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SCOPE 
 
 
In the course of daily operation of a petroleum refinery 

or chemical complex, many thousands of items of infor-
mation are generated, gathered, and recorded. These data 
are, in turn, used to plan, schedule, control, and evaluate 
process operations. Because of the highly integrated nature 
of modern processes, inaccurate data taken from one part of 
the process can easily lead to poor decisions that affect 
other parts of the processes. For instance, if inventory and 
production data on one product are inaccurate, the 
manufacturer may be forced to substitute a premium grade 
product to meet his delivery, thereby incurring a quality 
giveaway and creating an additional demand for the 
substitute product. Or, he may have to procure the supply 
from some other sources at additional costs. Or, he may 
accumulate unnecessarily large inventory, thereby tying up 
production and storage facilities needed for other products. 
Because of the immense scale of operations, even a small 
percentage change in inventory or flow may make a 
substantial difference in revenues or profits. The availability 
of accurate and consistent process data is therefore crucial 
to all process analyses. 
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In a previous paper (Mah et al., 1976), we have shown 

how the constraints imposed by an integrated process could 
be turned to advantage in enhancing the information content 
of the raw process data. Specifically, we showed how the 
overall data enhancement problem involving redundant but 
inconsistent data on the one hand and missing 
measurements on the other hand can always be resolved 
into two disjoint subproblems which can then be readily 
solved. We also showed how gross errors such as leaks and 
measurement biases may be detected and identified. These 
results were derived for flow and inventory data in a 
process network and based on the availability of a single set 
of measurements. 
In this paper the treatment is extended to cover estima-

tion of temperatures and energy flows as well as material 
flows in a process network. Even more importantly, the 
proposed estimator takes advantage of continual updates of 
measurements as well as the aforementioned redundancy. 
The estimator is designed to possess functional attributes 
that are judged desirable on the basis of process data 
collected from the atmospheric crude distillation unit of an 
operating refinery. The performance characteristics and 
computational requirements of such an estimator were 
investigated by simulation experiments. 
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    It is shown that temperatures and flows in a process network can be estimated 

from a quasi steady state model and a discrete Kalman filter. The data needed for 

such an application are readily available in many operating plants, and the 

computational requirements are within the capabilities of available process 

computers. 



AIChE Journal (Vol. 23, No. 5)            September, 1977        Page 643 

CONCLUSIONS AND SIGNIFICANCE 
 

A quasi steady state model of the process network was 
developed on the basis of the process data logged over a 2 
mo period. The model lends itself to the application of the 
discrete Kalman filter. It was found that by adjusting the 
relative weights of process noise and measurement noise 
covariances, the filter could be tuned to give significant 
error reduction (up to 70%) and respond rapidly and stably 
to sudden changes of process conditions. Redundant 
measurements contributed significantly to the overall error 
reduction. Further experiments showed that the filter func-
tioned reasonably well with isolated biases. However, in- 
 

discriminant inclusion of biases and parameters as estima-
tion variables is not recommended. 
The computer program that we have implemented will 

generate estimators for different process networks and filter 
parameters. The computational requirements of a typical 
application can easily be accommodated on a process 
computer. With process data now available in abundance as 
a result of process computerization, the implementation of 
the proposed technique for on-line estimation of 
temperatures and flows in process networks appears to be a 
realistic possibility. 

In a previous paper (Mah, Stanley, and Downing 1976), 
we pointed out the pervasive role of process data in all 
aspects of process control and performance evaluation and 
formulated three specific problems associated with en-
hancement of data gathered from an operating process. They 
are, respectively, the problems of data reconciliation, 
coaptation, and fault detection and rectification. The un-
derlying information utilized in the treatment of these 
problems is the data redundancy in the sense that there are 
more measurements (or data) available than needed if the 
measurements were not subject to errors. This redundancy, 
which is brought about as a result of the interconnectedness 
of a process network, will be referred to as spatial 
redundancy. 
In the investigations reported so far (Kuehn and David-

son, 1961; Ripps, 1965; Vaclavek 1969a, 1969b; Umeda, 
Nishio, and Komatsu, 1971; Mah, Stanley, and Downing, 
1976) the data enhancement problems are analyzed on the 
assumptions that only a single set of measurements is 
available and that the process operates under steady state 
conditions. In reality, neither of these simplifications always 
applies. At a given instant, a “snapshot’ of the conditions of 
a continuously operated process may appear to be steady 
state, but over a longer period the successive “snapshots” of 
conditions will almost certainly reveal changing process 
conditions. Moreover, with the data sampling and recording 
techniques now available, it is not uncommon to find 
process data being sampled continually at regular time 
intervals of 1 to 5 min. There is, therefore, also a data re-
dundancy in the sense that more measurements are available 
than needed, if the process conditions were truly at a steady 
state. We shall refer to this as temporal redundancy. 

Both time averaging and exponential smoothing make no 
use of spatial redundancy. Nor do they guarantee that the 
estimates obtained will be consistent with material and 
enthalpy balances. 
In this paper we shall consider the problem of data en-

hancement in applications in which the time framework is 
sufficiently long that short-term variations of process con-
ditions can be safely ignored but in which the long-term 
process trends such as fouling of heat transfer surfaces must 
be accounted for. Supervisory control and production 
scheduling are two examples of such applications. To be 
specific, we shall describe the observed characteristics of an 
important class of processes and show how this information 
can be used to specify an estimator with the desired 
characteristics. We shall explore the behavior of such an 
estimator under different simulated conditions, and, finally, 
we shall report our experience on the computational re-
quirements of such an estimator. 
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PROCESS CHARACTERISTICS 
 
For the purpose of this study a 140 000 bbl/day crude oil 

distillation unit at the Amoco refinery at Whiting, Indiana, 
was selected as an example of an important class of process 
units. A dominant feature of this unit is the presence of a 
large number of heat exchangers. Process data from 
approximately 250 sensors were scanned every minute, and 
once every 2 hr the averages were transmitted and logged. 
These data were in turn automatically transcribed on a 
magnetic tape every 24 hr and used as a basis of our 
analysis. 
The following conclusions were reached after discussions 

with refinery personnel and examination of data logged 
during a 2 mo period. Steady state conditions are typically 
maintained for 8 hr to 8 days, with 2 hr transitions between 
steady states. Steady state mass and energy balances hold in 
almost any time period in the extensive heat exchanger 
network, with the high flow rates of incompressible fluids 
precluding significant mass or energy accumulation. 
However, efficient operation requires a close monitoring of 
the heat transfer coefficients, which can decay slowly over a 
period of months due to fouling. This type of process, which 
is essentially at steady state except for slow drift or 
occasional sharp transition between steady states, will be 
referred to as a quasi steady state (QSS) process. 
Our goal is to construct a practical on-line estimator for a 

QSS process that will substantially improve flow and 
temperature estimates at steady state conditions, yet quickly 
follow plant upsets, say, within an hour. Furthermore, the 
estimates should be consistent, that is, satisfy the steady 
state mass and energy balances. 
In this study we shall be concerned with flow and tem-

perature estimates only, and only the following information 
will be assumed to be available: flow and temperature 
measurements, process network configuration, and enthalpy 
correlations relating temperature to enthalpy. No assumption 
is made that the flow and temperature of every stream are 
measured. We note that these requirements are satisfied by 
the refinery unit in which the volumetric flow measurements 
are converted to mass flows using assumed densities, and 
the enthalpy correlations are also developed using assumed 
densities. 

A concise representation of the network characteristics of 
the process is given by the process graph (Mah, Stanley, and 
Downing, 1976). In this representation, the nodes indicate 
process units, tanks, or junctions and the directed arcs the 
flows of material and energy streams. A single node is used 
to represent the environment from which the process receives 
its feeds and to which it delivers its products. Parallel arcs 
between a pair of nodes are also allowed. 
The process graph for the crude preheat heat exchanger 

network (a section of the Whiting crude oil distillation unit) 
is shown in Figure 2 as an illustration. The environment node 
is omitted in this process graph for typographical clarity. 
Note that in addition to the connections between units, the 
locations of measurements and the types of flows may also 
be indicated on the process graph. Temperature and mass 
flow measurements are indicated by single and double 
slashes, respectively, on the arcs. Solid lines and broken lines 
are used to differentiate between mass flow arcs and pure 
energy flow arcs. Examples of the latter are heat transfer in a 
heat exchanger, heat loss through radiation, and electrical 
inputs to pumps and compressors. 
In Figure 2 the crude oil enters at arc 1, and water is added 

at arc 2 for later desalting. The flow is split into two streams 
at node 2 and recombined at node 10. In between these two 
junctions the crude oil is heated in seven countercurrent heat 
exchangers by different intermediate and product streams. 
Each heat exchanger is represented by a pair of nodes 
connected by a pure energy flow arc to emphasize that only 
heat exchange but no material exchange takes place between 
the two streams. Arcs 16 to 19 and 20 to 22 represent 
distillation column pump-around streams, while arcs 14 to 15 
and 23 to 24 represent hot product streams. Flow rates range 
from 19 to 380 kg/s with temperatures between 292.6 and 
460.9

0
K. The amount of water added in arc 2 is small, and 

the flows in all other arcs can be treated as single-phase 
hydrocarbon liquids. Figure 2 exemplifies many features of a 
typical process graph and will be referred to again in 
subsequent discussions. 
 
THE QUASI STEADY STATE ESTIMATOR 
 
We shall now turn to the development of QSS estimators. 

In recent years, the Kalman filter has been evaluated for on-
line estimation in several chemical engineering applications, 
brief reviews of which may be found in papers by Hamilton, 
Seborg, and Fisher (1973) and Jo and Bankoff (1976). The 
motivation behind these investigations is improved process 
control for which the dynamic models of the process system 
are needed. These models are generally quite complex, and a 
very recent study by Jo and Bankoff (1976) provided 
substantial evidence to suggest that the utility of the Kalman 
filter might be severely limited by the model uncertainties in 
certain applications. 
In supervisory control, the set points of controllers are 

manipulated on the basis of long-term trends; the full com-
plexity of dynamic models is therefore not required (Smith, 
1972). A suboptimal filter for QSS systems was developed 
by Masiello and Schweppe (1971). The use of steady state 
estimators was suggested by Goldmann and Sargent (1971). 
The development of QSS estimators for a process network is 
given below. 
Since Kalman filter theory is fully documented in several 

books (Bryson and Ho, 1968; Jazwinski, 1970; Gelb, 1974), 
we shall only recapitulate the relevant results in our 
development. For a sampled data system, let the (l x 1) 
measurement vector z be related to the (n x 1) state vector x 
through the equation 
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duction? What is the relative importance of spatial and 
temporal redundancies? Can the estimator be tuned to 
respond satisfactorily to sudden changes without being un-
stable? What are the effects of systematic errors? Can we 
obtain meaningful estimates of parameters such as heat 
transfer coefficients and measurement bias in addition to the 
state variables using the same process data? The results of 
these experiments will now be presented and discussed. 
 
Tuning for Steady State Error and Step Change 
 
In all our experiments, the process noise covariance 

matrix Q was treated as a filter design parameter and chosen 
to be diagonal for simplicity and ease of computation. The 
measurement noise covariance matrix R was assumed to be 
diagonal, since it seemed reasonable to assume that 
measurement noises due to different instruments were 
uncorrelated. The variances of temperature measurements 
were each taken as a constant fraction of the true 
temperature, and the variances of flow measurements were 
each taken as a constant fraction (0.05) of the true flow rate. 
That is, if the flow rate were 10 kg/s, the variance 

would be 0.5 kg
2
/s
2 
and the standard deviation √0.5 kg/s. 

Preliminary experiments indicated negligible differences in 
filter performance with the ratio of these two fractions 
varying between 1 and 10. For each simulation, the same 
ratio of measurement variance to process variance was 
maintained for all temperatures and flows. This ratio r/q was 
used to tune the filter, as in Hamilton et al. (1973). 

The parameter r/q may be thought of as a memory length 
for the filter. A large value of r/q indicates a high level of 
measurement noise, and hence past data are weighted heavily. 
A low r/q ratio, on the other hand, is an indication that the 
measurement noise is low and that past data are ignored. 
Alternatively, r/q may be interpreted as a measure of the 
contribution of temporal redundancy to data enhancement. 
More belief is placed on past data and temporal redundancy 
when a high value of r/q is selected. 
 

The impact of this ratio on estimator behavior was in-
vestigated in the experiments performed on the blending 
network shown in Figure 3a. The results are summarized as a 
plot of the average error vs. the r/q ratio shown in Figure 4 
with the true conditions shown in Table 1. It should be noted 
that in this and all subsequent discussions the errors reported 
are root-mean-squares averages over all streams, averaged 
over time. Usually the averages smooth out after twenty time 
steps. 

In this series of experiments, only material flows are 
measured and estimated. The upper curve in Figure 4 cor-
responds to a system with no spatial redundancy: Flows 1, 2, 
5 and 6 are measured. The measured values are smoothed 
over time, and the unmeasured values are computed by the 
estimator. By contrast, all six flows are measured, and both 
spatial and temporal redundancies are present in the lower 
curve. The limiting case as r/q approaches zero corresponds 
to repeated application of steady state reconciliation with no 
carry-over of information from one time instant to the next. 
Comparison of the two curves shows that spatial redundancy 
reduces the average error by approximately 66%. As r/q 
increases, temporal redundancy plays a more important role 
in error reduction. When the ratio is very large, the absolute 
magnitude of improvement due to spatial redundancy 
becomes less significant. However, there is always a relative 
improvement of at least 30 % between the two cases. 

Unfortunately, r/q cannot be chosen arbitrarily large be-
cause the filter would then be far too sluggish to respond to 
any process changes, and the assumption of steady state 
conditions does not hold over long time periods. To obtain 
greater accuracy at constant conditions, this ratio should be 
chosen as large as possible subject to the requirement that the 
filter response to a step change in process conditions be 
completed in some given time. Based on the observed 
refinery behavior, it was decided that the step response 
should be completed in 1 hr. Assuming that the filter would 
be applied once every 5 min on time averaged data, it was 
tuned to complete its step response in approximately twelve 
time steps. This behavior was obtained using an r/q ratio of 
10 which is the value used in all subsequent experiments. 
To determine whether the filter would track all reasonable 

changes in process conditions without diverging, the filter 
was subject to more than twenty extremely severe step tests 
with flow rate changes of up to 400% and temperature 
changes up to 105

0
K. No instability was observed for filters 

estimating flows and temperatures. Instability was 
occasionally observed when parameter estimation was also 
attempted. As these step changes are far more severe than one 
might expect to encounter in a real system, the results give 
every indication that the filter will be stable. 
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One modification to the filter for nonlinear constraints 

may be noted here. During rapid transitions it was found 
that the constraints were not always satisfied by the esti-
mates. To decrease the error caused by linearization about 
incorrect estimates, extra iterations were performed using 
the most recent set of measurements with relinearization 
after each step. The modified procedure was found to work 
satisfactorily. 
The conclusions drawn from the above experiments were 

confirmed on the more extensive crude preheat network. As 
shown in Figure 2, there are twenty state variables and 
twenty-five measurements in this problem. Flow and tem-
perature measurement errors were generated from rec-
tangular distributions with maximum errors of ±10% and 
±0.5% (of the absolute temperature), respectively. The 
average estimation errors in temperature, mass, and energy 
flows were 0.94

0
K, 6.75 kg/s, and 151 kW, respectively. If 

T1, T4, and T10 and x6, x10, x13, and x16 were also measured, 
these errors could be further reduced to 0.61

0
K, 3.28 kg/s, 

and 136 kW. 
 
Effects of Systematic Errors 
 
The performance of QSS estimator in the presence of 

systematic errors was investigated in the next set of ex-
periments. Systematic errors in this context include unsus-
pected material and energy leaks, measurement biases, and 
errors in enthalpy correlations. In order to make the effects 
more apparent, measurement noise was reduced to very low 
levels (maximum errors of ±0.5% for flows and ±0.025% 
for absolute temperatures). In practice such reductions may 
be achieved by “prefiltering” or averaging measurements 
over time between filter iterations. 
To study the effects of an unsuspected leak, we applied a 

QSS estimator based on the process graph shown in Figure 
3a to the process graph shown in Figure 3b. The extra arc 
(arc 7) in the latter represents a heat leak to the en-
vironment. The true conditions for this problem are given in 
Tables 1 and 2. The resulting errors in temperature estimates 
are plotted against heat loss in Figure 5. As before, the 
upper curve represents estimation with no spatial re-
dundancy, while the lower curve corresponds to full mea-
surements and redundancy. Substantial error reduction is 
again obtained with the exploitation of spatial redundancy. 

The effects of measurement biases were studied using the 
recycle network shown in Figure 3c. The presence of 
measurement bias was simulated by adding a bias vector to 
the simulated measurement vector z. The bias vector was 
chosen to be either a multiple of the alternating sign vector 
(1, -1, 1, -1, …) or the one sign vector (1, 1, 1, 1, …). These 
bias distributions were purposely chosen to exhibit the 
contrast in filter behavior. The true conditions for the 
recycle network are given in Table 3. 
As before, comparisons were made for the minimal and 

redundant measurement cases. The measurement vectors 
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for these two cases were (x1, T1, x2, T2, T3, x5, T5, T7) and (x1, 
T1, x2, T2, x3, T3, x4, T4, x5, T5, x6, T6, x7, T7), and the 
alternating sign bias vectors were taken to be multiples of 
(1, 1, -1, -1, 1, -1, -1, 1) and (1, 1, -1, -1, 1,1, -1, -1, 1, 1, -1, 
-1, 1, 1), respectively, the basic unit of bias perturbation 
being 7.94 kg/s for a flow measurement and 1.8

0
K for a 

temperature measurement. The errors in temperature and 
flow estimates are plotted against the maximum bias errors 
in Figures 6 and 7, respectively. 
For the alternating sign biases, the estimation errors were 

reduced substantially in both cases with the introduction of 
spatial redundancy. For the one sign biases, improvement 
was obtained only in temperature estimates; the flow 
estimates were actually degraded. In interpreting this 
apparent anomaly, it should be remembered that the filter 
attempts to minimize all forms of errors. In this case, the 
temperature estimates were apparently improved at the 
expense of flow estimates when spatial redundancy was 
introduced. 
Further analysis of results revealed that the error reduc-

tion in the case of alternating sign biases was, to a large 
measure, attributable to cancellations (Stanley, 1977). The 
improvement obtainable with spatial redundancy depends 

strongly on the distribution of the biases. For linear or 
linearized constraints, Equation (16), the biases are cor-
rected only if the bias vector is not orthogonal to the row 
space of A. 
Systematic errors can also be introduced into the estima-

tion procedure through biases in the measurement matrix. 
This situation was simulated in our analysis by errors in 
enthalpy correlations. For petroleum liquids, the enthalpy h 
is correlated with temperature T and density ρ as follows: 
 

h = (c1 + c2T + c3T
2
)/√ρ (37) 

Alternating sign biases or one sign biases were introduced 
into the densities, and the filter behavior was studied. The 
results are summarized in Figure 8. 
With the alternating sign biases, large errors are incurred 

in the temperature estimates, but redundant measurements 
offer a very significant improvement. When the enthalpy 
errors are one sided, all energy flows are scaled in the same 
direction [see Equations (21) and (22)]. Consequently, the 
errors in temperature estimates are small regardless of the 
number of measurements. But even in this case, filter with 
spatial redundancy gives superior performance. 
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Simultaneous Estimation of States and Parameters  
 

The utility of adaptive parameter estimation was explored 
in the final set of experiments. The parameters studied were 
split fractions (valve positions), heat transfer coefficients, 
and measurement biases. These parameters were incorporated 
as new state variables, and their process noise variances were 
set at one to seven orders of magnitude smaller than the 
variances for flows and temperatures, constraining the 
parameter values to change much more gradually than the 
flows and temperatures. 

It should be noted that the introduction of the parameters 
does not always lead to an increase in the number of state 
variables. Consider the subnetwork involving nodes 1 and 2 
in Figure 2. Normally, mass flows x1, x2, x8 would be chosen 
as state variables by the filter. But when the split fraction α at 
node 2 is included as a state variable, x8 is dropped as a state 
variable, since it may be computed in terms of measured 
variables x8 = α(x1 + x2). Similarly, when heat transfer 
coefficients are estimated, there is no change in the number 
of state variables. Only in the case of bias estimation is the 
state vector augmented by the additional parameters. 
  The first simulation experiments in this series were per-
formed on the recycle network in Figure 3c. The heat transfer 
coefficient for the exchanger (nodes 1 and 2) was estimated 
along with the two split fractions at node 4. It was found that 
the best parameter estimates were obtained with process 
noise variances set to 10

-7
 for split fractions and 5.27 x 10

-5
 

for heat transfer coefficients. For the same runs, the process 
noise variances for flows and temperatures were set to 0.5% 
of their initial values. Our results show that the average flow 
estimates were degraded by 12% and the average temperature 
estimates by 3% as a result of incorporating these three 

parameters in the estimation schemes. Despite repeated 
attempts with different flow networks, no filter with 
parameter estimation was ever found to yield superior 
estimates than a filter without parameter estimation and, at 
the same time, to respond satisfactorily to step changes. 
Finally, we shall consider the estimation of measurement 

biases. In the absence of any prior information, there is no 
rational basis for predesignating any subset of measurements 
with biases. When all biases were estimated, flow estimate 
error was increased by 17 to 67% and temperature estimate 
error by up to 46% as compared with the base case of no bias 
estimation. Significantly, the worst errors with bias 
estimation occurred when a measurement bias was actually 
present. The basic difficulty with bias estimation is that with 
the increase in the number of variables, multiple solutions are 
possible. In every case that we have tested, the filter 
converged to incorrect steady state estimates. The problem of 
multiple solution was also noted by Goldmann and Sargent 
(1971). 
 

Computational Requirements 
 
The simulation experiments described above were carried 

out on a CDC 6400 computer. The program consists of an 
estimator generator and a process simulator. The former 
constructs a QSS estimator based on the process network 
structure, assigned values of filter parameters, and initial 
guesses of variables, and the latter supplies the simulated 
process measurements, including the prescribed noise and 
bias. 
As an indication of computational requirements, the crude 

preheat network (shown in Figure 2) required 1.35 CP 
(central processor) s/filter iteration, of which approximately 1 
s was taken up by the filter gain matrix calculation (inversion 
and linearization). Thus, discounting the time required for 
input, output, and initialization and assuming that the filter is 
applied once every s mm, a total of 16 CP s/hr are needed for 
on-line estimation of temperatures and flows in such a 
network. 
The filter and data storage occupied approximately 15 000 

words. Of these, 1 500 words were required for initialization, 
3 600 words for the filter, 3 000 words for library 
subroutines, and the remainder for variable storage. The 
process simulator which took up an additional 13 000 words 
will, of course, be replaced by data sensor input in a real 
process application. Thus, even allowing for the shorter word 
length of a typical process computer, the computing time and 
storage requirements are well within the capabilities of such 
computers. 
Further details of the simulation experiments and their 
implementation may be found elsewhere (Stanley, 1977). 
 
CLOSING REMARKS 
 
Hitherto, one of the major limitations of applying Kalman 
filters to industrial processes is the uncertainty in process 
models. Flow and temperature estimation in a process 
network appears to be one application of major industrial 
significance, in which the model validity is not in question, 
since only conservation relationships are invoked. Our 
investigation has shown how the Kalman filter may be 
adapted to take advantage of both spatial and temporal 
redundancies in a QSS process. The estimator can be tuned to 
follow sudden changes in process conditions in a satisfactory 
manner and, at the same time, reduce estimation errors by up 
to 70%. In almost all instances studied, spatial redundancy 
contributes significantly to the overall error reduction. The 
estimator is reasonably effective with isolated systematic 
errors, but indiscriminant inclusion of bias estimation is not 
recommended. Simultaneous estimation of split fractions,  
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heat transfer coefficients, and state variables appears to 
offer no special advantage in improving the estimates. Of 
great practical significance are the computational 
requirements of the QSS estimator. For a typical process 
network, these requirements can easily be accommodated 
on a current process computer. 
In this paper we have assumed that a one-to-one func-

tional relationship exists between the temperature and the 
enthalpy of a fluid stream, although the functional relation-
ship need not be limited to the form shown in Equation 
(37). This assumption is generally not very restrictive, 
since it allows streams to be gas, liquid, or two-phase 
mixtures of two or more components. However, it does 
preclude the two-phase stream of a single component. One 
way of bypassing this difficulty is to eliminate such a 
stream from the estimation scheme by merging its two 
adjacent nodes. But to remove this restriction otherwise 
will clearly require an extension of state and measurement 
vectors. 
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