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Topic Additional seismogram examples within the distance range
13°-100°

compiled by |Klaus Klinge (formerly Federal Institute for Geosciences and Natural
Resources, 30655 Hannover, Germany);

E-mail: klaus.klinge@googlemail.com

Version October, 2001; DOI: 10.2312/GFZ.NMSOP-2 DS 11.2

Note: Most of the examples given below show either records of the German Regional Seismic
Network (GRSN; aperture about 500 x 800 km) or of the Grafenberg broadband array (GRF;
aperture 45 x 110 km; see Figs. 8.14 and 9.4 in the manual Chapters 8 and 9). The following
abbreviations have been used: D — epicentral distance in degree, BAZ — backazimuth in degree, h
— focal depth in kilometer. Complementary comments have been added by the Editor.

Example 1. Earthquake in Greece

USGS NEIC-data:1999-09-07 OT 11:56:50 38.13N 23.55E h = 10km mb = 5.8
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Figure 1la Broadband vertical-component seismograms recorded at 9 GRF/GRSN stations
within the distance range D = 13.4° (WET) to 18.2° (BSEG). Traces have been sorted
according to increasing distance. A complex P wave is followed by S and surface waves with
longer-periods than P. Both body waves are influenced by upper mantle discontinuities. Note
the large P-wave amplitude at the most distant station BSEG because amplitudes increase
rapidly towards the “20° discontinuity” (see Fig. 3.13 in Chapter 3).
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Figure 1d KIRNOS-filtered three-component seismogram from the GRF-array station GRA1
(D = 14.55°, BAZ = 138°). The horizontal components N and E have been rotated into the
radial (R) and transverse (T) direction. The onsets of the body waves P and S and of the long-
period surface waves LQ (Q) and LR (R) have been marked.

Plot start time: 1999 9 7 11:58 49.000 Plot start time: 1999 9 7 11:58 49.000
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Figure 1e Low-pass (left) and high-frequency band-pass filtered (0.5-5 Hz) seismograms of
the same earthquake recorded at station KIV (Kislovodsk; Russia) at the distance D = 15.2°.
The horizontal components N and E have been rotated into the R and T direction. No long-
period waves are visible in the high-frequency record (courtesy of Lars Otteméller, 2002).
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Example 2: Earthquake in NW-TURKEY

USGS NEIC-data:1999-11-12 OT 16:57:20 40.79N 31.11E h = 10km Mw = 7.1
(D =16.5° to GRF, BAZ = 115°)
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Figure 2a The Diizce earthquake of November 12, 1999 occurred about 110 km east of the
earlier Izmit earthquake of August 17, 1999. The map shows the epicenter regions of both
earthquakes together with one moment-tensor solution (for the Izmit event) and the right
lateral surface displacement values (in cm) observed after the first shock.
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Figure 2b Broadband vertical-component seismograms recorded at 12 GRSN stations.
Traces are sorted according to increasing distance (D = 14.7° from GEC2 and 19.6° from
BUG). A clear P wave is followed by a relatively weak S and strong dispersed surface waves
with much longer-periods than P. The P and S waveforms, influenced by upper mantle
discontinuities, show a complicated structure. Note the growing P-wave complexity and
amplitudes with increasing distance towards the “20° discontinuity” (see Fig. 2.29 in Chapter
2 and Fig. 3.13 in Chapter 3).
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Figure 2c Broadband vertical-component seismogram with P-wave onsets recorded at all
GRF-array stations. Traces are sorted according to increasing distance (D = 12.86° from
GRC3 and 13.03° from GRA1) and shifted in time according to a reference station
(beamforming). All signal onsets are coherent. The weak first arrival of the P-wave onset is
marked on the GRF-station GRAL.

12-MN0W-193939_17:00:55,491  >135.23< Filter: Mone

|

T [ T T T T [ T T T T [ T T T T [ T T T T [ T & T T ] T T T T [ T T T T ]
17101240 1703220 173105200 17106240 170820 1F310:00 17:11:40 171320

Figure 2d Broadband seismogram with P, weak S and long-period surface waves from
station GRAL (at D = 13.0°).
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Example 3: Earthquake in Southern TURKEY

USGS QED-data; 1998-06-27 OT 13:55:49 36.95N 35.31E h = 10G Ms = 6.2
(D = 21.6° to GRF)
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Figure 3a Broadband seismograms with high time resolution showing the complex P-wave
groups. Records were made on vertical components of 10 GRSN stations at epicentral
distances between D = 19.7° (GEC2) and 24.8° (GSH). Traces are sorted according to
increasing distance. P waves on the individual traces are influenced by upper mantle
discontinuities and signals are not coherent.
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Figure 3b Broadband seismogram with P- and S-wave onsets recorded at 12 GRF-array
stations. Traces are sorted according to increasing distance. P and S waves on the individual
traces are influenced by upper mantle discontinuities and signals are also not coherent.
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Figure 3c  Three-component displacement-proportional KIRNOS-filtered seismogram
recorded at the GRF-main-station GRA1 (D = 21.6°). The original N- and E- horizontal
components have been rotated with R showing into the source direction. The time difference
between the onsets SH (horizontal polarized S wave) and SV (vertical polarized S wave) is
about 4 sec. The reason for this difference may be the anisotropy of upper mantle layers.
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Example 4: Earthquake in ICELAND REGION

USGS QED-data; 1998-06-04 OT 21:36:54.2 64.009N 21.294W h = 10G
mb=5.1 Ms=5.1 (D = 22.5° to GRF)
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Figure 4a Broadband vertical-component seismograms recorded at 13 GRSN stations.
Traces are sorted according to increasing epicentral distance (D = 18.9° to BSEG and 24.2° to
GEC?2), shifted in time and aligned for better signal comparison. All signals are incoherent
and influenced by upper mantle discontinuities.
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Figure 4b Broadband vertical-component seismograms recorded at the GRF-array stations.
Traces are sorted according to increasing distance (D = 22.48° to GRA3 and 23.27° to
GRC3), shifted in time and aligned for better signal comparison. Because of the smaller
aperture of the array as compared to the GRSN network signals are more similar. At the
nearest stations (GRA3 up to GRA4) a second onset appears about 10 s after P.
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Figure 4c Simple three-component broadband seismogram at station GRA1 (D = 22.5°) with
clear P, S and surface waves. Horizontal components have been rotated (ZRT) with R into
source direction.

Example 5: Earthquake at the Afghanistan -Tajikistan border region

USGS QED-data: 1998-05-30 OT 06:22:28.7 37.050N 70.086E h = 33N
mb =5.8 Ms =6.9 (D =43.5° and BAZ = 83.7° from GRF)
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Figure 5a Three-component long-period seismogram (WWSSN-LP simulation filter)
recorded at station MOX (D = 43.2°, BAZ = 85°) with P, S and dispersed surface waves. The
nuclear explosion in Pakistan (see Figure 6.2) was recorded within the coda of this strong

earthquake. As compared with the earthquake no surface waves has been recorded from the
nuclear explosion.
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Figure 5b Short-period filtered P-wave onsets (WWSSN-SP simulation) recorded at 13
GRSN stations within the distance range between D = 41.7° (BRG) and 46.5° (GSH). P-wave
trains are rather complex as compared with the records of the nearby underground nuclear
explosions (see DS 11.4, Figures 2 and 3).
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Example 6: Deep-focus earthquake in the HINDUKUSH REGION

USGS NEIC-data:1999-06-21 OT 17:37:29 36.40N 70.63E h = 249km
mb = 5.7 (D = 44.3° to GRF, BAZ = 84.1 deg)
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Figure 6a Short-period filtered seismogram (WWSSN-SP simulation) recorded at 12 GRSN,
GRF(GRAL), GERESS and GEOFON stations. Traces are sorted according to distance (D =
42.4° to BRG and 47.6° to WLF), shifted and aligned for P onsets. Note that the travel-time
curves for PcP and PP intersect in this distance range. Depth phases pP and sP (see the
marked theoretically expected arrival times) are not visible on this short-period filtered
record.
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Figure 6b Stations and source parameter as in Figure 6a, however records of displacement-
proportional Kirnos-simulation. Phases P, PP and the depth phases sP, sPP are clearly visible
on these records while the phase pP is recognizable only at GEC2.

13



| Datasheet DS 11.2 |

Example 7: Earthquake in the Laptev Sea Region

USGS NEIC-data: 1996-06-22 OT 16:47:13.1 75.812 N 134.710 E h =10G
mb=56Ms=55
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Figure 7a Vertical (Z) component short-period seismograms (WWSSN-SP simulation filter)
recorded at 14 GRSN stations. Traces are sorted according to increasing epicentral distance
which ranges between D = 44.5° for RGN (with BAZ = 17.5°) and 51.4° for BFO (with BAZ
= 14.7°). P, PcP and PP are clearly visible. Note the decreasing travel-time difference (PcP -
P) with increasing epicentral distance and the related small slowness values (sl<4 s/deg) for
the core-reflected wave PcP. At a distance of about 45° (see record of station RGN) the
travel-time curves of PcP and PP intersect. Generally, PcP is well recorded on short-period
filtered records, however no PcP onset is recognizable above the noise level in the records of
stations STU, MOX and BUG.
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Figure 7b The same records as in Figure 7a, however, traces have been time-shifted and

aligned for the P onsets. This figure shows more clearly the decreasing travel-time difference
(PcP - P) with increasing distance from the epicenter.
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Figure 7c Short-period filtered seismograms recorded at the GRF-array. Traces are sorted
according to increasing distance (D = 49.48° to GRA3 and 50.33° to GRC2), shifted in time
and aligned for P onsets. Phases P, PcP and PP have been marked. Because of the smaller
spacing of the array-stations as compared with the GRSN stations, the decrease of the travel-
time difference PcP-P is less obvious.
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Example 8: Record of an earthquake in Mongolia

USGS-QED-data: 1998-09-24 OT 18:53:40.2 46.274 N 106.237 E h = 33km
mb =5.3 Ms =5.4, (D =59.4° and BAZ =54° from GRF(GRAL))

24-SEP-1998_19:03:42,655  >0pd4< Filters G_MWSSM_SP
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Figure 8a This is an example for an event with coherent short-period P waves within the
GRSN (WWSSN-SP simulation filter). Additionally, the record of the GEOFON-station WLF
in Luxembourg is shown on trace No.14. The traces are sorted according to increasing
distance (D = 57.3° to BRG and 62.1° to WLF), shifted and aligned for P onsets. The most
remarkable feature is the strong variability of the P-wave signal-amplitudes within this
regional network. The table below gives the measured amplitudes together with the calculated
magnitudes. Body-wave magnitudes mb vary between 5.4 (GEC2) and 6.2 (GRAL). The
depth phase pP was used to estimate a better source depth (h = 44 km) than the value given in
the QED (h = 33 km).
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Table 8a Result of the seismogram analysis shown in Figure 8a. The table was printed from
the GRSN databank and contains in the uppermost line source parameters like date, an event
identification number (ev_id) and the name of the analyst (KLI for Klinge). The following
lines give the analyzed stations, onset times, phases, polarities, components, periods T,
maximum amplitudes A, body- and/or surface-wave magnitudes mb/MS, epicentral distances
D, beam-slowness b_slo, beam_azimuths b_az. The lowermost part of the table contains
source parameters like analysis center (SZGRF), origin time OT, latitude, longitude, average
magnitude values for mb and MS, depth of the source and source region. Note the significant
differences between the magnitude estimates mb from records of different network stations.

ev_id 980924007 kLI
19958-09-24

BRQ 19:03:27.2 e P Z T 1.2 A 135.5 mbh 5.9 [0 58,3
BLTGH 19:03:27.2 e P T 1.1 A 124.1 mh 5.8
BSEG 19:03:28.2 e P Z T 1.1 A 188.3 mbh 6.0 D 58.4
CLL 19:03:28.6 e P £ T 0.9 A 393.9 mbh 5.2 D 58.5
GECZ2 13:02:36.3 1 P cf T1.2 & 4EB.9 mb 5.4 D 539.6
CLE 19:03:36.6 e P Z T1.1 A 177.7 mbh 5.0 D 59.6
M 19:03:36.9 e P 2 T1.2 A 122.4 mbh 5.8 D 59,6
WET 19:03:38.5% e P £ T1.2 A 107.2 mbh 5.7 D 59.9
BRG 19:03:33.3 e pP Z
GRA1  19:03:42.6 1 P cZ2 T1.1 & 286.5 mbh 6.2 D B0.4

b_=lo 5.8 b_az 54
BUG 19:03:48.5 e P 2 T1.1 A 162.4 mbh 5.8 D B1.4
FUR 19:03:48.6 e P Z T1.1 A 174.3 mbh 5.8 D B1.3
TNS 19:03:49.9 e P Z T 1.1 A 103.0 mbh 6.0 D B1.5
GSH 19:03:54.5 e P T 1.3 A 132.3 mbh 5.0 I B2.3
GRAT  19:03:55.0 e pP £
BFO 19:03:57.4 e P Z T 1.1 & 55.2 mh 5.6 I B2.8
WLF 19:04:00.1 e P Z T 1.7 & 80.3 mbh 5.6 D B3.0
GRAa1T  19:11:52.2 & S E 0 B0O.4
GECZ2 19:30:36.0 e L £ T 19.9 4 38395.8 M5 5.5
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Example 9: Earthquake in California

SZGRF-data:1999-10-16 OT 09:46:55 34.9N 1159W mb=6.6 Ms=7.9
The event happened east of Los Angeles (D = 83.6° BAZ = 319° from GRF) .
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2
43 GRA4 7 e [ -
2
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|
2 GRAL Z -—-—-‘-~—: II(U W —
I
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T
03153140, 007 10301 520,007 100300, 007

Figure 9a Broadband vertical-component seismograms recorded at 12 GRF-array stations.
Traces are sorted according to increasing distance (D = 83.6° to GRA3 and 84.4° to GRC3),
shifted in time and aligned for P onsets. The coherent phases P and PP are marked, however
some more onsets appear ahead of PP.
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Figure 9b Broadband vertical-component seismograms recorded at 13 GRSN-stations.
Traces are filtered (Kirnos-simulation), sorted according to increasing distance (80.1° to
BSEG and 85.3° to GEC2), shifted in time and aligned for P onsets. The used displacement
proportional broad-band filter displays clearly the coherent part of the wave train from the
network. As in Figure 9a, coherent phases appear ahead of PP that have slowness values as P.

16—0CT-13933_039:59:19, 047 »>43,80< Filter: MNone LastCmd: Set Time
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- ‘ |
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\ iy
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0915820 1006 s 40 101500 10323120 10 31 4 10z 0B

Figure 9c Broadband three-component seismogram recorded at GRA1 (D = 83.6°). The
horizontal components are rotated into the R and T direction. Phases P, PP, S, SS and surface
waves are displayed. Rayleigh waves recorded on radial and vertical components appear later
than Love waves recorded on the transversal component only.
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Example 10: Earthquake near the coast of NICARAGUA

USGS NEIC-data: 1998-10-09 OT 11:54:29.0 11.337N 86.429W h = 10km
mb=5.6 Ms=5.6 (D =86.3° and BAZ = 282° from GRF(GRAL))
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+ MO¥ 2 *vﬂ‘MJN‘“WJ”MJAﬁ#Fhh1;J\1%rfﬂU\mw“VM@,Mﬁufg}rwff\hhﬁfhj%;:;;;E )
s GRAL 7 «*w~“xua“v“”‘\;“*xuw“{’kf~f\r»JLfkwf*»PHMJ“»afﬁfhwﬁ‘ﬁfw«f~4 _
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| T T T T
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Figure 10a Short-period seismograms (WWSSN-SP simulation filter) from 23 broadband
stations of the GRF-array, the GRSN network and the GERESS array (GEC2). Traces are
time-shifted, aligned for P and sorted according to increasing distance (D = 83.1° to GSH and
88.1° to GEC2). Note the large number of onsets within the first 40 sec of the P-wave group
(P, pP, X1, X2, X3, X4). The reason for these multiple onsets may be a multiple rupture
process or (in some cases) reflections from the nearby subduction zone.
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Figure 10b Long-period seismograms (WWSSN-LP simulation filter) of the same stations as
in Figure 10a, depicted with high time-resolution. Traces are aligned and sorted according to
increasing distance. Note the very long-period P-wave onset (T ~ 14 s) in the time window
between P and X2 where the P-wave amplitudes are relatively small in the short-period
filtered records whereas at X4, which is by far the largest onset in Figure 10a, no long-period
wave onset is to be seen. This seems to speak of an initially “slow” earthquake rupture which
then escalated into a faster rupture or the break of a “harder” asperity which generated more
short-period energy.
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9-0CT-1932_12:06:53,015  >45,21<  Filter: SRO_LF L LastCmd: Theo (Table
SKS 55 R

T,
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Figure 10c Time-compressed long-period filtered three-component seismogram (SRO-LP
simulation filter) of the Nicaragua earthquake recorded at station MOX (D = 86.4°, BAZ =
283°). Horizontal components have been rotated into the R (radial) and T (transverse)
direction. The seismogram shows long-period phases P, PP, SKS, SP, SS and surface waves L
(or LQ for Love wave) and R (or LR for Rayleigh wave). Note the remarkably simple
waveforms of P and PP as compared with the complicated structure in the short-period P-
wave group in Figure 10a.
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Example 11: Earthquake in Taiwan Region

USGS NEIC-data: 1996-08-10 OT 06:23:08 24.032 N 122.550 E h = 46G
mb=5.2 Ms=5.2 (D =87.1° and BAZ = 56.6° from BFO)

10-AUG-1936_06335:31,688 13,00 Filter: Mone LaztCmd; Filter [

7+ WET Z WMWMWWWNWMMWMWMMMMWW—
B2 THS 2 WMWWMMMMWMMMWMMWMWWWM—
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P ‘F‘P PPP PPPP 5
43 CLZ Z %WMWMW%WMM‘JWW -

2 UL Z WMWWMWM&MWMM&MWMWWMMW—
2 BRG Z M%WMWWWMWWWM%MMWMMMMMW—

1: BFO Z -

06:34:53,973 06:36:33,373 06:38113,973 06:39:59,979 06:41:33,973 06:43:13,979 06:44:53,373 06:46:33,979

Figure 11a Broadband vertical-component seismograms of the Taiwan earthquake recorded
at 7 GRSN-stations within the distance range D = 82.9° and 87.1°. Only the P-wave onset is
recognizable on the records. Secondary onsets such as surface reflections of the P and S wave
(theoretical onset times marked on the CLZ trace) are not to be seen above the noise level.
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10-AUG-1336_06335:17,469  »43.56<  Filter: SRO_LF
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Figure 11b The same event as in Figure 11a after long-period filtering (SRO-LP simulation
filter). Note the pronounced onsets of PP, PPP, PPPP as well as S, SS and SSS which are
marked at the record trace of station CLL (D = 82.9°). Phase identification is eased by using
absolute (see overlay to Fig. 2.48) or differential theoretical travel-time curves (see Figure 4
in Exercise EX 11.2). This is essential when interpreting single station recordings. Modern
seismogram analysis program can automatically mark the theoretically expected onset times
of the various phases when the epicentral distance to the station and the source depth are
known or assumed. When a network of stations or array is available, phase identification is
supported by vespagram analysis as shown in the following figure.
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10-AUG-1996_05:35: 31,066 »26.60¢  Filter; SRO_LP coo lastind: Set Time
141 5115,0 | B

131 5114,0 -

12 5:13.0 —

113 5:1&0-}—%%«%[\ _

FPPP

102 5:11‘0‘2——\1\1\/""“""’"\1\4”'\/\1\,!"1 -

9: 5:10,0 i —
FFP

PP

43 51 b0 F i —
31 51 4.0 —
23 51 3.0 —

1:5:2'02——'\{\WWWWWW\MMNV\/WV\\M {\J\NV\N\_
| T T T T | T T T T | T T ||I||'| |

DE124130,309 DE342:50,3203 0E$51110,303 UE15h3:30, 303

Figure 11c For better phase identification a vespagram analysis (see 9.7.7 in Chapter 9) of
the long-period filtered traces was made. Identified phases have been marked on their
respective slowness trace S (e.g., P on trace 4 with slowness S = 5.0 s/° and PP on trace 7
with S = 8.0 s/°). In the vespagram traces the respective phases have the largest amplitudes at
their proper slowness value.
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Example 12: Earthquake in the region of Michoacan, Mexico

USGS NEIC-data: 1997-01-11 OT 20:28:26.0 18.193 N 102.800 W h = 33G
mb=6.5 Ms=6.9 (D =90.9° and BAZ = 299.7° from GRFO site)
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Figure 12a Broadband vertical-component seismograms recorded at 12 GRSN-stations are

shown. Traces are sorted according to increasing distance of the stations (D = 87.7° to IBBN
and 92.1° to WET). P-wave onsets are marked.
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Figure 12b Records at the same stations as in Figure 12a, however after application of a
short-period WWSSN-LP simulation filter. This is necessary for amplitude and period
measurements required for standardized mb body-wave magnitude determinations. Maximum
double-amplitudes (2A) and half-periods (T/2) are marked for the first wave group. Later
onsets may belong to secondary or depth phases.
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Figure 12c Records at the same stations as in Figure 12a, however after application of a 4™-
order Butterworth low-pass filter (fc = 15 s). They show the long-period energy content of the
earthquake with P-wave periods of about 20s! All long-period network traces are coherent. In
this case the network can be used as an array.
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Figure 12d Broadband three-component seismogram recorded at station CLL (D = 91.0°,
BAZ = 301°). Note that at teleseismic distances P waves and their multiples show up most
clearly in the Z component because of the small incidence angle, decreasing with distance,
and the oscillation of P waves in ray direction. The horizontal components are rotated, with R
into the source direction. The radial component shows most clearly the direction of wave
propagation (or toward the source; i.e., with a 180° ambiguity which can be resolved by
taking the direction of P-wave first-motion — up or down — into account; see EX 11.2).
Accordingly, in the R component all waves show up clearly which are polarized in the Z-R
plane. These are, besides the primary and multiple P waves also all waves which have been
converted during their propagation at discontinuities from P into S and vice versa such as PS,
PPS, SP, SSP etc. but also SKP, PKS, SKS, SKKS etc. The latter had to travel at least one
segment along their travel path through the Earth’s outer core (K) which is liquid and
transmits no S waves. S waves, however, which have been generated by mode conversion
from P waves, can oscillate only in the same Z-R plane as P itself. And when a mantle S
waves hits the core-mantle boundary, only their vertically polarized SV energy can partially
be converted into a P wave and penetrate into the outer core while any SH energy will be
totally reflected back into the mantle. This also explains, why multiple S-wave reflections
such as SS, SSS, SSSS contain an increasing part of SH energy. The primary S waves, as
originating from the earthquake rupture process, may contain both SV and SH energy in
variable proportions, depending on the rupture orientation in space. The SH part shows up in
records of the transversal (T) component. When comparing energy arrivals in the S-wave time
window in the T and R components one can discriminate between S and SKS (see figure
above). Note that SKS and PS are recorded also in Z, however with smaller amplitudes
because of their oscillating perpendicular to the ray orientation. An unknown phase, denoted
X, appears ahead of SKS in R. Surface waves are not visible because they arrive outside of
the displayed time window.
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For single station analysis phases can be determined with the help of (differential) travel-time
curves (see Figure 2 in Exercise EX 11.2). For a station network vespagram analysis (see also
Chapter 9, section 9.7.7) proves to be a much better analysis method because of the additional
slowness determination. The following three figures (12e - 12g) show vespagrams of the
vertical (Z), radial (R) and transverse (T) components recorded at 12 GRSN-stations. To get a
better signal coherency, all traces were filtered with a 4™- order long-period low-pass filter (fc
=155).
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Figure 12e The identified phases from the vertical-component vespagram are marked on the
respective slowness traces where they have their largest amplitudes (e.g. P on trace 6:
belonging to a slowness S = 5 s/°, PP on trace 9 with S = 8 s/°, SP on trace 12 with S =11 s/°
and SS on trace 16 with S = 15 s/°).
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Figure 12f The identified phases from the radial-component vespagram are marked on
slowness the respective slowness traces (SKSac on trace 7 with a slowness S = 6 s/°, PS on
trace 12 with S = 11 s/° and SS on trace 16 with S = 15 s/°).
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Figure 12g The identified phases from the transverse-component vespagram are marked on
their respective slowness traces (S on trace 10 corresponding to a slowness S = 9 s/°, SS on
trace 15 with S = 14 s/°). Note, by comparing the identifications in Figs. 12e to 12g that the
associated slowness values might somewhat differ because the maximum amplitudes vary
only slightly when changing the slowness for about +1 or 2 s/°.
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Example 13: Earthquake near the coast of Ecuador

USGS NEIC-data: 1998-08-04 OT 18:59:18.2 0.551S 80.411W h =19G
mb=6.2 Ms=7.1 (D =91.5°and BAZ = 270.9° from GRF(GRAL) )
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Figure 13a Broadband vertical-component seismograms recorded at 14 GRSN stations (D =
88.4° to 93.2°). Traces are time-shifted and aligned. The different waveforms observed at
different network stations are coherent in the long-period range.
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Figure 13b: After short-period filtering (WWSSN-SP simulation) the coherency of the
different station-waveforms is bad. The maximum double P-amplitudes used for mb-
estimation are emphasized. Because of the variability of station amplitudes within the
network individual mb-values vary between 6.0 for BFO and GEC2 and 6.7 for other stations.
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Figure 13c Broadband records of the vertical-components at 13 GRF-array stations (D =
91.5° to 91.7°). Because of the much smaller aperture of the array as compared to the GRSN
the signal coherence is good for all array-traces.
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Figure 13d Even for the short-period filtered records of the GRF-array stations (WWSSN-SP
simulation) the signal coherence is still good.
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Figure 13e Three-component long-period filtered (WWSSN-LP simulation) seismogram
recorded at station TNS (D = 89.7°, BAZ = 269°). Note the much larger P-wave amplitude in
the E-W component as compared to the N-S component because of the source location in the
west. Also note the strong secondary phases PP, S and SS. The maximum surface-wave
amplitude on the vertical component is marked (L). The estimated magnitude is Ms = 7.2 .
This is very close to the average value determined by the USGS NEIC from data of the global
seismic network (Ms = 7.1).
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Figure 13f Long-period filtered (WWSSN-LP simulation) vertical-component records of the
Ecuador earthquake at 8 GRSN stations within the distance range D = 88.4° (GSH) to 93.2°
(BRG). The variability of the maximum surface-wave amplitudes throughout the network is
less than that of short-period body-wave amplitudes (compare with Figure 13b). Accordingly,
Ms estimates from individual stations are more reliable than respective mb estimates.
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Example 14: Earthquake in Southern Sumatra Region

USGS NEIC-data: 2000-06-04 OT 16:28:25.8 4.773 S 102.050 E h =33G
mb =6.8 Ms=28.0 (D =94.1° and BAZ = 92.5° from GRF)
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Figure 14a Broadband vertical-component seismograms recorded at 16 GRSN-stations
within the distance range D = 92.5° to 96.7°. Traces are time-shifted and aligned for better
comparison of the individual records. Note the good coherency of all traces. For these
broadband records the network works like an array. The weak P-wave first arrival is marked
on the record of station GRFO. Maximum P-wave amplitudes were recorded about half a
minute later (multiple rupture event with successively larger energy release?).
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Figure 14b Seismograms of the same earthquake recorded at the same stations as in Figure
14a after applying a long-period filter (SRO-LP simulation). Note the very high signal
coherence of the long-period P-waves with periods T = 25 s. Also the amplitudes are
comparable at all stations.
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Figure 14c For mb estimates short-period records (WWSSN-SP simulation) have to be used
to measure the maximum amplitudes with periods near 1 s. The respective filtered traces for
the same earthquake and stations as in Figure 14a are shown. For three stations the P wave
arrivals and their maximum double-amplitudes 2A have been marked. The latter differ by a
factor of five for this event. This corresponds to a difference of 0.7 magnitude units!
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Figure 14d Three-component single station record of the Sumatra earthquake at station
MOX (D = 93.9°, BAZ = 93°). The short-period filtered P-wave group is shown and the
maximum peak-to-peak amplitude 2A is marked as in the Z component. In this display with
high time resolution the complicated rupture process of this event, consisting of a series of
sub-events with successively increasing energy release within the first 25 s is very obvious.
This is a very important information also for more detailed research work on source
processes. Therefore, also for routine data analysis a detailed reporting of the onset times,
amplitudes and periods of these sub-events is strongly recommended. An example for such an
analysis is given in Tab. 3.1 of Chapter 3. In the given case, the amplitude of the P-wave
maximum around 16:42:06 is about 40 times larger than that of the first arrival. This
corresponds to a difference of 1.6 magnitude units between the initial and the largest sub-
event of this earthquake. Accordingly, instructions for mb measurements within the first five
half-cycles (NOAA in the 1960s) or within the first 5 s (IMS nowadays) might dramatically
underestimate not only the energy release of earthquake in general (stronger ones in
particular, because mb will always saturate at values around 6.5; see Figs. 3.5 and 3.16 and
related discussions in sections 3.1.2.3, 3.2.5.2, and 3.2.7 of Chapter 3). Even worse, they will
particularly underestimate the high-frequency energy release which is most relevant for
potential damage assessments and for these mb is principally more suited than Ms or Mw
provided, that mb is determined really from the maximum amplitudes in short-period P-wave
train.
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Figure 14e Broadband (top) and long-period filtered 3-component seismograms (SRO-LP
simulation; below) of the Sumatra earthquake at station MOX (D = 93.9°). The phases P, PP,
S, SKSac, SP, SS and the maximum surface wave L have been marked. For better phase
identification the horizontal components N and E have been rotated into the R and T
directions. The S wave is seen best on the transversal component T and P, PP, SKS and SP on
Z and on the radial horizontal component R, respectively. For surface-wave magnitude
estimation the maximum ground displacement with a period between 18 and 22 s was
measured at the marked position L from the SRO-LP filtered vertical component.
Additionally, amplitudes from the horizontal components can be used for a horizontal

surface-wave magnitude value.
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Example 15: VOLCANO ISLANDS REGION

USGS NEIC-Daten: 2000-03-28 OT 11:00:21.7 22.362N 143.680E h = 119D
mb = 6.8 (D = 96.8° BAZ = 43.5° from GRF(GRAL))
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Figure 15a Broadband vertical-component seismograms recorded at 17 GRSN-, GRF- and
GEOFON-stations. Traces are sorted according to increasing distance (D = 92.4° to RGN and
99.1° BFO). The phases P, PP and the depth phases pP and pPP are recorded very well.
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Figure 15b Long-period filtered (WWSSN-LP simulation) three-component seismogram of
the Volcano Island earthquake recorded at station RUE near Berlin (D = 93.7°, BAZ = 45°).
The horizontal components are rotated, with R in source direction. Phases P, pP, SP and the
onset of the Rayleigh waves LR are marked on the vertical component, SKS and PS on the
radial component and S, SS, SSS as well as the Love waves onset LQ on the transversal
component, respectively.
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