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Introduction 
 
In Chapters 2 and 11 the complexity of seismic waveforms is explained in detail. Much 
experience is needed to identify the seismic phases correctly and to pick onset times 
accurately and consistently. The majority of our current knowledge of the Earth’s seismicity 
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is based on manual picking of onset times. In addition, manual picks have been used for the 
investigation of the structure of the Earth. However, for early warning purposes and for the 
processing of large data sets automatic picking is needed. Because of the variability of 
seismic waveforms, the occurrence of different seismic phases and the presence of noise, 
automatic picking remains still a challenge. Yet, in the light of the rapidly growing amount of 
digital waveform data produced by permanent and temporary networks, the issue of automatic 
event detection and phase picking becomes more and more important. Accordingly, the 
number of published algorithms has increased significantly during the past years. This makes 
it difficult for potential users to keep track of the different approaches and developments, even 
more, since most algorithms have been developed for a certain data set or a particular 
problem, such as early warning, real-time location, tomography, etc. Accordingly, only few 
algorithms were widely established in the community of observational seismology. 
Generalization of essential principles and criteria as well as large-scale comparative bench-
mark tests of different existing algorithms are still extremely rare. This makes it difficult for 
interested developers to choose the most appropriate approach, especially when aiming at 
multi-task high-quality performance, and for users to select the most suitable algorithms 
among the many available techniques for their specific problem. With this Chapter we intend, 
therefore, to provide a broader introduction into the problem of automated event detection and 
phase identification, to outline the underlying theory and methodological approaches, to 
illustrate results produced by different procedures, to assess the performance of available 
algorithms, to sketch the likely development in the near future and to highlight essential 
practical considerations for the application of automatic picking procedures. 
 
 
16.1.1  General Remarks 
 
With the advent of digital real-time acquisition systems automated real-time event detection 
and location became feasible. Beginning around 1975, High Gain Long Period (HGLP) 
stations, including both digital and optical recordings, were deployed by the Seismic Research 
Observatories (SRO). WWSSN-stations were digitally upgraded (DWWSN), which constitute 
the Global Digital Seismic Network (GDSN) (e.g. Lay and Wallace, 1995). At the same time, 
rapid advances in computer technology enabled sophisticated analysis of increasing amount 
of seismic data. Nowadays, several digital, global seismic networks are in operation, 
monitoring continuously the global seismicity and providing rapid locations of earthquakes 
within minutes. Automated rapid and robust detection and location of earthquakes using real-
time data of regional and global networks is essential for earthquake early warning systems. 
Usually, only automated first onset picks are used. A large number of automated P picks is 
required to ensure the robustness of the automated location. Fast automated locations are 
replaced after some time by more accurate manual locations that use also picks of later 
phases.  
 
The need for automatic picking algorithms arises also from the increasing amount of digital 
data sets produced by modern passive seismic networks. Even local, temporary networks, as 
needed for reservoir characterization during stimulation experiments at enhanced geothermal 
systems (EGS) or hydrocarbon reservoirs, monitor ten-thousands of seismic events at high 
sampling rates. For tomographic studies, which usually require data merged from several 
seismological networks, highly accurate and consistent phase arrival times are needed. 
Automated post-processing algorithms have been developed to determine and select 
consistently high-quality picks for tomographic purposes whose quality might be even better 
than those of manual phase readings. The examples given above are typical applications of 
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automated seismic event detection and automated arrival time estimation. Automated 
processing schemes show the following potentials: 
 

 fast and near-real time data processing; 
 consistent arrival time estimation; 
 processing of large data sets; 
 if implemented, consistent onset quality estimation and phase identification.  

 
The algorithms to choose depend on the specific application. Of course, the more precise and 
powerful the automated onset determination is, the more computationally expensive the 
applied algorithms are. For rapid earthquake location estimates or phase identification simple 
STA/LTA detections may be sufficient. E.g., Earle and Shearer (1994) use STA/LTA ratios 
taken from a smoothed envelope function, determined using a Hilbert transformation of the 
seismogram, to detect first and later arrivals. These algorithms are usually referred to as phase 
detectors in contrast to more accurate arrival time estimation algorithms, which are usually 
referred to as phase pickers (Baer and Kradolfer, 1987) and needed for precise location of 
earthquakes or tomographic studies. There is a considerable amount of automated picking 
algorithms available. Usually, these algorithms are optimized for certain requirements. 
Comparative studies and calibration tests are not yet common practice. While the STA/LTA 
detector is described in detail in Information Sheet IS 8.1, we here review the most 
widespread automatic picking algorithms and analyze their properties. An introduction to 
automatic phase identification is given. 
 
Also the accuracy of manual readings is limited due to sampling rate, noise, or the occurrence 
of emergent onsets. These uncertainties must be added to the theoretical time resolution of 
modern, GPS-based broadband seismic networks, which allow precisions of P-onset readings 
within 0.2 s (e.g.; iP phases in teleseismic events; Leonard, 2000). Further problems are the 
inconsistency of manual picks, phase misidentification and incomplete documentation of 
applied filters. Douglas et al. (1997) compared P-wave readings of explosion and earthquake 
recordings. He showed that errors of manual picks are in the order of 0.1 seconds for 
explosions and about 0.5 seconds for teleseismic earthquakes with a magnitude range from 
4.6 to 6.1. Using data of the Montana Bureau of Mines and Geology (MBMG) network, 
Zeiler and Velasco (2009) investigated manual picks of local and regional first arrivals. They 
found that the pick error is 0.1 seconds for phase measurements with high signal-to-noise 
ratios. Furthermore, the manual readings were biased towards late picks. Interestingly, in a 
second study using data collected by the International Seismological Center (ISC), they found 
that picks by different institutions may be inconsistent though individual institutions pick 
consistently. The standard deviation from the average arrival time determined from readings 
of several institutions for one single event varied between 0.2-0.6 seconds. For location 
purposes, the pick uncertainty should be significantly lower than the RMS-travel time 
residuals due to wave propagation effects not accounted for. From this point of view it is 
obvious that automatic phase picking has the potential to improve the consistency of arrival 
time estimations if it is supplemented by thorough quality estimations. 
 
In the entire processing scheme from automated event detection to automated event location, 
usually a phase detector is applied to all available recordings first. Then the consistency of 
these detections is checked in order to detect an event. After a seismic event has been 
recognized, the more precise phase picker is applied to the time series to obtain arrival time 
estimations for a robust earthquake location. Following this basic processing scheme, section 



4 
 

16.2 gives an introduction to event detection based on phase detectors applied to a network of 
stations. In section 16.3 the following established P-phase picking algorithms are described:  
(1) the Allen-picker, (2) the Baer- and Kradolfer-picker, (3) picking based on Higher Order 
Statistics (HOS) and (4) Autoregressive-Akaike-Information-Criterion-picker (AR-AIC). 
Picking of later arrivals is briefly introduced in section 16.4. Automated algorithms for 
quality estimation and phase identification as well as outlier detection are discussed in section 
16.5. Practical considerations on automatic picking, pre-processing and calibration are given 
in section 16.6. 
 
The following section gives a brief overview on existing phase detection and picking 
algorithms. As the algorithms are presented in chronological order, this sub-section serves as 
a short historical overview on the development of automated picking algorithms. 
 
 
16.1.2  Historical overview 
 
One of the first mathematically based signal detectors was the one proposed by Freiberger 
(1963), who applied an approximate comparison of spectral densities for the detection of 
Gaussian signals in Gaussian noise. This method is suitable for detecting signals rather than 
measuring signal onset times. Stewart (1977) developed an automated procedure for P-phase 
detection, P-phase processing and coda processing for local seismic event analysis in central 
California. Using three moving windows for computing ''moving-time noise averages'' from 
the original seismic trace and its first difference, it is tested, whether the seismic station is 
operating within acceptable limits of noise or not. A P phase is detected, if the threshold 
exceeds 2.9 times the noise level. Goforth and Herrin (1981) developed an automatic seismic 
signal detector based on the Walsh transform, which is quite similar to the Fourier transform 
but computationally less expensive. Michael et al. (1982) used this approach to develop a 
real-time event detection and recording system for the MIT Seismic Network. Joswig (1987) 
proposed a pattern recognition technique using characteristic event features in spectrograms. 
However, the precision of these algorithms is limited. 
 
A fundamental step towards automatic phase-onset determination was the algorithm proposed 
by Rex V. Allen (1978, 1982). He introduced the concept of the characteristic function (CF), 
resulting from non-linear transformations of the seismic trace to which a picker is applied. 
Allen's CF is based on short-term-average to long-term-average ratios (STA/LTA) calculated 
from an approximative squared envelope function of the seismogram. This picking algorithm 
is still frequently applied and used for automatic picking e.g by the USGS Earthworm system 
(Johnson et al., 1995). Baer and Kradolfer (1987) developed an automatic phase picker by 
slightly changing Allen's envelope function and incorporating a dynamic signal threshold. 
This algorithm marks a milestone in automated phase picking and is still frequently used, e.g. 
in the Programmable Interactive Toolbox for Seismological Analysis (PITSA, Scherbaum and 
Johnson, 1992) and MannekenPix (Aldersons, 2004). Furthermore, in combination with a 
sophisticated quality assessment this algorithm yields high-quality onset times useful for 
tomographic studies (e.g. Di Stefano et al., 2006, Diehl et al., 2009b). Higher order statistics 
are proposed e.g. by Saragiotis et al. (2002) and Küperkoch et al. (2010) where skewness and 
kurtosis are calculated in sliding windows generating the CF. These algorithms provide very 
reliable P-arrival time estimates. 
 
Beside these time and frequency domain approaches, model oriented algorithms became quite 
common, too. Autoregressive (AR) techniques are widely used. Based on the Akaike 
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Information Criterion (AIC), Takanami and Kitagawa (1988) developed a procedure for the 
fitting of a locally stationary autoregressive model to seismograms. They implemented this 
procedure in an on-line system and called it FUNIMAR (fast univariate case of minimum AIC 
method of AR model fitting). Leonard and Kennett (1999) propose an autoregressive method 
that detects increases in the AR-model order due to the higher complexity of signals 
compared to preceding noise. The standard autoregressive two-model Akaike Information 
Criterium (AR-AIC, e.g. Sleeman and van Eck, 1999) estimates the AR coefficients from 
predefined noise and signal windows.  
 
Gentili and Michelini (2006) propose an artificial neural network approach for P- and S- 
phase onset time determination, called innovative model of neural network (IUANT2). They 
use variance, skewness, kurtosis and a combination of skewness and kurtosis and their time 
derivatives.  
 
Many automatic phase-detection algorithms incorporate several approaches, using the 
different advantages of the applied methods (e.g. Zhang et al., 2003; Bai and Kennett, 2000). 
Nippress et al. (2010) applied STA/LTA picker, higher order statistics (Saragiotis et al. 2002) 
and damped predominant period Tpd (Hildyard et al., 2008; Hildyard and Rietbrock, 2010) 
picker to ANCORP data to estimate P- as well as S-arrival times. 
 
Algorithms for the estimation of relative travel times instead of absolute ones have been 
proposed in order to improve the picking accuracy. Examples are multi-station and array 
approaches using cross-correlation methods (VanDecar and Crosson, 1990) or adaptive 
stacking techniques (e.g. Rawlinson and Kennett, 2004; Rowe et al., 2002). These methods 
require high waveform coherence at neighboring stations and high signal to noise ratios as is 
observed for example in the case of low-pass filtered teleseismic waveforms.  
 
 

16.2  Phase and event detection 
 
In order to obtain first rough P-phase arrival time estimates, a single-station detector - e.g. a 
simple STA/LTA trigger (see IS 8.1) - is applied to all available continuous data streams of a 
seismic network. An analog or digital version of this detector might be implemented directly 
at the stations. Then data in a short time interval following the detection are transmitted to the 
data center for further analysis. Nowadays, usually continuous data streams are transferred to 
the data centers where a phase detector is applied to the incoming real-time data. A theoretical 
justification for the STA/LTA trigger based on the logarithm of the likelihood ratio can be 
found in Basseville and Nikiforov (1993). 
  
Event detectors are configured so that the number of false detections is minimized. On the 
other hand the detector has to be sensitive enough in order to detect also smaller events. 
Therefore, any phase detector yields a considerable number of false detections and not all P 
phases are detected. Hence, the consistency of the detections at different stations has to be 
checked before the detection of an event is declared. For local seismic networks it is sufficient 
that within a short time interval of a few seconds P phases are detected at a certain number of 

stations. The time of the phase detection iT̂  at station i  is interpreted as an estimation of the 

P- phase arrival time, which is, of course, afflicted with an error i . iT̂  may be written as:  

 

,=ˆ
0 iii tTT   
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where 0T  is the source time and it  is the travel time of a P wave to station i . The coincidence 

trigger detects an event, if for any combination of a minimum number of stations (typically 
three or four) the condition  
 

  |ˆˆ| ji TT  

 
 is met.   is the maxmimum allowed difference between trigger times at neighboring stations.  
This coincidence trigger works satisfying for local networks, where the number of stations 
and the aperture of the network are not large. For regional and global networks this simple 
event detection algorithm has to be modified. Such a modified algorithm may be formulated 
as a grid search procedure. At every knot of a 3D grid a hypothetical hypocenter is assumed. 
The index k  is introduced for a hypothetical hypocenter. kiT  denotes the expected P-phase 

arrival time at station i . The expected difference between arrival times at two stations for the 
assumed hypocenter k  is  
 

 ,== kjkikjkikji ttTTT   

 
where kit  is the travel time from the hypocenter k  to station i , that is in practise calculated 

using a reasonable background velocity model. The expected travel time difference kjiT may 

serve as a condition that an event is detected at the hypothetical hypocenter k . If for a certain 

number of detections iT̂  occuring in the time interval ],[ ttt   the condition 

  

                                                 
 |ˆˆ| kijji TTT

 
 
is met, an event at the hypocenter k  is declared. Only trigger times at predefined subsets of 
stations in the vicinity of the hypocenter k  need to be checked in order to detect an event at 
hypocenter k . This algorithm is fast and yields robust prelimenary event locations even if the 
single-station phase detector produces a large number of false detections. This algorithm is 
implemented i.e. in the Earthworms phase associator “Binder” (Dietz, 2002).  
 
A similar approach is proposed by Le Bras et al. (1994) in the widely used system Global 
Association (GA), where explicitly identified phases are assigned to synthetic earthquakes in 
overlapping circular grid cells with a complete global coverage. The performance of this 
algorithm relies on the correct phase identification, which is based on a combination of 
slowness and f-k analysis, polarization analysis, and frequency content. 
 
Waveform correlation is used to identify seismic events. For finite-length time series from 
STA/LTA-triggered systems, Withers et al. (1998) propose the Local Waveform Correlation 
Event Detection System (LWCEDS). From observed waveforms envelopes are calculated 
using STA/LTA energy ratios and correlated with pre-calculated travel-time curves, which are 
transformed into processed time series by applying an envelope function to the arrival times 
for each distance bin. A single value for each station is summed, and the result is normalized 
by the number of stations, giving the final correlation value. After the summation over all 
given grid points and time intervals, respectively, the maximum sum is determined and an 
event is declared, if this maximum sum exceeds a certain threshold. 
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A grid search algorithm, which works without onset time detections, is proposed by Kao and 
Shan (2004). Within this Source-Scanning Algorithm (SSA) a brightness function is 
calculated by summing the absolute, normalized amplitudes observed at all stations at their 
predicted arrival times, i.e. 
 





N

i
kii tTu

N
Tkbr

1

)(
1

),(
, 

 
where iu is the normalized seismogram at station i, kit is the predicted traveltime from point k 

the to station i of a particular phase with the largest observed amplitude (on regional scale S 
phase). The brightness is calculated of a point k at a specific time T and varies from 0 to 1. 
The brightness becomes 1 if all the largest amplitudes originate from a source at point k and 
time T. The spatial and temporal distribution of sources is identified by a systematic search 
througout the model space and time for the maximum brightness. For each source, this 
scanning algorithm results into a center of maximum brightness. Waveform based association 
algorithms may also be applied to the detection and location of tremors. The SSA algorithm 
was successfully applied to locate non-volcanic tremors in the northern Cascadia subduction 
zone (Kao and Shan, 2004).  
 
In the case of earthquake data, the event detection is usually followed by a more precise 
automatic picking of P and optionally also S phases that allow to improve the event location. 
 
 

16.3 Automated P-onset determination 
 
After an event has been identified, an interval of the time series containing the seismic signal 
is usually cut out for detailed processing. For a precise event location, a picking algorithm is 
applied to the data to estimate P- and S-phase arrival times, respectively. In this section we 
review the most frequently applied and wide spread P-picking algorithms. We describe the 
algorithms and show applications to synthetic as well as to real examples in order to 
demonstrate properties and the performance of the picking algorithms. All pickers are applied 
to the same local, regional and teleseismic event example waveforms for reasons of 
comparison. Furthermore, the behaviour of the corresponding CFs are testet on synthetic data 
with instantaneous changes in amplitude, frequency, and phase, respectively, as the arrival of 
a body wave may be indicated by one or several of those changes. The synthetic examples are 
designed to investigate the properties of the CF rather than to simulate a P-wave arrival.  
 
 
16.3.1   The Allen picker 
 
Allen (1978, 1982) introduced the concept of characteristic function CF, where the 
''character'' of the seismic trace is specified. The CF is obtained by one or several non-linear 
transformations of the seismogram and should increase abruptly at the arrival time of a 
seismic wave. In addition to the calculation of the CF the next steps of a picking algorithm are 
the estimation of the arrival time from the CF and the quality estimation.  
 
Let ix  be the time series under investigation with first difference ix& , Allen defined the 

following envelope function )(tE :  
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where iC  is a weighting constant with  

 

                                          
||

||

=

1
1=

1=





jj

i

j

j

i

j
i

xx

x

C                                                (16.2) 

 
 to control the relative contributions of amplitude and derivative. For a harmonic ix , equation 

(16.2) reduces approximately to  

                                            ,
1

=
dtf

C
i

i                                                            (16.3) 

 
where f  is the frequency and dt  the sampling frequency. If iC  in eq. (16.1) was squared, 

this envelope function would be an effective, recursive approximation of the squared 
envelope. That means the envelope function eq. (16.1) represents a fast but rough 
aaproximation of the waveform envelope. 
 
In the context of this article, we refer to the definition of the CF by Baer and Kradolfer 
(1987), who defined the CF as the time series, to which the picker is applied. Note, that Allen 
(1978) uses the term CF slightly differently. According to his notation the envelope function 
E(t) represents the CF, though the picker is applied not to this function but to the STA/LTA 
ratio calculated using the envelope function. In order to illustrate properties of E(t) it is 
calculated for synthetic data with sudden changes in amplitude, frequency, and phase, 
respectively. From Fig. 16.1 it becomes obvious that only changes in amplitude are detected 
by Allen's CF. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 16. 1  Allen's approximated squared envelope function (blue) for synthetic data (black) 
with a change in amplitude (top), change in frequency (middle) and change in phase (bottom). 
envelope function. That means )(tE  is sensitive to sudden changes in amplitude and 
frequency.  
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The following sophisticated algorithm is applied to )(tE  in order to obtain an arrival time 
estimate and to check the reliability of the pick. At first an STA/LTA criterion is used to 
detect possible arrival times. Then the duration of the signal is considered in order to 
distinguish between noise and P-wave arrivals and to reduce the number of false alarms. In 
the following description of the Allen picker we refer to the Fig. 16.2 and 16.3: 
 
A short-term average (α) and a long-term average ( ][100 s  ) are calculated from the 
envelope function. If the STA/LTA ratio exceeds the reference level  , the time is 
provisionally stored as a pick and the reference level γ is frozen (Fig. 16.2c). The picker now 
confirms or rejects the provisionally onset time by investigating the amplitudes of the raw 
seismogram. If low amplitudes (i.e. STA values exceed the continuation level δ) prevail, the 
picker assumes a short-term increase of noise and rejects the provisionally onset. If higher 
amplitudes prevail (i.e. STA values above the continuation level δ), the picker assumes a real 
seismic signal and estimates the length of this signal. To distinguish between short-term 
increases of noise and the seismic signal, the algorithm searches for the next zero crossing in 
the seismic trace. Reaching the next zero crossing, the picker starts counting the number M of 
observed peaks. M is incremented by 1 at each zero crossing. Using the number of observed 
peaks M, the continuation criterion   is determined by Mj )(=   and a ''termination 
number'' ML 3/3=   (Fig. 16.2d,e) is calculated.   and L are constantly increasing functions 
and serve as parameters to identify the length of the signal and hence to confirm the 
provisionally pick. In addition, also small amplitudes are counted: the short-term average   
is compared with the continuation criterion  . If   exceeds  , a counter s, which Allen 
refers to as a ''small count counter'' and which counts the number of successive zero crossings 
occurring since   drops below  , is reset. If   does not exceed  , s is incremented by 1. If 
s becomes larger than the termination number L, the event is supposed to be over, otherwise 
the processing goes on until Ls > . The length of the time interval for which sL >  serves as 
an estimate of the signal length (Fig. 16.2e). From Fig. 16.2d,e it is obvious, that the small 
count counter s increases significantly steeper than the termination number L as soon as the 
short-term average α remains below the continuation criterion δ. If the signal length exceeds a 
certain threshold tmin, the signal is supposed to be a seismic event, the pick is stored and 
optional post-processing starts. If the signal length is to short, the pick is removed, s, L, M and 
  are reset and a new reference level   is calculated.  
 
In order to account for automatic quality and error assessment, Allen introduced a weighting 
scheme, based on the seismogram and the corresponding CF. The estimated weights of the 
determined P onsets may serve as input for the location routine HYPOINVERSE (2002, 
2003), where weight-0 onsets denote excellent or impulsive (100 % weight), weight-1 very 
good (75 % weight), weight-2 good (50 % weight) and weight-3 intermediate onsets (25 % 
weight). Weight-4 picks are not used for location. The information needed are 
 

 B, a measure of the noise level at the detection time;  
 0A , the trace amplitude at the detection time; 

 D, the trace first difference at the detection time;  
 321 ,, AAA , the first three amplitude peaks. 

 
For a weight-0 P onset (''excellent''), the detection has to meet the following criteria (after 
Allen, 1978):  
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1.  BD > ,  

2.  450>1A ,  

3.  4>/1 BA ,  

4.  BA 6>2  or 6>3A .  
 
These criteria are successively to be relaxed to obtain lower weights 1,2 and 3.  
 
 
 
Tab. 16.1  Parameters to be adjusted for the Allen picker. The outer right colums represent 
the values of the parameters used for the example waveforms in Fig. 16.4. 
 

 
 
Fig. 16.4 shows applications of the Allen picker to waveforms of local, regional and 
teleseismic events. As shown by e.g. Küperkoch et al. (2010), this picking algorithm tends to 
pick somewhat early compared to an experienced analyst. Nevertheless, the Allen picker is a 
very robust and reliable algorithm. This sophisticated picking algorithm exploits informations 
provided by the CF as well as by the filtered seismogram. An advantage of the algorithm is 
that an automatic quality estimation of the P onset is implemented. The speed of the algorithm 
makes it also suitable for real-time picking of P phases. 
 
When applying this algorithm, the parameters listed in Tab. 16.1 have to be tuned. These 
parameters are, of course, different for local, regional and teleseismic events and hence 
depend on the sampling frequency and the applied filter. The outer right columns in Tab. 16.1 
show the values used for the presented example waveforms in Fig. 16.4, while the parameter 
ranges given in column “Values” are taken from Allen (1978). 
 
 
 
 
 
 
 
 
 
 

Parameter Remark Values Local Regional Tele

α short-term-average of CF [s] 0.01 < α ≤ 10  0.1s 0.1s 10s 
β long-term-average of CF [s] 2 < β ≤ 50  5s 5s 50s 
C3 weighting of STA values 0.2 < C3 ≤ 0.8 0.2 0.2  0.8 
C4 weighting of LTA values 0.005 < C4 ≤ 

0.05 
0.005 0.005 0.05

C5 LTA * C5 = δ ~ 5 2 2 3 
tmin minimum signal length 

required  
1.5 [s] 3s 3s 40s 
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Fig. 16.2  Visualization of parameters and thresholds needed for the Allen picker. a) 
Bandpass filtered (Butterworth 3rd order, 2-10 Hz) vertical component seismogram (blue) 
with automatically estimated P onset (red). b) Corresponding approximated, squared envelope 
function (blue) with estimated P onset (red). c) STA values of Allen's envelope function 
(blue) and corresponding reference levels 5= CLTA   (red). d) STA values of Allen's 
envelope function (blue) and corresponding continuation criterion   (red). e) Termination 
number L (blue) and number of observed zero crossings with drops below the continuation 
criterion δ (black). When the termination number L and the number of observed zero 
crossings with STA < δ intersect, the signal is supposed to be over. For details, see text and 
flow chart (Fig. 16.3). 
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Fig. 16.3  Flow chart of Allen's picking algorithm. See text for details. 
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Fig. 16. 4  Automatically derived P onsets (blue vertical lines) using Allen's algorithm applied 
to waveforms of local, regional and teleseismic events (black). Applied filtering and 
epicentral distances are given at top of each panel. Allen's CF (STA values of squared 
envelope function) is plotted in red. To the right zoomed in portions of waveforms and CFs in 
the vicinity of the P onset. The green vertical lines indicate the corresponding manual picks. 
The differences between manual P readings and automatically estimated onset times are less 
than 0.5 seconds for these local and regional waveform examples. For the teleseismic event 
waveform examples the differences are 1.7 and 4.2 seconds, respectively. 
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16.3.2   The Baer and Kradolfer picker 
 
Another widely used picking algorithm is the one proposed by Baer and Kradolfer (1987). 
This algorithm is frequently applied, e.g. by PITSA (''Programmable Interactive Toolbox for 
Seismological Analysis'', Scherbaum and Johnson, 1992) and the picking system 
MannekenPix (Aldersons, 2004).  
 
Baer and Kradolfer modified Allens' envelope function )(tE  to  
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By squaring this envelope function and implementing the variance of )(tE , they obtain the 
following CF:  
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 where 4
iE  is the mean of 4

iE  from j -th sample to i -th sample and )( 42
iE  is the variance of 

4
iE  from sample j -th to sample i . As will be shown later, this CF is quite similar to the 

kurtosis, a parameter to quantify deviations from a Gaussian distribution. Tests on synthetic 
data using this CF are shown in Fig. 16.5. In contrast to Allen's squared envelope function this 
CF is sensitive to changes in amplitude, frequency as well as in phase.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 16.5  The Baer and Kradolfer CF (blue) for synthetic data (black) with change in 
amplitude (top), change in frequency (middle) and change in phase (bottom). The CF 
proposed by Baer and Kradolfer is sensitve to the three types of changes 
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A pick flag is set if iCF  exceeds a threshold 10 . In order to avoid detecting short-term 

increases caused by noise, a signal is only accepted if the CF does not drop below the signal 
threshold for times larger than the dominating period. The variance )(2

ii E  is continuously 

updated, except when iCF  exceeds a second dynamic threshold   2 . If the CF decreases 

within a certain time “tup”, the provisional pick is cleared. However, due to the complexity of 
seismic signals, drops of the CF below the threshold γ for “tdown” seconds are allowed. 
 
Fig. 16.6 shows an example of the proposed CF, calculated for the recording of a local event. 
In this specific case the derived onset is somewhat late compared to the manual P reading.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 16. 6  Example of the Baer and Kradolfer CF (red) calculated for a local event waveform 
(black). The blue vertical line indicates the automatically derived P onset, the green vertical 
line the manual P reading. 
 
 
Tab. 16.2 shows the parameters to be adjusted when applying the Baer and Kradolfer picker, 
with the right-hand side columns giving the respective values used for the example 
waveforms of a local, regional and teleseismic event in Fig. 16. 7. 
 
 
Tab. 16.2  Parameters to be adjusted when applying the Baer and Kradolfer picker with the 
respective case values of the parameters used for the example waveforms in Fig. 16.7. 
 

 

Parameter Remark Values Local Regional Tele

γ threshold  10 10 5 2 
δ threshold for updating σ² 2*γ 20 10 10 
tup time [s] for CF to remain 

above threshold γ 
>0.3 1.5 1.5 2 

tdown allowed time [s] for CF to 
drop below threshold γ 
without clearing pick flag 

mean of corner 
frequencies 

10 10 10 
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Fig. 16.7  Examples of waveforms of local, regional and teleseismic events and of the Baer 
and Kradolfer CF. Applied filtering and epicentral distances are given at the top of each panel. 
The green vertical lines indicate the manual P picks, while the blue vertical lines indicate the 
automatically estimated P-onset times. The differences between manual and automatick picks 
are less than 0.2 seconds for these local and regional waveform examples. For the two 
teleseismic event waveform examples the differences are 0.7 and 2.8 seconds, respectively. 
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All automatically derived P onsets are in good agreement to the corresponding manual ones. 
However, it has been shown that this algorithm tends to be somewhat late compared to 
manual P readings (e.g. Sleeman and van Eck 1999; Küperkoch et al. 2010). Aldersons (2004) 
integrated the Baer and Kradolfer picker in the picking system MannekenPix and introduces a 
delay correction. The idea for the correction is to shift the automatic onset back in time as 
long as the CF decreases significantly towards earlier samples. The delay correction stops 
when 1 ii CFCF  is smaller than 0.01, or when this condition cannot be met after moving 

back the onset by 3 samples. Aldersons states, that this simple correction usually provides 
“good to very acceptable results” for local earthquakes recorded by short-period instruments.  
 
The Baer and Kradolfer picker is a fast and robust routine, which is also suitable for online 
detection. Baer and Kradolfer do not propose an automatic quality assessment. However, this 
algorithm yields high quality picks and was supplemented by the sophisticated quality 
assessment system MannekenPix (Aldersons, 2004; Di Stefano et al., 2006). Furthermore, the 
application of this algorithm is quite “user friendly” due to the low number of parameters to 
be set. 
 
 
16.3.3   P-onset determination using Higher Order Statistics 
 
When an earthquake signal arrives, the statistical properties of a seismogram change abruptly. 
Therefore, measurements of statistical properties in a moving window are suitable for the 
determination of a CF and subsequent estimation of arrival times. The statistical properties of 
the seismogram might be characterized by its distribution density function and by parameters 
like variance, skewness and kurtosis. The latter two are parameters of higher order statistics 
(HOS) and defined as follows (e.g. Hartung, 1991).  
 
The expectation of a continuous distribution is given by  
 

 dxxxpXE )(=][ 




 (16.6) 

 
 with the distribution function p(x) of the random variable X.  
 
Using the expectation the statistic moment   of order k of the random variable X is defined 
as:  
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 By analogy the central statistic moment m of order k is defined as:  
 

 1.>],])[[(= kXEXEm k
k   (16.8) 

 
The second central moment is the variance, the lowest moment yielding informations about 
the variability of a random variable:  
 

 .=]])[[(:=][ 2
2 mXEXEXVar   (16.9) 
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The variance defines the mean power of the alternating part of an ergodian process.  
 
Using the third central moment the skewness becomes:  
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S becomes zero if the distribution is symmetrical. It becomes negative (positive) if the 
distribution shows outlayers to the left (right) of the expectation value. The skewness provides 
information about positive or negative deviations of the distribution density function from the 
expectation value.  
 
The kurtosis is defined using the fourth central moment:  
 
 

 

                                           .=
]][[

]][[(
=

2
2

4
4/2

4

m

m

XEXE

XEXE
K




  (16.11) 

 
 K is 3 for normally distributed random variables.  
 
An estimation of a central moment from a random sample xj, Nj ,,1 K is:  
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 Estimations of the variance, skewness and kurtosis are hence given by:  
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Tab. 16.3 shows some example spot checks and their corresponding estimates of variance, 
skewness and kurtosis. Especially skewness and kurtosis show the potential to detect even 
small outliers. The first two examples show symmetrically distributed spot checks. The 
estimated skewness is zero. In the second example the variance increases, though no outlier 
distorts the distribution. The skewness remains zero and kurtosis increases only slightly. In 
the third example the outlier is clearly indicated by skewness and kurtosis, while the estimate 
of the variance remains the same as for the second example. 
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Tab. 16.3  Examples of spot checks and corresponding values for variance, skewness and 
kurtosis. 
 
 
 
 
 
 
 
 
 
 
Fig. 16.8a shows the distribution density function of real background noise. Variance, 
skewness and kurtosis are calculated in a moving window with a length of 20 seconds. 
Skewness and kurtosis indicate an almost Gaussian distribution. As soon as the moving 
window reaches a signal onset (Fig. 16.8b), the shape of the distribution density function 
changes abruptly and deviates from a Gaussian distribution. Kurtosis and skewness increase 
strongly.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 16.8  a) Background noise (top) and corresponding distribution density function 
(middle), calculated in a moving window of 20 seconds length (dashed box). Bottom: 
estimated variance, skewness and kurtosis (normalized).  
b) The moving window reaches a signal onset. The distribution density function is no longer 
Gaussian shaped, variance, skewness and kurtosis increase strongly. 
 
 
Longbottom et al. (1988) used higher order statistics (HOS) for the deconvolution of seismic 
data and called their algorithm a simplified minimum entropy deconvolution method. 
Saragiotis et al. (2002) suggest to estimate skewness and kurtosis in a moving window to pick 
P-wave arrival times. Gentili and Bragato (2006) and Gentili and Michelini (2006) used 
skewness, kurtosis and a combination of skewness and kurtosis and their time derivatives as 
input for a neural network trained to estimate P-arrival times. Groos and Ritter (2009) used 
higher order statistics to classify broadband urban noise (USN).  
 

  Spot Check   
2̂ Ŝ K̂

 1]1,1,[1,     1   0   1  

 2]1,2,[1,     2.5   0   1.36  
 

]71,1,[1,    

 2.5   -1.11   2.08  
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Using eqs. (16.14) and (16.15), skewness and kurtosis are estimated in a moving window. 
This yields the CF from which the arrival times of the P wave is determined. In order to make 
the calculation fast, a recursive procedure is suggested:  
 
Let )}({ jx  be a zero-mean, stationary process, T  the length of the moving window and  
 

 1,/= dtTN  (16.16) 
 
the number of samples of the moving window, with dt  being the sampling interval. The 
actual value for the central moment of order k  of the moving window is:  
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 Its estimate at sample j  may be calculated from the previous estimate at sample 1j :  
 

 ./))()((1)(ˆ=)(ˆ NjxNjxjmjm kk
kk   (16.18) 

 
Using eqs. (16.14) and (16.15) skewness and kurtosis are calculated from recursively 
estimated central moments. Computation times may be decreased by a factor of about 10.  
 
In Fig. 16.9 CFs calculated using skewness and kurtosis are compared to the CF of an 
STA/LTA for synthetic data with a change in amplitude, frequency and phase, respectively. 
The test indicates the strong sensitivity of skewness and kurtosis for changes in amplitude. 
While changes in frequency are detected by skewness and kurtosis, there is only a marginal 
detectability of changes in phase.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 16.9   Tests on synthetic data (black) with changes in amplitude (top), frequency (middle) 
and phase (bottom). Green: skewness, red: kurtosis, blue: STA/LTA. 
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From the CF arrival times are determined. Küperkoch et al. (2010) propose a sophisticated, 
iterative algorithm, which is organized into four stages.  A detailed description of the 
algorithm and the parameter settings is given in their paper. The algorithm might briefly be 
described as follows: 
 
(1) A CF using skewness or kurtosis is calculated from a bandpass filtered waveform (2-10 
Hz for local to regional events). In analogy to Maeda (1985) the Akaike Information Criterion 
(AIC, Akaike, 1971) is calculated, yielding a first approximate P onset, which is the minimum 
of the AIC function (Fig. 16.10b). 
 
(2) Using this preliminary P onset, the CF is recalculated around the initial onset in a smaller 
window, considering a higher frequency content (e.g. 2-15 Hz). The picker searches then for a 
common local minimum of a smoothed and the unsmoothed CF as this indicates a P-wave 
onset. The search is carried out to the right and to the left of the intial P onset within a certain 
pick window. If local minima are found on both sides of the initial P onset, the lower common 
minimum with lower amplitude of the CF is assumed to coincide with the true P-arrival time 
(Fig. 16.10c). 
 
(3) For automatic quality assessment the slope of the CF right after the determined phase 
onset and the signal-to-noise ratio (SNR) serve as two quality criteria (Fig. 16.10c).  
 
(4) Errorneous P onsets are found by checking the signal length and comparing the energy of 
the vertical component with the energy of the horizontal components to get rid of S picks, 
spuriously picked as P onsets. Furthermore, the consistency of automatically picked P onsets 
is checked. The difference between the picks should be lower than a certain threshold and the 
individual P picks should not have a strong influence on the estimate of the variance of the P 
picks. This is tested by a Jackknife procedure.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 16.10  Automatic determination of a P onset in a 2-10 Hz bandpass filtered, local event 
waveform (a, black) using the iterative picking algorithm proposed by Küperkoch et al. 
(2010). The manual P reading is indicated by the dashdotted vertical line. (b) Zoomed in 
portion of the waveform (black), also showing the CF calculated using kurtosis (red), the 
unsmoothed AIC function (cyan) and the smoothed AIC function (blue).  The initial P onset 
(dashed vertical line) is determined from the two AIC functions. (c) Zoomed in waveform 
(black), recalculated, unsmoothed CF (red) using kurtosis, calculated from 2-15 Hz bandpass 
filtered data, and recalculated, smoothed CF (blue). The green line indicates the slope fitted to 
the unsmoothed CF. The noise window Tnoiseand the signal window Tsignal are used for 
SNR estimation. Tnoise is 2 seconds. 
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Fig. 16.11 shows applications of the picking algorithm using kurtosis to local, regional and 
teleseismic events. For local and regional waveform examples the automatically derived P 
onsets show less than 0.2 seconds deviation from the manual picks. For the teleseismic 
waveform examples the differences are 0.7 and 3.2 seconds, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 16.11 Examples for waveforms of local, regional and teleseismic events and the 
corresponding characteristic functions determined using kurtosis. Applied filtering and 
epicentral distances are given at the top of each panel. The green vertical lines indicate the 
manual P picks, the blue vertical lines the automatically derived P-onset times. While the 
differences between manual picks and automatically P-arrival time estimates are less than 0.2 
seconds for the local and regional waveform examples, the differences for the teleseismic 
waveform examples are 0.7 and 3.2 seconds, respectively. 
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Skewness and kurtosis are very sensitive to changes in amplitude, while changes in frequency 
or phase are hardly detectable. The proposed picking algorithm yields very accurate P 
readings in combination with a reliable quality assessment. Due to the recursive calculation of 
higher order central moments, this approach is also suitable for onset detection. The length of 
the moving window for kurtosis and skewness calculation typically range between 2 and 20 
seconds, depending on the dominating frequency from which the window should include not 
less than about approx. 1.5 oscillations. 
 
Skewness and kurtosis are successfully applied by Saragiotis et al. (2002) to 44 seismic 
events. The corresponding P onsets are compared to manual derived P onsets as well to 
automatically derived P onsets using Allen’s algorithm (see sub-section 16.3.1). The 
comparison yields better results for the HOS approach. Furthermore, a large scale comparison 
was performed by Küperkoch et al. (2010) using more than 3000 manually derived P onsets 
of local to regional events. They found for their data set excellent results when using kurtosis 
and outperformed the additionally applied picking algorithms proposed by Allen and Baer and 
Kradolfer (see sub-section 16.3.2).    
 
 
16.3.4  The AR-AIC picker 
 
A stochastic time series, in which the i-th sample is described as a linear combination of the p 
predecessors, is called an autoregressive process of order p, which can be abbriviated as 
AR(p). The mathematical representation is 
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with E[x]=0, where ma are the coefficients or parameters of the AR process and εm white 

noise. Eq. (16.19) can be rewritten as 
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When an earthquake signal arrives, the characteristics of a seismogram, such as variance and 
the spectrum, change abruptly. For the estimation of a phase arrival, it is assumed that each of 
the segments before and after the arrival of the seismic wave is stationary and might be 
expressed by an autoregressive model as follows (e.g. Kitagawa et al., 2001): 
 
noise model (1st, pre-onset segment, for n=1,…,k): 
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signal model (2nd, post-onset segment, for n=k+1,…,N); 
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where k+1 is the change point between the two segments (i.e. the phase arrival), 1
ma  and 2

ma  

are the AR coefficients, 1
n  and 2

n represent gaussian distributed noise in the two segments, 

and M and L are the orders of the AR processses of the noise and the signal model, 
respectively, which are all unknown parameters. In the following we briefly outline the 
estimation of these parameters and show an application of locally, stationary segments and its 
description with autoregressive processes.  
 
Waveforms of seismic phases show usually a higher complexity than that of the preceding 
noise and should therefore be described by a larger number of AR parameters, i.e., by an AR 
model of higher order p (e.g. Leonard and Kennett, 1999). Leonard and Kennett (1999) obtain 
the order of the AR process by fitting AR power spectra to noise and signal power spectra. 
Another approach of estimationg the order of an AR process (called model identification) is 
the use of the (empirical) partial autocorrelation function (PACF, e.g. Box et al., 1994). While 
the (empirical) autocorrelation function (ACF) gives the relation between the actual value of a 
time series and a later (earlier) value (delayed with time lag τ), not taking into account the 
influence of interjacent values, the PACF gives the direct correlation between lag-k distant 
values by removing the influence of interjacent values. For an AR process of order p the 
PACF will be nonzero for time lags l less than or equal p and zero for time lags l>p and hence 
gives informations about the order of an AR process. Akaike (1970) proposed the final 
prediction error (FPE) to estimate the model order.  
 
Fig. 16.12a) and 16.12b) show the pre-event noise window, the signal onset and the 
corresponding empirical ACF as well as the empirical PACF, from which the order of the 
process is estimated. The order of the time series incorporating the signal onset is much 
higher than that for the noise window. The PACF is assumed to be zero if the PACF is 

smaller than the standard S.E.,  which is NES /1..   (e.g. Box et al., 1994), where N is the 
number of observations. PACF and FPE yield the same model orders. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 16.12  a) Pre-event portion of a seismogram, corresponding ACF and PACF for sample 
lags 0 to 20, and FPE as a function of model order. The order of the AR process can be 
obtained from the PACF.  The last value of the PACF which is larger than the standard error 
(dashed line) occurs at sample lag 3. The order of the AR process is therefore 3. The FPE 
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function also gives a local minimum at model order 3. b) Pre-event portion, seismic phase 
onset, corresponding ACF and PACF for sample lags 0 to 20, and FPE as a function of the 
model order. The order of the AR process is estimated to be 5, as the last value of the PACF, 
which is larger than the standard error, is at sample lag 5, indicating a higher complexity of 
the seismic signal compared to the preceeding noise. Also the FPE gives a local minimum at 
model order 5.  
 
However, the estimation of the order of an AR process is very uncertain, and hence in most 
AR applications a fixed AR order is used, estimated with the introduced procedure or by trial 
and error (e.g. Leonard and Kennett, 1999).  
 
The so called autoregressive-Akaike-Information-Criterion-picker (AR-AIC) proposed by 
Sleeman and van Eck (1999) is based on the work by Akaike (1971, 1974), Morita and 
Hamaguchi (1984) and Takanami and Kitagawa (1988). A longer time series is divided into 
two locally stationary segments each modeled by an AR process. The first segment represents 
noise, the second segment contains the signal. The picking algorithm can be described by five 
steps: (1) Bandpass filtering of the seismogram, (2) detection of a seismic phase using an 
STA/LTA detector, (3) estimation of two sets of AR parameters, namely for noise and signal, 
respectively, (4) calculation of two prediction errors using the AR parameters for noise and 
signal, respectively, (5) the minimum of the two-model AIC indicates the arrival time. For the 
following detailed description of the picker algorithm we assume that due to a first rough 
estimation of the P-wave arrival time the time series Nn xxx ,,1 L  can be divided into two 

subseries: the first represents noise, the second the seismic phase (signal). Thus, starting point 
for the following derivation are eqs. (16.21) and (16.22). Furthermore, we assume a fixed 
order M for both models, estimated by trial and error or the use of the PACF.  
 
As we assume Gaussian distributions of 1

n  and 2
n , we can write for the two corresponding 

likelihood functions:  
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 The approximate likelihood of the locally stationary AR model in the intervals ]1,[ kM   and 

]1,[ MNk   is hence given by  
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 with mknMNqkqkpMp  =,=,=1,=1,= 12121  and kMNn =2 .  
The condition for maximum likelihood estimates of the model parameters is  
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Note, that the second sum is equivalent to the prediction error.  
 
By substituting eq. (16.27) into eq. (16.25), the maximum of the logarithmic likelihood 
function )),,,,(( 2

i
i
maMxkLlog   for the two models as function of division point k  becomes:  
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where C  is a constant.  In the case of the locally stationary AR model, the AIC, which is a 
criterion for the selection of the best statistical model, is given by (Akaike, 1971): 
 

                AIC = -2(maximum log likelihood) + 2(number of parameters), 
 

where the number of parameters is given by the model order. For the merging point k, which 
separates the two models, the AIC becomes: 
 

21)( AICAICkAIC                                                   (16.29) 
and thus:  
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where 1C  is a constant. The minimum of the AIC points then to the optimal seperation time of 
the two stationary time series and indicates the arrival time of the phase. The AR coefficients 

i
ma  in eq. (16.27) are estimated in advance seperately for the noise and the signal model, 

repsectively. This is usually accomplished by either the Yule-Walker approach (e.g. Box, 
1994), Burgs algorithm (Burg, 1975), or the least-squares approach.  
 
In the following the AR-AIC picker is applied to synthetic and real test waveforms. The AR 
coefficients of the noise and the signal models are estimated in windows of 4 seconds length. 
The window of the noise model starts 4 seconds before the initial estimate of the arrival time. 
The window for the estimation of the AR parameters of the signal starts at the initial estimate 
of the arrival time (Fig. 16.13, top). The picker searches for the minimum in eq. (16.30) in a 
time window of 12 seconds length starting 8 seconds before the initial STA/LTA detection 
(Fig. 16.13, bottom). Sleeman and van Eck (1999) fixed the order of the two AR models to 8. 
Leonard (2000) used an order 4 AR model for both signal and noise. 
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Fig. 16.13 Top: Waveform of a local event (black) and an initial P-onset detection (blue) 
derived from STA/LTA ratios (red). The green vertical lines indicate the time interval for 
noise level estimation. The dashed lines denote the time windows for determination of AR 
coefficients for the noise and the signal model, respectively (NW and SW).  
Bottom: Waveform (black) around the initial STA/LTA pick (red,dashed line) and the 
automatically determined P onset (red line). Green: The AIC as a function of the merging 
point k, determined using eq. (16.30). 
 
 
Fig. 16.14 shows the results for the synthetic data. For this test, we reduced the assumed order 
of the AR process to 2. The test shows clearly the potential of AR algorithms to detect 
changes in amplitude, frequency as well as in the phase.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 16.14  AR-AIC (red) as function of the merging point k for synthetic data (black) with 
changes in amplitude (top), changes in frequency (middle), and changes in phase (bottom). 
The assumed order of the AR process is reduced to 2. Changes in the time series are 
recognized in all three cases. 
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Tab. 16.4  Parameters to be adjusted for the AR-AIC picker. Parameter settings applied for 
STA/LTA trigger used to get initial the P onset are not shown. The outer right columns 
represent the values used for the example waveforms in Fig. 16.15.  

 
 
Fig. 16.15 shows applications of the AR-AIC picker to real local, regional, and teleseismic 
waveform data. Tab. 16.4 summarizes the parameters used for the example waveforms in Fig. 
16.15 and the parameters proposed by Sleeman and van Eck (1999).  
 
One shortcoming of this picker is the dependency on the STA/LTA trigger, which may be 
exchanged by a more robust procedure. The weighting scheme based on signal-to-noise ratios 
is useful for detecting false picks, but does not yield reliable quality estimates of the onset. 
However, the shape of the AIC function depends on the “sharpness” of the onset and could 
thus serve as a quality criterion (Diehl et al., 2009b, electronic supplement). The AR-AIC 
picker is more expensive but also more powerful than the Allen picker and the Baer and 
Kradolfer picker due to its strong sensitivity to changes in the waveform. Furthermore, this 
picking algorithm represents a robust tool  for the identification of a first arrival. 
 
 
 
 

Parameter Remark Values Local Regional Tele

tseg1 length of 1st segment for  
calculating AIC(k) [s]  

4 8 8 50 

tseg2 length of 2nd segment for 
calculating AIC(k) [s] 

4 4 4 40 

tnoise length of noise window for AR-
coefficient determination [s] 

4 4 4 50 

tsignal length of signal window for AR-
coefficient determination [s] 

4 4 4 50 

offset1 offset between initial pick and tnoise 
[s] 

4 4 4 50 

offset2 offset between initial pick and tsignal 
[s] 

0 0 0 0 
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Fig. 16.15 Waveform examples of local, regional and teleseismic events and the 
corresponding characteristic functions for the AR-AIC picker proposed by Sleeman and van 
Eck (1999). Applied filtering and epicentral distances are given at top of each panel. The 
inital pick is determined by a STA/LTA detector.  AIC as a function of the merging point is 
shown in red. The blue vertical lines denote the automatically determined P-phase arrival 
times, the green vertical lines the manual P picks. For local event waveform examples, the 
differences between manual picks and automatically estimated P-arrival times are 0.05 and 
0.01 seconds, for regional waveform examples 0.34 and 0.28 seconds, and for teleseismic 
waveform examples 2.7 and 1.8 seconds, respectively. 
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16.3.5  Discussion of presented P-picking algorithms 
  
The previous section presented four widely used P-picking algorithms in great detail. 
However, for potential users it might be difficult to decide which algorithm to choose for his 
certain data set. Therefore, we try to summarize the pros and cons of the four presented 
algorithms. 
 
The Allen picker is a fast and robust algorithm, which also accounts for automatic quality 
assessment. However, as this algorithm is amplitude based only, it might miss emergent P 
onsets. A comparative study by Küperkoch et al. (2010) showed that this algorithm tends to 
pick somewhat early compared to what an analyst would pick. 
 
The Baer and Kradolfer picker is also very fast and robust and quite user-friendly, as this 
algorithm only needs 4 input parameters. A shortcoming of this algorithm is the missing 
automated quality assessment. Several comparative studies (Sleeman and van Eck 1999, 
Aldersons 2004, Küperkoch et al. 2010) showed that this picking algorithm tends to be 
somewhat late compared to manual P picks. 
 
Though only amplitude based too, higher order statistics are quite sensitive even to emergent 
P onsets. In combination with a sophisticated picking algorithm (e.g. Küperkoch et al. 2010), 
which exploits the entire information provided by the determined CF, yields excellent results. 
If precisely tuned, the automated quality assessment proposed by Küperkoch et al. (2010) 
gives similar weights as the analysts. However, the choice of the various parameters needed 
for this sophisticated algorithm is quite difficult and needs some experience. 
 
The AR-AIC picker is a highly sophisticated picking algorithm based on information theory. 
The algorithm is computationally quite expensive and hence much slower than the other 
presented picker. In the discussed version by Sleeman and van Eck (1999) the initial P onset 
is derived from an STA/LTA detector, which might miss emergent P arrivals or P-phase 
arrivals dominated by instantaneous changes in frequency. This may limit the performance of 
this picking algorithm, and it might be worthwhile to replace the STA/LTA detector with a 
more robust, but nevertheless fast picker like the Baer and Kradolfer picker or a picking 
algorithm based on higher order statistics. Furthermore, the implemented quality assessment 
in the Sleeman and van Eck version based on signal-to-noise ratio only is not sufficient for 
robust quality estimation of the derived P onsets. A more robust quality criterion might be the 
“sharpness” of the AIC function, as proposed by Diehl et al. (2009b). However, a multivariate 
improvement of the AR-AIC picker should also be able to pick precisely S-arrival times.  
 
 

16.4 Automated S-onset determination 
 
For robust location of earthquakes and especially for the determination of hypocentral dephts, 
the estimation of S-onset times is crucial (Gomberg et al., 1990). Furthermore, S-wave arrival 
times may be inverted for models of the S-wave velocity supplementing P-wave velocity 
models and yielding additional information e.g. for petrological interpretation and seismic 
hazard models. However, S phase picking is more difficult than P-phase picking due to the 
character of the later arriving shear wave. Although by far most of the seismic wave energy is 
contained in  the S waves and accordingly their amplitudes are generally larger than those of 
the related P waves (see record examples of local, regional and teleseismic events in DS 11.1-
11.3), the often weaker very initial S-wave onset is usually buried in the preceding P coda. 
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Statistical properties of the P coda are highly variable and usually not Gaussian distributed. 
Therefore, the S onset may not be detectable by algorithms based on higher order statistics. S 
waves show often emergent onsets and may be preceeded by S to P conversions. Moreover, 
while the energy of longitudinally polarized P waves is usually concentrated on the vertical 
component, the energy of the later arriving transversally polarized S waves is in general 
distributed over all three components. In addition, the occurence of S-wave splitting may 
complicate the determination of the S-wave arrival time (Fig. 16.16). Thus, even manual 
picking and phase identification is often uncertain and inconsistent and experience is needed 
to pick and identify reliably the S onset. Hence, automated S-phase arrival time estimation is 
a challenging task and the development of optimized automated algorithms for picking of 
arrival times of S phases or other later arriving phases is a topic of ongoing research and 
applications to large data sets are still rare.  
 
Reliable automatic S-onset determination makes use of all components or at least of both 
horizontal components. Usually, automatic picking of later phases is an iterative process. First 
the P onset has to be determined using the vertical component, from which a time window for 
S-phase picking is derived. Alternatively, the S phase is picked in a time window predicted 
from a preliminary event location. Algorithms proposed for P phase picking may also be used 
for S-phase arrival time determination when applied to transversal components. For instance,  
the AR-AIC picker (Takanami and Kitagawa (1988, 1991), Sleeman and van Eck (1999), see 
sub-section 16.3.4), has the potential of picking later phases if applied to horizontal 
components. Leonard and Kennett (1999) investigated single- and multi-component 
autoregressive modeling techniques for P- as well as for S-onset time determination. For 
multi-component analysis, the AR coefficients are represented by a second-order tensor. The 
order of the autoregressive processes representing the noise and the signal parts of the 
seismogram, respectively, are obtained by fitting AR-power spectra to observed ones.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 16.16 Shear-wave splitting observed on a 2-10 Hz bandpass filtered local event 
recording. The green line indicates the SH-onset time, visible only on the north-south 
component. The red line indicates the SV-onset time, visible on the vertical and the east-west 
component.   
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Here, the algorithms proposed by Cichowicz (1993), Wang and Teng (1997) and Diehl et al. 
(2009b) are discussed in detail, as these algorithms are specifically developed for S-phase 
arrival time determination.  
 
Cichowicz (1993) proposed an algorithm for automatic S-phase picking from three-
component seismic data based on a polarization analysis, which is a powerful tool to 
distinguish between longitudinal and transversal energy, as discussed above. The algorithm 
might be described as follows:  
 
Taking into account the dominating frequency, usually determined from displacement or 
velocity power spectrum, respectively, the length N  of a moving window is determined. At 
first, the covariance matrix of the three orthogonal components of ground motion is computed 
within a window around the P onset, which is assumed to be known:  
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 where the estimate of the covariance for N observations of two variables X  and Y  is given 
by  
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 with x  and y  being average values. The direction of polarization is calculated by 
considering the eigenvector associated with the largest eigenvalue. Then, the X, Y and Z 
components are rotated into L, Q and T components, where L coincides with the principle 
direction of the P wave particle motion, i.e.  
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where 1,2,3=,, ju ji , are the direction cosines of the i-th principle direction. The covariance 

matrix and the following parameters are calculated for a moving window: 
1) The deflection angle )(1 tF  - the angle between the current polarization and the P-wave 
polarization - given by  
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with 11u  being the direction cosines in the L, Q, T coordinate system.  

2) The degree of linear polarization )(2 tF   
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 with 321 ,,   being the eigenvalues of the covariance matrix at time t. 

3) The ratio 3F  between transversal and total energy  
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These parameters are normalized and their theoretical values will be close to 1 for S waves. 
The CF is determined using these parameters:  
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 An S phase is declared, if the CF exceeds a threshold A  for a few consecutive samples. A  is 
calculated from the CF:   
 

 ,3= CFA                                                               (16.38) 
 

where CF  is the average value of the CF and   the variance of the CF in the time window. 
The uncertainty of the automatic S pick is not evaluated by this algorithm. Sleeman and van 
Eck (2003) combined the polarization analysis with wavelet tranform (Rioul and Vetterli, 
1991) and applied their aproach to 313 local events. For their data, they found 44.1% to 
47.9% of automatic S picks in the interval [-0.5, +0.5]s around the manual S onset and 65.5% 
to 68.9% of automatic S picks in the interval [-1.5, +1.5]s around the manual S pick.  
   
Wang and Teng (1997) combine several approaches into an artificial neural network (ANN) 
algorithm. They consider the following properties of the three-component seismogram: (1) 
short-term to long-term average ratios (STA/LTA); (2) the ratios of transversal to total power 
(same as 3F  in Cichowicz, 1993); (3) the change of autoregressive model coefficients. As 

they assume a second-order AR process, this change becomes:  
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 where 21, aa  are the estimated AR coefficients.  
 

(4) The fourth criterion is the deflection angle )(tD  or the short-axis incidence angle of the 
polarization ellipsoid, i.e.  
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In their proposed ANN, each attribute is calculated by a neural subnet. The output of the 
subnets varies between 0 (no S phase) to 1. The output of the four subnets serve as input for 
the final decision unit, where the inputs are summed up. If the summation of inputs is larger 
than 3, the estimated arrival time is accepted.  
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Similar to their approach, Diehl et al. (2009b) propose a picking algorithm that combines 
STA/LTA ratios, polarization analysis, and AR-AIC picking (see sub-section 16.3.4). 
Combined STA/LTA ratios are calculated from both horizontal components as illustrated in 
Fig. 16.17. The picking algorithm is similar to the one proposed by Baer and Kradolfer (1987, 
see sub-section 16.3.2), but yielding an earliest (tSmin1) and latest (tSthr1) possible pick, 
respectively. 
 

 
 
Fig. 16.17 Combined STA/LTA approach used for S-wave detection on horizontal 
components. Black solid curves represent the Wood-Anderson filtered three-component 
seismograms (amplitudes normalized by station maximum) of a local earthquake in 
Switzerland (Ml 3.1, focal depth of 9 km). The gray shaded trace denotes the combined 
STA/LTA ratio derived from N and E components. tPobs represents the known P-arrival time, 
and tSpre indicates the position of theoretical S arrival predicted from a regional one-
dimensional model. The dashed horizontal line denotes the dynamic threshold thr1 for the 
picking algorithm. The S-wave arrival time based on the STA/LTA detector in the potential S 
window (SW1 to SW2) is most likely located in the interval between tSmin1 (minimum pick) 
and tSthr1 (threshold pick). Copy of Fig. 2 in Diehl et al. (2009b, p. 1908) with © granted by 
the Seismological Society of America. 
 
 
The polarization detector mainly follows the one proposed by Cichowicz (1993). In addition, 
they calculate a weighting factor )(tW  for each window, which accounts for the absolute 
amplitude within the centered window with respect to the maximum amplitude derived from 
the coarse S window, derived from the observed P onset and the theoretical S onset. The 
characteristic function CF of the polarization detector is:  
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 with 1F  and 3F  being the deflection angle and the ratio between transversal and total energy, 

respectively, as introduced above. )(tR  is the rectilinearity:  
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 with 321 ,,   being again the eigenvalues of the covariance matrix. Fig. 16.18 illustrates the 

principle of the proposed polarization detector. A picking algorithm is applied to the derived 
CF, which yields an earliest (tSmin2) and latest (tSthr2) possible estimate of the S phase arrival 
(see Fig. 16.18). 
 

 
  
Fig. 16.18  Example for the polarization detector. L, Q, and T denote the rotated components. 
The corresponding S-wave operators are D(t) (directivity), P(t) (rectilinearity), and H(t) 
(transverse to total energy ratio). The uppermost trace represents the amplitude weighted 
characteristic S-wave function CFS. The arrival of the S wave (gray band) goes along with the 
simultaneous increase of D(t), P(t), H(t), and CFS. Compared to the actual arrival on T, the S 
wave detection is shifted by approximately 0.1 sec to earlier times. This time shift is caused 
by the finite length of the polarization filter. CFS is not affected by the P wave. Copy of Fig. 3 
in Diehl et al. (2009b, p. 1910) with © granted by the Seismological Society of America. 
 
 
The information provided by the detectors is used to set up the search window for a AR-AIC 
picker, applied to single original and rotated components and to both horizontal components 
as illustrated in Fig. 16.19. The implementation is mainly based on the method of Takanami 
and Kitagawa (1988). Finally, the earliest and latest possible picks from the STA/LTA 
detector, polarization detector, and the different AIC minima are used to estimate the ultimate 
automatic S-wave arrival time and its corresponding uncertainty. Examples of final automatic 
S-phase picks of different uncertainty classes are shown in Fig. 16.20. 
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Diehl et al. (2009b) applied their proposed S-picking algorithm to 552 earthquakes in the Alps 
recorded at epicentral distances 150 km, resulting into an upper error bound of 0.27  
seconds. Their data set is available at ORFEUS: http://www.orfeus-eu.org/Data-
info/special_datasets.htm. 
 
 

 
 
Fig. 16.19  Example of the AR-AIC picker. All amplitudes are trace normalized. The lower 
box illustrates the search window configuration centered around tAC. The corresponding 
univariate AIC functions are shown for the combination of original E+N components (AICH) 
and for the rotated components Q (AICQ) and T (AICT). AR-AIC picks tSAQ and tSAT derived 
from the minimum on the AIC functions agree very well with the actual arrival of the S wave 
visible on the seismograms. The uncertainty of the AR-AIC pick is expressed by the earliest 
and latest possible arrival times tSeQ, tSeT, tSlQ, and tSlT derived from intersection of threshold 
thrAIC (dashed horizontal lines) with the corresponding AIC functions. Copy of Fig. 4 in Diehl 
et al. (2009b, p. 1911) with © granted by the Seismological Society of America. 
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Fig. 16.20  Examples of automatic S-wave picks at epicentral distances dominated by first 
arriving Sg phases (left-hand column) and first arriving Sn phases (right-hand column) for 
different error intervals. The error interval derived from the automatic quality assessment is 
represented by the vertical gray bars. The vertical long black bars denote the mean position of 
the S-wave onset. Error interval and mean position agree very well with the actual S-wave 
arrival observed on the seismograms. Copy of Fig. 5 in Diehl et al. (2009b, p. 1914) with © 
granted by the Seismological Society of America. 
 
 

16.5 Automated quality assessment, phase identification, and 
outlier detection 
 
Resolution and reliability of travel-time based inversion techniques, like hypocenter 
determination and tomography, depend strongly on the consistency of data quality weighting. 
Arrival times with larger uncertainties have to be down weighted or even rejected in the 
inversion process. Uncertainties of arrival time picks are traditionally divided into discrete 
quality classes (e.g. 0 to 4, with 0 corresponding to highest quality and 4 corresponding to 
lowest quality). Each quality class is associated with a certain weight (between 1 and 0) and 
should correspond to a measured uncertainty interval (in seconds). Such discrete quality 
classification is still used in many location and tomography algorithms like HYPOINVERSE 
(Klein, 2002) or VELEST (Kissling, 1988), which convert the quality class to a data weight 
during inversion. Quantitative uncertainty measures are usually absent for arrival times in 
global bulletins. Instead, picks are simply classified as “impulsive”, “emergent”, or 
“questionable” based on wavelet characteristics. Such qualitative error assessment, however, 
no longer satisfies the resolution capability of modern digital waveform data. 
 
Although often disregarded, the uncertainty of an arrival time pick consists of two 
components: uncertainty of the phase timing and uncertainty of the phase identification (e.g. 
Diehl et al. 2009b). Automated picking and association of later phases is challenging, but 
provides fundamental information on earth structure and hypocenter locations. Especially 
phases like PmP, S, pP, and sP are crucial to constrain focal depth of local and teleseimic 
earthquakes. 
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In this section, we discuss procedures for automatic quality assessment of phase timing and 
phase identification. Because automatic quality assessment sometimes overestimates the 
timing quality or misinterprets the phase, outlier picks have to be detected in post-picking 
procedures as described at the end of this section.  
 
 
16.5.1 Quality assessment of phase timing 
 
Arrival time estimation of phases needs to be accompanied by uncertainty estimates in order 
to down weight or even reject uncertain picks. The uncertainty of picks may be increased by 
low signal to noise ratios or by emergent onsets in contrast to impulsive ones. Emergent 
onsets are caused by the character of the source time function of the earthquake, the radiation 
pattern or by complicated wave propagation. Until now, only few papers focus on automatic 
quality assessment (e.g. Allen 1978; Aldersons 2004; Di Stefano et al. 2006; Diehl et al. 
2009a and b; Nippress et al. 2010; Küperkoch et al. 2010) though automated arrival time 
determination should always be supplemented by automated uncertainty estimations.  
 
Most widespread is the use of the signal-to-noise ratio (SNR) for automatic quality control 
and uncertainty estimation. Using certain window lengths depending on the dominating 
frequency, the amplitudes or the energy content right before the considered onset is compared 
to the amplitudes or energy content right after the onset (e.g. Sleeman and van Eck, 1999). If 
the SNR is calculated in the frequency domain, power spectral densities are compared (e.g. 
Leonard and Kennett, 1999). However, even bursts of noise may lead to large SNR, resulting 
in high qualities for false picks. To overcome this problem, it is necessary to estimate the 
signal length, which can be done by exploiting the envelope function (see Fig. 16.21) or by 
counting consecutive zero crossings of previous amplitudes, which exceed a certain threshold, 
as suggested e.g. by Allen (1978, see sub-section 16.3.1).  
 
In addition to criteria for the SNR and the signal length, Allen (1978) uses a quite 
sophisticated algorithm for estimating the quality, based on analyses of the seismogram as 
well as of the CF (see sub-section 16.3.1). Küperkoch et al. (2010) suggest using the slope of 
the CF (sub-section 16.3.3) to identify emergent onsets. The MannekenPix algorithm of 
Aldersons (2004) includes a pattern recognition scheme, which weights nine different 
waveform attributes (predictors) obtained in the time window around the automatic pick and 
classifies the pick in discrete quality classes. The corresponding weighting factors are called 
“Fisher coefficients”, which have to be calibrated with a set of manually picked arrival times 
(reference picks).  
 
A multiple discriminant analysis (MDA) is used to derive appropriate Fisher coefficients from 
the reference picks. Four predictors characterize the SNR. Predictor 5 is the difference 
between the dominant frequency of the signal and the dominant frequency of the noise. The 
remaining 4 predictors characterize properties of the CF around the estimated arrival time. 
This elaborated picking algorithm has been successfully applied to local earthquake data of 
the Dead Sea region (Aldersons, 2004), Italy (Di Stefano et al., 2006) and the greater Alpine 
region, respectively (Diehl et al., 2009a). 
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Fig. 16.21  Short-period seismogram, 2-10 Hz bandpass filtered (black), and corresponding 
envelope function (blue). The envelope function is used to confirm the automatically derived 
P onset. The noise level is calculated within a window (green horizontal line) right before the 
automatically derived P onset (red vertical line). For this regional waveform example the 
requirement is that at least 70% of the envelope within a window of 4 seconds should exceed 
the signal threshold (green vertical line after P onset), which is twice the noise level. 
 
 
16.5.2 Phase identification 
 
Automatically determined arrivals have to be identified, that means, phase names have to be 
assigned to the arrival times, indicating their fundamental type and path through the earth. 
Most automatic approaches are intended to pick the first arriving phase of either P  or S 
branches. Therefore, any automatic pick is considered as first arriving phase. In practice, 
picking algorithms can miss the very first phase and misinterpret later phases or larger 
amplitudes in the coda as the first arrival. Such phase misidentification may result in errors in 
the arrival times of up to several seconds, as pointed out e.g. by Diehl et al. (2009a). Fig. 
16.22 shows an example of a regional event recording, where Pn is picked by the analyst, 
while the automated procedure picked a more prominent later phase (likely PmP). In case of 
first-arrival studies, picks should be accompanied by first-order estimates on whether arrival 
time is associated with first or later arriving phase. So far, most algorithms do not include 
such uncertainty estimates of phase identification, however, the assessment of phase timing 
can be tuned to pick targeted phases as described e.g. by Diehl et al. (2009a). 
 
Explicit phase association of arrival times is usually only possible in combination with a 
priori information on the Earth’s structure and the location of the event. Phase identification, 
however, can be accomplished by an iterative procedure: a preliminary location is determined 
using first arriving P phases, then first (and later arrivals) are associated by comparison with 
theoretical arrival times. In addition, epicentral distances can be estimated from S-P times and 
polarization analysis may support the identification of later phases (see section 16.4).  
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Fig. 16.22  Example of phase misidentification within a 2-10 Hz bandpass filtered record. 
First arriving Pn-phase (blue) and intermediate phase (likely Pg) is missed by the automatic 
approach using kurtosis. Instead, the automatic approach (green) picks a later phase (likely 
PmP). Such misidentification may result in errors of several seconds. 
 
 
Recordings of local to regional earthquakes are dominated by crustal phases like Pg, Pn, and 
PmP. Later arrivals are often buried in the P  and S coda and may occur within short time 
windows. In addition, the correct identification is challenging due to the heterogeneous 
structure of the crust, which leads to significant travel time residuals, attenuation, scattering, 
and interference of these phases. In general, identification of first and later arriving crustal 
phases requires good knowledge of the three-dimensional structure of the crust. On the other 
hand, teleseismic events are dominated by mantle and core phases (see Chapter 11) and, as 
discussed later, signal properties like amplitude ratios between components, polarization or 
slowness as well as travel time differences between phases may be used to identify phases in 
the record. Global one-dimensional travel time tables can be used to predict and associate 
arrival times with phases. Crucial later arriving phases like pP can be associated with 
probability models as e.g. implemented in the EHB (Engdahl, van der Hilst, Buland) 
relocation procedure of Engdahl et al. (1998). 
 
In situ automatic identification of various phases of a seismic record requires detection 
algorithms sensitive to later arrivals. Earle and Shearer (1994) propose a detection algorithm 
based on STA/LTA ratios calculated from the envelope function using the Hilbert transform 
of the seismogram. In order to prevent rapid fluctuations in the ratio function, the ratio 
function is smoothed by convolution with a Hanning filter. They applied this algorithm to 
seven years of global data distributed by the National Earthquake Information Center (NEIC). 
A comparison with the ISC hand-picked phase arrival times encounters difficulties with phase 
arrivals characterized by a change in frequency and little or no change in amplitude. However, 
the proposed algorithm is a useful tool for extracting seismograms containing phases desired 
for further analysis, e.g. for phase association. Fig. 16.23 shows an application of the 
proposed algorithm to a regional event recording. 
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Tong and Kennett (1995) and Bai and Kennett (2000) developed an algorithm, which 
combines automated detection and phase association for first and later arrivals. The proposed 
procedures are rather sophisticated and it is beyond the scope of this manual to provide a 
detailed description. The algorithms include many components useful for development of 
future generations of automatic algorithms (e.g. data adaptive filtering, analysis of three-
component records, pattern recognition, etc.) and therefore we summarize only the main 
features of their approaches here.   
 
Tong and Kennett (1995) define a set of STA/LTA detectors that make use of all three 
components and compare STAs and LTAs from different components in order to detect later 
phases. They use an approach of continual updating (Tong, 1995), where the effective lengths 
of the STA and LTA windows are adapted to the dominating frequency. In addition, they 
propose optimized filters to enhance the possibility of later phase detections and detection on 
multiple frequency bands (see also sub-section 16.6.2). Ratios of the energy on the different 
components, the frequency content, as well as polarization properties are used to characterize 
and to identify detected phases. Three measures of the energy of the phases are introduced:   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 16.23  Application of the proposed algorithm by Earle and Shearer (1994) for phase 
detection to a regional event recording at distance Δ = 3792 km (blue). Top: 0.01 – 0.1 Hz 
bandpass filtered waveform with recognized arrivals (vertical, black lines). Middle: 
corresponding STA/LTA ratios. Bottom: Smoothed ratio function (SRF, blue), applied 
threshold (dashed horizontal line) and detections (vertical black lines). This algorithm is 
useful for the detection of later arrivals rather than the precise arrival time determination. 
 
    1.  the total energy 222

3 = ENZE  ,  

    2.  the vertical component energy 2= ZVE ,  

    3.  the energy in the horizontal plane 22= ENH E  . 
  
The LTA measure is calculated for the total energy E3, while STA terms are calculated for the 
energy on each of the Z, N, and E components as well as for the horizontal energy HE, and the 
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total energy E3. This results in a set of five different STA/LTA triggers. The output of the 
STA/LTAs is used to detect as well as to identify phases. Tong and Kennett (1996) define a 
range of empirical conditions to identify the fundamental type of the detected phase as 
summarized in Tab. 16.4. 
 
 
 
Tab. 16.4  Empirical conditions to identify the fundamental type of detected (later) phases 
proposed by Tong and Kennett (1996). Distance range far-regional to teleseismic is defined 
by slowness less than 0.12 km-1. 
 

P wave 
(far-regional to teleseismic) 

SV-wave 
(far-regional to teleseismic)

P wave 
(regional) 

HE < 0.50E3 HE > 0.50E3 HE > 0.50E3 
VE >0.35E3 VE < 0.35E3 VE > 0.35E3 

 
 
Furthermore, simple indicators are introduced to characterize the waveform of the phases:  
 

 ,0.35=
~

3EVP E   

 .0.5=
~

3EHS E   
 
The set of five STA/LTA phase detectors is applied to the data adaptive high-pass (corner 
frequency: two times the dominant background noise frequency) as well as low-pass (corner 
frequency: half the dominant frequency background noise) filtered data.  
 
Polarization properties of the phases are characterized in terms of azimuth and incidence 
angles of a ''phase vector'', which is constructed to describe the average behavior of the phase 
over a quarter cycle of the dominant period. Using these attributes Tong and Kennett (1996) 
developed a procedure for the identification of phases. It is assumed that the following six 
attributes are available for the each phase i:   
 
    1.  it , the arrival time;  

    2.  ia , the amplitude;  

    3.  i , the local frequency;  

    4.  i , the azimuth in the horizontal plane;  

    5.  i , the angle of incidence to the vertical;  

    6.  ic , the P or S type of the arrival.  

 
An assumption tree is used for further identification (Tong and Kennett, 1996). In analogy to 
rules of thumb employed by expert seismologists a heuristic method is suggested. The phase 
identification follows the assumption tree given in Fig. 16.24, starting with key phases like P  
and S first arrivals. At each level of the assumption tree, a set of assumptions about a single 
factor is tested.  
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Fig. 16.24  Assumption tree for seismic event classification hierarchy (after Tong and 
Kennett, 1996). 
 
 
At each node, the information of its parent node is gathered and includes extra information, 
starting with just the observed data. In case of contradictions, the branching associated with 
the current node is terminated. Otherwise the branching process continues with the evaluation 
of further hypothesis. When no further assumptions are to be tested, a solution is represented 
based on a set of hypothesis describing the data. 
 
 
Tab. 16.5  Ranges of travel time differences between P  and S phases for different epicentral 
distances for the heuristic method proposed by Tong and Kennett (1996). 
 

  P-S Identity  Time 
Interval 
Range [min]  

 Distance 

Range [
0
]  

 P-S   2.18-10.43   12-85  
P-SKS   9.37-10.65   82-99  
Pdiff-SKS   9.39-10.69   100-129  
PP-SKS   3.96-7.22   82-129  
PP-PS   9.20-10.14   104-125  
PKP-SKS   5.84-7.21   114-143  
PKP-SKKS   7.97-12.66   126-180  
PKP-SS   20.05-27.66  136-180  
PKIKP-PKS  3.35-3.60   126-141  

 
 
16.5.3 Post-picking and outlier detection 
 
As mentioned before, even the most sophisticated automated algorithms introduce, to some 
degree, erroneous picks. Phase misinterpretation as shown in Fig. 16.18 or overestimated pick 
uncertainties are usually inevitable. In the following, we present tools to detect outliers in 
post-picking procedures. 
 
Most commonly, erroneous picks are identified by large residuals in the event location 
routine. Frequently applied location routines like HYPOINVERSE (Klein, 2002) or 
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HYPOSAT (Schweitzer, 2001) are able to exploit additional information like phase names, 
uncertainty estimates, and other phase properties such as polarization angles in order to 
identify inconsistent picks. Some of these routines automatically down weight observations 
associated with large residual. Although it is a common practice, we point out that the 
velocity model used for location biases residual weights. Therefore, residual weights from 
location routines should never replace the observation weights assigned by the picker. 
Otherwise, correct picks might be down weighted due to an insufficient velocity model and 
might be useless for tomographic studies. 
 
Furthermore, the presence of few outlier picks can have a significant influence on the 
hypocenter solution derived by traditional least-square approaches. Beamforming techniques 
as described e.g. by Pinsky (2006) or the Equal Differential Time (EDT) formulation 
implemented in the NonLinLoc location routine of Lomax et al. (2000) yield very robust 
hypocenter solutions even in the presence of outliers and may therefore also improve the 
detection of false picks. In practice, automatic picks associated with large residual are usually 
flagged in the location routine and might be reviewed by the network analyst. 
 
Identifying outliers in the location routine requires the presence of an appropriate velocity 
model of the study area. Since automatic pickers are increasingly used to derive such models, 
simultaneous inversion of hypocenters and seismic velocities have to be performed to detect 
outlier picks. Such iterative inversion procedures are proposed e.g. by Diehl et al. (2009a). 
Finally, Wadati diagrams as described, for example, by Kisslinger and Engdahl (1973) or 
Maurer and Kradolfer (1996) are used to identify mispicked S wave arrivals, independent of 
the P  and S wave velocity structure. 
 
 

16.6 Practical considerations: implementation, calibration, and 
pitfalls of automatic detection and picking procedures 
 
Implementation and realization of automatic detection and picking procedures depend on the 
application purpose and the available data. Commonly, these automatic procedures are used in 
permanent seismic weak-motion networks to detect and locate events in real or near-real time 
and the focus is on low detection thresholds in order to generate earthquake catalogs as 
complete as possible. However, increasingly, such automatic procedures are nowadays also 
applied on records from very dense strong-motion accelerometer networks such as the 
Japanese K- and KiK nets (see Chapter 8, sub-section 8.7.3). They trigger events on higher 
detection thresholds. Therefore, these records are, as compared to very sensitive weak-motion 
records, less or not at all effected by the preceding microseismic noise. Nevertheless, 
sophisaticated algorithms are used to identify phase onset times. E.g. Akazawa (2004) uses a 
combination of STA/LTA ratios of a cumulative envelope function and the AR-AIC 
algorithm to exploit strong motion records of the K-, KiK-, and the CEORKA (Committee of 
Earthquake Observation and Research in the Kansai Area) networks. In any event, the 
calculated automatic locations have to be robust and available within minutes after an event. 
Finally, network applications have to handle signals in a broad frequency range in order to 
detect and pick events from local to teleseismic distances. 
 
A second class of applications is the use within the increasing number of temporary 
deployments (aftershock deployments, temporary field deployments, etc.), which generate 
huge data volumes. Furthermore, the number of available analysts is usually limited. Focus 
for this class of applications is variable, but usually includes high detection rates for local to 
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regional events. Computing time of detection, picking, and location is less crucial and 
teleseimic events are already identified by global bulletins. 
 
Finally, application of “re-picking” studies become increasingly important, in which 
automatic algorithms are used to improve consistency and quality of existing network picks, 
or to merge picks of several networks. For this class, event detection is usually not necessary 
and focus is on high-quality picks. Preliminary locations in combination with available earth 
models can be used to predict windows of first and later arriving phases. If arrival times are 
required for high-resolution tomography, consistency of picks is favored over hit-rate of 
algorithms, since completeness is less relevant. Numbers of erroneous picks, however, have to 
be as small as possible since residuals of outliers in the post-picking detection might be of the 
same order than residuals due to velocity anomalies. A suite of iterative detection stages 
might precede this “high-quality” application. 
 
No matter which algorithm is chosen, automatic procedures have to be calibrated and tested 
with any new data set, i.e. the parameters of the algorithms have to be adjusted and optimized 
towards the application purpose. In this section we describe calibration and test procedures for 
automatic pickers. Furthermore, the pre-processing and quality of waveform data is crucial for 
reliable automatic procedures. Therefore, common pitfalls related to waveform filters and 
waveform quality are discussed at the end of this section. 
 
 
16.6.1 Calibration and test of automatic pickers 
 
Typically, calibration and test of automatic algorithms is achieved by comparison with a set 
of representative manually picked onset readings (e.g. Baer and Kradolfer 1987; Sleeman and 
van Eck 1999; Di Stefano et al. 2006). A common practice is the use of network picks (i.e. 
arrival times routinely picked by network analysts on a day-to-day basis) as reference for the 
automatic algorithms. These network picks, however, are usually not appropriate to serve as 
reference picks, because they yield a high level of noise due to mispicks and other 
inconsistencies, particularly in error assessment. Reference arrival times for calibration and 
meaningful tests of automatic algorithms have to be picked consistently. In addition, reference 
picks have to be provided with a consistent measure of uncertainty in terms of phase timing 
(see sub-section 16.5.1) and phase identification (see sub-section 16.5.2). Seismograms with 
no identifiable phases (e.g. due to low signal-to-noise ratio) have to be flagged, in order to test 
the automatic picker’s ability to reject low-quality signals. Finally, consistent use of 
waveform filters during reference picking is necessary to avoid biases between automatic and 
manual picks. Additional use of theoretical arrival times, component rotation and tools like 
polarization analysis might be necessary for reliable reference picking of S waves. A detailed 
description on reference picking can be found in Diehl et al. (2009a) and IS 11.4. The set of 
reference picks should be divided in two subsets. The first subset is used to calibrate the 
algorithm and subsequently, the calibrated algorithm is tested with the other half.  
 
Calibration of algorithms (i.e. adjustment of parameters) is usually accomplished by trial-and-
error methods. Parameters are adjusted in order to minimize the difference between automatic 
and reference picks. As mentioned earlier, the trade-off between hit rate, precision, and 
number of outliers depends on the application purpose. Additional information on automatic 
quality assessment can be included in the performance evaluation using a matrix 
representation as suggested by Di Stefano et al. (2006). The quality assessment of the 
automatic picker must be tuned to get quality classes, which are similar or even equal to the 



46 
 

manually derived onset weights. Because automated algorithms usually evaluate the 
weighting classes differently than the analysts (e.g. using SNR determined from the 
seismogram and/or the CF, slope of CF, combination of both, etc.), the aim of exactly 
matching manual and automatic weighting classes is hard to achieve. In general, a sufficient 
calibration is obtained if the automatic picker upgrades only a very few low-quality reference 
picks to top quality classes and the majority of the high-quality reference picks is correctly 
classified as top quality. If only high-quality picks are requested (e.g. high-resolution 
tomography or high-precision relocation studies), the automatic quality assessment must be 
tuned such that none of the lowest-quality picks is classified as highest-quality (e.g. Di 
Stefano et al. 2006; Diehl et al. 2009a). As a consequence, a lot of intermediate-quality picks 
are rejected, resulting in an incomplete but high-quality set of arrival times. In contrast, for 
coarse location purposes the picker must be trained towards increased hit rate of intermediate-
onset readings to assure a sufficient number of observations and azimuthal coverage for 
robust event location. Finally, to ensure that the calibrated algorithm is appropriate for the 
entire data set (and not just for the subset used for calibration), it should be tested with a 
second subset of reference picks as described earlier.  
 
Sophisticated packages like MannekenPix (Aldersons 2004) or the algorithm proposed by 
Nippress et al. (2010) make use of data adaptive calibration in order to improve performance 
of picking and quality assessment and to avoid tedious trial-and-error procedures. Parameters 
are determined from the reference picks by an inverse technique based on pattern recognition. 
In practice, most automatic algorithms require a minimum of parameter search to determine 
the optimized choice of essential (data depending) picking parameters, such as search-window 
definitions or waveform filters. 
 
 
16.6.2 Pre-processing: waveform filters 
 
The estimation of arrival times depends on the chosen frequency band and differences in 
arrival times determined in different frequency ranges may be in the order of several seconds. 
The effect of waveform filters on the arrival time picking is illustrated in Fig. 16.25. On the 
other hand, application of filters often enhances the signal-to-noise ratio. High-pass filters are 
used to remove microseismic noise and low-pass filters are commonly used to eliminate 
anthropogenic noise. To minimize the bias introduced by inconsistent application of filters, 
only one frequency band should be used for picking. Filters should be of zero-phase-type to 
avoid systematic time shifts. For a consistent analysis of arrival times, filters used for 
reference picking should be identical with filters used during automatic picking. 
 
In practice, however, the use of one fixed frequency band for picking is often inapplicable, 
especially when dealing with data of earthquakes from wide distance and magnitude ranges. 
Differences in frequency content of seismic signals are mainly caused by the source processes 
and to minor extend by phase shifts due to wave propagation (attenuation, finite frequency 
effects). Finite rupture processes of large earthquakes lead, especially in the near field, to very 
complex signals, dominated by low frequencies. Simpler signals are expected for the point-
source characteristics of small and moderate magnitudes. Frequency content varies for local 
Pg, regional Pn, and teleseimic mantle or core phases and might even change with focal 
depth. Finally, the noise characteristic can be station dependant, especially for regional and 
global networks. 
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To account for the diversity in signal and noise characteristic, data adaptive filters like the 
Wiener filter can be used to enhance the signal-to-noise ratio of seismic data. The Wiener 
filter, as implemented in MannekenPix (Aldersons 2004), measures the power spectrum in 
two windows: PN(f) is determined from a window containing background noise and PSN(f) is 
measured in a window containing signal and noise. As described by Aldersons (2004) the 
Wiener filter can be approximated by: 
 

                                              
W ( f ) 

PSN ( f )  PN ( f )

PSN ( f )  
 
The obvious advantage of the Wiener filter is that it affects only frequencies associated with 
the background noise. In the ideal case, the filter does not modify the signal part, in contrast 
to traditional high-, low-, or band-pass filters. This assumption, however, is only valid if the 
signal-spectrum does not overlap with the noise-spectrum. Implementations like in 
MannekenPix require a priori information on the approximate position of the onset (initial 
pick from predicted arrival time or some sort of preliminary pick) to properly setup the noise 
and signal+noise windows. A gap between both windows has to account for the uncertainty of 
the initial picks and the length of the windows have to be appropriate for the expected noise 
and signal frequencies. Improper choice of these parameters might introduce additional 
instabilities to the Wiener filter. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 16.25  Unfiltered (black) and filtered (red) local event waveform of a broadband record 
(Guralp CMG, 60 s – 50 Hz) using a 3rd order butterworth bandpass (2-10 Hz) and 
corresponding manual (blue vertical line) and automatic picks (green vertical line) indicating 
the effect of different filtering on P-onset determination. Note that in the more narrow-band 
high-frequency filtered record the amplitude of the first oscillations is strongly reduced, the 
negative first motion,  still distinct in the broadband record, no longer recognizable and the 
phase of the oscillations significantly shifted. The reasons for these signal distortions due to 
filtering are discussed in Chapter 4. 
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A simple data adaptive filter is proposed by Tong (1995), who determines the dominant 
frequency fn of the background noise and defines low- and high-pass filters based on fn. 
Picking on multiple (fixed) frequency bands as well as filters depending on epicentral 
distance or station site might be used to account for differences in the signal and noise 
characteristics.  
 
 
16.6.3 Pre-processing: waveform quality 
 
The quality of available waveform data is crucial for reliable and robust automatic detection 
and picking procedures. “Glitches” present in time series can generate a high number of false 
picks and have to be identified and, if possible, removed prior to the picking. Common 
glitches are spikes, abrupt offsets in amplitudes (caused by data gaps or sensor re-centering), 
clipped amplitudes, and precursory oscillations prior to impulsive onsets (caused by 
instrumental acausal anti-alias filters). If filters are applied to these glitches and if they occur 
close to a seismic event, they are indistinguishable from real signals for most automatic 
algorithms. Spikes in the data can be identified and removed by running average routines as 
implemented e.g. in the SAC software. Clipped amplitudes usually inhibit reliable S wave 
detection and therefore, clipped seismograms have to be identified and removed prior to 
automatic S picking as described e.g. by Diehl et al. 2009b. Effects of acausal anti-alias filters 
can be removed by an inverse filtering process described e.g. in Scherbaum (2001) or may be 
minimized by application of certain low-pass filters. Problems with data quality are usually 
specific to networks and procedures to detect and remove them have to be developed and 
adjusted from case to case. Therefore, tests with reference data have to be used to identify 
these problems and to develop and calibrate tools to remove them. 
 
 

Appendix 
 
Some  internet addresses providing source codes or binaries of some picking algorithms: 
 
 Several seismological software and useful links: 

      http://www.orfeus-eu.org/Software/software.html 
 MannekenPix (MPX): 

      http://faldersons.net/Software/MPX/MannekenPix.html 
 S-picker by Diehl et al. (2009b): 

      http://www.ldeo.columbia.edu/~tdiehl/Data2Download/spicker1.3.4.publ.tar.gz 
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