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Abstract 
This essay discusses some of the issues involved in the identification and predictions 

of hydrological models given some calibration data.  The reasons for the 

incompleteness of traditional calibration methods are discussed.  The argument is 

made that the potential for multiple acceptable models as representations of 

hydrological and other environmental systems (the equifinality thesis) should be 

given more serious consideration than hitherto. It proposes some techniques for an 

extended GLUE methodology to make it more rigorous and outlines some of the 

research issues still to be resolved. 
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Background 
In a series of papers from Beven (1993) on, I have made the case and examined the causes 

for an approach to hydrological modelling based on a concept of equifinality of models and 

parameter sets in providing acceptable fits to observational data.  The Generalised Likelihood 

Uncertainty Estimation (GLUE) methodology of Beven and Binley (1992) which was 

developed out of the Hornberger-Spear-Young (HSY) method of sensitivity analysis 

(Whitehead and Young, 1979; Hornberger and Spear, 1981; Young, 1983), has provided a 

means of model evaluation and uncertainty estimation from this perspective (see Beven et al., 

2000; Beven and Freer, 2001; Beven, 2001a for summaries of this approach).  In part, the 

origins of this concept lie in purely empirical studies that have found many models giving good 

fits to data (e.g. Figure 1; for other recent examples in different areas of environmental 

modelling see Zak et al., 1999; Brazier at al., 2000; Beven and Freer, 2001a,b; Feyen et al., 

2001; Mwakalila et al., 2001; Blazkova et al., 2002; Blazkova and Beven, 2002; Christiaens 

and Feyen, 2002; Freer et al., 2002; Martinez-Vilalta et al., 2002; Schulz and Beven, 2003).  

An independent example is provided by the results of Duan et al. (1992) from the University of 

Arizona group, although they have always rejected an approach based on equifinality in 

favour of finding better ways to find “optimal” models, most recently in a Pareto or Bayesian 

sense (e.g. Yapo et al., 1998; Gupta et al., 1998; Thiemann et al., 2001; Vrught et al. 2003).  

Despite this empirical evidence, however, many modellers are reluctant to adopt the idea of 

equifinality in hydrological modelling (and it can, indeed, always be avoided by concentrating 

on the search for an “optimum” but at the risk of avoiding important issues of model 



acceptability and uncertainty).   This manifesto is an attempt to provide a convincing case as 

to why it should be embraced in future. 

 

There is a very important issue of modelling philosophy involved that might explain some of 

the reluctance to accept the thesis.  Science, including hydrological science, is supposed to 

be an attempt to work towards a single correct description of reality.  It is not supposed to 

conclude that there must be multiple feasible descriptions of reality.  The users of research 

also do not (yet) expect such a conclusion and might then interpret the resulting ambiguity of 

predictions as a failure (or at least an undermining) of the science.  This issue has been 

addressed directly by Beven (2002a) who shows that equifinality of representations is not 

incompatible with a scientific research program, including formal hypothesis testing.  In that 

paper, the modelling problem is presented as a mapping of the landscape into a space of 

feasible models (structures as well as parameter sets).  The uncertainty does not lie in the 

predictions within this model space since the parameters in that space are known (even for a 

space of stochastic model structures).  The dominant uncertainty lies in how to map the real 

system into that space of feasible models.  Mapping to an “optimal” model is equivalent to 

mapping to a single point in the model space. Statistical evaluation of the covariance structure 

of parameters around that optimal model is equivalent to mapping to a small contiguous 

region of the model space. Mapping of Pareto optimal models is equivalent to mapping to a 

front or surface in the space of performance measures but which might be a complex 

manifold with breaks and discontinuities when mapped into in the model space.  But, 

computer intensive studies of responses across the model space have shown that these 

mappings are too simplistic, since they arbitrarily exclude many models that are very nearly 

as good as the “optima”.   For any reasonably complex model, acceptably good fits are 

commonly found much more widely than just in the region of the “optimum” or Pareto “optima” 

(quotation marks are used here because the apparent global optimum may change 

significantly with changes in calibration data, errors in input data or performance measure). 

 

This also brings attention to the problem of model evaluation and the representation of model 

error.  The GLUE methodology has been commonly criticised from a statistical inference 

viewpoint for using subjective likelihood measures and not using a formal representation of 

model error (e.g. Clarke, 1994; Thiemann et al., 2001; and many different referees).   For 

ideal cases, this can mean that non-minimum error variance (or non-maximum likelihood) 

solutions might be accepted as good models, that the resulting likelihoods do not provide the 

true probabilities of predicting an output given the model, while the parameter estimates might 

be biased by not taking the correct structural model of the errors into account in the likelihood 

measure.  In fact, the GLUE methodology is general in that it can use “formally correct” 

likelihood measures if this seems appropriate (see Romanowicz et al., 1994; Romanowicz 

and Beven, 1996; and comments by Beven and Young, 2003), but need not require that any 

single model is correct (and correct here normally means not looking too closely at some of 
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the assumptions made about the real errors in formulating the likelihood function, even if, in 

principle, those assumptions can be validated).   

 

The difference is again one of philosophy.  It is commonly forgotten that statistical inference 

methods were originally developed for fitting distributions to data in which the modelling errors 

can be treated as measurement errors, assuming that the chosen distributional form is 

correct.  The approach is easily extended to regression and other more complex inference 

problems, but in each case, it is assumed that the model structure is correct and that the 

model errors can be treated as simple additive (or multiplicative if treated in log transform) 

measurement errors (see the difficulties that this can lead to in the discussion, for example, 

by Draper, 1995).  Techniques such as reversible jump Monte Carlo Markov Chain methods 

have been developed to try to evaluate and combine the predictions of many potential model 

structures but in each case each individual model is treated as if it were correct.   The 

“measurement error” terminology is still in use today in the calibration of complex simulation 

models (e.g. Thiemann et al., 2001 slip into this usage (p.2525) even though elsewhere they 

make clear the multiple sources of error), despite the fact that input data errors, model 

structural errors and other sources of error mean that the model errors are often much larger 

than sensible assumptions about measurement errors and despite the empirical evidence that 

there may not be a clear optimum in the model space.   

 

So what are the implications of taking an alternative view, one in which it is accepted that the 

hydrological model (and the error model) may not be structurally correct and that there may 

not be a clear optimal model, even when multiple performance measures are considered?  

This situation is not rare in hydrological modelling.  It is commonplace.  It should, indeed, be 

expected because of the overparameterisation of hydrological models, particularly distributed 

models, relative to the information content of observational data available for calibration of 

parameter values (even in research catchments).  But modellers rarely search for good 

models that are not “optimal”.  Nor do they often search for reduced dimensionality models 

that would provide equally good predictions but which might be more robustly estimated (e.g. 

Young, 2002). Nor do they often consider the case where the “optimal” model is not really 

acceptable (see, for example, Freer et al., 2002); it is, after all, the best available.   

 

This paper tries to address some of these problems in the form of a manifesto for a future 

research programme.  It starts with a brief summary of the causes of equifinality.  It then 

considers the problem of parameter and uncertainty estimation in the ideal case of the perfect 

model.  More realistic non-ideal cases are then discussed, together with techniques for model 

evaluation.  The important issues of separation of uncertainties and model order reduction are 

identified as important for future research. 
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Equifinality, ambiguity, non-uniqueness, ill-posedness and identifiability 
The equifinality thesis is intended to focus attention on the fact that there are many 

acceptable representations that cannot be easily rejected and that should be considered in 

assessing the uncertainty associated with predictions.  The concept owes a lot to the HSY 

analysis of multiple behavioural models in sensitivity analysis.  The term equifinality has a 

long history in geomorphology, indicating that similar landforms might arise as a result of quite 

different sets of processes and histories.  Thus from the landform alone, without additional 

evidence, it might be difficult to identify the particular set of causes or to differentiate different 

feasible causes (see discussion in Beven, 1996).  The term was also used in the text of 

General Systems Theory of von Bertalanffy (1968) and was adopted for the environmental 

modelling context by Beven (1993).  Implicit in this usage, is the rejection of the assumption 

that a single correct representation of the system can be found given the normal limitations of 

characterisation data. 

 

For any particular set of observations, of course, some of those acceptable or behavioural 

models will be better in terms of one or more performance measures.  The important point, 

however, is that given the sources of error in the modelling process, the behavioural models 

cannot easily be rejected as feasible representations of the system given the level of error in 

representing the system.   In one sense, this can be viewed as a problem of decidability 

between feasible descriptions (hypotheses) of how the hydrological system is working 

(Beven, 2002a). 

 

Decidability between models in hypothesis testing raises an interesting issue, however, linked 

to the information content of calibration data.  To be able to represent different hypotheses 

about the processes of a hydrological system, it is necessary to have representations or 

parameterisations of those processes.  This is why there has been a natural tendency for 

models to grow in complexity.   Additional complexity will generally require additional numbers 

of parameters to be defined, the values of which will require calibration – but often without 

additional data being collected with the aim of determining those values (and in many cases, 

of course, direct measurement of parameters at the scale required by the model may not be 

possible, see Beven, 1989, 2002a,b).   Thus, testing different hypotheses will tend to lead to 

more overparameterisation and equifinality and it should be expected that even if we could 

define the mathematically “perfect” model, it will still be subject to equifinality. 

 

Environmental models are therefore mathematically ill-posed or ill-conditioned.  The 

information content available to define a modelling problem does not allow a single 

mathematical solution.   Non-uniqueness in model identification, particular for models that are 

complex relative to the quantity and quality of data available for model calibration, has also 

been used widely to indicate that multiple models might give equally acceptable fits to 
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observational data.  It has been primarily used in the discussion of the difficulties posed in 

parameter calibration for response surfaces that show many local minima, one of which may 

be (marginally) the global optimum, at least for that set of observations.  Non-uniqueness 

(also non-identifiability) has usually been seen as a difficulty in finding the global optimal 

model and, by implication, the true representation of the system.  It has not generally been 

viewed as an intrinsic characteristic of the modelling process.   

 

Ambiguity has also been used to reflect model identification problems in a variety of ways .  

Beck and Halfon (1991) refer to ambiguity in distinguishing models identified on the same 

data set that have overlapping prediction limits.   It is used somewhat differently by Zin (2002) 

to denote models for which predictions made with different stochastic realisations of the input 

data that cannot be distinguished statistically.   Ambiguity is perhaps a less contentious word 

than equifinality but here the use of the latter is intended to emphasise that, given the normal 

limitations on the data for model evaluation, the decidability problem may be greater than 

statistical ambiguity between parameter sets but may also extend to real differences in 

process explanation when multiple model structures (or multiple functionality within a model 

structure) are considered.   

 

Equifinality, ambiguity, non-uniqueness and ill-posedness have been discussed in this section 

with respect to the identifiability of models, parameter values and sets of parameter values.  

These terms are very often used in this way by modellers.  It is, however, worth noting that 

there is another sense in which identifiability can be used in respect of environmental 

systems, i.e. whether the dominant modes of response of the system are identifiable.  

Hydrological systems, for example, often show relatively simple impulse response 

characteristics that can often be surprisingly well approximated by a linear transfer function 

(or unit hydrograph), even if the system gain may be nonstationary or nonlinear and difficult to 

predict (but see Young, 2001, 2003; Young et al., 2004).  Where there is a dominant mode of 

response, it may well be possible to identify it relatively unambiguously.  In one sense, the 

various parametric models that can be used to represent that response, with all their potential 

for equifinality and different process interpretations, are just different attempts to simulate the 

same response characteristics of the system.  The ambiguity lies not in the system itself, but 

only in deciding about different representations of it  (see for example the different 

explanations of “fractal” residence time distributions in Kirchner et al., 2001). 

 
 
Equifinality and the Deconstruction of Model Error 
That is not to say that any model error is arising totally from the different model  

representations of the system (model structures and parameter sets).  There is a problem, in 

any modelling application, of trying to understand the origins of the error between model 

predictions of a variable and any observational data of the same variable.  The difficulty 
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comes because there are a variety of sources for the error but, at any given time, only one 

measure of the deviation or residual between prediction and observation at a site (i.e. the 

“model error”).  Multiple observation sites or performance measures can, of course, produce 

conflicting prediction errors (an improvement in one prediction results in a deterioration in 

another).  Thus, deconstruction of the error into its source components is difficult, particularly 

in cases common in hydrology where the model is nonlinear and different sources of error 

may interact in a nonlinear way to produce the measured deviation Beven, 2004b,c).  There 

are obvious sources of error in the modelling process, for example, the error associated with 

the model inputs and boundary conditions, the error associated with using an approximate 

model of the real processes, and the error associated with the observed variable itself.   

 

There are also some less obvious sources of error, such as the variable predicted by a model 

not being the same quantity as that measured, even though they might be referred to by the 

same name, because of heterogeneity and scale effects, nonlinearities or measurement 

technique problems (the incommensurability problem of Beven, 1989).  A soil moisture 

variable, for example, might be predicted as an average over a model grid element several 

metres in spatial extent and over a certain time step; the same variable might be measured at 

a point in space and time by a small gravimetric sample, or by time domain reflectrometry 

integrating over a few tens of cm, or by a cross-borehole radar or resistivity technique, 

integrating over several metres.  Only the latter might be considered to approach the same 

variable as predicted by the model, but may itself be subject to a model inversion that 

involves additional parameters in deriving an estimate of soil moisture (see, for example, the 

discussion of instrument filters by Cushman, 1986, though this is not easily applied in 

nonlinear cases). 

 

In rainfall-runoff modelling, the predictions are most usually compared with the measured 

discharges at the outlet from a catchment area.  This may be considered to be the same 

variable as that predicted by the model, although it may be subject to measurement errors 

due to underflow or bypassing and rating curve inaccuracies, especially at very high and very 

low flows. 

 

Since it is difficult to separate the sources of error that contribute to model error, as noted 

above it is often assumed to be adequately treated as a single lumped additive variable in the 

form: 

  Q(X,t) = M(Θ,X,t) + ε(X,t)     (1) 

 

where Q(X, t) is a measured variable, such as discharge, at point X and time t; M(Θ,X, t) is 

the prediction of that variable from the model with parameter set Θ; and ε(X, t) is the model 

error at that point in space and time.   Transformations of the variables of Eqn. (1) can also be 

used where this seems  more appropriate to constrain the modelling problem to this form.  
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Normal statistical inference then aims to identify the parameter set Θ that will be in some 

sense optimal, normally by minimising the residual error variance of a model of the model 

error, that might include its own parameters for bias and autocorrelation terms with the aim of 

making the residual error iid. This additive form allows the full range of statistical estimation 

techniques, including Bayesian updating, to be used in model calibration.   The approach has 

been widely used in hydrological and water resources applications, including flood forecasting 

involving data assimilation (e.g. Krzysztofovicz, 2002; Young, 2002 and references therein); 

groundwater modelling, including Bayesian averaging of model structures (e.g. Neumann, 

2003); and rainfall-runoff modelling (e.g. Kavetski et al., 2002; Vrugt et al., 2002, 2003). 

 

In principle, the additive error assumption that underlies this form of uncertainty is particularly 

valuable for two reasons: that it allows checking of whether the actual errors conform to the 

assumptions made about the structural model of the errors and that, if this is so, then a true 

probability of predicting an observation, conditional on the model can be predicted.   These 

advantages, however, may be difficult to justify in many real applications where poorly known 

input errors are processed through a nonlinear model subject to structural error and 

equifinality (see Hall, 2003, for a brief review of a more generalised mathematisation of 

uncertainty, including discussion of fuzzy set methods and the Dempster-Shafer theory of 

evidence).  One implication of the limitations of the additive error model is that it may actually 

be quite difficult to estimate the true probability of predicting an observation, given one or 

more models, except in ideal cases.   

 
 
Ideal cases: theoretical estimation of uncertainty 
There are many studies in the hydrological literature, dating back to at least Ibbitt and 

O’Donnell (1970) and continuing to at least Thiemann et al. (2001), where the effects of errors 

of different types on the identification of model parameters have been studied based on 

hypothetical simulation where it is known that the model is correct.   This is the ideal case.  A 

model run is made, given a known input series and known parameters, to produce a noise 

free set of “observations”.  The input data and observations are then corrupted by different 

assumed error models, generally with simple Gaussian structure, and a parameter 

identification technique is used to calibrate the model to see whether the original parameters 

can be recovered in the face of different types and levels of corruption.  Any concerns about 

the level of model structural error can be neglected in such cases.  The argument is that any 

model identification procedure should be shown to work for error corrupted ideal cases so that 

the user can have more faith in such a procedure in actual applications.  This argument 

depends, however, on the application in practice not being distorted by model structural error 

(see next section). 
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If the errors are indeed Gaussian in nature, or can be transformed to be, then the full power of 

statistical likelihood theory can be used.  The simplest assumption, for the simulation of a 

single variable over a number of time steps (T) is that the errors ε(t) are an independent and 

identically distributed Gaussian variable with zero mean and constant variance.  Then, the 

probability of predicting a value of Q(t) given the model M(Θ) based on the additive model of 

Eqn.(1) is given by: 

 

L(Q|M(Θ)) ∝ (σe
2)-T/2exp(σe

2/σo
2)     (2) 

 

where σe
2 is the variance of the error series, σo

2 is the variance of the observations,  and T is 

the number of time steps.   

 

The variance of the parameter estimates based on this likelihood function can be obtained 

from evaluating the Hessian of the log likelihood function at the point where the variance of 

the error series is minimised (or more generally where the log likelihood is maximised).  Note, 

however, that for nonlinear models this will not produce the same result as evaluating (2) for 

every combination of parameters and using the estimate of the local error variance, even in 

the immediate region of the optimum.  In this case a more direct evaluation of the nature of 

the likelihood surface using Monte Carlo, or Monte Carlo Markov Chain (MC2) sampling 

techniques would be advantageous (e.g Kuczera and Parent, 1998, Vrugt et al. 2002)  

 

For this ideal case, if the model fits the data very well and the error variance is very small, the 

likelihood function will be very peaked.  This will be especially so if the model fits well over a 

large number of time steps (note the power of T/2 in Eqn.(2)).   The resulting variance of the 

parameter estimates will be very small.  This arises out of the theory, regardless of whether 

there are other model parameter sets that produce error variances that are very nearly as 

small elsewhere in the model space.  

 

This is a consequence of the implicit assumption that the optimal model is correct.   In 

hypothetical ideal cases this is clearly so; but it is not such a good assumption in hydrological 

modelling of real catchment, groundwater or water quality systems. Simple assumptions 

about the error structures are convenient in applying statistical theory but are not often borne 

out by actual series of model errors which may show changing bias, changing variance 

(heteroscedasticity) and changing correlation structures under different hydrological 

conditions (and for different model structures or parameter sets).  It is known for linear 

systems that ignoring such characteristics, or wrongly specifying the structure of the error 

model, will lead to bias in the estimates of parameter values.  The same will be the case for 

nonlinear systems, but there is then no guarantee that, for example, Gaussian errors in model 

inputs will lead to an additive Gaussian error model of the form of Eqn.(1). 
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There are ways of dealing with complex error structures within statistical likelihood theory; 

one is to try and account for the nature of the structure by making the model of the errors 

more complex.  For example, methods to estimate a model inadequacy function have been 

proposed by Kennedy and O’Hagan (2001); to deal with heteroscedasticity by transformation 

(e.g. Box and Cox, 1964) and to integrate over a distribution of input errors by Kavetski et al. 

(2002).  The aim is to produce an error series for the model error that has a constant variance 

and (relative) independence in time and space to allow the various parameters and correction 

terms to be more easily estimated.  

 

In all these approaches, the implicit assumption that the model is correct remains and leaves 

open the possibility for the (non-physical) structural model of the errors compensating for 

errors in the model structure and from other sources (Beven, 2004c). Other feasible models 

that provide acceptable simulations are then commonly neglected.  The interest is only in 

efficiently identifying that true model as some optimum in the space of feasible models. This is 

understandable in the ideal case because it is known that a “true” model exists.  It does not 

necessarily follow that those other acceptable models are not of interest in more realistic 

cases where the possibility of model structural error may undermine the assumption that the 

model is correct (or more generally that the effects of model structural error can be treated 

simply as a linear contribution to the total model error of Eqn.(1)). 

 
Realistic cases: compensation of uncertainty 
In more realistic cases, it is not possible to assume that the model structure is correct nor is it 

possible to separate the different sources of model uncertainty.  We can assess the series of 

total model errors in space and time that results from the individual sources of errors in 

conjunction with the effects of model structural error.  In fact, even the true measurement 

error is independent of model structural error only for the case where predicted variables and 

observed variables are truly commensurate.  If scale, nonlinearity and heterogeneity issues 

arise in comparing predictions with measurements then the effective measurement error may 

also interact with model structural error.  

 

There is then significant possibility for calibrated parameter values to compensate for different 

types of error, perhaps in complex ways.  An obvious example is where it is attempted to 

adjust an input series, such as rainfall inputs to a rainfall-runoff model, in calibration (e.g. 

Kavetski et al., 2002).  At the end of a long dry period it is common for rainfall-runoff models 

to underpredict stream discharges during the wetting up period.  An increase in the rainfalls 

for the storms during this period will result in smaller model errors (in a nonlinear way), but 

might also increase soil water storage too much, but this could be compensated by reducing 

rainfalls in later storms to reduce model errors.  The estimated input errors may then be only 

partially related to real errors in the estimate of rainfall over the catchment area.  To make the 

problem even more intractable, the compensatory effect may be dependent on the particular 
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sequence or realisation of the different types of errors, such that assymptotic assumptions are 

not justified.  Certainly, we generally find in optimisation studies that optimal parameter sets 

are dependent on the period of calibration data used. 

 

There does not appear to be a way around this problem without making some very strong 

(and generally difficult to justify) assumptions about the nature of the errors.  What it does 

imply, however, is that many different representations (model inputs, model structures, model 

parameter sets, model errors) might be consistent with the measurements with which the 

predictions are compared in calibration (allowing for the errors associated with those 

measurements).   Equifinality is endemic to this type of environmental modelling.   This would 

be the case even if we could be sure that we had a set of equations that were a good 

representation of the processes involved (the “perfect model” of Beven, 2002a, noting that 

such perfection will never be achievable) but, as is normally the case, only limited information 

on which to estimate the parameter values of those equations in any particular application. 

 

There are set-theoretic approaches that reject the idea of an optimal model (which might in 

any case be very dependent on the particular set of measurement and input errors associated 

with the period of data used) in favour of finding a set of representations (model inputs, model 

structures, model parameter sets, model errors) that are behavioural in the sense of being 

acceptably consistent with the (non-error-free) observations (see below).  This is the basis of 

the Generalised Likelihood Uncertainty Estimation (GLUE) methodology of Beven and Binley 

(1992; Beven and Freer, 2001).   There remains the question of how to evaluate whether a 

model should be considered acceptable or behavioural. 

 
 
Equifinality and Model Evaluation 
Once the equifinality thesis is given serious consideration for the simulation problem, the 

question of model evaluation is particularly interesting.  It is not just a matter of finding a set of 

justifiable assumptions about the structure of the total model error (with or without post-

calibration validation), or of different errors contributing to the total model error.  It is rather a 

matter of finding a set of models that satisfy some conditions of acceptability or, more 

importantly, survive tests of rejection as non-behavioural.  It is often the case that if model 

predictions are examined in sufficient detail it will be possible to reject all the available models 

unless some degree of error is allowed over and above what could be considered to be strict 

“measurement error”.   In taking the more realistic view of sources of model error outlined 

above this is perfectly understandable, even if it creates practical difficulties that we would 

rather avoid.  

 

However, allowing some degree of error in defining some threshold of acceptability means 

that there will never be a clear-cut boundary between behavioural and non-behavioural 
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models.   Monte Carlo experiments show that there is a spectrum of performance across the 

range of different parameter sets, from the very best found, to ones that are totally 

unacceptable (see for example, Figure 1).   Those that are easily identified as unacceptable 

can, of course, be rejected straight away.  Those that are the very best found would normally 

be retained as behavioural (or more traditionally as “optimal”) but would not necessarily 

always be adequate in the sense of being entirely consistent with the observations (see Freer 

et al., 2002).   The threshold of acceptability, however, is difficult to define objectively for 

cases where model structural error is unknown and where the best values of a performance 

measure found for a particular model tend to vary from application to application.  Thus how 

best to provide a criterion of model acceptability (or rejection) remains an open, but 

interesting, question. 

 

In applications of the GLUE methodology and other set-theoretic calibration methods, a wide 

variety of performance measures and rejection criteria have been used in the past.  All can be 

considered as a way of mapping of the hydrological system of interest into a model space  

(Beven, 2002a,b).   Initially, the mapping will be highly uncertain but as more information 

about the system becomes available, then it should be easier to identify those parts of the 

model space that give behavioural simulations.  The approach is sufficiently general to 

subsume both traditional optimisation (mapping to a single point in the model space); 

stochastic identification (mapping to a small region controlled by the identified covariance 

structure); the equifinality thesis if all behavioural model structures and parameter sets are 

considered; and hypothesis testing or Bayesian updating in refining the mapping (Beven, 

2002a,b; Beven and Young, 2003). 

 

 
Set Theoretic Methods for model evaluation 
Monte Carlo based set-theoretic methods for model calibration and sensitivity analysis have 

been used in a variety of disciplines for some 50 years.  The first use in geophysics was 

perhaps that of Press (1968) where a model of the structure of the earth was evaluated in the 

light of knowledge about 97 eigenperiods, travel times of compressional and shear waves, 

and the mass and moment of inertia of the earth.  Parameters were selected randomly from 

within specified ranges for 23 different depths which were then interpolated to 88 layers within 

a spherical earth.  Ranges of acceptabilty were set for the predictions to match these 

observational data.  These were applied successively within a hierarchical sampling scheme 

for the compressional, stress and density parameters.  Five million models were evaluated of 

which 6 passed all the tests (although of those three were then eliminated as implausible 

because of having a negligible density gradient in the deep mantle).  The “standard model” of 

the time was also rejected on these tests.   Subjective choices were made both of the 

sampling ranges for the parameters and for the multiple limits of acceptability.  Those choices 

are made explicit, and are therefore open to discussion (indeed, Press discusses an 
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additional constraint that might be evoked to refine the results to a single model but notes that 

“while reasonable, it is not founded in either theory or experiment”, p.5233).    

 

Use of this type of Monte Carlo method in hydrology and water quality modelling dates back 

(at least) to the 1970s (Whitehead and Young, 1979; Hornberger and Spear, 1981; Gardner 

and O’Neill, 1983; Young, 1983).  In many studies the set of feasible models has been 

defined a priori and the Monte Carlo realisations are then used as a means of propagating 

prediction uncertainties in a nonlinear modelling context.  The more interesting question, 

however, is to let the available observations condition the behavioural models, without making 

strong prior assumptions about the parameter distributions or feasible models.  This was the 

essence of the Generalised Sensitivity Analysis of Hornberger and Spear (1981) which was 

based on assessing all the model realisations into the set of behavioural models and the set 

of non-behavioural models according to some ranking of model performance.   Such studies 

rapidly found, however, that in many cases there will be no clear demarcation between 

behavioural and non-behavioural models and, in the case of Hornberger et al. (1985) resort 

was made to declaring the top 30% as behavioural in a preliminary sensitivity analysis. 

 

Multiple measures, as in the Press (1968) study, should help in this respect, if a behavioural 

model is required to satisfy some prior limits of acceptability (see also Hornberger and Spear, 

1981).  It is possible to define multiple performance measures for a single predicted variable 

such as discharge (sum of squared errors, sum of absolute errors in peak discharge, sum of 

squared log errors etc, see for example Parkin et al., 1996) but more information will be 

added to the conditioning process if a model can be evaluated with respect to distributed 

observations or multiple chemistry characteristics in water quality.   

 

This does, however, also introduce additional difficulties as soon as it is realised that local 

observations might require local parameter values to represent adequately the local 

responses unless generous limits of acceptability are used to allow for the difference in 

meaning between the prediction at a point by a model using global parameter values (and 

non-error free input data and model structures) and a local observation.  In distributed 

groundwater modelling, this type of model evaluation suggests that equifinality is endemic to 

the problem (see Feyen et al., 2001; Binley and Beven, 2003).  Similarly, in rainfall-runoff 

modelling, the use of distributed observational information (disappointingly) does not appear 

to help much in eliminating the equifinality problem (see Lamb et al., 1998; Blazkova et al., 

2002; Blazkova and Beven, 2003;  Christiaens and Feyen, 2002). 

 

 
Extending the concept of the behavioural model 
The concept of such set-theoretic model evaluation is simple.  Models that do not fall within 

the multiple prior limits of acceptability should be rejected.  This allows the possibility of many 
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feasible models satisfying the limits of acceptability and being accepted as behavioural.  It 

also, however, allows the possibility that none of the models tried will satisfy the limits of 

acceptability.  This was the case for the distributed hydrological model in Parkin et al. (1996), 

where all parameter sets failed 10 out of 13 limits of acceptability, and for the application of 

TOPMODEL reported in Freer et al. (2002).  It was also the case for a model of the algal 

dynamics in Lake Veluwe reported in van Straten and Keesman (1991).  They had to increase 

their limits of acceptability by 50% to obtain any behavioural realisations of the simplest model 

tried, “to accommodate the apparent structural error” (p175).   

 

Thus, any model evaluation of this type needs to take account of the multiple sources of 

model error more explicitly.  As noted above, this is difficult for realistic cases.  Simplifying the 

sources of error to input errors, model structural errors and true measurement errors is not 

sufficient because of the potential for incommensurability between observed and predicted 

variables.  There is no general theory available for doing this in nonlinear dynamic cases.  

Most modellers simply assume that they are the same quantity, even where this is clearly not 

the case. Thus, in assessing model acceptability it is really necessary to decide on an 

appropriate level of “effective observation error” that takes account of such differences.  When 

defined in this way, the effective observation error need not have zero mean or constant 

variance, nor need it be Gaussian in nature, particularly where there may be physical 

constraints on the nature of that error.   Once this as been done, then it should be required 

that any behavioural model should provide all its predictions within the range of this effective 

observational error.   Thus a model will be classified as acceptable if: 

 

Qmin(X,t) < M(Θ,X,t) < Qmax(X,t) for all Q(X,t)    (3) 

 

Within the range, for all Q(X,t), a positive weight could be assigned to the model predictions, 

M(Θ,X,t), according to its level of apparent performance.  The simplest possible weighting 

scheme that need not be symmetric around the observed value, given an observation Q(X,t) 

and the acceptable range [Qmin(X,t), Qmax(X,t)] is the triangular relative weighting scheme 

(Figure 2A) 

 

This is equivalent to a simple fuzzy membership function or relative likelihood measure for the 

set of all models providing predictions within the acceptable range.  A core range of 

observational ambiguity could be added if required (Figure 2B).  Other types of functions 

could also be used, including the Beta function that is defined by Qmin, Qmax and a shape 

parameter (Figure 2C).   These weights for individual data points can be combined in different 

ways to provide a single weight associated with a particular model.   These weights can be 

used within the GLUE framework in forming prediction limits, reflecting the performance of 

each behavioural model resulting from this type of evaluation.   Models that predict 

consistently close to the observational data will have a high weight in prediction; those that 
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predict outside the acceptable effective observational error will be given zero weight.  In 

forming prediction limits in this way, there is an implicit assumption (as in previous 

applications of GLUE) that the errors in prediction will be “similar” (in all their complexity)  to 

those in the evaluation period. 

 

Functions with infinite tails, such as the Gaussian distribution, would need to be truncated at 

the acceptable limits, otherwise the weighting function will also have infinite tails and a poor 

model would not be rejected, just given a very small likelihood or membership value.  This 

might not be important in statistical inference when seeking an optimal model, but it is 

important in this context when trying to set limits for acceptable models.   For those models 

that meet the criteria of (3) and are then retained as behavioural, all the methods for 

combining such measures available from Fuzzy Set Theory are available (e.g. Klir and Folger, 

1988; Ross, 1995).   Other possibilities of taking account of the local deviations between 

observed and predicted quantities for the behavioural models, might also be used.   

 

This methodology gives rise to some interesting possibilities.  If a model does not provide 

predictions within the specified range, for any Q(X,t), then it should be rejected as non-

behavioural.   Within this framework there is no possibility of a representation of model error 

being allowed to compensate for poor model performance, even for the “optimal” model.  If 

there is no model that proves to be behavioural then it is an indication that there are 

conceptual, structural or data errors (though it may still be difficult to decide which are the 

most important).  There is, perhaps, more possibility of learning from the modelling process 

on occasions when it proves necessary to reject all the models tried. 

 

This implies that consideration also has to be given to input and boundary condition errors, 

since, as noted before, even the “perfect” model might not provide behavioural predictions if it 

is driven with poor input data error.  Thus, it should be the combination of input/boundary data 

realisation (within reasonable bounds) and model parameter set that should be evaluated 

against the observational error.  The result will (hopefully) still be a set of behavioural models, 

each associated with some likelihood weight (Figure 3A).  Any compensation effect between 

an input realisation (and initial and boundary conditions) and model parameter set in 

achieving success in the calibration period will then be implicitly included in the set of 

behavioural models.   

 

The explicit acceptance that obtaining a behavioural model depends on a realisation of the 

input and boundary condition errors does not, however, in itself provide any information on 

how to construct such realisations.   Such errors are likely to be structured and nonstationary 

in time and space, and dependent on the dynamics of the system.    They are most unlikely to 

be multivariate Gaussian with simple variance and correlation structures. 
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There is also the possibility that the behavioural models defined in this way do not provide 

predictions that span the range of the acceptable error around an observation (Figure 3B).  

The behavioural models might, for example, provide simulations of an observed variable 

Q(X,t) that all lie in the range Q(X,t) to Qmax(X,t), or even just a small part of it.  They are all 

still acceptable, but are apparently biased.  This provides real information about the 

performance of the model (and/or other sources of error) that can be investigated and allowed 

for specifically at that site in prediction (the information on the quantile deviations of the 

behavioural models, as shown in Figure 3C, can be preserved, for example).  Time series of 

these quantile deviations might provide useful information on how the model is performing 

across a range of predictions.. 

 

This seems to provide a very natural approach to model calibration and evaluation, that 

avoids making difficult assumptions about the nature of the modelling errors other than 

specifying the acceptable effective observational error.  It also focuses attention on the 

difference between a model predicted variable (as subject to input and boundary condition 

uncertainty) and what can actually be observed in the assessment of the effective 

observational error where this is appropriate; potential compensation between input and 

structural error; and the possibility of real model failure.  

 

It is always, of course, possible to avoid rejection of all the models tried by extending the 

range of acceptable error (or adding a compensating statistical error model).  This might also 

depend on the requirements of the modelling application, but the important point is that there 

would need to be an explicit recognition and argument for doing so.  An approach based on 

rejection rather than optimisation, also tends to focus attention on particular parts of the 

record that are not well simulated or particular “outlier” errors.  In this way we might learn 

more about model performance (and, hopefully, hypotheses about processes) 

 
 
Equifinality, confidence limits, tolerance limits and prediction limits 
In statistical inference, a number of different types of uncertainty limits are usually recognised. 

Hahn and Meeker (1991) for example suggest that confidence limits should contain a 

specified proportion of some unknown characteristic of a population or process (e.g. a 

parameter value); tolerance limits should contain some specified proportion of the sampled 

population or process (e.g. the population of an observed variable); prediction limits should 

contain a specified proportion of some future observations from a population or process.   

These simple definitions, underlain by probability theory, do not carry over easily to a situation 

that recognises multiple behavioural models and the possibility of model structural error. 

 

Whenever predictions of future observations are required, the set of behavioural models can 

be used to give a prediction range of model variables as conditioned on the process of model 
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evaluation.  The fuzzy (possibilistic) or probabilistic weights associated with each model can 

be used to weight the predictions to reflect how well that particular model has performed in 

the past. The weights then control the form of a cumulative density (possibility) function for 

any predicted variable over the complete set of behavioural models, from which any desired 

prediction limits can be obtained.  The weights can be updated as new observations are used 

to refine the model evaluation.  This is the essence of the GLUE methodology and of other set 

theoretic approaches to model prediction (e.g. Beven and Freer, 2001).   

 

Note, however, that while it is necessary to assume that the behavioural models in calibration 

will also be behavioural in prediction, this procedure only (at best) gives the tolerance limits 

(in the calibration period) or the prediction limits of the weighted simulations of any variable.  

These prediction limits will be conditional on the choice of limits of acceptability; the choice of 

weighting function; the range of models considered; any prior weights used in sampling 

parameter sets; the treatment of input data error etc.  All these components of estimating the 

uncertainty in the predictions must, at least, be made explicit.  However, given the potential 

for input and model structural errors, they will not guarantee that a specified proportion of 

observations, either in calibration or future predictions, will lie within the tolerance or 

prediction limits (the aim, at least, of a statistical approach to uncertainty).   Nor is this 

necessarily an aim in the proposed framework.  In fact it would be quite possible for the 

tolerance limits over all the behavioural models to contain not a single observed value in the 

calibration period (as in Figure 3B), and yet for all of those models to still remain behavioural 

in the sense of being within some specified acceptable error limits for all observed quantities.  

The same could clearly be true in prediction of future observations, even if the assumption 

that the models remain behavioural in prediction is valid. 

 

Similar considerations apply in respect of the confidence limits for a parameter of the model.  

Again, it is simple to calculate likelihood weighted marginal distributions of any parameter 

over all the behavioural models.   The marginal distributions can have a useful role in 

assessing the sensitivity of model outputs to individual parameters (e.g. Hornberger and 

Spear, 1981; Young, 1983; Beven and Binley, 1992; Beven and Freer, 2001).  For each of 

those models, however, it is the parameter set that results in acceptable behaviour (in 

conjunction with an input realisation).  It is quite possible to envisage a situation in which a 

parameter set based on the modal value of each of the parameter marginal distributions is not 

itself behavioural (even if this might be an unlikely scenario).  Any confidence limits for 

individual parameters derived from these marginal distributions therefore cannot have the 

same meaning as in traditional inference (in the same way that the use of likelihood has been 

generalised within this framework).  Marginal parameter quantiles can, however, be specified 

explicitly. 
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This account of the different uncertainty limits raises a further issue in prediction as to how 

best to take account of any information on deviations between the behavioural model 

predictions and observed quantities (as demonstrated in Figure 3C). One approach is the use 

of probabilistic weights based on a formal likelihood function is then a special case of this 

procedure for cases where strong (normally Gaussian, with or without bias, heteroscedasticity 

and autocorrelation) assumptions about the error structure can be justified (see Romanowicz 

et al., 1994, 1996, who used classical likelihood measures within the GLUE framework).  The 

advantage of doing so is that a formal likelihood function takes account of the residual error in 

predicting an observed value given the model.  The difficulties in doing so are that it adds 

error model parameters to be identified and that there is no reason to expect that the 

structural model of the errors should be Gaussian or the same across all the behavioural 

models (albeit that these are often used as convenient assumptions).    

 

As noted above, an alternative approach based on preserving calibration information on 

quantile deviations of the behavioural models might be possible.  This can be done in a 

consistent way for any particular observation by transforming the prediction quantiles of the 

behavioural models to the fuzzy membership function that defines model acceptability (Figure 

3C).  In prediction it would then still be necessary to understand how those deviations vary 

with different conditions (magnitude and ordering of forcing events, different prediction sites, 

etc) in prediction (see also predicting the impacts of change below).   This is the subject of 

current research, particularly for deviations showing correlation in space and time. 

 

There is a particular difficulty for cases where it is a combination of an input realisation and 

parameter set that gives a behavioural model.  In prediction, it is then easy to use the 

behavioural parameter sets to provide likelihood weighted predictions as before, but the input 

data might also be in error in the prediction period.  It will not be known a priori which input 

data realisations will give good predictions with a particular model parameter set, unless 

analysis of results during the calibration period reveal some strong interaction between the 

characteristics of an input realisation and a behavioural parameter set.  Note, however, that 

this will be an issue in any prediction problem for which an attempt is made to allow for input 

data errors, especially if this is done on a forcing event by event basis (e.g. Kavetski et al., 

2002).   

 

 
Equifinality and model validation 
Model validation is a subject fraught with both practical and philosophical undertones (see 

Stephenson and Freeze, 1974; Konikow and Bredehoft, 1992; Oreskes et al., 1994; Anderson 

and Bates, 2001; Beven, 1993, 2001b, 2002a,b). The approach outlined in the previous 

section also provides a natural approach to model validation or confirmation, even when 

faced with a set of behavioural models.  All the time that those models continue to provide 
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predictions within the range of the “effective observational error” (allowing for input data 

errors) they will continue to be validated in the sense of being behavioural.  When they do not, 

they will be rejected as non-behavioural.   

 

There are clearly, however, a number of degrees of freedom in this processes.  Stephenson 

and Freeze (1974) were perhaps the first in hydrology to point out that the dependence of 

model predictions on input and boundary condition data made strict model validation 

impossible for models used deterministically, since those data could never be known 

precisely.  The same holds within the methodology proposed here since whether a model is 

retained as behavioural depends on a realisation of input and boundary condition data.   

Model evaluation with respect to new data will then be conditional on the input scenarios used 

to drive the model. 

 

There is also the question of defining the effective observational error.  The more error that is 

considered allowable, the less likely it is that models will be rejected.  Clearly, the error limits 

that are used in any particular study must be chosen on the basis of some reasoning about 

both the observed and predicted variables, rather than simply making the error limits wide 

enough to ensure that some models are retained.  We do not, after all, learn all that much 

about the representation of hydrological processes from models that work; we do (or at least 

should) learn from when we are forced to reject all the available models, even taking account 

of errors in the process.  Strict falsification is not, however, so very useful when in virtually all 

environmental modelling, there are good reasons to reject models when they are examined in 

detail (Beven, 2002a; Freer et al., 2002).  What we can say is that those models that survive 

successive evaluations suitable for the application are associated with increasing confirmation 

(even if not true validation). 

 

 

Equifinality and model spaces: sampling efficiency issues 
We have noted that acceptance of the equifinality thesis implies that there will be the 

possibility of different models from different parts of (a generally high dimensional) model 

space that will provide acceptable simulations, but that the success of a model may depend 

on the input data sequence used.   In one sense, therefore the degrees of freedom in 

specifying input data sequences will give rise to additional dimensions in the model space. 

 

There is therefore a real practical issue of the equifinality thesis of sampling the model space 

to find behavioural models (if they exist at all).   Success in this endeavour will be dependent 

on the structure of where behavioural models are found in the space.   There is an analogy 

here with the problem of finding an optimum model on a complex response surface in the 

model space.  The problems of finding a global optimum, rather than local optima has long 

been recognised and a variety of techniques have been developed to do so successfully.  The 
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equifinality thesis extends the problem: ideally we require a methodology that both robustly 

and efficiently identifies those (arbitrarily distributed) regions of the parameter space 

containing behavioural models, but with the additional dimension that success on finding a 

behavioural model will depend on a particular realisation of the input variables required to 

drive the model. 

 

As in any identification problem the search, including modern MC2  methods, can be made 

much more efficient by making strong assumptions about prior likelihoods for individual 

parameters and about the shape of the response surface.   This seems a little problematic, 

however, in many environmental modelling problems when it may be very difficult to specify 

prior distributions for effective values of parameters and their covariation.  In the GLUE 

methodology, the normal (but not necessary) prior assumption has been to specify a feasible 

range for each parameter, to sample parameter values independently and uniformly within 

that range in forming parameter sets, and to allow the evaluation of the likelihood measure(s) 

to condition a posterior distribution of behavioural parameter sets that reflects any interaction 

between parameters in producing behavioural simulations.  This is a simple, minimal 

assumption approach, but one that will be very inefficient if the distribution of behavioural 

models within the model space is highly structured.   It has the advantage that all the samples 

from the model space can be considered as independent, although this assumption is not 

invariant with respect to scale transforms of individual parameter dimensions (e.g. from an 

arithmetic to a log scale).  It is also worth noting that where a model is driven with different 

realisations of stochastically varying inputs or parameter values, then each point in the model 

space may be associated with a whole distribution of model outcomes. 

 

 
Equifinality and model spaces: refining the search 
There may be some possibilities of refining this type of search.  The CART approach of Spear 

et al. (1994) for example, uses an initial set of sample model runs to eliminate regions of the 

model space where no behavioural models have been found from further sampling.  This 

could, of course, be dangerous where the regions of behavioural models are small with 

respect to the initial sampling density, though by analogy with some simulating annealing, 

MC2 and other forms of importance sampling methods, some safeguards against missing 

some behavioural regions could be ensured by reducing sampling density, rather than totally 

eliminating sampling, in the apparently non-behaviourly areas.   

 

The only real answer to characterising complex model spaces is, of course, to take more 

samples.  Thus current computational constraints may limit the applicability of the equifinality 

thesis to a limited range of models.  Global circulation models, for example, will certainly be 

subject to equifinality but are still computationally constrained to the extent that uncertainty in 

their predictions is essentially limited to a comparison of a small number of deterministic 
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simulations (though see www.climateprediction.net).  In other cases, it is relatively easy to run 

billions of sample models within a few days (Iorgulescu et al., 2004).  The more complex the 

model, and the longer the run time, then the more constrained will be the number of samples 

that will be practically feasible.  The question is when has a sufficient number of samples 

been taken to obtain an adequate representation of the different behavioural model 

functionalities that might be useful in prediction.  The answer will vary according to the 

complexity of the model space.  What can be done is to examine the convergence of the 

outputs from the process (uncertainties in predicted variables or posterior marginal parameter 

distributions if appropriate) as more samples are added to test whether a sufficient sample of 

behavioural models has been sampled. 

 

This problem will get less as computer power increases, particularly since it is often easy to 

implement this type of model space sampling  on cheap parallel processor machines.  It 

certainly seems clear that for the foreseeable future, computer power will increase much more 

quickly than any changes in modelling concepts in hydrology.  Thus we should expect that an 

increasing range of models will be able to be subjected to this type of analysis.  Preliminary 

studies are already being carried out, for example, with distributed hydrological models such 

as SHE (Christiaens and Feyen, 2002;  Vazquez, 2003) and distributed groundwater models 

(Feyen et al., 2001) albeit with reduced parameter dimensions. 

 

 

Conclusions 
One reaction to the preceding discussion will almost certainly be that the problems posed by 

equifinality of models is a transitory problem that will eventually go away as we learn more 

about hydrological processes and the characteristics of hydrological systems through 

improved measurement techniques.  It is not, therefore, a sufficiently serious problem to 

warrant throwing away all the useful statistical inference tools developed for model calibration.  

Within a Bayesian framework, for example, it should be much easier in future to provide good 

prior distributions of parameter values (and model structures for particular applications) that 

will provide adequate constraints on the calibration problem and predictive uncertainty. 

 

For forecasting problems involving data assimilation, with the requirement of implementing 

adaptive algorithms and minimum variance predictions to allow decision making in real time, I 

would agree. The aim then is to produce optimal forecasts and an estimate of their 

uncertainty rather than a realistic representation of the system.  However, for the simulation 

problem this is, arguably, a delusion at a time when we cannot demonstrate the validity of the 

water balance equation for a catchment area by measurement without significant uncertainty 

(Beven, 2001c).   For the foreseeable future it would seem that if equifinality is to be avoided 

then it will be avoided at the expense of imposing artificial constraints on the modelling 

problem (such as very strong prior assumptions about model structures, parameter values 
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and error structures).   It is important to note that the equifinality thesis should be viewed not 

as simply a problem arising from the difficulty of identifying parameter values but as the 

identification of multiple functional hypotheses (the behavioural models) about how the 

system is working (Beven, 2002a,b).  Associating likelihood values with the behavioural 

models, after an evaluation of model errors in calibration, is then an expression of the degree 

of belief in the feasible hypotheses.   Rejection of models as non-behavioural is a refinement 

of the feasible hypotheses in the model space (which can include multiple model structures as 

well as parameter sets). 

 

There remains the constraint that all the predictions made are necessarily dependent on how 

well the model structures considered represent the system responses and the accuracy of the 

data with which they are driven.  Again, the only way of testing whether a model (as functional 

hypothesis) is adequate is by testing it.   It is purely an empirical result that in applications to 

real systems, with their complexities and data limitations, such testing results in apparent (or 

real) equifinality. 

 

This analysis of the equifinality thesis has revealed the need for further research in a number 

of important areas. 

• How to define “effective observational error” for cases where the observation and 

(nonlinear) predictions are not commensurable variables (even if they have the same 

name). 

• How to define limits of acceptability for model predictions, depending on model 

applications. 

• How to separate the effects of model input and structural error and analyse the 

potential for compensating errors between them. 

• How to ensure efficiency in searching model parameter spaces for behavioural 

models. 

• How to allow for the potential deviations between the range of acceptable 

observational error and behavioural model predictions in calibration when making 

simulations of new periods, future conditions or “similar” ungauged sites. 

• How to deal with the potential for input error in simulation, when it may be particular 

realisations of inputs that provide behavioural models in calibration. 

• How to use model dimensionality reduction to reduce the potential for equifinality, 

particularly in distributed modelling. 

• How to present the resulting uncertainties as conditional probabilities or possibilities 

to the user of the predictions, together with an explicit comprehensible account of the 

assumptions used. 

 

These include some difficult research problems, for which it is hard to see a satisfactory 

resolution in the near future (and it is worth noting that Bruce Beck made a similar list of 
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research questions in his review paper of 1987 that shows significant overlap with the 

questions posed above).  Some are common to traditional approaches to model calibration 

but there is a clear difference in philosophy in the concepts presented here (Baveye, 2004; 

Beven, 2002a,b; 2004a,c).  This manifesto will perhaps not persuade many modellers that 

there is an alternative (more realistic) way to progress the science of hydrology.   The 

impossibility of separating out the different sources of error in the modelling process allows 

the difficulties of assessing model structural error to be avoided, and traditional methods of 

inference to remain attractive.  However, this seems naïve.  We need better methods to 

address the model structural error problem, or methods that reflect the ultimate impossibility 

of unambiguously disaggregating different sources of error.  A perspective from an 

acceptance of the equifinality thesis is, at least, a start in a promising direction.    
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Figure Headings 
 
Figure 1.  Dotty plots (projections of points on a likelihood surface onto a single parameter 

axis) resulting from Monte Carlo realisations of parameter sets for the MAGIC Long Term Soil 

Acidification and Water Quality Model (after Page et al., 2003).  Only 6 out of 12 parameters 

varied shown.  Model evaluation based on joint fuzzy membership function as to whether 

modelled concentrations fall within acceptable limits for several specific points in time.  

 

Figure 2.   Defining acceptable error around an observed value (vertical line), with the 

observed value, Q, not central to the acceptable range, Qmin to Qmax.  A.  Triangular, with peak 

at observation.  B. Trapezoidal, with inner core range of observational ambiguity.  C. Beta 

distribution with defined range limits. 

 

Figure 3A.  Histogram of simulated values over the set of behavioural models during 

calibration that include the observed value (indicated by vertical line). 

 

Figure 3B   Histogram of simulated values over the set of behavioural models during 

calibration that do not include the observed value (indicated by vertical line). 

 

Figure 3C  Cumulative distributions for the set of behavioural simulation predicted values 

relative to cumulative distribution of likelihood measure of a single observation, illustrating the 

concept of quantile deviations (solid arrows: 50% quantile deviation; spots: 25% and 75% 

quantile deviations; open arrows, 5% deviation). 
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