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The Diagonal Point Triangle Revisited

Martin Josefsson

Abstract. We derive a formula for the area of the diagonal point triangle be-
longing to a tangential quadrilateral in terms of the four tangent lengths, and
prove a characterization for a tangential trapezoid.

1. Introduction

Consider a convex quadrilateral with no pair of opposite parallel sides. Let the
two diagonals intersect at E and the extensions of opposite sides intersect at F and
G. Then the triangle EFG is called the diagonal point triangle or sometimes just
the diagonal triangle (see Figure 1).
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Figure 1. The diagonal point triangle EFG

The significance of the diagonal point triangle is most evident in projective ge-
ometry, where it is studied in connection with the complete quadrilateral. It is for
instance a well known property that the diagonal point triangle associated with a
cyclic quadrilateral is self-conjugate.

In [5] we derived a formula for the area of the diagonal point triangle belonging
to a cyclic quadrilateral in terms of the four sides. In this note we shall derive
a formula for this triangle area in connection with a tangential quadrilateral (a
quadrilateral with an incircle), but here it will be in terms of the tangent lengths
instead. The tangent lengths e, f , g, h in a tangential quadrilateral are defined to
be the distances from the vertices to the points where the incircle is tangent to the
sides (see Figure 2).
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Figure 2. A tangential quadrilateral with its tangent lengths and a diagonal

2. More on the area of the diagonal point triangle

We will use Richard Guy’s version of Hugh ApSimon’s formula to derive a
formula for the area of the diagonal point triangle belonging to a tangential quadri-
lateral. According to it (see [2]), the diagonal point triangle belonging to a convex
quadrilateral ABCD has the area

T =
2T1T2T3T4

K(T1T2 − T3T4)
(1)

where T1, T2, T3, T4 are the areas of triangles ABC, ACD, ABD, BCD respec-
tively, and K is the area of the quadrilateral.

Theorem 1. If e, f , g, h are the tangent lengths in a tangential quadrilateral with
no pair of opposite parallel sides, then the associated diagonal point triangle has
the area

T =
2efghK

|ef − gh||eh− fg|
where

K =
√

(e+ f + g + h)(efg + fgh+ ghe+ hef)

is the area of the quadrilateral.

Proof. In a tangential quadrilateral, triangle ABD has the area (see Figure 2)

T3 =
1

2
(e+ f)(e+ h) sinA = (e+ f)(e+ h) sin

A

2
cos

A

2
.

According to Theorem 8 in [4], we have that

sin2
A

2
=

efg + fgh+ ghe+ hef

(e+ f)(e+ g)(e+ h)
.
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Using the trigonometric Pythagorean theorem yields

cos2
A

2
= 1− sin2

A

2
=

(e+ f)(e+ g)(e+ h)− (efg + fgh+ ghe+ hef)

(e+ f)(e+ g)(e+ h)

=
e2(e+ f + g + h)

(e+ f)(e+ g)(e+ h)
.

Thus we get the subtriangle area

T3 =
(e+ f)(e+ h)e

√
(efg + fgh+ ghe+ hef)(e+ f + g + h)

(e+ f)(e+ g)(e+ h)
=

eK

e+ g
.

The last equality is due to formula (2) in [4] which gives the area of a tangential
quadrilateral in terms of the tangent lengths. By symmetry we also have

T1 =
fK

f + h
, T2 =

hK

f + h
, T4 =

gK

e+ g
.

Combining the last four formulas gives

T1T2 − T3T4 =
fhK2

(f + h)2
− egK2

(e+ g)2
= K2

(
(e+ g)2fh− eg(f + h)2

(e+ g)2(f + h)2

)
.

Expanding the numerator, canceling the two double products and factoring it yields

(e+ g)2fh− eg(f + h)2 = e2fh+ fg2h− ef2g− egh2 = (ef − gh)(eh− fg).

Now by inserting the expressions for the triangle areas T1, T2, T3, T4 into (1), we
get the area of the diagonal point triangle belonging to a tangential quadrilateral.
Hence this is

T =
2efghK4

K(e+ g)2(f + h)2
· (e+ g)2(f + h)2

K2(ef − gh)(eh− fg)

and the formula in the theorem follows by simplification and adding an absolute
value to the denominator to cover all cases. �

Except in projective geometry, where the notion of area is irrelevant, we have
only found one source where the diagonal point triangle associated with a tangen-
tial quadrilateral is treated. This is in the old extensive paper [1] on quadrilateral
geometry by Dostor. He derives a formula for this triangle area,1 but that formula
is wrong. It states incorrectly (using other notations) that the area is given by

T =
4efghK

(e2 − g2)(f2 − h2)

where e, f , g, h are the tangent lengths and K is the area of the quadrilateral. In
[5] we concluded that Dostor’s formula for the area of the diagonal point trian-
gle belonging to a cyclic quadrilateral is also wrong, and then derived the correct
formula.

An interesting observation is that the correct formula in [5] for a cyclic quad-
rilateral has the exact same form as Dostor’s incorrect formula for a tangential

1Formula CCXVII on page 308 in [1]. We used e, f , g, h in the citation of his formula to easily
be able to compare it to Theorem 1 in this note.
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quadrilateral (except for a factor of 2). But there is one big difference. The letters
used in Dostor’s formula stands for the tangent lengths in a tangential quadrilateral,
whereas in Theorem 1 in [5], we used a, b, c, d which stands for the side lengths in
a cyclic quadrilateral.

3. A characterization of tangential trapezoids

If two opposite sides in the quadrilateral are parallel, then one of the points F
or G becomes a point at infinity. Then the area of the diagonal point triangle is
infinite. This is equivalent to having a denominator in Theorem 1 that is zero, so
we get a necessary and sufficient condition for parallel opposite sides this way.
Hence opposite sides are parallel if and only if ef = gh or eh = fg.

Now we give a second proof of these characterizations of a tangential trapezoid
(a trapezoid with an incircle; see Figure 3) where it is easier to determine which
pair of opposite sides that are parallel in each case.

Theorem 2. The opposite sides AB and CD in a tangential quadrilateral ABCD
with tangent lengths e, f , g, h are parallel if and only if

eh = fg.

The opposite sides AD and BC are parallel if and only if

ef = gh.

Proof. According to Theorem 3 in [6], the opposite sides AB and CD in a convex
quadrilateral are parallel if and only if

tan
A

2
tan

D

2
= tan

B

2
tan

C

2
.

Since tan A
2 = r

e , tan B
2 = r

f , tan C
2 = r

g and tan D
2 = r

h in a tangential quadri-
lateral with inradius r (see Figure 2), we have that AB and CD are parallel if and
only if

r

e
· r
h
=

r

f
· r
g

⇔ eh = fg.

The second condition is proved in the same way using the angle characterization

tan
A

2
tan

B

2
= tan

C

2
tan

D

2

for when AD and BC are parallel in a convex quadrilateral ABCD. �

In [4, p.129] we concluded that the inradius in a tangential trapezoid with tan-
gent lengths e, f , g, h is given by

r = 4
√
efgh.

Combining this with Theorem 2 yields that the formula for the inradius in a tan-
gential trapezoid ABCD with bases AB and CD can be simplified to

r =
√
eh =

√
fg.
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These formulas can also be derived without the use of trigonometry. We give two
other short proofs. Let the incircle be tangent to AB and CD at W and Y respec-
tively, and I be the incenter (see Figure 3). Then triangles AWI and IY D are
similar (AAA), so r

h = e
r . Whence r2 = eh and the second formula follows in a

similar way. Another derivation starts by noting that the angle AID is a right an-
gle when AB ‖ CD. Using the Pythagorean theorem in the three triangles AWI ,
DY I and AID yields AI2 = e2+ r2, DI2 = h2+ r2 and AI2+DI2 = (e+h)2.
Combining these, we have r2 + e2 + r2 + h2 = (e+ h)2, and thus r2 = eh.
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Figure 3. A tangential trapezoid

When the bases of the tangential trapezoid instead are AD and BC, the corre-
sponding formulas are

r =
√
ef =

√
gh.

They can be derived in the same way by any of the three methods used above.
As a final remark, we note that the related equality eg = fh gives another nec-

essary and sufficient condition in tangential quadrilaterals. Two different proofs
(both using other notations) were given in [7] and [3, p.104] that this is a charac-
terization for when a tangential quadrilateral is also cyclic.
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