
HAL Id: hal-00820373
https://hal.science/hal-00820373v2

Preprint submitted on 2 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Counting and generating permutations using timed
languages (long version)

Nicolas Basset

To cite this version:
Nicolas Basset. Counting and generating permutations using timed languages (long version). 2013.
�hal-00820373v2�

https://hal.science/hal-00820373v2
https://hal.archives-ouvertes.fr


Counting and generating permutations using
timed languages? ??

Nicolas Basset1,2

1 LIGM, University Paris-Est Marne-la-Vallée and CNRS, France.
2 LIAFA, University Paris Diderot and CNRS, France

nbasset@liafa.univ-paris-diderot.fr

Abstract. The signature of a permutation σ is a word sg(σ) ⊆ {a,d}∗
whose ith letter is d when σ has a descent (i.e. σ(i) > σ(i+ 1)) and is a
when σ has an ascent (i.e. σ(i) < σ(i + 1)). Combinatorics of permuta-
tions with a prescribed signature is quite well explored. Here we state and
address the two problems of counting and randomly generating in the
set sg−1(L) of permutations with signature in a given regular language
L ⊆ {a,d}∗. First we give an algorithm that computes a closed form
formula for the exponential generating function of sg−1(L). Then we
give an algorithm that generates randomly the n-length permutations of
sg−1(L) in a uniform manner, i.e. all the permutations of a given length
with signature in L are equally probable to be returned. Both contri-
butions are based on a geometric interpretation of a subclass of regular
timed languages.

Generating all the permutations with a prescribed signature (described in the
abstract) or simply counting them are two classical combinatorial topics (see [17]
and reference therein).

A very well studied example of permutations given by their signatures are
the so-called alternating (or zig-zag, or down-up) permutations (see [16] for a
survey). Their signatures belong to the language expressed by the regular ex-
pression (da)∗(d + ε) (i.e. they satisfy σ1 > σ2 < σ3 > σ4...).

Such a definition of a class of permutations in terms of a language of sig-
natures is in fact a novelty of the present work. To a language L ⊆ {a,d}∗,
we associate the class sg−1(L) of permutations whose signature is in L. Many
classes of permutations can be expressed in that way, e.g. alternating permuta-
tions, those with an even number of descents.

We state and address the two problems of counting and randomly generat-
ing when the language of signatures is regular. We propose Algorithm 1 which
takes as its input a regular language L and returns a closed form formula for
the exponential generating function (EGF) of sg−1(L) i.e. a formal power series∑
an

zn

n! where the nth coefficient an counts the permutations of length n with

? The support of Agence Nationale de la Recherche under the project EQINOCS
(ANR-11-BS02-004) is gratefully acknowledged.

?? The present paper is a long version of an article under submission to a conference.



signature in L. With such an EGF, it is easy to recover the number an and some
estimation of the growth rate of an (see [9] for an overview of analytic combina-
torics). The random generation is done by an algorithm described in Theorem
4. The regular language of signatures L together with n the size of permutation
to generate are given in input and the output are random permutations of size
n whose signatures are in L with equal probability to be returned.

Our theory is based on a geometric interpretation of regular timed languages
initiated in [4]. In that paper the authors introduce the concept of volume and
entropy of regular timed languages as well as recurrent equations on timed lan-
guages and their volume. With these authors we defined and characterized vol-
ume generating function of timed language in [3]. In this latter paper a link
between enumerative combinatorics and regular timed languages was foreseen.
Here we establish such a link. The passage from a class of permutations to a
timed language is in two steps. First we associate order and chain polytopes to
signatures which are particular cases of Stanley’s poset polytopes [15]. Then we
interpret the chain polytopes of a signature w as the set of delays which together
with w forms a timed word of a well chosen timed language.
Related works. The link between geometry and permutations is not new and
can be found in several articles including [8,13,17] that state integral equations
similar to ours. Our use of timed languages provides a new tool necessary to
catch the dynamic of the regular languages of signatures.

Particular regular languages of signatures are considered in [8] under the
name of consecutive descent pattern avoidance. Numerous other works treat
more general cases of (consecutive) pattern avoidance (see, e.g. the monograph
[12]) and are quite incomparable to our work. Indeed, certain classes of permu-
tations avoiding a finite set of patterns cannot be described as a language of
signatures while some classes of permutations involving regular languages can-
not be described by finite pattern avoidance, e.g. the permutations with an even
number of descents.

The random sampler of timed words (Algorithm 2) is an adaptation to the
timed case of the so-called recursive method of [14] developed by [10]. It has been
improved for the particular case of generation of words in regular languages [6].

Paper structure In section 1 we expose the problem statements. In section 2
we establish the link between the classes of permutations associated with lan-
guages of signatures and timed languages of a particular form. We address the
two problems in section 3, treat several examples and discuss our results and
perspectives in the last section.

1 Two problem statements

All along the paper we use the two letter alphabet {a,d} whose elements must
be read as “ascent” and “descent”. Words of {a,d}∗ are called signatures. For
n ∈ N we denote [n] = {1, . . . , n} and by Sn the set of permutation of [n]. We

2



also use the one line notation of permutations e.g. σ = 231 means that σ(1) = 2,
σ(2) = 3, σ(3) = 1.

Let n be a positive integer. The signature of a permutation σ = σ1 · · ·σn
is the word u = u1 · · ·un−1 ∈ {a,d}n−1 denoted by sg(σ) such that for i ∈
[n], σi < σi+1 iff ui = a (we speak of an “ascent”, also known as an ascent)
and σi > σi+1 iff ui = d (we speak of a “descent”, also known as a descent)
e.g. sg(21354) = sg(32451) = daad.

This notion appears in the literature under several different names and forms
such as descent word, descent set, ribbon diagram, etc. The usual definition
of signature of a permutation is an n-tuple of +1 (“ascent”) and −1 (”de-
scent“). Here we use words to express in a very convenient way constraints
on permutations in terms of languages. More precisely we are interested in
sg−1(L) = {σ | p(σ) ∈ L}: the class of permutations with a signature in
L ⊆ {a,d}∗. Given a language L we denote by Ln the sub-language of L re-
stricted to words of length n. The exponential generating function of sg−1(L)
is

EGF [sg−1(L)](z) =
∑

σ∈sg−1(L)

z|σ|

|σ|!
=
∑
n≥1

|sg−1(Ln−1)|z
n

n!
=
∑
u∈L
|sg−1(u)| z|u|+1

(|u|+ 1)!
.

Example 1. Consider as a running example of the paper the class of ”up-up-
down-down“ permutations with signature in the language3 Lex = (aadd)∗(aa+
ε) recognized by the automaton depicted in the left of Figure 1. The theory
developed in the paper permits to find the exponential generating function of
sg−1(Lex).

EGF [sg−1(Lex)](z) =
sinh(z)− sin(z) + sin(z) cosh(z) + sinh(z) cos(z)

1 + cos(z) cosh(z)
.

Its Taylor expansion is

z +
z3

3!
+ 6

z5

5!
+ 71

z7

7!
+ 1456

z9

9!
+ 45541

z11

11!
+ 2020656

z13

13!
+ . . . .

For instance, there are 1456 up-up-down-down permutations of length 9.

Now we state the two problems solved in this paper.

Problem 1. Design an algorithm which takes as input a regular language L ⊆
{a,d}∗ and returns a closed form formula for EGF (sg−1(L))

Problem 2. Design an algorithm which takes as input a regular language L ⊆
{a,d}∗ and a positive integer n and returns a random permutation σ uniformly
in sg−1(Ln−1) i.e. such that the probability for each σ ∈ sg−1(Ln−1) to be
returned is 1/|sg−1(Ln−1)|.

3 We confuse regular expressions with the regular languages they express.

3



1 2

4 3

a

a

d

d

1 2

4 3

a

a

d

d

1, 3 2, 4

T

S

Fig. 1. From left to right: automata for Lex, Lex
′

and std(Lex
′
)

2 A timed and geometric approach

In section 2.1 we introduce a sequence of sets On(L) ⊆ [0, 1]n and see how the
two problems posed can be reformulated as computing the volume generating
function of the sequence (On(L))n≥1 and generating points uniformly in On(L).
Then we define a timed language L′ associated to L as well as its volume (section
2.2) and describe a volume preserving transformation between On(L) and L′n.

2.1 Order sets of a language of signatures (On(L))n≥1

We say that a collection of polytopes (S1, · · · , Sn) is an almost disjoint partition
of a set A if A is the union of Si and they have pairwise a null volume intersection.
In this case we write S =

⊔n
i=1 Si.

The set {(ν1, . . . , νn) ∈ [0, 1]n | 0 ≤ νσ−1
1
≤ . . . ≤ νσ−1

n
≤ 1} is called the

order simplex4 of σ and denoted by O(σ) e.g. ν = (0.3, 0.2, 0.4, 0.5, 0.1) belongs
to O(32451) since ν5 ≤ ν2 ≤ ν1 ≤ ν3 ≤ ν4 and (32451)−1 = 52134. The set O(σ)
for σ ∈ Sn forms an almost disjoint partition of [0, 1]n. By symmetry all the
order simplices of permutations have the same volume which is 1/n!.

If ν is uniformly sampled in [0, 1]n then it falls in any O(σ) with probability
1/n!. To retrieve σ from ν it suffices to use a sorting algorithm. We denote by
Π(ν) the permutation σ returned by the sorting algorithm on ν i.e. such that
0 ≤ νσ−1

1
≤ . . . ≤ νσ−1

n
≤ 1.

The signature of a vector ν ∈ [0, 1]n is the word sg(ν) = sg(Π(ν)) i.e. such
that νi < νi+1 iff ui = a and νi > νi+1 iff ui = d. e.g. sg(0.3, 0.2, 0.4, 0.5, 0.1) =
daad. The order polytope [15] of a signature u ∈ {a,d}n−1 is the polytope
O(u) = {ν ∈ [0, 1]n | sg(ν) = u}. It is clear that the collection of order simplices
O(σ) with all σ having the same signature u form an almost disjoint partition

4 Order simplices, order and chain polytopes of signatures defined here are particular
cases of Stanley’s order and chain polytopes [15].

4



of the order polytope O(u): O(u) =
⊔
σ∈sg−1(u)O(σ) (e.g. O(daa) = O(2134) t

O(3124) t O(4123)). Passing to volume we get:

Vol(O(u)) =
∑

σ∈sg−1(u)

Vol(O(σ)) =
|sg−1(u)|

n!
(1)

Let L be a language of signatures and n ≥ 1, then the family (O(u))u∈Ln−1

forms an almost disjoint partition of a subset of [0, 1]n called the nth order set
of L and denoted by On(L):

On(L) =
⊔

u∈Ln−1

O(u) =
⊔

σ∈sg−1(Ln−1)

O(σ) = {ν ∈ [0, 1]n | sg(ν) ∈ Ln−1}. (2)

For volumes we get:

Vol(On(L)) =
∑

u∈Ln−1

Vol(O(u)) =
∑

σ∈sg−1(Ln−1)

Vol(O(σ)) =
|sg−1(Ln−1)|

n!

(3)

Reformulating the two problems with the geometric approach As a
consequence of (3), Problem 1 can be reformulated as computing the volume
generating function (VGF) of the sequence O(L) =def (On(L))n≥1:

V GF (O(L))(z) =def

∑
n≥1

Vol(On(L))zn = EGF (sg−1(L))(z) (4)

Problem 2 can also be treated using order polytopes On(L). Indeed it suffices
to generate uniformly a vector ν ∈ On(L) and then sort it to get a permutation
σ = Π(ν). As the simplices O(σ) for σ ∈ sg−1(Ln) form an almost disjoint
partition of On(L) and all these simplices have the same volume 1/n!, they are
equally probable to receive the random vector ν, and thus all σ ∈ sg−1(Ln) have
the same probability to be chosen.

We have seen with (2) that permutations of a fixed length n fit well with
the nth order set. However, it is not clear how to fit the sequence of order sets
(when n varies) with the dynamics of the language L. It is easier to handle a
timed language L since its sequence of volumes (Vol(Ln))n∈N satisfies a recursive
equation (see [4]). We will find a volume preserving transformation between order
sets On(L) and timed languages (Ln)n∈N and hence reduce Problem 1 to the
computing of the ordinary generating function of (Vol(Ln))n∈N. For the second
problem, by generating uniformly a timed word in Ln and applying the volume
preserving transformation we will get a uniform random point in On(L).

2.2 Timed semantics of a language of signatures
(
L′n
)
n∈N

This section is inspired by timed automata theory and designed for non experts.
We adopt a non standard5 and self-contained approach based on the notion of
clock languages introduced by [7] and used in our previous work [3].

5 We refer the reader to [1] for a standard approach of timed automata theory.

5



Timed languages, their volumes and their generating functions An
alphabet of timed events is the product R+×Σ where Σ is a finite alphabet. The
meaning of a timed event (ti, wi) is that ti is the time delay before the event wi.
A timed word is just a word of timed events and a timed language a set of timed
words. Adopting a geometric point of view, a timed word is a vector of delays
(t1, . . . , tn) ∈ Rn together with a word of events w = w1 · · ·wn ∈ Σn. We adopt
the following convention, we write (t, w) for the timed word (t1, w1) · · · (tn, wn)
with t = (t1, · · · , tn) and w ∈ Σn (n ≥ 1). Continuing with the same convention,
given a timed language L′ ⊆ (R+ × Σ)∗, then the timed language restricted to
words of length n, L′n can be seen as a formal union of sets

⊎
w∈Σn L′w × {w}

where L′w = {t ∈ Rn | (t, w) ∈ L′} is the set of delay vectors that together
with w form a timed word of L′. In the sequel we will only consider languages
L′ for which every L′w is volume measurable. To such a L′n one can associate a
sequence of volumes and a VGF as follows:

Vol(L′n) =
∑
w∈Σn

Vol(L′w);

V GF (L)(z) =
∑
w∈Σ∗

Vol(L′w)z|w| =
∑
n∈N

Vol(L′n)zn.

The clock semantics of a signature. A clock is a non-negative real variable.
Here we only consider two clocks bounded by 1 and denoted by xa and xd. A
clock word is a tuple whose component are a starting clock vector (xa0 , x

d
0 ) ∈

[0, 1], a timed word (t1, a1) · · · (tn, an) ∈ ([0, 1] × {a,d})∗ and an ending clock

vector (xan, x
d
n) ∈ [0, 1]2, it is denoted by (xa0 , x

d
0 )

(t1,a1)···(tn,an)−−−−−−−−−−→ (xan, x
d
n).

Two clock words x0
w−→ x1 and x2

w′−−→ x3 are said to be compatible if

x2 = x1, in this case their product is (x0
w−→ x1) · (x2

w′−−→ x3) = x0
ww′−−−→ x3.

A clock language is a set of clock words. The product of two clock languages L
and L′ is

L · L′ = {c · c′ | c ∈ L, c′ ∈ L′, c and c′ compatible}. (5)

The clock languages6 L(a) (resp. L(d)) associated to an ascent (resp. a de-

scent) is the set of clock words of the form (xa, xd)
(t,a)−−−→ (xa + t, 0)

(resp. (xa, xd)
(t,d)−−−→ (0, xd + t)) and such that xa + t ∈ [0, 1], xd + t ∈ [0, 1]

(and by definition of clocks and delays xa ≥ 0, xd ≥ 0, t ≥ 0). These definitions
extend inductively to all signatures L(u1 · · ·un) = L(u1) · · · L(un) (using the
product of clock languages as defined in (5)).

Example 2. (0, 0)
(0.7,d)(0.2,a)(0.2,a)(0.5,d)−−−−−−−−−−−−−−−−−→ (0, 0.5) ∈ L(daad) since

6 A reader acquainted with timed automata would have noticed that the clock lan-
guage L(a) (resp. L(d)) corresponds to a transition of a timed automaton where the
guards xa ≤ 1 and xd ≤ 1 are satisfied and where xd (resp. xa) is reset.

6



(0, 0)
(0.7,d)−−−−→ (0, 0.7) ∈ L(d); (0, 0.7)

(0.2,a)−−−−→ (0.2, 0) ∈ L(a);

(0.2, 0)
(0.2,a)−−−−→ (0.4, 0) ∈ L(a); (0.4, 0)

(0.5,a)−−−−→ (0, 0.5) ∈ L(d).

The timed semantics of a language of signatures. The timed polytope

associated to a signature w ∈ {a,d}∗ is Pw =def {t | (0, 0)
(t,w)−−−→ y ∈ L(w) for

some y ∈ [0, 1]2} e.g. (0.7, 0.2, 0.2, 0.5, 0.1) ∈ Pdaada. The definition of such a
timed polytope will be clarified in Proposition 1 and its following example. The
timed semantics of a language of signatures L′ is

L = {(t, w) | t ∈ Pw and w ∈ L′} = ∪w∈L′Pw × {w}.

This language restricted to words of length n is L′n = ∪w∈L′nPw×{w}, its volume
is Vol(L′n) =

∑
w∈L′ Vol(Pw).

The chain polytope [15] of a signature u is the set C(u) of vectors t ∈ [0, 1]n

such that for all i < j ≤ n and l ∈ {a,d}, wi · · ·wj−1 = lj−i ⇒ ti + . . .+ tj ≤ 1.

Proposition 1. Given a word u ∈ {a,d}∗ and l ∈ {a,d}, the timed polytope of
ul is the chain polytope of u: Pul = C(u).

Proof. Let w = ul i.e. for all i ∈ [n − 1] wi = ui and wn = l. Pul ⊆ C(u)) Let
(t1, . . . , tn) ∈ Pw i.e. there exist value of clocks xak (a ∈ {a,d}, k ∈ [n]) such

that xa0 = xd0 = 0 and (xak−1, x
d
k−1)

(tk,wk)−−−−−→ (xak, x
d
k ) ∈ L(wk). Let i < j ≤ n and

a ∈ {a,d} such that wi · · ·wj−1 = aj−i, then for k ∈ {i, . . . , j−1}, xak = xak−1+tk
by definition of L(a). Then xaj−1 = xai−1 + ti+ . . .+ tj−1. Moreover xaj−1 + tj ≤ 1
by definition of L(wj) and thus ti + . . .+ tj−1 + tj ≤ xai−1 + tj ≤ 1 which is the
wanted inequality.

C(u) ⊆ Pul) Let (t1, . . . , tn) ∈ C(u). We show inductively that for every a ∈
{a,d}, the condition xaj−1 + tj ≤ 1 is satisfied and thus that xaj can be defined
( xaj = xaj−1 + tj if wj = a and xaj = 0 otherwise). For this we suppose that
clock values xa0 , . . . , x

a
j−1 are well defined. Let lr(xa, j) be the maximal index

before transition j such that wlr(xa,j) 6= a. Necessarily wlr(xa,j)+1 . . . wj = aj−i

and thus tlr(xj)+1 + . . . + tj ≤ 1 by definition of C(u). This latter sum is equal
to xaj−1 + tj ≤ 1 and thus the condition on xa imposed by L(uj) is satisfied.

Example 3. A vector (t1, t2, t3, t4, t5) ∈ [0, 1]5 belongs to Pdaada = C(daad) iff
t1 + t2 ≤ 1, t2 + t3 + t4 ≤ 1, t4 + t5 ≤ 1 iff 1 − t1 ≥ t2 ≤ t2 + t3 ≤ 1 −
t4 ≥ t5 iff (1 − t1, t2, t2 + t3, 1 − t4, t5) ∈ O(daad). One can check this fact on
examples given before: (0.7, 0.2, 0.2, 0.5, 0.1) ∈ Pdaada corresponds to the vector
(0.3, 0.2, 0.4, 0.5, 0.1) ∈ O(daad).

The purpose of the following section is to give the general formula for the cor-
respondence between timed polytopes and order polytopes we have foreseen in
the previous example.

7



2.3 Volume preserving transformation between L′n and On(L).

Let n be a positive integer. We define for w = ul with u ∈ {a,d}n−1 and
l ∈ {a,d} a volume preserving function (t1, · · · , tn) 7→ (ν1, · · · , νn) from the
chain polytope C(u) = Pul to the order polytope O(u). This is a simple case of
Theorem 2.1 of [11].

Let w ∈ {a,d}n and n = |w|. Let j ∈ [n] and i be the index such that
wi · · ·wj−1 is a maximal ascending or descending block i.e. i is minimal such

that wi · · ·wj−1 = lj−i with l ∈ {a,d}∗. If wj = d we define νj = 1 −
∑j
k=i tk

and νj =
∑j
k=i tk otherwise.

Proposition 2. The mapping φul : (t1, · · · , tn) 7→ (ν1, · · · , νn) is a volume
preserving transformation from C(u) = Pul to O(u). It can be computed in linear
time using the following recursive characterization:

∣∣∣∣ν1 = t1 if w1 = a
ν1 = 1− t1 if w1 = d

and for i ≥ 2:

∣∣∣∣∣∣∣∣
νi = νi−1 + ti if wi−1wi = aa;
νi = ti if wi−1wi = da;
νi = 1− ti if wi−1wi = ad;
νi = νi−1 − ti if wi−1wi = dd.

Proof. The function φul is a volume preserving transformation since it is a linear
function given by a unimodular (i.e. an integer matrix having determinant +1
or −1) matrix. Indeed φul(t) = ν iff ν> = Mult

> + b with for all j ∈ [n]: if
wj = a (resp. wj = d) then the jth row of the matrix Mul has only 1s (resp. −1s)
between coordinates i and j included and the jth row of b is 0 (resp. −1). One
can see that Mul is upper triangular and has only 1 and −1 on its diagonal and
thus is unimodular. Now it remains to prove that ν (= φul(t)) belongs to O(u)
for t ∈ C(u). For this we show that the two conditions (C-1) and (C-2) below
are equivalent; the former is the definition of (t1, · · · , tn) ∈ C(u) while the latter
is equivalent to ν1, . . . , νn ∈ O(u):

(C-1) for all i < j ≤ n and l ∈ {a,d}, ui · · ·uj−1 = lj−i ⇒ ti + . . .+ tj ≤ 1;
(C-2) for all i < j ≤ n, ui · · ·uj−1 = aj−i ⇒ νi ≤ . . . ≤ νj ≤ 1 and ui · · ·uj−1 =

dj−i ⇒ νj ≤ . . . ≤ νi ≤ 1.

Let i < j ≤ n and ui · · ·uj−1 = aj−i then the following chain of inequalities
[0 ≤ νi = ti ≤ . . . ≤ νj−1 = ti + . . .+ tj−1 ≤ νj = (1− tj or ti + . . .+ tj) ≤ 1] is
equivalent to ti + . . . + tj ≤ 1. The case of descents can be proved in a similar
way by applying x 7→ 1− x to the preceding inequalities.

Proposition 2 links the timed polytope of a signature of length n+ 1 and the
order polytopes of a signature of length n. We correct this mismatch of length
using prolongation of languages. We say that a language L′ is a prolongation of a
language L whenever the truncation of the last letter w1 . . . wn 7→ w1 . . . wn−1 is
a bijection between L′ and L. Every language L has prolongations e.g. L′ = Ll for
l ∈ {a,d} are prolongations of L. A prolongation of Lex is Lex

′
= (aadd)∗(aad+

a) recognized by the automaton depicted in the middle of Figure 1.
Now we can extend Proposition 2 to a language of signatures.

8



Theorem 1. Let L ⊆ {a,d}∗ and L′ be the timed semantics of a prolongation of
L then for all n ∈ N, the following function is a volume preserving transformation
between L′n and On(L). Moreover it is computable in linear time.

φ : L′n → On(L)
(t, w) 7→ φw(t)

(6)

As a consequence, the two problems can be solved if we know how to compute
the VGF of a timed language L′ and how to generate timed vector uniformly
in L′n. A characterization of the VGF of a timed language as a solution of a
system of differential equations is done in our previous work [3]. Nevertheless
the equations of this article were quite uneasy to handle and did not give a closed
form formula for the VGF. To get more precise and simple equations than in [3]
we work with a novel class of timed languages involving two kinds of transitions
S and T.

2.4 The S-T (timed) language encoding.

The S-T-encoding We consider the finite alphabet {S, T} whose elements must
be respectively read as straight and turn. The S-T-encoding of type l ∈ {a,d} of
a word w ∈ {a,d}∗ is a word w′ ∈ {S, T}∗ denoted by stl(w) and defined recur-
sively as follows: for every i ∈ [n], w′i = S if wi = wi−1 and w′i = T otherwise, with
the convention that w0 = l. The mapping stl is invertible: w = st−1l (w′) is de-
fined recursively as follows: for every i ∈ [n], wi = wi−1 if w′i = S and wi 6= wi−1
otherwise, with convention that w0 = l. Notion of S-T-encoding can be extended
naturally to languages e.g. for the running example: std(Lex

′
) = (TS)∗T. We

call an S-T-automaton, a deterministic finite state automaton with transition
alphabet {S, T} (see Figure 1 for an S-T-automaton recognizing std(Lex

′
)).

Timed semantics and S-T-encoding In the following we define clock and
timed languages similarly to what we have done in section 2.2. Here we need only
one clock x that remains bounded by 1. We define the clock languages associated

to S by L(S) = {x (t,S)−−−→ x + t | x ∈ [0, 1], t ∈ [0, 1 − x]} and the clock language

associated to T by L(T) = {x (t,T)−−−→ t | x ∈ [0, 1], t ∈ [0, 1− x]}. Let L′′ ⊆ {S, T}∗
we denote by L′′(x) the timed language starting from x: L′′(x) = {(t, w) | ∃y ∈
[0, 1], x

(t,w)−−−→ y ∈ L(w), w ∈ L′′}. The timed semantics of L′′ ⊆ {S, T}∗ is L′′(0).
The S-T-encodings yields a natural volume preserving transformation be-

tween timed languages:

Proposition 3. Let L′ ⊆ {a,d}∗, l ∈ {a,d}, L′ be the timed semantics of L′

and L′′ be the timed semantics of stl(L
′) then the function (t, w) 7→ (t, st−1l (w))

is a volume preserving transformation from L′′n to L′n.

Using notation and results of Theorem 1 and Proposition 3 we get a volume
preserving transformation from L′′n to On(L).

9



Theorem 2. The function (t, w) 7→ φst−1
l (w)(t) is a volume preserving trans-

formation from L′′n to On(L) computable in linear time. In particular

Vol(L′′n) =
|sg−1(Ln−1)|

n!
for n ≥ 1, and V GF (L′′)(z) = EGF (sg−1(L))(z)

Thus to solve Problem 1 it suffices to characterize the VGF of an S-T-automaton.

3 Solving the two problems

3.1 Characterization of the VGF of an S-T-automaton.

In this section we characterize precisely the VGF of the timed language recog-
nized by an S-T-automaton. This solves Problem 1.

We have defined just above timed language L′′(x) parametrized by an ini-
tial clock vector x. Given an S-T-automaton, we can also consider the intial
state as a parameter and write Kleene like systems of equations on parametric
language Lp(x) (similarly to [3]). More precisely, let A = {{S, T}, Q, i, F, δ} be
S-T-automaton. To every state p ∈ Q we denote by Lp ⊆ {S, T}∗ the language
starting from p i.e. recognized by Ap =def {{S, T}, Q, p, F, δ}. We adopt the
convention that Lδ(p,l) is empty when δ(p, l) is undefined and the corresponding
generating function is null. Then for every p ∈ Q, we have a parametric language
equation:

Lp(x) =
[
∪t≤1−x(t, S)Lδ(p,S)(x+ t)

]
∪
[
∪t≤1−x(t, T)Lδ(p,T)(t)

]
∪ (ε if p ∈ F ) (7)

Passing to volume generating functions fp(x, z) =def V GF (Lp(x))(z) (as in [3])
we get:

fp(x, z) = z

∫ 1

x

fδ(p,S)(s, z)ds+ z

∫ 1−x

0

fδ(p,T)(t, z)dt+ (1 if p ∈ F ) (8)

In matrix notation:

f(x, z) = zMS

∫ 1

x

f(s, z)ds+ zMT

∫ 1−x

0

f(t, z)dt+ F (9)

where f(x, z),
∫ 1

x
f(s, z)ds and

∫ 1−x
0

f(t, z)dt are the column vectors whose coor-

dinates are respectively the fp(x, z),
∫ 1

x
fp(s, z)ds and

∫ 1−x
0

fp(t, z)dt for p ∈ Q.

The pth coordinate of the column vector F is 1 if p ∈ F and 0 otherwise. The
Q×Q-matrices MS and MT are the adjacency matrices corresponding to letter
S and T i.e. for l ∈ {S, T}, Ml(p, q) = 1 if δ(p, l) = q, 0 otherwise.

The equation (9) is equivalent to the differential equation:

∂

∂x
f(x, z) = −zMSf(x, z)− zMTf(1− x, z) (10)

with boundary condition
f(1, z) = F . (11)

10



Algorithm 1 Computation of the generating function

1: Compute an S-T-automatonA for an extension of L and its corresponding adjacency
matrices MT and MS;

2: Compute

(
A1(z) A2(z)
A3(z) A4(z)

)
=def exp

[
z

(
−MS −MT

MT MS

)]
;

3: Compute f(0, z) = [A1(z)]−1[I −A2(z)]F (or f(0, z) = [I −A3(z)]−1A4(z)F );
4: return the component of f(0, z) corresponding to the initial state of A.

The equation (10) is equivalent to the following linear homogeneous system of
ordinary differential equations with constant coefficients:

∂

∂x

(
f(x, z)

f(1− x, z)

)
= z

(
−MS −MT

MT MS

)(
f(x, z)

f(1− x, z)

)
. (12)

whose solution is of the form(
f(x, z)

f(1− x, z)

)
= exp

[
xz

(
−MS −MT

MT MS

)](
f(0, z)
f(1, z)

)
(13)

Taking x = 1 in (13) and using the boundary condition (11) we obtain:

F = A1(z)f(0, z) +A2(z)F
f(0, z) = A3(z)f(0, z) +A4(z)F

(14)

where

(
A1(z) A2(z)
A3(z) A4(z)

)
= exp

[
z

(
−MS −MT

MT MS

)]
. In particular when z = 0,

A1(0) = I−A3(0) = I and thus the two continuous functions z 7→ detA1(z) and
z 7→ det(I − A3(z)) are positive in a neighbourhood of 0. We deduce that the
inverses of the matrices A1(z) and I−A3(z) are well defined in a neighbourhood
of 0 and thus both rows of (14) permit to express f(0, z) with respect to F :

f(0, z) = [A1(z)]−1[I −A2(z)]F
f(0, z) = [I −A3(z)]−1A4(z)F

(15)

Finally the coordinate of the column vector f(0, z) associated to the initial state
gives the expected VGF. To sum up we have:

Theorem 3. Given a regular language L ⊆ {a,d}∗, one can compute the expo-
nential generating function EGF (sg−1(L))(z) using Algorithm 1.

Some comments about the algorithm. In line 1, several choices are left to
the user: the prolongation L′ of the language L, the type of the S-T-encoding and
the automaton that realizes the S-T-encoding. These choices should be made such
that the output automaton has a minimal number of states or more generally
such that the matrices MT and MS are the simplest possibles. Exponentiation of
matrices is implemented in most of computer algebra systems.

11



3.2 An algorithm for Problem 2

Now we can solve Problem 2 using a uniform sampler of timed words (Algorithm
2), the volume preserving transformation of Theorem 2 and a sorting algorithm.

Theorem 4. Let L ⊆ {a,d}∗ and L′′ be the timed semantics of a S-T-encoding
of type l (for some l ∈ {a,d}) of a prolongation of L. The following algo-
rithm permits to achieve a uniform sampling of permutation in sg−1(Ln−1).
i.e. For σ ∈ sg−1n (L), the probability that the permutation σ is returned is
1/|sg−1(Ln−1)|.

1. Choose uniformly an n-length timed word (t, w) ∈ L′′n using Algorithm 2;
2. Return Π(φst−1

l (w)(t)).

Proof. For all σ ∈ sg−1n (L), the probability p(σ) that the output is σ is the proba-
bility to choose a timed word (t, w) such that Π[φst−1(w)(t)] = σ. Since the timed
words are uniformly sampled this probability is equal to Vol({(t, w) | Π[φw(t)] =
σ})/Vol(L′′n) which is equal to Vol({ν | Π(ν) = σ})/Vol(L′′n) since the mapping
(t, w) 7→ φst−1(w)(t) is a volume preserving transformation. The numerator is
the volume of the order simplex associated to σ which is Vol(O(σ)) = 1/n!; the
denominator Vol(L′′n) is |sg−1(Ln−1)|/n! by virtue of Theorem 2. We get the
expected result p(σ) = (1/n!)/(|sg−1(Ln−1)|/n!) = 1/|sg−1(Ln−1)|.

Uniform sampling of timed words. Recursive formulae (16) and (17) below
are freely inspired by those of [4] and of [3]. They are the key tools to design
a uniform sampler of timed word. This algorithm is a lifting from the discrete
case of the so-called recursive method (see [6,10]). For all q ∈ Q, n ∈ N and
x ∈ [0, 1] we denote by Lq,n(x) the language Lq(x) restricted to n-length timed
words. The languages Lq,n(x) can be recursively defined as follows: Lq,0(x) = ε
if q ∈ F and Lq,0 = ∅ otherwise;

Lq,n+1(x) =
[
∪t≤1−x(t, S)Lδ(q,S),n(x+ t)

]
∪
[
∪t≤1−x(t, T)Lδ(q,T),n(t)

]
. (16)

For q ∈ Q and n ≥ 0, we denote by vq,n the function x 7→ Vol[Lq,n(x)] from
[0, 1] to R+. Each function vq,n is a polynomial of a degree less or equal to n
that can be computed recursively using the recurrent formula: vq,0(x) = 1q∈F
and

vq,n+1(x) =

∫ 1

x

vδ(q,S),n(y)dy +

∫ 1−x

0

vδ(q,T),n(y)dy. (17)

The polynomials vq,n(x) play a key role for the uniform sampler, they permit
also to retrieve directly the terms of the wanted VGF: Vol(L′′n) = vq0,n(0) where
q0 is the initial state of the S-T automaton.

Theorem 5. Algorithm 2 is a uniform sampler of timed words of L′′n i.e. for
every volume measurable subset A ⊆ L′′n, the probability that the returned timed
word belongs to A is Vol(A)/Vol(L′′n).

12



Algorithm 2 Recursive uniform sampler of timed words

1: x0 ← 0; q0 ← initial state;
2: for k = 1 to n do
3: Compute mk = vqk−1,n−(k−1)(xk−1) and pS =

∫ 1

xk−1
vδ(qk−1,S),n−k(y)dy/mk;

4: b← BERNOULLI(pS); (return 1 with probability pS and 0 otherwise)
5: if b = 1 then
6: wk ← S; qk ← δ(qk−1, S);
7: r ← RAND([0, 1]); (return a number uniformly sampled in [0, 1])
8: tk ← the unique solution in [0, 1−xk−1] of 1

mkpS

∫ xk−1+tk
xk−1

vqk,n−k(y)dy−r = 0;

9: xk ← xk−1 + tk;
10: else
11: wk ← T; qk ← δ(qk−1, T);
12: r ← RAND([0, 1]); (return a number uniformly sampled in [0, 1])
13: tk ← the unique solution in [0, 1−xk−1] of 1

mk(1−pS)

∫ tk
0
vqk,n−k(y)dy− r = 0;

14: xk ← tk;
15: end if
16: end for
17: return (t1, w1)(t2, w2) . . . (tn, wn)

Proof. One can first check that for all k ∈ [n], (qk−1, xk−1)
(tk,wk)−−−−−→ (qk, xk) ∈

L(wk) and that w1 · · ·wn ∈ L′′.
We denote by p[(t1, w1) · · · (tn, wn)] the density of probability of the timed

word (t1, w1) · · · (tn, wn) ∈ L′′ to be returned. The algorithm is a uniform sam-
pler if it assign the same density of probability to every timed word of L′′
i.e. p[(t1, w1) · · · (tn, wn)] = 1/Vol(L′′).

During the kth loop, wk and tk are chosen, knowing qk−1, xk−1 and the
index k, according to a density of probability (implicitly defined by the algo-
rithm) denoted by pk[(tk, wk) | qk−1, xk−1]. The new general state (qk, xk) is
(deterministically) defined using qk−1, xk−1, tk, wk. The following chain rule is
satisfied

p[(t1, w1) · · · (tn, wn)] =

n∏
k=1

pk[(tk, wk) | qk−1, xk−1] (18)

No it suffices to plug (19) proven in Lemma 1 just below in (18) to get the
expected result:

p[(t1, w1) · · · (tn, wn)] =

∏n
k=1mk+1∏n
k=1mk

=
mn+1

m1
=
vqn,0(xn)

vq0,n(0)
=

1

Vol(L′′n)
.

Lemma 1. In Algorithm 2 during the kth loop for the timed transition (tk, wk)
is chosen knowing the current state (qk−1, xk−1) according to the following prob-
ability distribution function (variables of the following equation such as mk are
defined in the algorithm):

pk[(tk, wk) | qk−1, xk−1] =
mk+1

mk
=

vqk,n−k(xk)

vqk−1,n−(k−1)(xk−1)
. (19)

13



Proof. The choice of (tk, wk) is done in two steps: first wk is chosen (and thus
qk = δ(qk−1, wk)) and then tk. We write this

pk[(tk, wk) | qk−1, xk−1] = pk[wk | qk−1, xk−1]pk[tk | qk, xk−1] (20)

Remark that b = 1 iff wk = S and thus pk[S | qk−1, xk−1] = pS (the probability
that 1 is returned in line 4) and pk[T | qk−1, xk−1] = 1− pS otherwise.

In both cases (b = 0 or 1) the delay tk is sampled using the so-called inverse
transform sampling. This method states that to sample a random variable ac-
cording to a probability density function (PDF) p(t) (here p(t) = pk[t | qk, xk−1])
it suffices to uniformly sample a random number in [0, 1] and define t such that∫ t
0
p(t′)dt′ = r. The latter integral is known as the cumulative density function7

(CDF) associated to p.

– When b = 1 (and thus wk = S), the CDF used in the algorithm is

t 7→ 1

mkpS

∫ t

0

vqk,n−k(xk−1 + t′)dt′.

Its corresponding PDF is

pk[tk | qk, xk−1] =
1

mkpS
vqk,n−k(xk−1 + tk) =

mk+1

mkpS
.

Plugging this in (20) we get the expected result (19).
– When b = 0 (and thus wk = T), a similar reasoning permits to prove (19)

which is then true in both cases.

Remark 1. One can remark that the probability depends on the index k of the
loop which is different from stochastic processes of our previous work [5].

Some comments about the algorithm. Algorithm 2 requires a precomputing
of all functions vq,k for q ∈ Q and k ≤ n done by Algorithm 3 below (see
also Proposition 4 for the complexity). The expressions in lines 8 and 13 are
polynomials increasing in [x, 1] (the derivative is the integrand which is positive
on (x, 1)). Finding the root of such a polynomial can be done numerically and
efficiently with a controlled error using a numerical scheme such as the Newton’s
method.

Proposition 4. Algorithm 3 has space and time complexity O(|Q|n2). Its bit
space complexity is O(|Q|n3).

Proof. The polynomial vq,m is of degree m, it has O(m) coefficients. Therefore
the time and space complexity are O(

∑n
m=1 |Q|m) = O(|Q|n2).

Magnitudes of coefficients of vq,m behave like 2mH where H is the entropy of
the timed language (see [4]) and thus one needs O(m) bits to store them. This
explains why an extra factor n appears when dealing with bit space complexity.

7 Its inverse (t function of r) is known as the quantile function.

14



Algorithm 3 Preprocessing for Algorithm 2

1: for p ∈ Q do
2: define vp,0(x) = 1p∈F .
3: for k = 1 to n do
4: compute vp,k(x) using (17).
5: end for
6: end for

4 Examples

In section 4.1 we show how Algorithm 1 applies to the classical example of
alternating permutations. In section 4.2 we apply this algorithm to what we call
up-up-down-down permutations. In section 4.3 we treat the running example
given in section 1.

4.1 The alternating permutations

p q

d

a

T

Fig. 2. An automaton for (da)∗(ε+ d) and its S-T encoding of type d

The class of alternating permutation is8 Alt = S0 ∪ sg−1[(da)∗(ε + d)]. It
is well known since the 19th century and the work of Désiré André that

EGF (Alt)(z) = tan(z) + sec(z) (where sec(z) = 1/ cos(z)).

Several different proofs of this results can be found in [16]. Here we give a novel
proof based on the application of Algorithm 1 on (da)∗(ε+ d).

A prolongation of (da)∗(ε+ d) is (da)∗(d + da). We add ε to the language
to add 1 to its VGF, indeed

EGF (Alt)(z) = 1 + V GF [(da)∗(d + da)](z) = V GF [(da)∗(ε+ d)](z)

The S-T encoding of type a of (da)∗(ε+d) is just S∗ which is recognized by the
one loop automaton depicted in the right of Figure 2. Thus MS = (1), MT = (0)

and we must compute exp(zM) =
∑
n∈N z

nMn/n! with M =

(
0 1
−1 0

)
.

8 The unique permutation on the empty set has no signature and thus S0 6⊆ sg−1(L)
for any language L of signature.

15



Computation of exp(zM) is easy since M is unipotent and thus its sequence
of power Mk is periodic: M0 = I2, M1 = M , M2 = −I2, M3 = −M , M3 = I2,
M4 = M , . . .

Then for all k ≥ 0:

M2k =

(
(−1)k 0

0 (−1)k

)
; M2k+1 =

(
0 (−1)2k

(−1)2k+1 0

)

Hence exp(zM) =
∑
n∈N z

nMn/n! =

(
cos(z) − sin(z)
sin(z) cos(z)

)
.

By definition A1(z) = cos(z), A2(z) = − sin(z). We can conclude:

EGF (Alt)(z) = A1(z)−1(1−A2(z)) =
1

cos(z)
+ tan(z).

4.2 The up-up-down-down permutations

Here we compute the exponential generating function of the class of up-up-
down-down permutations given as running example of the paper. Recall that
the corresponding regular language is Lex = (aadd)∗(aa + ε), one of its ex-
tension is Lex

′
= (aadd)∗(aad + a) and the S-T-encoding of type d of this

latter language is std(L′) = (TS)∗T. These languages are recognized by au-
tomata depicted in Figure 1. The adjacency matrices of the third automaton are

MS =

(
0 0
1 0

)
, MT =

(
0 1
0 0

)
and the row vector of final state is F =

(
0
1

)
.

Let M =

(
−MS −MT

MT MS

)
. Again the computation of exp(zM) is easy since M is

unipotent9:

M =


0 0 0 −1
−1 0 0 0
0 1 0 0
0 0 1 0

 ;M2 =


0 0 −1 0
0 0 0 1
−1 0 0 0
0 1 0 0

 ;M3 =


0 −1 0 0
0 0 1 0
0 0 0 1
−1 0 0 0


and M4 = I4.

Hence if we denote by fi(z) =
∑+∞
n=0 z

4n+i/(4n + i)! for i ∈ {0, 1, 2, 3} we
have:

exp zM = f0(z)I + f1(z)M + f2(z)M2 + f3(z)M3 and

A1(z) =

(
f0(z) −f3(z)
−f1(z) f0(z)

)
;A2(z) =

(
f2(z) −f1(z)
f3(z) f2(z)

)
.

The function fi can be expressed with trigonometric and hyperbolic functions:

f0(z) = [cosh(z) + cos(z)]/2;
f1(z) = [sinh(z) + sin(z)]/2;
f2(z) = [cosh(z)− cos(z)]/2;
f3(z) = [sinh(z)− sin(z)]/2.

9 This is in fact the case for all cyclic automata.

16



It holds that

[I2 −A2(z)]F =

(
f1(z)

1− f2(z)

)
and thus (

fp(z)
fq(z)

)
=

(
f0(z) −f3(z)
−f1(z) f0(z)

)−1(
f1(z)

1− f2(z)

)
.

Using Cramer formula we get fp(z) = [f1(z)f0(z) + f3(z)(1 − f2(z))]/[f20 (z) +
f1(z)f3(z)]. After straightforward simplifications we obtain the wanted result:

f(z) = fp(z) =
sinh(z)− sin(z) + sin(z) cosh(z) + sinh(z) cos(z)

1 + cos(z) cosh(z)
.

4.3 Permutations without two consecutive descents

p q

d

a

a

p q

d

a

a

p q

T

S

T

Fig. 3. From left to right automata for Lex3 , Lex
′
3 = {ε} ∪ Lex3 .{a} and sta(Lex

′
3)

Consider the class Cex3 of permutations without two consecutive descents.
This class has already been studied and its EGF computed. References and many
details can be found in the On-Line Encyclopedia of Integer Sequences (OEIS),
sequence A049774. In particular the following EGF is given:

EGF (Cex3)(z) =

√
3ez/2

√
3 cos

(√
3
2 z
)
− sin

(√
3
2 z
) .

We give an alternative proof of this result based on the method developed in
this paper. The class Cex3 can be described in terms of regular languages:

Cex3 = S0 ∪ sg−1[(a + da)∗(ε+ d)].

A prolongation of (a+da)∗(ε+d) is (a+da)∗a. As for alternating permutations
we add the word ε to this language to add 1 to the final generating function,
thus we get the language (a+da)∗ recognized by the automaton depicted in the
middle of Figure 3. Its S-T encoding of type a is (S + TT)∗ which is recognized
by the automaton depicted in the right of Figure 3. Its adjacency matrices are

MS =

(
1 0
0 0

)
, MT =

(
0 1
1 0

)
and the row vector of final state is F =

(
1
0

)
. Let

17

http://oeis.org
http://oeis.org/A049774


M =

(
−MS −MT

MT MS

)
. We will solve directly the differential equation (10) with

boundary condition (11), i.e. the system

∂fp
∂x

(x, z) = −zfp(x, z)dy − zfq(1− x, z)dy; (21)

∂fq
∂x

(x, z) = −zfp(1− x, z). (22)

with boundary conditions fp(1, z) = 1; fq(1, z) = 0 Equation (21) taken at x = 1

ensures that
∂fp
∂x (1, z) = −zfp(0, z) − zfq(1, z) = −zfp(0, z). Thus we have the

boundary conditions

fp(1, z) = 1; (23)

∂fp
∂x

(1, z) = −zfp(0, z). (24)

Differentiating (21) and replacing
∂fq
∂x (1− x, z) using (22) we get:

∂2fp
∂x2

(x, z) = −z ∂fp
∂x
− z2fp(x, z); (25)

Solutions are of the form: fp(x, z) = e−zx/2
[
a(z) cos

(√
3
2 zx

)
+ b(z) sin

(√
3
2 zx

)]
with a(z) and b(z) to be determined using boundary conditions (23) and (24)
i.e. a(z) and b(z) should satisfy:

cos
(√

3
2 z
)
a(z)+ sin

(√
3
2 z
)
b(z) = ez/2;

a(z)+
√

3 b(z) = 0.

Solving this system we obtained the expected EGF:

EGF (Cex3)(z) = fp(0, z) = a(z) =

√
3ez/2

√
3 cos

(√
3
2 z
)
− sin

(√
3
2 z
) .

5 Conclusion and perspectives

We have stated and solved the problems of counting and uniform sampling of
permutations with signature in a given regular language of signatures. The timed
semantics of such a language is a particular case of regular timed languages
(i.e. recognized by timed automata [1]). However, with the approach used, timed
languages can be defined from any kind of languages of signatures. A challenging
task for us is to treat the case of context free languages of signatures. For this we
should use as in [3] and in [2] (see also the kernels of [5]), volume of languages
parametrized both by a starting and an ending state.

Volumes and languages parametrized both by a starting and an ending states
would also be useful to gain a linear factor for the time and space complexity

18



of the preprocessing stage (Algorithm 3). Indeed such parametrized volume are
needed to adapt the divide and conquer algorithm of [6].

Our work can also benefit to timed automata research. Indeed, we have pro-
posed a uniform sampler for a particular class of timed languages. An ongoing
work is to adapt this algorithm to all deterministic timed automata with bounded
clocks using recursive equations of [4]. A uniform sampler of timed word would
be useful to solve the proportional model checking problem motivated in the
introduction of [5]

A toy implementation of the algorithms is available on-line:
http://www.liafa.univ-paris-diderot.fr/~nbasset/sage/sage.htm.

References

1. R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput. Sci.,
126(2):183–235, 1994.

2. E. Asarin, N. Basset, and A. Degorre. Spectral gap in timed automata. In V. A.
Braberman and L. Fribourg, editors, FORMATS, volume 8053 of Lecture Notes in
Computer Science, pages 16–30. Springer, 2013.

3. E. Asarin, N. Basset, A. Degorre, and D. Perrin. Generating functions of timed
languages. In B. Rovan, V. Sassone, and P. Widmayer, editors, MFCS, volume
7464 of Lecture Notes in Computer Science, pages 124–135. Springer, 2012.

4. E. Asarin and A. Degorre. Volume and entropy of regular timed languages: Analytic
approach. In J. Ouaknine and F. W. Vaandrager, editors, FORMATS, volume 5813
of Lecture Notes in Computer Science, pages 13–27. Springer, 2009.

5. N. Basset. A maximal entropy stochastic process for a timed automaton. In F. V.
Fomin, R. Freivalds, M. Z. Kwiatkowska, and D. Peleg, editors, ICALP (2), volume
7966 of Lecture Notes in Computer Science, pages 61–73. Springer, 2013.

6. O. Bernardi and O. Giménez. A linear algorithm for the random sampling from
regular languages. Algorithmica, 62(1-2):130–145, 2012.

7. P. Bouyer and A. Petit. A Kleene/Büchi-like theorem for clock languages. Journal
of Automata, Languages and Combinatorics, 7(2):167–186, 2002.

8. R. Ehrenborg and J. Jung. Descent pattern avoidance. Advances in Applied Math-
ematics, 2012.

9. P. Flajolet and R. Sedgewick. Analytic combinatorics. Camb. Univ. press, 2009.
10. P. Flajolet, P. Zimmerman, and B. Van Cutsem. A calculus for the random genera-

tion of labelled combinatorial structures. Theoretical Computer Science, 132(1):1–
35, 1994.

11. T. Hibi and N. Li. Unimodular equivalence of order and chain polytopes. arXiv
preprint arXiv:1208.4029, 2012.

12. S. Kitaev. Patterns in permutations and words. Springer, 2011.
13. P. Marchal. Generating random alternating permutations in time n log n. 2012.
14. A. Nijenhuis and H. S. Wilf. Combinatorial algorithms for computers and calcu-

lators. Computer Science and Applied Mathematics, New York: Academic Press,
1978, 2nd ed., 1, 1978.

15. R. P. Stanley. Two poset polytopes. Discrete & Computational Geometry, 1(1):9–
23, 1986.

16. R. P. Stanley. A survey of alternating permutations. In Combinatorics and graphs,
volume 531 of Contemp. Math., pages 165–196. Amer. Math. Soc., Providence, RI,
2010.

19

http://www.liafa.univ-paris-diderot.fr/~nbasset/sage/sage.htm


17. G. G. Szpiro. The number of permutations with a given signature, and the expec-
tations of their elements. Discrete Mathematics, 226(1):423–430, 2001.

20


	Counting and generating permutations using timed languages 

