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Using analysis, simulation, and experimentation, we examine the threat against anonymous
communications posed by passive logging attacks. In previous work, we analyzed the success of
such attacks under various assumptions. Here, we evaluate the effects of these assumptions more
closely. First, we analyze the Onion Routing-based model used in prior work in which a fixed
set of nodes remains in the system indefinitely. We show that for this model, by removing the
assumption of uniformly random selection of nodes for placement in the path, initiators can greatly
improve their anonymity. Second, we show by simulation that attack times are significantly lower
in practice than bounds given by analytical results from prior work. Third, we analyze the effects
of a dynamic membership model, in which nodes are allowed to join and leave the system; we
show that all known defenses fail more quickly when the assumption of a static node set is relaxed.
Fourth, intersection attacks against peer-to-peer systems are shown to be an additional danger,
either on their own or in conjunction with the predecessor attack. Finally, we address the question
of whether the regular communication patterns required by the attacks exist in real traffic. We
collected and analyzed the web requests of users to determine the extent to which basic patterns
can be found. We show that, for our study, frequent and repeated communication to the same web
site is common.
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1. INTRODUCTION

Designing systems for anonymous communications is a complex and challenging
task. Such systems must be secure against attackers at a single point in time; more
importantly, they must also protect users from attacks that seek to gain information
about users over the lifetime of the system.

In our prior work [Wright et al. 2004], we analyzed such an attack: the predecessor
attack. In this attack, the attacker controls a subset of the nodes in the anonymous
system to passively log possible initiators of a stream of communications. With
sufficient path reformations — which are unavoidable in practice — the attacker
sees the initiator more often than the other nodes. In that prior work, we showed
that the predecessor attack applies to a class of protocols that includes all existing
protocols for anonymous communications. We also gave analysis that placed bounds
on how long the attack takes to run for several specific protocols.

In constructing the attack and analysis in that paper, we made several simplifying
assumptions about how the protocols operate. Here we examine the effects of
relaxing each assumption. Specifically, we assumed:

(1) The subset of nodes that forward an initiator’s messages are chosen uniformly
at random;

(2) Users make repeated connections to specific responders, which are outside points
of communication;

(3) Nodes do not join or leave the session;

These assumptions were necessary for the proof we provided that showed that the
attack works in all cases, and they were also critical to our analysis of the bounds
on the time required for a successful attack. We argued in that paper that these
assumptions are reasonable and that the attack works in many scenarios where the
assumptions are violated.

In this paper, we examine more closely the universal applicability of predecessor
attacks against anonymous protocols. We examine our assumptions and the effect
relaxing those assumptions has on the effectiveness of the attack. Our specific
contributions are:

—First, we show that defenses that use non-uniform selection of nodes for path
creation offer significant protection for the initiator.

—Second, we show that dynamic membership of nodes can have a significant
detrimental effect on initiator anonymity. We show how the defenses that use
non-uniform selection of nodes fail in highly dynamic environments. We also
present new analysis and simulation on a related passive logging attack, the
intersection attack, as applied to peer-to-peer settings. This dangerous attack
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leaves us with unresolved questions about how to design peer-to-peer systems for
anonymous communications. We use over one year of traces collected by others
of Tor proxies to empirically evaluate the intersection attack.

—Third, we examine the practical effectiveness of the attack through simulation.
Our previous work gave analytic upper bounds on the number of rounds required.
The simulations in this paper demonstrate that, although the bounds provide a
useful analytic tool to compare protocols, they are loose. The attackers can be
successful in significantly fewer rounds than the maximums guaranteed by the
bounds. For example, attacks on Onion Routing and Crowds, with 1,000 nodes
and 100 attackers, succeed in a time one-fifth of the rounds guaranteed by the
upper bounds.

—Fourth, we characterize measurements taken from a web proxy to show the actual
frequency and duration of user activities on the Web. This study allowed us to
make some observations about user behavior with regard to our assumptions.

There are two overall lessons from this paper. The first is that the predecessor
attack and the related intersection attack are both dangerous and realistic in
proposed systems for anonymous communications. Users tend to behave in ways
that can be tracked over time, leaving them subject to attacks that work more
quickly than we previously realized. Dynamic membership in the system makes the
environment even more dangerous for an initiator.

The second lesson is that the threat can be combatted. When system membership
is not highly dynamic, we see that the fixed-node defenses from Section 3 are
effective. Also, users can be warned to avoid extended communication patterns.
Finally, we hope that the results presented here may shed light on possible defenses
that might work more effectively against these attacks.

The body of this paper is organized around those goals. In Section 2, we review
related work. We then present and analyze the effectiveness of new techniques for
avoiding predecessor attacks in Section 3. In Section 4 we study the predecessor
and intersection attacks in dynamic environments. We describe the results of our
simulations of the predecessor attack in Section 5. In Section 6, we show how often
users go to the same website from data obtained by tracking real users. We offer
concluding remarks in Section 7.

2. BACKGROUND

As we seek to build on our previous work, we explain our results from that work in
this section. We also describe related material.

2.1 Our Prior Work

Our previous work described the predecessor attack, first discovered by Reiter and
Rubin as an attack against Crowds [Reiter and Rubin 1998]. The primary purpose
of our current work is to extend our previous results in the analysis of anonymous
protocols. In this section, we review the definitions, methods, and results of that
work, and we refer the reader to the full paper if greater detail is desired [Wright
et al. 2004].

The first contribution of our previous work was to define a class of protocols,
which includes all known protocols for anonymous communication, and to prove that
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the anonymity of any protocol in the class degrades against the predecessor attack.
We defined an active set as the set of nodes used by the initiator of a communication
to propagate its message through the network. This can be, for example, a path in
Crowds or the set of nodes that share coin flips with the initiator in a DC-Net.

For any protocol in our class, we required that the active set be chosen uniformly
at random many times. In current protocols for open systems, that assumption
holds because active sets change each time a node is allowed to join the network.
If active sets did not change, then the members of the active set of a node that
just joined the network would know that they are propagating messages of that
node, thereby exposing its communications. In the most expensive configuration
of DC-Nets, the active set is the entire network and therefore does not change.
However, a mostly static network, as assumed by protocols like DC-Net [Chaum
1988] and P5 [Sherwood et al. 2005], is not reasonable for open systems. Closed
private networks, which could be static and offer other security benefits, face smaller
anonymity sets due to restricted membership. In any case, we continue to limit our
attention in this paper to open systems, which are the dominant architectures for
anonymous communications today.

Another critical assumption of our prior work, as well as of this paper, is that the
communication of users must be linkable from one session to another. Note that this
will generally be the case for applications such as ssh or any Web service that uses
a login or long-term cookies. Hidden services, which provides anonymity for servers,
is an application that has received greater attention lately due to its implementation
in Tor. Such a service is linkable across sessions due to the requirement that it
be addressable. For other applications, such as email or general-purpose Web
browsing with blocked cookies, the user’s communications will not be linked as
easily. However, the communications can be linked by profiling the user’s behavior
over time. Furthermore, any activity that occurs in the same session as a linkable
activity is then linkable to other sessions. The accuracy of the attack would then
depend on the fidelity of the profile generation and matching processes.

The second major result in our prior work was a set of analytic upper bounds on
how long it takes for attackers using the predecessor attack to effectively degrade
the anonymity of a user in Crowds, Onion Routing, and Mix-Nets. We gave bounds
on the number of rounds, i.e., periodic changes in the active set, that guarantee
for the attackers a high probability of success in guessing the initiator. We use the
following notation: n is the number of nodes in the network, c is the number of
those nodes that are attackers, and l is the fixed path length of Onion Routing or
Mix-Nets.

Against Crowds, the attackers are assured of identifying the initiator in 8n
c lnn

rounds with high probability n−2
n . For the same level of confidence, the attackers

need 8n2

c2 lnn rounds against Onion Routing and 8nl

cl lnn rounds against Mix-Nets.
These bounds were derivied using Chernoff bounds, which do not provide a tight
approximation. Additionally, we used a more easily analyzed algorithm that helped
us give upper bounds on attacker performance, while the attacker can be more
efficient in reality. In Section 5, we provide simulation results that are tighter than
these bounds and show how the confidence of the attackers grows over time.

In the prior work, we also assumed that rounds occur regularly, and that the
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initiator communicates with the responder in every round. The attacker can force
rounds to occur as often as the system allows by simply having nodes leave and
rejoin the system repeatedly. If, however, the initiator rarely communicates with
the responder, then the amount of time it takes for the attackers to get data from
enough rounds can be very large. In Section 6, we use logs of real web usage as an
example of how many rounds attackers can expect to get data from over time.

2.2 Related Analyses of Anonymity Systems

A number of papers address attacks against systems of anonymous communications.
The creators of Crowds [Reiter and Rubin 1998], Onion Routing [Syverson et al. 2000],
Hordes [Levine and Shields 2002], Freedom [Back et al. 2000], Tarzan [Freedman
and Morris 2002], Stop-and-Go Mixes [Kesdogan et al. 1998], and others provide
analysis of their protocols against some attacks.

Only a few of these analyses consider the degradation of anonymity over time,
including Reiter and Rubin’s [1998] seminal work. Berthold et al. [2000] discuss
an intersection attack against the anonymity groups that arise when multiple mix
routes are chosen. In this attack, the different anonymity groups are intersected
with each other to shrink the number of possible initiators. Raymond [2001] also
discusses an intersection attack based on observations of user activity. Only the
active users can be the initiator, and the set of active users changes over time.
Intersecting the sets of active users reduces the set of possible initiators. We explore
this idea further in Section 4.1.

A more sophisticated version of the intersection attack is the statistical disclosure
attack. The original disclosure attack, as described by Kesdogan et al. [2002] takes
sets of recipients from different times and uses intersection to find the recipients
of a given user’s messages. As this attack is NP-Complete, a statistical version is
proposed by Danezis [2003] and extended by Matheson and Dingledine [2004]. In
the statistical version, the sets of recipients are divided into groups according to
when the user is and is not sending messages. The set of recipients for that user is
determined according to the relative frequency with which each recipient receives
messages when that user does and does not send.

The disclosure attack can be seen as orthogonal to the predecessor and intersection
attacks studied in this work. The disclosure attack attempts to find the recipients
for a given user. The predecessor and intersection attacks we study both attempt
to find the sender associated with a set of observed messages or recipients. The
two attacks can be used in the opposite way, e.g., applying the disclosure attack
to every user to see who sent to a specific receiver. However, the attacks are not
efficient when used in this way.

Berthold and Langos [2002] describe a method of defending against intersection
attacks by using dummy traffic. It is not clear that their solution works in all systems,
but it has the potential to limit the success of attacks such as those described in
this paper.

Shmatikov [2002] uses formal analysis and model checking to verify the efficacy of
the predecessor attack against Crowds. Due to the high processing requirements of
model checking, he was only able to demonstrate probabilities of attacker success
for small numbers of nodes, i.e., 20 or fewer. In this paper, we use simulation to
extend these results to thousands of nodes with an acceptable loss of precision.
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The Sybil attack, which applies to all open peer-to-peer systems, demonstrates that
an attacker has the ability to control a significant fraction of the network [Douceur
2002]. Thus, the attacks we describe are of greater concern in such systems. Both the
Tarzan and Morphmix peer-to-peer anonymous communications systems, however,
implement a partial defense [Freedman and Morris 2002; Rennhard and Plattner
2004]. If we assume that an attacker will more easily control nodes within a single
subnet than nodes evenly distributed throughout the Internet address space, their
defense of first selecting subsets at random and then selecting nodes at random
within the subset makes Sybil attacks less useful. However, recent developments
in the use of botnets, networks of machines controlled by a hacker with the use
of a trojan program, suggest that the machines would not be limited to a few
subnets [Bächer et al. 2005; Honeynet Project 2005]. Margolin and Levine [2007]
propose an economic approach for detection of Sybil attacks that can be applied to
Tor and similar systems.

Other attacks on practical anonymity systems like Tor put these systems at
substantial risk without the attacker needing the resources required for the prede-
cessor attack. Murdoch and Danezis [2005] discovered a way to use the bandwidth
limits of nodes to perform path traceback using only clients, i.e. without using any
malicious Tor nodes. This attack may not scale well for large systems, as it was
tested when Tor had only 35 nodes and requires full bandwidth utilization of a
large fraction of the nodes during the lifetime of the path. Furthermore, Murdoch
and Danezis [2005] propose a simple defense, making the bandwidth utilization of
each path independent of other paths, which would stop their attack. Bauer et
al. [2007] demonstrate that, when nodes select Tor nodes based on performance,
attacks like the predecessor attack become much easier. This makes a strong case for
not selecting nodes based on performance, meaning that our more general approach
is still important to understand.

Hidden services are an important application and are highly vulnerable to the
predecessor attack (see related work [Goldberg and Wagner 1998; Scarlatta et al.
2001]). Øverlier and Syverson [2006] develop an attack that uses a combination
of positional analysis, timing analysis, and the predecessor attack to significantly
degrade the anonymity of users. Murdoch [2006] uses the clock skew induced by
heat from loading a service’s processor identify a server with its service. This attack
is rather challenging to stop, but a simple defense would be to make the service run
at full CPU load all the time to keep the system temperature independent from the
work load. Another simple defense would be to add noise to the time stamps used
in TCP. Although it places a burden on the operator of the hidden service, these
steps are prerequisites to maintaining security against the more powerful attackers
we consider in this work.

Several past works study the efficacy of determining of the source of encrypted
traffic by comparison to known profiles. Sun et al. [2002] examine traffic analysis
vulnerabilities that are specific to SSL web traffic with high accuracy. Hintz [2002]
provides a preliminary study of IPSec/SSH tunnel traffic analysis, and Bissias et
al. [2005] and Liberatore et al. [2006] provide more extensive empirical studies. Using
only the packet sizes, the latter study is able to demonstrate an attacker accuracy of
about 80% when identifying encrypted traffic sent by one of 2,000 profiled web sites.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Independent works by Diaz et al. [2002] and by Serjantov and Danezis [2002]
provide a strong case for new information theoretic metrics in anonymous communi-
cations. For our work, we have choosen to stay with a simple probabilistic notion
that describes the chance that the attacker is successful in identifying the initiator.
This facilitates comparisons with the analysis from our priotr work as well as other
prior works.

Finally, we note that the Tor system has implemented an extended version of our
ideas from Section 3 on non-uniform path selection, in the context of protecting
hidden services [Dingledine and Mathewson 2007]. Since the server provides a service
that is highly linkable between sessions and may remain operating for some time, it
could be quite vulnerable to the predecessor attack. Øverlier and Syverson [2006]
discuss extensions to this idea, including backup nodes that provide greater reliability,
and layered nodes which may provide stronger security. Scarlata et al. [2001] suggest
moving services from one peer to another as a way around this problem.

2.3 Web Traffic Measurement

One part of our work is to study users’ web surfing behavior to determine whether
users visit the same site repeatedly over time. Given the large number of studies on
the World Wide Web and user behavior on the web, one might believe that this
work would be done already. We are unaware of any studies that show longer-term
user behavior at the level of detail that we require.

A number of extensive web usage surveys have been conducted at the Georgia
Institute of Technology [The Graphic, Visualization, and Usability Center 1998].
The surveys indicate that a significant fraction of users keep few bookmarks, which
may indicate regular browsing patterns to relatively few sites. In the tenth survey,
38.8% of users reported keeping 50 or fewer bookmarks. Although this is more
common for inexperienced users, 30.5% of users with four or more years of experience
kept less than 50 bookmarks.

Work by Baryshnikov et al. tries to predict traffic patterns based on content,
but from the point of view of servers handling load and not considering single
users [Baryshnikov et al. 2005]. Other papers on traffic prediction, including work by
Duchamp [1999] and work by Davison [2002], model users based on recent content.
In Duchamp, only the last 50 requests are used, while the newer work by Davison
only uses the last five HTML documents. In this work, we seek patterns over much
longer periods.

3. PATH SELECTION IN STATIC SYSTEMS

In this section, we remove the assumption from our prior work that nodes are selected
by the initiator uniformly at random for forwarding messages in the protocol. In
other words, we show the effects of non-uniform selection of nodes during path
selection. We consider a static set of nodes and a subset of attacker-controlled nodes
and review two different path creation strategies.

Our model is based on the Onion Routing protocol [Goldschlag et al. 1996]. We
study Onion Routing because it provides an intermediate level of both security
and performance among path-based protocols. It is significantly more secure than
Crowds against the predecessor attack, as described in our prior work [Wright
et al. 2002]. Fully connected DC-Net and Mix-Nets both provide higher security
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than Onion Routing, but they have significant additional costs, both for initiators
and for intermediate nodes. Further, variations of Onion Routing have been im-
plemented as systems for widespread use in Web browsing and other interactive
applications [Dingledine et al. 2004; Back et al. 2000].

3.1 Model

We assume a set of nodes N , where the size of N is fixed at n. We also assume a set
of attacker-controlled nodes C ⊂ N , consisting of c < n nodes that we call attackers.
The remaining n− c nodes in N are not trusted, but do not share information with
the attacker. All nodes follow protocol’s forwarding rules correctly.

In our static model, the membership of C and N does not change. This property
is not true in the dynamic model that we evaluate in Section 4.

Each node in N communicates uniquely with one corresponding responder, a node
that is not a member of N . This assumption helps to simplify the analysis, but it
may be possible to perform similar attacks based on a profile of responders built for
each user [Mathewson and Dingledine 2004] or based on other identifying information
within the packets (e.g., a Web cookie). The responder does not collaborate with
other attackers but it tracks the identity of nodes with which it communicates and
cannot be trusted. In each round, each node creates a path of proxies, consisting
of other nodes in N between itself and its corresponding responder. It sends at
least one message in each round. For the rest of this section we only consider a
single initiator I, whose communications with responder R are being tracked by the
attackers.

In this model, attackers may only passively log information obtained while running
the protocol in the normal fashion. They have no ability to eavesdrop on or corrupt
any other nodes in N . Nor do they disrupt the protocol by modifying messages,
failing to deliver messages, or performing other denial-of-service attacks.

Within this model, we consider defenses in which I modifies the probability with
which nodes can appear in the path. First, we evaluate what I can do by only
modifying its own probability of appearing in the path. Then, we evaluate fixed-node
defenses, in which some nodes always appear in certain positions on the path.

For this model, no mix-like techniques are used. Specifically, we assume a cost-free
attack exists that allows attackers to determine if they are on the same path. This
attack could be based on packet counting [Serjantov and Sewell 2003] or on timing
analysis [Danezis 2004; Levine et al. 2004]. Note that the attackers may be able to
force rounds to occur with short, regular intervals by simply leaving and rejoining
the system. The system must start a new round to allow the returning node to
resume communications (otherwise, the system exposes new and returning users to
immediate identification). If the system delays the start of the next round for very
long, it will be a great inconvenience to the user of the returning node.

A summary of our results is presented in Table I.

3.2 Initiators Kept Off Their Own Path

An initiator can attempt to reduce the number of times attackers observe her
communication by ensuring that she does not appear in her own path of proxies,
except as the first node, which is unavoidable. Unfortunately, unless the total
number of nodes in the network is very small, the path lengths required will be very
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Defense Technique Prob. of Success If successful, If successful,
rounds req., rounds req.,
expectation Bounded w.h.p.

Static node membership model:
O.R. model 1 (n

c
)2 O((n

c
)2 ln n)

Fixed placement of nodes
First c

n
n−1
c−1

O(n−1
c−1

ln n)

Last c
n

n
c

O(n
c

ln n)
First and Last ( c

n
)2 1 1

Table I. The probability of success and the number of rounds for a successful
predecessor attack against various defenses in the static membership model.

large. This is due to the initiator always being on the path; another node J would
need to appear on the path nearly as often to fool the attacker.

Even if the path length is sufficiently long to delay the attack, the responder (or
an eavesdropper) could monitor which nodes contact it in each round. Eventually,
every other node in the network will contact the responder. When this occurs, the
initiator must be the only other node in the network that has not contacted the
responder directly.

3.3 Fixed Nodes

We now turn to a defense based on the idea of keeping a single node at the front of
the path, instead of selecting the node for that position randomly with each path
change.

Freedman and Morris [2002], state that fixing nodes in this way provides greater
deniability to any initiators linked to specific messages or responders by the prede-
cessor attack. A user can claim that another user was selecting her first, and there
would be no logs to disprove such a claim. Here, we extend this insight to a defense
for both P2P anonymity systems and server-based systems like Tor.

The first node on the path must be stable. A node that is fixed in a position on
the initiator’s path and goes down regularly will cause periods of unavailability for
the initiator or force the initiator to choose a new node to fix in the first position.
We examine this assumption more closely in Section 4.

We now analyze this technique of selecting the same first node repeatedly. Let
us assume that the nodes for all other positions are selected uniformly at random
from all of N . Additionally, the first node is also selected uniformly from all of N
at the creation of the first path. Let us call the node selected for this purpose the
helper node, H. This defense protects the initiator from ever being tracked by the
attacker, except if the node picked as H is an attacker node or is compromised by
the attacker. If H is not an attacker, then when the attackers run the predecessor
attack on messages to R, they will see H as the initiator instead of I.

We now consider what happens when H is an attacker. Note that the initiator is
not immediately exposed. An attacker must appear at the end of the path to see
the initiator’s messages to the responder and determine jointly with H that the two
attackers are on the same path. Only then will the initiator be exposed.

The last node is selected at random from N , excepting H, and there is a (c −
ACM Journal Name, Vol. V, No. N, Month 20YY.
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1)/(n− 1) chance in each round that the node selected is an attacker. Note that the
initiator I should never select H for the last position, as it allows H, by itself, to
immediately expose I as the initiator. Thus, in an expected (n− 1)/(c− 1) rounds,
I will be exposed as the initiator.

Since the probability of H being an attacker is c/(n− 1), that serves as an upper
limit on the probability that the initiator is ever exposed. Due to the changing last
node, the probability of I’s exposure grows towards that upper limit as it becomes
more likely that the last node on the path has been an attacker. This compares
favorably with choosing all nodes on the path uniformly at random every round,
which results in a probability of exposure that grows, albeit more slowly, towards
one. We study the effect of node instability on this approach in Section 4.

Note that one could imagine similar approaches that include keeping the last node
on the path the same. However, unlike the fixed first node defense, fixing the last
position adds a considerable new danger. One of the goals of anonymity protocols
is to protect against multiple responders that link user behavior. When fixing the
last position, the last node on the path can be used as an identifier, just like the
user’s original IP address had been without an anonymous proxy. An additional
proxy at the end of the path could be used to help hide this last identifier, but this
merely pushes the problem back one step. In most cases this is an unacceptable risk,
but it may be tolerable in a threat model that focuses on keeping the initiator’s IP
address hidden, rather than keeping the user activity unlinked.

4. ATTACKS AGAINST DYNAMIC SYSTEMS

In this section, we examine the effects on initiator anonymity of membership changes
to the set of proxies. We find that the membership dynamics of the system greatly
affect initiator anonymity. Using the same model assumptions as in the static case,
we add the notion that nodes leave the system with independent and identical
distributions. Let us call the length of the time they are active in the system their
uptime.

This model attempts to capture the consequences of having users that stop making
communications or stop the peer service on their local nodes. This occurs if users
do not leave their systems turned on and connected to the network all the time.
It is not clear that users of anonymous communications systems would leave their
systems on and available for long, uninterrupted periods. To further examine this
issue, we used traces of the uptimes of Tor network [Dingledine et al. 2004] proxies.
In the last part of this section, we use the traces to compute the effectiveness of the
intersection attack.

4.1 Intersection Attack

If an attacker can obtain a collection of disjoint sets of nodes that each contain the
initiator, then simply intersecting those sets can greatly narrow the attacker’s search.
If the intersection leaves only one node, this technique can completely expose the
initiator. This technique is called the intersection attack [Raymond 2001]. The
attack is well-known and there are few known means of defending against it. The
designers of the Java Anon Proxy incorporated an “anonym-o-meter” to show users
their current level of vulnerability to this attack [Köpsellbibt 2003; Berthold et al.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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2000]1.
Some peer-to-peer anonymous communications systems, including Tarzan and

Crowds, are particularly vulnerable to this attack. In these two protocols, each
participating peer knows the other available peers’ IP addresses. This is critical
for proper operation, because peers communicate directly in these protocols. In
describing Tarzan, Freedman et al. [2002] argue that having an incomplete list leaves
the initiator vulnerable to other attacks in the peer selection process. This list of
peers, however, gives the attacker exactly what she needs to perform the intersection
attack.

To conduct this attack, the attacker only needs to keep a single peer in the system
to obtain lists of peers in each round. For every round in which the initiator contacts
the responder, the attacker can add that list of peers to her collection of sets of
nodes. As nodes leave the system, the intersection of those lists becomes smaller.
In each round in which the initiator does not communicate with the responder, the
attacker does not take a list for intersection. This increases the total attack time by
one round each time it occurs.

The attacker can, over time, use the intersection attack to uniquely identify the
initiator. Alternatively, when the attacker has reduced the set of possible initiators
to a few nodes, the attacker can use other techniques to distinguish the initiator
from the other nodes in the intersection. For example, the attacker could eavesdrop
on the communications of the few remaining nodes or use a denial of service attack
to see if the traffic continues to the responder. The predecessor attack may be used
simultaneously to identify likely initiators, further reducing the possibilities.

4.1.1 Analysis. This section shows that the intersection attack works efficiently
in this dynamic model. Section 4.1.2 discusses other assumptions of this model in
more detail.

We model the overall system with a discrete time model, with each time step
being a round. We do not use a continuous-time model because we do not model
the propogation of information about which nodes are in the system. We only know
that nodes must have a consistent picture of which nodes are in the system when
paths are constructed, which occurs before each round.

We model the uptime of users first with an exponential distribution and then
a Pareto distribution. Pareto distributions have heavy-tailed behavior, and they
can be parameterized to correspond roughly with the uptime of nodes observed in
peer-to-peer file-sharing systems [Chu et al. 2002]. The Pareto distributions we use
model some nodes remaining active for very long periods, while most nodes join the
system for only a short time.

We do not model nodes that leave and join the system in the same round (i.e., if
they become available in the next round) as having left at all. We construct our
distributions such that such short-term failures are not considered events. Note
that nodes newly joining the system do not affect the intersection attack, nor do
nodes that intermittently re-join. New nodes were not in the original anonymity

1The anonym-o-meter does not correctly guage this vulnerability: the implementation will some-
times report an increase in the anonymity level, but the nature of intersection makes it impossible
for the anonymity to ever grow.

ACM Journal Name, Vol. V, No. N, Month 20YY.



12 ·

 0

 0.2

 0.4

 0.6

 0.8

 1

 100  1000  10000  100000  1e+06

P
ro

ba
bi

lit
y 

of
 N

od
es

 L
ea

vi
ng

Rounds

Exp., 1 week
Exp., 4 week

Pareto., 1 week
Pareto, 4 week

Fig. 1. Dynamic membership model: The intersection attack. The probability, for n = 1, 000
nodes, of all nodes other than the initiator being intersected out of the set of possible initiators.

set, and nodes that re-join have already been eliminated from the anonymity set, so
the attacker can ignore these nodes.

In the exponential model, we will say that the average uptime for a user is 1/λ.
Therefore, λ can be thought of as the failure rate of the user’s node. The probability
that a given node has left after T rounds is given by F (T ) = 1− e−λT . We model
the leaving and joining behavior of nodes as independent and identically distributed
(i.i.d.) processes. Thus, the probability that all n− 1 nodes other than the initiator
have left after T rounds is P (T ) =

(
1− e−λT

)n−1. We can also find the number
of rounds, T , required for the attacker’s chance of exposing the initiator to reach
a value p. This is given by T = −1/λ ln

(
1− p1/(n−1)

)
. Note that T is linearly

dependent on the average uptime, 1/λ.
As we see in Figure 1, the probability of all nodes leaving rises quickly to one.

The figure shows curves for the exponential distribution when the average uptime is
one week and four weeks, i.e., 168 and 672 rounds, respectively. The round length
is one hour, though the clock time required for the attack does not change with the
round length. Longer round lengths may mean longer average uptimes, though, as
it is more likely that a node that disconnects will be able to reconnect before the
next round starts. For this reason, the round length must be significantly less than
the average uptime for the analysis to hold. The figure shows results for a system
with 1,000 total nodes.

After ten weeks, with an average uptime of one week, there is a 0.956 probability
that all nodes have left except the initiator. When the average uptime is four weeks,
the time to reach the same 0.956 probability that all nodes have left is 40 weeks.
This agrees with the linear relationship between the average uptime and T .
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Fig. 2. Dynamic membership model: The probability that all nodes except the initiator are
intersected out of the set of possible initiators based on a Pareto distribution of uptimes, starting
with n = 1000 nodes, for different values of xm, the minimum uptime.

The Pareto distribution gives us a different picture for how quickly the intersection
attack works. For this model, we say that the average uptime is given by E[T ] =
(axm)/(a − 1), where xm is the minimum uptime and where parameter a can
be set give the desired average time. We chose to use E[T1] = 168 hours and
E[T4] = 672 hours, i.e., one week and four weeks. The probability that a node
leaves before time T is F (T ) = 1 − (xm/T )a. Again, we model nodes as i.i.d.
processes, and the probability that all n − 1 nodes leave by time T is given by
P (T ) = (1− (xm/T )a)n−1.

To find the number of rounds the attacker requires to expose the initiator with
probability P (T ) = p, we can rearrange the formula:

T =
(

xm

1− p1/(n−1)

)1/a

From Figure 1, when xm = 1, we see that the probability of total exposure, when
all other nodes have left, grows much more slowly than in the exponential model.
The chance of exposure becomes non-negligible in far fewer rounds, but the attacker
is not guaranteed a high probability of success for a very long time. For example,
for one week average uptimes, the attacker requires 9000 rounds before getting a 0.9
probability of identifying the initiator. This is because of the heavy-tailed property
of the Pareto distribution. Many nodes will leave the system early in the course
of the attack, but it is likely that a few nodes will remain in the system for a long
time.

Also, we can see that the average uptime makes little difference for the averages
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Fig. 3. Dynamic membership model: The probability of having less than ten and less than
five nodes other than the initiator remaining in the system, and the probability of having no other
nodes remaining, over time, where the system starts with n = 1, 000 nodes.

we used. This is reflected in the exponent in the formula for T , as the value of a
does not change greatly between the one and four week average uptimes. Intuitively,
both cases feature a few nodes that remain for long periods of time, far longer than
the average case. Only with much shorter average uptimes do we see a significantly
smaller time to attacker success. For example, with an average uptime of 16.8 hours,
one-tenth of a week, the attacker can identify the initiator with 0.9 probability in
5500 rounds, a 39% decrease over week-long average uptimes. This would require,
however, very unreliable participants.

Since reasonable average uptimes do not impact the system, we also examine the
effect of changing xm, the minimum uptime in the system. As we see in Figure 2 for
an average uptime of 168 hours, the minimum uptime makes a large difference in
the time to attacker success. With a minimum uptime of 15 minutes, the number of
rounds required to reach a 0.9 probability of attacker success is only 2350, or about
a quarter of that given by hour-long minimum uptimes. With a 24 hour minimum
uptime, the attacker needs over 60,000 rounds to attain the same 0.9 chance of
success. Peer-to-peer environments would likely see very short minimum uptimes,
but it is unclear if the model is realistic for all values xm; as an example system, we
examine the real uptimes of Tor nodes later in this section.

The possibility of long periods without complete exposure does not make the
initiator safe from the intersection attack. This is because the number of possible
initiators will quickly narrow to a small fraction of the remaining nodes. The
probability that k < n− 1 nodes will leave the system after T rounds is given by
the binomial P (T ) = Σn−1

i=k

(
n−1

i

)
σi(1− σ)n−i−1, where σ = (1− (xm/T )a)).
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Fig. 4. Dynamic membership model: For different values of the minimal uptime, xm, the
probability of having less than ten and less than five nodes other than the initiator remaining in
the system, and the probability of having no other nodes remaining, over time, where the system
starts with n = 1, 000 nodes.

In Figure 3, we compare the probabilities that all but five and all but ten nodes
leave the system, along with the probability that all nodes leave the system, using
a minimum uptime of one hour. We observe that the attacker reduces the list of
possible initiators to a small fraction of the original nodes much faster than she can
isolate the initiator completely. The attacker has a list of ten or fewer nodes with
probability 0.999 in less than two weeks, when the average time for node failure is
one week and the minimum uptime is one hour. In the same two weeks, the attacker
can get a list of five or fewer nodes with probability 0.828. We continue to see the
effect of changing the minimum up time in Figure 4.

4.1.2 Caveats. The intersection attack does not reveal the initiator in all situa-
tions, because the technique requires that the communication between the initiator
and the responder be uniquely identifiable. In other words, the initiator must be
the only node in the system communicating with the responder, or there must be
some identifying information in their communications. Two initiators to the same
responder can cause each other to be removed from the intersection, as one node
communicates with the responder in a round while the other node is not in the
system. While it is possible to extend the attack to pairs of nodes and to even larger
groupings, it makes the attack more complicated and time-consuming.

Another caveat is that the attacker’s list must include all currently participating
nodes for the intersection to be accurate. The lists do not need to be exact, but
they must not omit any participating nodes. A reasonable implementation of most
protocols does not require such a complete list. The attacker can address this issue
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Fig. 5. Dynamic Model: Probability of attackers’ success when the first node is fixed. The time
is given in the number of resets needed. We show results for n = 1, 000 nodes, and c = 50, c = 100,
and c = 200 attackers.

in some protocols by placing more corrupt nodes in the system. This can help to
make the list of currently participating nodes more complete. Also, attackers would
not want to eliminate nodes unless they are known to be unavailable.

4.2 Fixed Node Defenses in the Dynamic Model

In Section 3, we described a method in which an initiator selects a node to per-
manently occupy the first position on its path. This allows the initiator to keep
attackers from linking it to any responder, as long as at least the selected nodes
was not an attacker. Here we give analysis for fixing the first node in the dynamic
model.

This defense has different properties in the dynamic model as it depends on the
stability of nodes in the system. Specifically, it requires the helper node to remain
in the system as long as the initiator continues to contact a given responder. If
the nodes leave, the initiator must select new nodes to take their place. Every
replacement of the nodes increases the chances that an attacker holds both positions
simultaneously. The probability of exposure, then, grows closer to one over time.

Let us assume that nodes leave the network after a fixed, constant amount of
time. In order to make comparisons with analytical results from prior work [Wright
et al. 2002] and with simulation results from Section 5, we measure time in rounds.
Let us say that a node remains in the system for ρ rounds, which we keep constant
for simplicity. Also suppose that all nodes join the system at the same time. Then
it is as if the system resets and forces new path selection every ρ rounds.

For simplicity, we say that attacker nodes never leave the system. Thus, whenever
ACM Journal Name, Vol. V, No. N, Month 20YY.
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an attacker is selected for the first node in the path, resets end and the attacker
will eventually get enough data to determine the initiator.

When a new first node is selected, uniformly at random from N , there is a c
n

chance that the new node is an attacker. We want to know the number of resets,
R, such that the probability of attacker success, PR, reaches a given value p. Since
PR = 1− (1− P1)

R, substituting values of P1 gives R = ln(1−PR)

ln(n−c
n ) .

By using PR = p, we get the number of resets, Rp, sufficient to make the attackers
successful with probability p. If resets occur every ρ rounds, then Rpρ rounds are
required for the attackers to be successful with probability p (see Table II).

In Figure 5, we see that the probability of the attackers succeeding grows towards
one as the number of resets increases. The similarity to simulation results for
the predecessor attack in Section 5, when paths are selected uniformly at random,
suggests that fixing the first and last nodes may not provide significantly stronger
security over time when nodes leave the system frequently. This is in contrast with
the analysis for the static model given in Section 3.3, in which fixing the first node
appears to be an effective strategy. In general, fixing nodes on the path is only a
good strategy when nodes leave the system only after long stays or not at all.

4.2.1 Discussion. There exists an alternative when nodes leave but later return
to the system. The initiator could use one node as its only first node. If the node
was unavailable, it would not communicate with the responder.

This approach is vulnerable, however, to denial-of-service attacks. To continue
communicating with the responder even when the selected node is unavailable, a
backup node could be kept. In general, the initiator could keep a small pool of
nodes from which it selects the first node on its path. As long as at least one node
in the pool is available, the initiator can communicate with the responder.

In fact, the current Tor specification uses a fixed first node, which is called a guard
node. Each Tor nodes maintains an ordered list of such nodes, adding replacements
for unavailable guard nodes at the end of the list. The specification states that each
time a path is created, nodes chose a guard node randomly from among the first
three usable guards.

There is a tradeoff in this scheme between security and usability. To prevent a
lack of service, the initiator must keep a sufficiently large pool to ensure that a
node is available at all times. But the larger the pool, the greater the chance that
a attacker node is in the pool. When there are attacker nodes in the pool, it is
very likely that such a node will be chosen as the first node many times over the
user’s network lifetime. This is especially true if attackers, seeking to increase their
chances of being selected, remain online a larger percentage of the time than other
nodes.

In particular, for Tor’s method of choosing among three guard nodes for each
path, the chance that attackers are are the beginning and end of the path is
c
n (1− n−c

n · n−c−1
n−1 · n−c−2

n−2 ) as nodes for the pool are chosen without replacement.
This is somewhat less secure than a probability of ( c

n )2 when the same guard is
always used. For example, when there are n = 1000 nodes in the system, and the
fraction of attacker nodes is 10%, the probability of attacker success is 2.7%, rather
than 1.0%; when a a third of the network are attackers, the probability is 25%
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Defense Technique Rounds for high probability
ε = (n− 2)/n of attacker success

Dynamic node membership model:
Intersection attack:

Exponential dist. session with parameter λ − 1
λ

ln(1− ε1/n)

Pareto dist. session with parameter a
(

1

1−ε1/n

)1/a

Fixed first node:

Constant session length ρ ρ ln(1−ε)

ln(1− c
n )

Table II. Number of rounds for a successful predecessor attack for various defenses.
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Fig. 6. Tor Network : The number of active proxies in the Tor network from November 2004
until January 2006.

rather than 11%. However, Tor users receive better performance since a given guard
node may provide poor service. Moreover, no single guard node sees all traffic that
originates from the user sent to the Tor network.

4.3 Trace-Driven Evaluation

To further investigate the efficacy of the intersection attack, we acquired traces of
the Tor anonymous communications system. Although this is a server-based system,
rather than a peer-to-peer system, the server operators are volunteers and service is
not guaranteed in any way. Thus, we can expect some down time for maintainance
and other reasons, although perhaps at a lower rate than in a peer-to-peer system.
These traces should be therefore be conservative with respect to the efficacy of
intersection attacks.

The traces record the uptimes of proxies during a 446-day period, from November
10, 2004 to January 29, 2006. Below, we characterize what the traces tell us about
the Tor network, and then we show our results of simulating an intersection attack.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Fig. 7. Tor uptime and downtime: Note that the graphs are on a log scale with exponentially
sized bins.

4.3.1 Characteristics of the Tor network. The logs are the result of the efforts
of the Tor network creators Roger Dingledine, Nick Mathewson, and Paul Syverson,
as well as the early server operators. The network is quite an achievement. The logs
are archived at http://www.noreply.org by Peter Palfrader, who generously allowed
us access to the raw files.

The 3,911 log files are each four hours apart. Among other information, each
contains the uptime of each proxy as reported by the proxy itself to the logging
server. We had to infer the downtimes of proxies by parsing the logs. If a proxy
reported an uptime less than their last log entry, we assume the proxy was down
from the last reported entry until the next entry (minus the new uptime). In the
worst case, the proxy could have rebooted just after reporting an uptime and then
four hours later, rebooted again just before reporting a new uptime. We have no
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Fig. 8. The intersection attack. The probability, for the Tor network, of all nodes other than
the initiator being intersected out of the set of possible initiators. The lower graph is for comparison
against Figs. 1 and 2.

method of determining how often this occurred.
A small number of proxies erroneously reported the time since the Unix epoch as

their uptime and we discounted all logs from such proxies. Additionally, we ignore
partially observed data, instead focusing on the distribution created from complete
duty cycles.

Figure 6 plots the number of active proxies according to the logs for the 446-day
period. Figures 7a and 7b show the observed PMFs of the uptime and downtime of
peers, respectively. There are few characteristics to note about Tor proxies. First,
ACM Journal Name, Vol. V, No. N, Month 20YY.
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the popularity of the Tor network is steadily growing. Second, the uptimes of proxies
are very similar to measurements of other peer-to-peer networks. Proxy uptimes
have a median length of 6.3 hours, 80% last no more than 22 hours, and 99% are
under 13 days. Studies of peer-to-peer file-sharing systems show that most users
of these systems also do not stay connected for long periods of time. Our previous
work [Bellissimo et al. 2004] measured the session lengths of BitTorrent peers. We
found that median session length was 7.9 hours, 80% lasted no more than 24 hours,
and 99% of all sessions were shorter than five days. A study by Sariou et al. [Saroiu
et al. 2002] from 2002 found a median session time of only 60 minutes.

It is difficult to say that Figure 7a clearly matches a known distribution, such as
the exponential or Pareto distributions we use earlier in this section. Log-normal,
Weibull, and a mixture model of two log normals were not high quality fits either
(results are not shown). This is likely because there is not one simple factor that
determines the uptimes of most nodes. For example, we believe dips in Figure 6 are
due to time spent reconfiguring new versions of the Tor software.

4.3.2 Evaluation. We used the traces to perform an intersection attack on the
Tor network, modeled as a peer-to-peer system. Our evaluations represent a worst-
case scenario for the initiator. We assume the initiator contacts the responder every
round, and we assume the attacker knows this. With such assumptions, attackers
need only keep track of Tor membership, which is public knowledge so that paths
can be formed.

In our simulation, we ran 446 trials, one for each day of the log period. For each
trial, the attacker noted the initial group of proxies and then observed when a proxy
was absent for an entire round.

Figure 8a shows the success of the attack for different round lengths, with the
number of days since the start of the session on the x-axis. Longer rounds make the
attack more difficult since nodes must appear in only part of the round to thwart
the attacker. Figure 8b shows the same data in the format of Figures 1 and 2, for
comparison. The plots represent the mean values of all trials contributing to the
round or day on the x-axis. The standard deviations of these means were very small
and are not shown for clarity.

We can see that most nodes lose about half their protection well before the first
ten rounds, which is within the first several days. Unfortunately, the remaining
anonymity degrades quickly as well. This experiment suggests that Tor is quite
fragile. In practice, the attack may not succeed as quickly for two reasons.

The first reason is that the attacker may not know in exactly which rounds the
responder is contacted. For Crowd-based sessions, the attacker must only appear as
one of the proxies. For a probability of forwarding, 0.5 < p < 1, this will occur with
probability (1− c

N )1/p, for a proxy set of size N containing c attackers. For other
protocols, appearing as the tail node occurs with the much lower probability of c

N .
However, the attacker may be the responder. Alternatively, the attacker may

collude with the responder, eavesdrop on the responder’s connection to the Internet,
or compromise the responder’s computer to learn of incoming connections.

The second reason is that the initiator may not contact the responder every round.
This is the more likely mitigating factor for the duration of the attack. Section 6
discusses this possibility further in the context of the predecessor attack; those
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results generally apply to the intersection attack as well.

5. SIMULATING THE PREDECESSOR ATTACK

In our prior work, we provided upper bounds on the number of rounds required
for attackers to perform the predecessor attack against nodes running Crowds,
Onion Routing, and Mix-Nets. While these bounds helped to indicate the relative
performance of each protocol against the attacks, they are asymptotic and do not
provide a tight window on the rounds the attacker would actually need2.

In this section, we present simulation results showing the number of rounds
required for attackers to have confidence that they have found the initiator. Ad-
ditionally, we have simulated the methods for selecting fixed first nodes in Onion
Routing paths described in Section 3 and compare those results against uniform
path selection.

5.1 Simulation Methodology

We simulated long-running Crowds-based and Onion Routing-based sessions. We
chose these protocols as models of open systems with relatively low overhead. With
paths of length five and greater, the expected time to attack Mix-Nets also falls far
outside the times we see in these simulations. Furthermore, the idealized Mix-Nets
that we studied in our prior work [Wright et al. 2004] do not appear to be reasonable
for low-latency systems due to timing analysis attacks [Danezis 2004; Levine et al.
2004]. High-latency message systems like Mixminion [Danezis et al. 2003], which
might be modeled as ideal mixes, tend to be more difficult to attack with the
predecessor attack, as it takes more effort to profile the user. Thus, we restrict our
simulation study to Crowds and Onion Routing systems, both of which are clearly
vulnerable to the predecessor attack with reasonable attacker resources.

In our simulations, one initiator sets up a path each round by selecting the nodes
in the path. For each round, if attackers appear on the path, then they log the
predecessor of the first attacker. Attackers in the Onion Routing model know if they
are on the same path (e.g., by timing analysis in a real implementation). Below, we
provide the attacker algorithm. This algorithm differs from the more easily analyzed
attacker algorithm used in our prior work, which may explain some of the disparity
between our results here and the bounds.

Let us define N as the set of n total nodes, C as the set of c attackers, an attack
server S, and a number of rounds T that the attack runs. We define an attack
more precisely as follows. Let the times at which packets are sent by node X on
J ’s path PJ , be Sent(X, PJ). Let the times at which packets are received by node
Y on node J ’s path PJ be Recv(Y, PJ). Let Timing() be a function of a set of
sent times and a set of received times. We define the timing analysis function as:
Timing(Sent(M1, PJ ), Recv(M2, PK)) = True iff PJ = PK and M1 appears on PJ

before M2.

2Bounds tighter than our results from prior work were given by Figueiredo et al. [2004].
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Attacker Algorithm 5.1.

(1) Add c ≥ 2 attackers (the set of attackers C) into an Onion Routing system
with n− c nodes. The set N now consists of n nodes. Attackers operate
according to the system protocol, i.e., either Onion Routing or Crowds as
appropriate.

(2) S initializes a counter to zero for each non-attacker node J in the system;
i.e., ∀J ∈ (N − C), Counter(J) = 0.

(3) In each round Ti, attackers and S follow either Algorithm 5.2 for Crowds
or Algorithm 5.3 for Onion Routing, in which S updates the counters for
each node.

(4) Repeat Steps 2–3 for T rounds. Output the node K such that ∀J ∈ (N−C),
Counter(K) ≥ Counter(J). Break ties by random selection.

Attacker Algorithm 5.2.

(1) For each attacker X ∈ C, for each path P on which X appears, let J ∈
(N − C) be the node preceeding X on P . If X observes a connection to R
using P , X sends a message to S with the IP address of JP .

(2) S increments Counter(J)

Attacker Algorithm 5.3.

(1) For each attacker X ∈ C, for each path PJ belonging to J on which X
appears before the third to last node, log the times Sent(X, PJ). At the
end of the round, send Sent(X, PJ) and the IP address of J to S.

(2) For each attacker Y ∈ C, for each path PK belonging to node K and on
which Y appears as the last node, log the times Recv(Y, PK). If the path
was used to communicate with R, Y sends Recv(Y, PK) to S at the end of
the round.

(3) If S does not receive a set of received times, Recv(Y, PK), stop.
(4) For each set of times sent, Sent(X, PJ), if

Timing(Sent(X, PJ), Recv(Y, PK)) = True, S increments Counter(J).

Algorithm 5.1 differs from those used in our prior work in that it outputs the most
frequently counted node and does not require that the count exceed a threshold
value [Wright et al. 2002]. Additionally, Algorithm 5.3 accounts for the fact that
an attacker node near the end of the path can determine that it is not the first
node on the path. This is because it is either communicating directly with the last
node, which must be an attacker if it generates Recv(Y, PK), or share the same
node between them if it is third to last. In the latter case, it is much more likely
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that the nodes are one hop apart than that the shared node is repeated on the
path. Knowing this, the attackers will most likely risk a false negative due to a
large chance of a false positive; this is the choice made in our attacker model.

Each data point in the graphs of our results in this section is based on the average
of ten runs. Each run consists of 10,000 separate simulations of path formation for
a given numbers of nodes and collaborating attackers. Each run used a different
seed for random number generation. For each of the 10,000 simulations in a run,
the attackers waited a given number of rounds and then made their guess of the
initiator’s identity based on their current logging information. We then determined
the percentage of the 10,000 simulations in which the attackers guessed correctly.
This approach provides the attackers with an average success rate after a given
number of rounds.

Performing this ten times enabled us to give an average and determine variation in
the results. In all, we ran over 66.8 million simulations. For all graphs, we computed
standard deviations, but they are not shown in most figures as they are too small
to be visually significant (less than one percent for all data and less than one tenth
of one percent for high probabilities of attacker success).

5.2 Results

Figure 9 compares simulation results of attacker success for Crowds and Onion
Routing when the static membership model is used. The graph shows for both
protocols the average number of simulations, out of 10,000, in which the attacker
correctly determined the initiator for a given number of rounds. In all simulations,
there are n = 1, 000 total nodes and the average path length is 10. We show a
dotted-line at y = 0.50, as that is the dividing line between Probable Innocence,
where the attackers’ guesses are more than 50% likely to be wrong, and Possible
Innocence, where the attackers guesses are more than 50% likely to be correct [Reiter
and Rubin 1998]. Although this line is arbitrary, it represents a point at which
the initiator’s anonymity is compromised beyond an acceptable level, although the
attackers cannot yet be highly confident in their guess.

We compare Onion Routing paths and Crowds paths of approximately equal
length. It is not clear that the performance of each protocol with the same path
length is equivalent, and Crowds path lengths will vary. If, however, network transfer
times dominate the delay along paths for systems using either protocol, then equal
path lengths provide a useful comparison. To make the path lengths similar, we
selected several path lengths in Onion Routing and matched each of those with a
Crowds’ probability of forwarding, pf [Reiter and Rubin 1998], that gave the same
average path length.

From Figure 9, we see that Onion Routing lasts longer against the predecessor
attack than a similar configuration of Crowds. The leftmost three lines at the 50%
point are all for Crowds, while the three rightmost lines are for Onion Routing. For
example, with c = 100, which gives us n/c = 10, the attackers require only about 15
rounds against Crowds to get a 50% chance of exposing the initiator. For the same
value of c = 100 in Onion Routing, the attackers require approximately 150 rounds.
This ten-fold increase in the number of rounds appears to match the additional
factor of n/c found in the analytical results from our prior work [Wright et al. 2002].
This trend can be seen throughout the graph.
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Fig. 10. Static membership model: The predecessor attack against Onion Routing, top 1%.

We also see from Figure 9 that the larger the value of n/c, the longer the
predecessor attack takes. For example, with Onion Routing, c = 50 attackers require
over 600 rounds to find the initiator with 50% or better probability. This is about
four times longer than for c = 100, for which n/c is half as large. This is also in
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line with our analytical results for Onion Routing, which show that the number
of rounds required has a squared dependence on n/c. This dependence holds for
most values, but the differences are greater for low numbers of rounds. The linear
dependence on c/n for Crowds also holds for most values, again excepting the lowest
counts.

Figure 10 shows the predecessor attack against Onion Routing as in Figure 9, but
only for when the probability of attackers guessing the initiator is greater than 0.99.
A line is drawn where the attacker probability of success is (n− 2)/n, which is the
standard of high probability we set in the analysis from our prior work [Wright et al.
2002]. To obtain a line, rather than a high probability bound, we used the same
Chernoff bound equations, where we fix the number of rounds as the x-axis value
and obtain the probability value for the y-axis. Thus the entire line serves as an
upper bound on the number of rounds required for the attacker to reach the given
rate of success.

From the figure, we see that the number of rounds guaranteed by the analytic
bounds are much higher than the simulation results. The number of rounds required
for the attackers to be logged with high probability (n− 2)/n is between 5.7 and
6.2 times less for the simulation than guaranteed by the bounds from our prior
work [Wright et al. 2002].

We also see from the figure that the relationships between the numbers of rounds
required for different values of c/n holds as the attackers get closer to being certain
that they have found the initiator. We use linear extrapolation between points to
find how many rounds have passed when the lines cross the (n− 2)/n probability
of attacker success line. With c = 100, approximately 4.3 times as many rounds
are required than with c = 200 to reach the line. Between c = 50 and c = 100, the
ratio is 4.1. The ratio predicted by the bounds is exactly four for each of these
relationships.

We present simulation results for Onion Routing in Figure 11 with a fixed ratio
of n/c = 10 and a fixed path length of l = 10, but with three values for n: n = 100,
n = 1, 000, and n = 10, 000. Also, we show the bound for n/c = 10, as calculated
from the formula below, where Event 5.1 is the event that the initiator is logged as
the predecessor in a given round:

Event 5.1. In a given round, S increments Counter(I).

The formula is derived in our prior work using a Chernoff bound [Wright et al. 2002].

Pr{B(T, Pr{Event 5.1}) ≤ (1− δ)TPr{Event 5.1}} < e−1/2δ2TPr{Event 5.1}

< e−T (1/8)(c/n)2 (1)

As in Figure 10, we see the significant difference between the predicted values of
the bounds and the simulation results. We can also see the small, but significant,
difference in the upper half of the graph between the line for n = 100 and the lines
for n = 1, 000 or n = 10, 000. This difference is not shown in the line given by
the bound and is not reflected in the insignificant difference in the results between
n = 1, 000 and n = 10, 000.

The explanation for this effect is that, when there are fewer nodes to select from,
a node may be chosen more frequently to be on the initiator’s path and may then
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be logged more often by the attackers. With more nodes, each selected uniformly at
random, the chances of this are lower, so the attack largely depends on logging the
initiator multiple times. The bound does not show this effect; there is no dependence
on n if the ratio n/c is fixed.
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Fig. 13. Survivor plot of users contacting the same website over increasing numbers of rounds,
from data collected at the University of Massachusetts.

The other significant parameter in these simulations is the average path length. In
Onion Routing, this path length is fixed, while in Crowds, the path length depends
on the probability of forwarding. We compare the two protocols with the same
average path length in Figure 12.

From the figure, we see that Onion Routing significantly outperforms Crowds
for all path lengths. We also see that longer path lengths outperform shorter path
lengths. For example, after 96 rounds, attackers against Onion Routing with path
lengths set to five have a 49.4% chance of identifying the initiator. With path
lengths set to 20, however, the attackers only have a 30.3% chance of success.

Also in Figure 12, we see that average path length is more significant before the
probability of attacker success has reached 50% than afterwards. Also, the difference
between different path lengths is larger for Onion Routing, while largely insignificant
for Crowds.

6. A STUDY OF USER BEHAVIOR

For the attacks we have studied to be successful, they require that initiators
communicate with responders over long periods of time. To determine whether
real users exhibit such behavior, we obtained traces of communications from a web
proxy in the Department of Computer Science at the University of Massachusetts
Amherst. The data was collected by Diaz and Allan [2003] from June 3–Oct 28,
2002 from 17 UMass volunteers. Additionally, we separately analyzed data collected
previously at the University of California at Berkeley [Gribble 1997].

We sought two important results from the data. First, we wanted to know the
frequency that users contact the same web site, i.e., the responder, and the extent
to which that contact continues to occur. It is critical to note that the predecessor
attack works in rounds, regardless of their length. For example, when rounds last
one day it does not matter how many times the user contacts the same site during
that day. Shorter round lengths allow new users to join more frequently, but increase
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the vulnerability of existing users.
Second, sites that are contacted most frequently (i.e., in the most number of

rounds) are also the most vulnerable. Therefore, we wanted to know what percentage
of a users’ web traffic was vulnerable to passive logging attacks.

One could argue that users of anonymous communications systems would be more
careful to not behave in trackable ways than the volunteers of our study. We believe
that this is unlikely. The users of our study knew that their web usage was being
tracked in a linkable way. Users of anonymous communications systems might be
inclined to behave cautiously, but would have reason to believe that their patterns
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of communication are mostly hidden. Some of these users might even seek systems
for anonymity with the intention of using them for repeated communications to a
specific responder or set of responders, rather than for general privacy.

In any case, users should know what patterns of communications can be tracked
in this way as to be able to avoid them when communicating anonymously.

Figure 13 tracks whether users in the study revisited the same responder over
time, using the data collected at the University of Massachusetts. If we set the
round length to 15 minutes long, the 214-day study divides into 20,549 rounds. Of
7,418 initiator-responder pairs, 103 were seen in 80 or more rounds; 45 pairs in
160 or more rounds; and so on. Values for longer round lengths are also shown
in Figure 13. We obtained similar results from analyzing 18 days’ worth of data
collected from the University of California at Berkeley’s HomeIP service, as shown
in Figure 14.

Only a small percentage of connections are long-lasting, but these are a signficant
part of the users’ behavior. Figure 15 shows what percentage of all traffic is repre-
sented by long lasting sessions. The longest-lasting sessions make up approximately
10% of all traffic, representing a significant fraction of users’ behavior.

In our simulation results from Section 5, we found that in an Onion Routing
system with 1,000 nodes and path lengths of 10, a set of 100 attackers required
approximately 960 rounds to identify the initiator with an 99.8% probability of
being correct. There were five connections seen in more than 1,284 15-minute rounds
and would therefore be trackable with high probability during this period. Those
connections make up 19% of all traffic, so a significant portion of the users’ privacy
would be compromised by such an attack.

If we relax the probability that the attackers are correct to 80%, we see that 15
different initiator-responder pairs can be tracked in the same time period. These
connections make up 36% of all the users’ traffic. Thus, over one-third of the traffic
that went through the web proxy faced an 80% chance of linkage to the initiator.
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7. CONCLUSION

In this paper, we have explored the consequences of modifying and validating the
assumptions of our model from prior work. We first modified our assumptions by
allowing users to select nodes in a non-uniform manner. This gave rise to new
defenses that can reduce the possiblility of performing the predecessor attack.

The next modification was to remove the assumption of a static membership set.
By studying dynamic membership, we learned that the attacker gains additional
leverage to degrade the anonymity of initiators who continue to use the system.
Specifically, fixed-node defenses can be neutralized and peer-to-peer protocols,
including Tarzan and Crowds, are particularly vulnerable to the intersection attack.
Note that other peer-to-peer protocols, such as MorphMix, are not as vulnerable
to this attack, since awareness of all other peers is not needed for operation of the
protocol.

Next, we tested the analytic results in simulation. In doing this, we found that the
attacker could succeed in much less time than given by the analytic upper bounds.
At the same time, the simulation results validated the relationships between different
scenarios that are predicted by the bounds.

Another test was to validate the assumption that users have trackable patterns of
use. We studied real network traffic, and found that a substantial fraction of users
follow the necessary communication patterns for the attacks to be successful over
time.

These results are important for both the designers and users of anonymous
protocols. It appears that designing a long-lived anonymous protocol is very
difficult; users of current protocols need to be cautious in how often and how long
they attempt to communicate anonymously. When users and servers often leave and
join the system, the system is particularly vulnerable to attack. However, defenses
such as the fixed first node defense remain useful in relatively static environments.

Acknowledgments

We are grateful to Peter Palfrader for providing a copy of Tor log files, to Roger
Dingledine and Paul Syverson for clarifying details of the Tor operation and design
decisions, and to Fernando Diaz and James Allan for providing access to their traces
of web access.

REFERENCES
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