could
be extended by more powerful and non-hierarchical annotation mechanisms, like
tagging and typed relationships. Application-driven file structures could be dis-
banded in favor of explicit semantic annotations that ideally adhere to open
vocabularies and therefore are interpretable by external entities. Finally, hidden
file structures could be revealed and hence be integrated with other information
sources.

The Gap to RDF. The RDF data model can be used to identify information
units (resources), and to describe these units and the relationships between
them using subject-predicate-object triples. Its successful usage in the context
of Linked Open Data [1] indicates that it is sufficiently expressive for a large
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number of applications, ranging from statistical data to geo information and
multimedia content. Certain RDF characteristics, however, are problematic in
the context of the desktop: for instance, RDF does not consider the actual content
of information items. The relationship between a resource identifier (a URI)
and the resource itself has been explicitly left out of the scope of the RDF
specification (cf. [11], Section 1.2). In the open Web environment, it is acceptable
for users and applications that resources may become unavailable and links may
become broken. However, on the desktop, integrity of content objects and their
annotations must always be ensured.

Another potentially problematic aspect of RDF is the Open World Assump-
tion. Since RDF is designed for the Web, incomplete or unknown information is
accepted by design. Again, for the closed environment of the desktop, incomplete
information is not desirable, and hence recent approaches to Semantic Desktop
information modelling have restricted the interpretation of RDF data to a closed
world semantics (e.g., [18]).

As a third problematic issue, the application of certain RDF language ele-
ments (in particular collections, blank nodes, and reification), has been discour-
aged both in the context of the Web (cf. [1], Section 2.2) and the desktop (cf.
[19], Section 2.3.2). These features significantly increase the complexity of RDF
processing, as well as representing RDF in user interfaces [13, 17], but expose a
very light semantics [13]. Hence it is doubtful whether these elements are use-
ful in the context of the desktop, where end users have only limited knowledge
about the characteristics of the underlying data structures, and the available
computing power is limited in comparison to large-scale database servers.

Recent Semantic Desktop projects (e.g., [2, 10, 12]) add an RDF layer on
top of existing desktop infrastructures and refer to the actual content repre-
sentation using local URIs. These URIs are often minted based on the char-
acteristics of the underlying system. For instance, a URI that refers to a file
in the user’s home directory could be file:////home/bernhard/work/papers/
eswc2009-submission.pdf. This URI, however, becomes invalid when a file is
renamed, moved to a different directory, or deleted. Consequently, synchroniza-
tion mechanisms are needed that propagate modifications to the semantic layer;
however often it is difficult to track such modifications accurately. In the worst
case, where such propagation is not possible, the applicability of the entire sys-
tem is heavily limited.

In the following, we present an alternative approach that aims to solve the
problems described before: we consider an object’s content and its annotations
as integral components, which are always processed together. Instead of adding
a semantic layer on top of existing structures, we inject the Semantic Web into
the core of the data representation structures—in our case, the file system—,
and provide a virtual, file system-like representation of the data stored therein
which can be accessed by existing desktop applications.
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3 The Sile Model

Siles: Adding Semantics to Files. Siles (Semantic files) can be regarded
as combinations of files and semantic annotations. A sile is always identified by
a globally unique URI and consists of a (binary) string of arbitrary content,
as well as an arbitrary number of annotations. In the context of siles, URIs
are not used as URLs: while in the Semantic Web it is recommended that the
URI of a resource is at the same time a URL that can be used to retrieve the
resource’s representation (cf. Figure 1(a)), this is not the case for siles. In our
model, URIs are solely used for identification purposes, and the sile identifier, the
content, and the associated annotations are integral parts of the sile, as depicted
in Figure 1(b).
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Fig. 1: (a) RDF model: URIs refer to actual content; (b) Sile model: integrated
view on content and annotations.

In our model we distinguish between four types of annotations, which from
our experience are able to cover a large share of annotation needs in the desktop
domain: tags, which are plain strings; categories, which refer to entities with
machine-processable semantic interpretation (e.g., classes from an ontology); at-
tributes in the form of typed name/value pairs; and slinks (semantic links), i.e.,
directed typed relationships between siles. Categories, attributes, and slinks are
identified by URIs, which allow for a non-ambiguous interpretation of their se-
mantics; however the formalism used for this purpose is out of the scope of this
definition. A category annotation, for instance, may refer to an OWL ontology
class as well as to a table within a relational database schema. Figure 1 depicts
a number of siles and their associated annotations, whereas different shapes and
colors are used to indicate different annotation types.

Because our model relies on URIs to identify siles and annotations, it is
straightforward to represent sile annotations in RDF. Figure 2 depicts an ex-
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<urn:uuid:57207370-6880-11dd-ad8b-0800200c9a66>

a sile:Sile ;

sile:label "SemDAV Project Description"^^xsd:string ;

sile:cat-type nfo:PaginatedTextDocument ;

sile:tag-type sile-tag:final ;

sile:creation-date "2008-07-11T16:21:14"^^xsd:dateTime ;

sile:update-date "2008-07-11T17:14:21"^^xsd:dateTime ,

"2008-07-11T17:32:02"^^xsd:dateTime ;

sile:content-type "application/msword"^^xsd:string ;

sile:content-length "146398"^^xsd:long ;

dc:subject <http://www.semdav.org> ;

sile:cat-type silefs:File ;

silefs:path "/home/projects/semdav/docs/semdav_description.doc"

^^xsd:string ;

silefs:parent <urn:uuid:60ad6a73-1b60-4553-9436-d09d395fc29c> .

Fig. 2: RDF representation of a sile (N3 notation)

ample of a sile that represents a project report. This sile is annotated with a
number of attributes (like label, creation date, content length, and subject), one
category (nfo:PaginatedTextDocument), and one tag (final).

Representation of Directory Hierarchies. We can now use our data model
to represent all elements of a file system without loss of information. A basic
file system can be represented by an unordered tree having two types of nodes:
directories and files. Directory nodes may have children, whereas file nodes are
always leaf nodes. Each node is labelled with a local name (i.e., the file or
directory name), which is unique within the scope of its parent.

We map each node in the directory tree to a sile and represent its type by
a category. We further represent the node name as an attribute annotation. By
concatenating the labels of the nodes along a path, a unique identifier for each
element (directory or file) of the file system can be constructed. However, when
a path expression consists of many elements, traversal across a large fraction of
the graph is required in order to locate the described file. To enable direct access
to a file given its path, we additionally store the file’s absolute path as a sile
attribute. This requires processing overhead when modifications to the file tree
are made, but significantly increases the performance of read operations.

The RDF representation of these additional sile annotations is shown in the
last three lines of Figure 2. These annotations identify the resource as a file,
describe its file name and absolute path, and relate the resource to its parent
directory. This representation allows for efficient execution of typical file system
operations. For most such operations the full paths of involved files are given,
which allows us to retrieve the corresponding sile with a simple query for the
silefs:path attribute. Operations that involve a directory and its children (e.g.,
a directory listing) can be resolved by querying for silefs:parent relationships
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Sile docSile = repo.getSileForFile("/home/projects/semdav/docs/

semdav_description.doc");

docSile.addAnnotation(repo.getCategory("nfo:PaginatedTextDocument"));

docSile.addAnnotation(repo.getTag("final"));

Sile paperSile = repo.getSileForFile("/home/papers/eswc2009/paper.tex");

paperSile.addAnnotation(repo.getSlink("ex:based_on", docSile));

Fig. 3: Sile API Code Example

between siles. When a file or directory is renamed or moved3, the steps to be
taken depend on whether the file remains within its parent directory or not. In
the former case, it is sufficient to update the sile’s silefs:path attribute, while
in the latter case the silefs:parent slink must also be updated to point to the
sile’s new parent directory. However, the identity of this sile can be efficiently
retrieved by querying for the directory sile’s silefs:path attribute.

The representation of files using a graph-based model enables us also to rep-
resent hard links by storing additional silefs:path attributes and silefs:

parent relationships. The semantics of the deletion of a link can be simulated
by checking whether a sile has more than one silefs:path attribute before
deletion, and by only deleting the entire sile if it has only one such attribute.
In the case of multiple silefs:path attributes, only the attribute and the
silefs:parent slink are deleted.

4 Annotating Files Using the Sile Model

Accessing Semantic Files. Using the mechanisms described in the previous
section, we can now implement a common hierarchical file system that can be
used by any application without modifications. To read, write, and search for
semantic annotations of files that are represented as siles we have developed
an Application Programming Interface (API). A detailed discussion of this API
is outside the scope of this paper; however to give the reader an impression
of the structure and usage of the API, a code snippet is depicted in Figure 3.
This example reproduces the annotations depicted in Figure 1 and Figure 2: a
category and a tag are attached to a file ("semdav description.doc"). Later,
the application (or the user) could easily retrieve the object by searching for
these annotations.

The goal of this API is to allow desktop application developers to easily
integrate semantic annotations into their code. Assuming that files are stored on
a sile-based virtual file system, one can retrieve the sile that represents a certain
file by a single API call, and access or manipulate annotations. Additionally, the
API allows an application to search for siles that match certain criteria and to
retrieve the corresponding file paths. For instance, a word processing application
could be extended so that it stores metadata about created documents (e.g.,

3 Moving and renaming of files are implemented identically in many operating systems.
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author and title) as sile attributes, or a search operation could be used to retrieve
files that are associated with a certain project.

We believe that our API, which tightly integrates files and semantic anno-
tations, has the potential to significantly increase the proliferation of semantic
technologies on the desktop. As described in Section 2, the majority of desk-
top applications operate directly on the file system. By transferring existing file
hierarchies to a virtual, sile-based file system and by integrating semantic anno-
tations into applications, the desktop can be extended using semantic technology
while avoiding the need for fundamental architecture changes, either for single
applications or operating systems.

Vocabularies for Desktop Data. Since the sile model is closely related to
the RDF model and uses URIs to identify annotations, it is obvious to reuse
existing vocabularies and ontologies from the Semantic Web for interoperability
purposes. Although, due to the open design of the sile model, an application can
freely define terms, the usage of shared and commonly accepted vocabularies
is preferred. Shared vocabularies enable other applications—either on the same
machine, or when siles are exchanged across systems—to interpret annotations in
a semantically correct way. To establish that kind of interoperability, we propose
the following strategy for sile annotation vocabularies:

1. Whenever possible, use terms taken from widely used vocabularies that are
published on the Web in a structured, machine-readable format, i.e., RDFS
or OWL.

2. If there is no such term that reflects the required semantics, reuse a se-
mantically broader term by establishing e.g., an rdfs:subPropertyOf re-
lationship, refine it for the purpose of the target application within a new
namespace, and publish it on the Web.

3. If (1) and (2) are not feasible, create a suitable vocabulary and publish it on
the Web in order to make it accessible also for other users and applications.

There already exist a number of widely used vocabularies, many of which are
applicable for desktop data. Semantic search engines, such as Sindice [14] and
Swoogle [5], or index sites for the Semantic Web4 are good starting points to
search for existing vocabularies. In Figure 4 we present a representative set of
Semantic Web vocabularies that are relevant for the desktop, grouped by their
application domain. For each vocabulary we also indicate their base language as
well as the number of concepts and properties they define.

Our analysis indicates that the Semantic Web already provides a large num-
ber of vocabularies, which cover a large share of the data we find on typical
desktops. Many of the vocabularies we have included in our analysis are com-
pact in terms of the number of classes and properties, and hence are relatively
easy to understand and to implement. Moreover, a number of these vocabular-
ies have been defined by re-using terms from other vocabularies. For instance,

4 e.g., http://pingthesemanticweb.com/stats/namespaces.php

http://pingthesemanticweb.com/stats/namespaces.php
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Vocabulary Name Base Concepts Props.

General, Documents

Dublin Core (DC)a RDFS 22 55

NEPOMUK Annotation Ontology
(NAO)b

RDFS 4 31

NEPOMUK File Ontology (NFO)c RDFS 47 60

Contacts, Communication

Friend of a Friend (FOAF)d OWL 12 54

Semantically Interlinked Online
Communities (SIOC)e

OWL 11 53

NEPOMUK Contact Ontology (NCO)f RDFS 30 55

NEPOMUK Message Ontology
(NMO)g

RDFS 7 23

VCard Ontologyh OWL 5 54

Calendar and Events, Project Management

Description of a Project (DOAP)i RDFS 7 30

RDF Calendar Schemaj OWL 14 48

NEPOMUK Calendar Ontology
(CAL)k

RDFS 51 107

Location

WGS84 Geo Positioningl RDFS 2 4

GeoNames Ontologym OWL 7 18

Multimedia

Music Ontologyn OWL 53 131

a
http://purl.org/dc/terms/

b
http://www.semanticdesktop.org/ontologies/2007/08/15/nao#

c
http://www.semanticdesktop.org/ontologies/2007/03/22/nfo#

d
http://xmlns.com/foaf/0.1/

e
http://rdfs.org/sioc/ns#

f
http://www.semanticdesktop.org/ontologies/2007/03/22/nco#

g
http://www.semanticdesktop.org/ontologies/2007/03/22/nmo#

h
http://www.w3.org/2006/vcard/ns#

i
http://usefulinc.com/ns/doap#

j
http://www.w3.org/2002/12/cal/ical#

k
http://www.semanticdesktop.org/ontologies/2007/04/02/ncal#

l
http://www.w3.org/2003/01/geo/wgs84_pos#

m
http://www.geonames.org/ontology#

n
http://purl.org/ontology/mo/

Fig. 4: Relevant Semantic Web Vocabularies for the Desktop

http://purl.org/dc/terms/
http://www.semanticdesktop.org/ontologies/2007/08/15/nao#
http://www.semanticdesktop.org/ontologies/2007/03/22/nfo#
http://xmlns.com/foaf/0.1/
http://rdfs.org/sioc/ns#
http://www.semanticdesktop.org/ontologies/2007/03/22/nco#
http://www.semanticdesktop.org/ontologies/2007/03/22/nmo#
http://www.w3.org/2006/vcard/ns#
http://usefulinc.com/ns/doap#
http://www.w3.org/2002/12/cal/ical#
http://www.semanticdesktop.org/ontologies/2007/04/02/ncal#
http://www.w3.org/2003/01/geo/wgs84_pos#
http://www.geonames.org/ontology#
http://purl.org/ontology/mo/
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the Description of a Project (DOAP) vocabulary is based on Friend-of-a-Friend
(FOAF) and therefore each application that understands FOAF is also enabled
to interpret DOAP-based data to a certain extent.

5 Implementation Case Study

We have realized a virtual file system on top of our SemDAV semantic reposi-
tory5, which implements the sile model and uses a combination of an RDF store
(Jena, SDB, PostgreSQL) and plain files to persist siles and their annotations.
It exposes the stored siles via a variety of protocols and interfaces (including
XML-RPC, RMI, WebDAV, and HTTP).

VFS Kernel Service
FUSE 

Module

SileFS 
Implementation

SemDAV Sile 
Repository

U
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a
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e

K
e

rn
e

l
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c
e
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Command
Line

File
Browser

File-based 
Applications

Plugin

Fig. 5: Virtual File System Architecture

In addition to this repository implementation, we have developed a compo-
nent that handles file system calls that are forwarded from the local machine’s
kernel and translates them to corresponding queries and operations on the sile
model, according to the file system representation described in Section 3. To
integrate the system with the local file system we have used the FUSE frame-
work6 and its Java binding FUSE-J7. FUSE defines a set of interfaces and data
structures that describe files, their metadata structures, and operations thereon.
Based on these frameworks we simulate a local file system which can be accessed
by applications and users as if it were a common file system; but the files can also
be annotated and queried through the sile API. Since all files in this virtual file
system are persisted as siles in our repository and hence can be accessed only
through the sile API or through the virtual file system, data consistency and
completeness is ensured at all times. The architecture of this implementation is
depicted in Figure 5.

5 http://www.semdav.org
6 http://fuse.sourceforge.net
7 http://fuse-j.sourceforge.net

http://www.semdav.org
http://fuse.sourceforge.net
http://fuse-j.sourceforge.net
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Since file paths are represented as explicit sile annotations, it is straight-
forward to implement extensions or plug-ins for existing file-based applications:
whenever an application operates on a file that is stored on a sile-backed file
system, the corresponding sile can be easily retrieved, and vice versa.

6 Performance Evaluation

To evaluate the performance of our approach, we have analyzed the execution
times of typical file system operations. To estimate a realistic amount of data, we
crawled the home directories of our department’s members, which includes sci-
entific staff (7 persons) as well as technical and administrative staff (3 persons).
We used only home directories in favor of scanning entire hard disks because
personal data will be the target domain for a semantic file system, and there is
little need to semantically annotate system- and application-internal file struc-
tures. We discarded files that were on a black list of files and directories that
usually are present in users’ home directories but are not directly accessed by
end users; e.g., .svn, desktop.ini, and *.tmp. The resulting average size of the
home directory was 38,000 files stored within 5,150 directories. We view these
numbers as upper limits, since we assume that the home directories of computer
scientists will typically contain more files (e.g., source code trees) than those of
average end users.

Dataset # 1 2 3

Hierarchy depth 2 3 4

Average no. of sub-directories per directory 5 6 7

Average no. of files per directory 12 15 15

Total number of siles (directories and files) 403 4,144 44,816

Total number of RDF triples 3,626 37,295 403,343

Total number of RDF triples incl. ontologies 4,361 38,030 404,078

Fig. 6: Datasets for Performance Evaluation

To estimate the influence of the size of home directories on our system’s
performance, we artificially created three test data sets, which are described in
Figure 6. To represent basic data about files and directories (cf. Section 2) nine
triples per object were created. Note that this does not include any additional
descriptive triples (i.e., semantic annotations); these were not considered in our
performance evaluation. Our implementation also requires loading a set of core
ontologies, which add another ≈700 triples to the database.

We have analyzed the runtime performance of typical access patterns to file
systems: navigation between directories, listing of directory contents, deletion,
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moving, and renaming of files. We have carried out the experiments on a high-
end consumer notebook (MacBook Pro, Core 2 Duo, with 2 GB RAM) running
Mac OS X 10.5 and JVM 1.5. We have used the command shell (/bin/bash) to
perform our measurements and used only standard commands (cd, ls, rm, and
mv). Because of our implementation architecture, each operation is processed
by a number of external components (e.g., the FUSE kernel module; see also
Figure 5) which are not under our direct control. Hence we do not have influence
on how shell commands are translated to file system driver calls; for instance,
issuing a directory listing command (ls) causes the execution of four FUSE
calls being passed to our implementation. Nevertheless, our goal was to measure
the execution time as experienced by the end user, hence we tracked the total
processing time of commands, including overhead caused by the operating system
and the FUSE kernel module.

The operations we have evaluated involve read-only access (directory naviga-
tion and directory listing) and read+write operations (deletion, moving, renam-
ing). For the latter, the complexity of read and write operations differs: for a sile
deletion, (1 ) the triples within the store that describe the object to be deleted
have to be identified (read), and (2 ) these triples have to be removed from the
store (write). Move and rename operations require in principle the same access
operations, whereas a move across directories requires an additional read and
write operation, namely the update of the relationship between the file and its
parent directory. For our experiment, we have executed each of these operations
10 times in random order, and the entire experiment was repeated five times.

Dataset # 1 2 3

Total number of siles 403 4,144 44,816

cd 0.029 0.048 0.107

rm 0.063 0.142 0.879

ls 0.258 0.464 1.547

mv within directory 0.254 0.488 2.488

mv across directories 0.296 0.688 3.238

Fig. 7: Evaluation Results: Average Execution Time in Seconds

The results of our experiments are depicted in Figure 7. For the first two
datasets (≈400 and ≈4,000 siles) we can observe very low execution times, which
allow for uninterrupted interactive work with virtual file systems. For a dataset
consisting of ≈40,000 siles, the response times for simple operations (change
directory, remove file) are still in a reasonable range, and even operations that
involve multiple, complex queries (directory listing, moving) are within a range
comparable to accessing remote file systems via the Web. We did not evaluate
the performance of actual read and write operations on the file content: the
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modifications to metadata caused by these actions are comparable to those of
a move operation (i.e., an update of the content-length and update-time

properties), and the actual file content is provided by the underlying file system
and hence is out of the scope of our performance measurements.

These numbers indicate that even a prototypical implementation of a virtual
file system, based on our data model and built using an off-the-shelf RDF triple
store, has acceptable performance for everyday usage on a typical consumer
machine. A semantic file system and a more efficient triple store, more tightly
integrated into the operating system, could achieve even better performance,
since this would allow us to circumvent the rather inefficient architecture that
we have chosen for the sake of implementation simplicity.

7 Related Work

The idea of adding semantic technologies to file systems has been widely re-
searched. The benefits of virtual file systems based on semantically enriched data
have been discussed and demonstrated in a number of works [4, 6–9, 16]. Usu-
ally, semantic annotations of files (e.g., tags, ontology classes, or property/value
pairs) are mapped to virtual directories which contain the resources that match
the criteria. This often implies however that a resource may be accessible through
multiple paths, and also may induce problems when files are written to virtual
directories, as the mapping between directory names and semantic annotations is
often not bijective (e.g., when disjunctions are included in the underlying query).
In the case of large datasets and extensive annotations, virtual hierarchies may
become very large and therefore difficult to understand and browse by the user.
Our approach does not attempt to perform such a mapping; instead we use ex-
plicit annotations for directory structures. Hence we preserve full compatibility
with existing applications and tools that are implemented under basic assump-
tions about the structure of file systems (e.g., each resource exists at exactly
one place), which is a crucial requirement for applications built on top of file
systems; e.g., desktop search engines.

A number of Semantic Desktop projects [2, 10, 12] aim to provide a seman-
tic infrastructure that covers all applications and information needs that users
operate on. These approaches often use file system crawlers to incorporate file
systems into the personal information space. As we have described in Section 2,
this may cause problems; therefore we consider our work a complementary vir-
tual file system that may be integrated into a Semantic Desktop.

8 Conclusions

We have discussed a number of issues regarding the integration of semantic
technologies with file systems, which is a crucial requirement for a successful
deployment of Semantic Desktop solutions. First, we showed that the RDF data
model exposes a number of characteristics that may cause problems when used
in the context of information management on the desktop. To overcome these
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limitations, we have proposed the sile model, which combines characteristics
from both the Semantic Web and file systems. This model provides an inte-
grated view on desktop resources and associated semantic annotations, and it is
intended to serve as an intermediate layer between applications and actual stor-
age infrastructure. Second, we have analyzed a representative set of Semantic
Web vocabularies and showed that the Semantic Web already provides a suffi-
cient number of suitable vocabularies to be used in the desktop context. Third,
we presented our RDF-based implementation of the sile model and a virtual file
system that is backed by our system. We have analyzed the performance of typ-
ical file system operations under the consideration of realistic amounts of data
that can be found on typical users’ desktops, and demonstrated that the perfor-
mance of such a virtual file system is acceptable for interactive usage. We aim to
more tightly integrate our approach with common desktop operating systems,
from which we expect significant performance improvements.
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