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Abstract. We derive a combinatorial multisum expression for the num-
ber D(n, k) of partitions of n with Durfee square of order k. An immedi-
ate corollary is therefore a combinatorial formula for p(n), the number of
partitions of n. We then study D(n, k) as a quasipolynomial. We consider

the natural polynomial approximation D̃(n, k) to the quasipolynomial

representation of D(n, k). Numerically, the sum
∑

1≤k≤
√
n D̃(n, k) ap-

pears to be extremely close to the initial term of the Hardy–Ramanujan–
Rademacher convergent series for p(n).
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1. Introduction

1.1. Preliminaries: Definitions and Notation

A partition λ of an integer n is a nonincreasing finite sequence of positive
integers (λ1, λ2, λ3, . . . , λ`) that sum to n. Each λj is called a part of λ.
The number of parts ` = `(λ) is the length of λ. The number of times
mj = mj(λ) the positive integer j appears as a part in λ is the multi-
plicity of j in λ. Sometimes it is convenient to notate the partition λ as
λ = 〈1m12m23m3 · · · 〉, with the convention that the superscript mj may be
omitted if mj = 1 for that j, and jmj may be omitted if mj = 0 for that j.
Thus, e.g., (6, 4, 3, 3, 1, 1, 1, 1) = 〈14324 6〉. Also, the sum of the parts of λ is
denoted |λ| and is called the weight of λ.

It will be convenient to define the union λ ∪ µ of two partitions λ and
µ as

λ ∪ µ = 〈1m1(λ)+m1(µ)2m2(λ)+m2(µ)3m3(λ)+m3(µ) · · · 〉.

The work of the second author is partially supported by National Security Agency Grant
P13217-39G3217.
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It is well known that the partition λ can be represented graphically by an
arrangement of `(λ) rows of left-justified dots, with λj dots in the jth row.
Such a collection of dots is called the Ferrers graph [1, p. 6] of λ. For exam-
ple, the Ferrers graph associated with the partition (6, 4, 3, 3, 1, 1, 1, 1) is as
follows.

• • • · · ·
• • • ·
• • •
· · ·
·
·
·
·

The largest square starting from the upper left, and contained within the
Ferrers graph is called the Durfee square of λ [1, p. 28], [2, p. 76] (indicated
above by the darker dots in the the Ferrers graph). Let us call the number of
nodes on a side (or equivalently the number of nodes along the main diagonal)
of a Durfee square the order of the Durfee square.

As it turns out, the Durfee square is of interest outside the theory of
partitions. For example, the order of the Durfee square is in fact equivalent
to the h-index introduced by Hirsch [9] as a metric that attempts to measure
both the productivity and impact of a scholar. If a scholar has published
` papers that have been cited in the literature at least once each, and the
number of citations of the jth paper is λj , then λ = (λ1, λ2, . . . , λ`) is a
partition of n (once the λj are arranged in nonincreasing order), where n is
the total number of citations. The h-index for this author is therefore the
order of the Durfee square of λ.

Since we will be discussing asymptotics later, let us adopt the convention
throughout that q represents a complex variable with modulus less than 1 (in
some cases q may be considered a formal variable). Let D(n, k) denote the
number of partitions of n with Durfee square of order k. It is well known [1,
p. 28] that the generating function for D(n, k) is∑

n≥k2
D(n, k)qn =

qk
2

(1− q)2(1− q2)2(1− q3)2 · · · (1− qk)2
. (1.1)

Associated with each partition λ = (λ1, λ2, . . . , λ`) of n is the conjugate
partition λ′ = (λ′1, λ

′
2, . . . λ

′
λ1

) = 〈1λ1−λ22λ2−λ33λ3−λ4 · · · (` − 1)λ`−1−λ``λ`〉
of n which may be obtained from λ by interchanging the rows and columns
of the Ferrers graph of λ.

The Frobenius symbol of λ with Durfee square of order k is the 2 × k
matrix [

a1 a2 a3 · · · ak
b1 b2 b3 · · · bk

]
,

where aj = λj − j and bj = λ′j − j for j = 1, 2, 3, . . . , k. Notice that a1 >

a2 > · · · > ak, b1 > b2 > · · · > bk, and n = k +
∑k
j=1(aj + bj).
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Thus D(n, k) also counts the number of Frobenius symbols with exactly
k columns whose entries sum to n− k.

1.2. The partition function

The partition function, denoted p(n), is the number of partitions of n. The
first exact formula for p(n), which was derived using the theory of modular
forms, was given by Hardy and Ramanujan [8] in 1918. Two decades later,
Rademacher [12] modified the derivation of the Hardy–Ramanujan formula
and as a result, produced an infinite series that converges to p(n):

p(n) =
1

π
√

2

∑
k≥1

√
kAk(n)

d

dn

 sinh
(
π
k

√
2
3 (n− 1

24 )
)

√
n− 1

24

 , (1.2)

where the Kloosterman-type sum

Ak(n) :=
∑

0≤h<k
gcd(h,k)=1

ω(h, k)e−2πinh/k,

and the 24kth root of unity

ω(h, k)

:=


(−k
h

)
exp

(
πi
12

(
3(2− hk − h) + (k − k−1)(2h− h′ + h2h′)

) )
if 2 - h(−h

k

)
exp

(
πi
12

(
3(k − 1) + (k − k−1)(2h− h′ + h2h′)

) )
if 2 - k

,

with
(
a
b

)
denoting the Legendre symbol, and h′ denoting any solution to the

congruence hh′ ≡ −1 (mod k).
In 2011, Ono and Bruinier [4] announced a new formula for p(n) as a

finite sum of algebraic integers that are singular moduli for a certain weak
Maass form described using Dedekind’s eta function and the quasimodular
Eisenstein series E2. Thus the known formulas for p(n) are not combinatorial
in nature and require deep complex function theory for their derivation.

One goal of this present paper is to present the following combinatorial
formula for p(n):

p(n) =

b
√
nc∑

k=0

D(n, k), (1.3)

where D(n, k) is given by the following (k − 1)-fold sum of terms, each of
which is a positive integer:

D(n, k) =

Uk∑
mk=0

Uk−1∑
mk−1=0

· · ·
U2∑

m2=0

(
1 + n− k2 −

k∑
h=2

hmh

)
k∏
i=2

(mi + 1), (1.4)

where

Uj := Uj(n, k) =

⌊
n− k2 −

∑k
h=j+1 hmh

j

⌋
, (1.5)

for j = 2, 3, 4, . . . , k.
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1.3. Overview

After proving Equation (1.4), we study various aspects of D(n, k). We find
leading coefficients of the generating function of D(n, k), examine represen-
tation of D(n, k) as the sum of quasipolynomials, and suggest a polynomial
approximation for p(n) which gives a value very close to that of the first term
of Rademacher’s convergent series representation of p(n). We present several
combinatorial expressions related to our multisum formula for D(n, k), which
may be obtained in a straightforward manner by suitable modification of the
main result. Finally, we compare our multisum representation of D(n, k) with
the quasipolynomial representation.

2. Multisum representation of D(n, k)

We begin with an elementary lemma for which we provide two proofs.

Lemma 2.1.

D(n, k) =
∑

λ∈Pn−k2,k

k∏
i=1

(
mi(λ) + 1

)
, (2.1)

where Pn,r denotes the set of all partitions of weight n in which no part
exceeds r.

Generating function proof. The truth of (2.1) follows immediately from ex-
panding each factor in the denominator of the generating function of D(n, k)
as a binomial series, and then extracting the coefficient of qn in the extremes:∑

n≥k2
D(n, k)qn

=
qk

2

(1− q)2(1− q2)2 · · · (1− qk)2

=
∑

m1,m2,...,mk≥0

(m1 + 1)(m2 + 1) · · · (mk + 1)qk
2+m1+2m2+···+kmk .

�

Combinatorial proof. Fix n and k. An arbitrary partition λ of n with Dur-
fee square of order k may be decomposed, via its Ferrers graph, into a
triple of partitions (δ, β, ρ) where δ = 〈kk〉, β = (λk+1, λk+2, . . . , λ`(λ)),
and ρ = (λ′k+1, λ

′
k+2, . . . , λ

′
`(λ′)). Thus δ is the Durfee square, β consists

of the parts of λ below the Durfee square, and ρ consists of the parts to
the right of the Durfee square formed vertically, i.e. parts below the Dur-
fee square in the conjugate of λ. (For example, if λ = (64331111), then
(δ, β, ρ) = (333, 31111, 211).)

The subpartition δ is the same for all partitions λ enumerated byD(n, k).
Clearly, β∪ρ is a partition of weight n−k2 in which no part exceeds k. We vi-
sualize the Durfee square of order k fixed in place. The multiplicity mk(β∪ρ)
of k’s can be placed in mk(β ∪ ρ) + 1 different ways into the Ferrers diagram
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of λ: all in β and none in ρ, all but one in β and one in ρ, . . . . For every pos-
sible placement of the k’s among β and ρ, there are, by the same reasoning,
mk−1(β ∪ ρ) + 1 possible ways to place the k − 1’s among β and ρ. And so
on for all integers from k − 2 down to 1. �

Theorem 2.2. Equation (1.4) is valid.

Proof. Suppose λ is a partition of weight n − k2 with each part at most k.
Then λ may contain at most Uk parts equal to k. Once this number mk of k’s
is established, then we can say that λ may contain at most Uk−1 parts equal
to k − 1, and so on until we arrive at the observation that λ may contain at
most U2 2’s. At this point, all remaining parts must equal 1. But n − k2 =
m1 + 2m2 + 3m3 + · · ·+ kmk, thus m1 = n− k2 − (2m2 + 3m3 + · · ·+ kmk).
Applying the preceding observations to (2.1) yields (1.4). �

Remark 2.3. Of course, for particular values of k, Equation (1.4) can be
reduced to a closed form product using elementary summation formulas:

D(n, 1) = n

D(n, 2) =
1

6

(
−4
⌊n

2

⌋
+ 3n− 1

)(⌊n
2

⌋
− 1
)⌊n

2

⌋
However, for k > 2, the formulas are very long, and they obscure the under-
lying simplicity demonstrated by the (k − 1)-fold multisum.

3. Quasipolynomial representation of D(n, k)

3.1. Some notation

As in Stanley [18, p. 474], we say f : N → C is a quasipolynomial of degree
d if there exists a positive integer N and polynomials f0, f1, . . . , fN−1 such
that

f(n) = fi(n) if n ≡ i (mod N),

where N denotes the nonnegative integers, at least one of the fi is of de-
gree d and none of the fi has degree exceeding d. The integer N is called a
quasiperiod of f .

For convenience, let us introduce the notation

Dk := Dk(q) =
∑
n≥k2

D(n, k)qn,

and denote the nth cyclotomic polynomial as

Φn = Φn(q) =
∏

1≤k≤n
gcd(n,k)=1

(q − e2iπk/n).

Of course, Dk admits a partial fraction decomposition of the form

Dk =
qk

2∏k
j=1 Φ

2bk/jc
j

=

k∑
j=1

2bk/jc∑
`=1

ϕ(j)−1∑
h=0

ch,j,`(k)qh

Φ`j
, (3.1)
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for some rational numbers ch,j,`(k) and where ϕ denotes Euler’s totient func-
tion.

3.2. The generating function for D(n, k).

Remark 3.1. The second author and D. Zeilberger have given explicit ex-
pressions for D(n, k) as sums of quasipolynomials for numeric k in the range
1 ≤ k ≤ 40 [15, 7]. Here, we would like to say something about D(n, k) for
general (symbolic) k.

A representation of D(n, k) for any k as a sum of quasipolynomials
of quasiperiods 1, 2, 3, . . . , k arises naturally out of series expansions of the
partial fraction decomposition of Dk. In fact, the series expansion of the terms
with denominator Φ`j , for ` = 1, 2, . . . , 2bk/jc give a contribution to D(n, k)
in the form of a quasipolynomial of quasiperiod j and degree 2bk/jc − 1.

We begin by deriving some results about this decomposition.

Lemma 3.2. Some coefficients in the partial fraction decomposition of Dk
include:

c0,1,2k(k) =
1

(k!)2
(3.2)

c0,1,2k−1(k) =
k + 1

2(k − 1)!k!
(3.3)

c0,1,2k−2(k) =
9k2 + 25k + 13

72(k − 2)!k!
(3.4)

c0,1,2k−3(k) =
3k4 + 10k3 − 4k2 − 31k − 14

144(k − 2)!k!
(3.5)

Proof. Since Dk has a pole of order 2k at q = 1, it will be convenient to
define Fk = Fk(q) := (1 − q)2kDk, so that Fk is analytic at q = 1 and thus
has a Taylor series expansion there:

Fk =

2k−1∑
j=0

c0,1,2k−j(k)(q − 1)j + higher degree terms.

Clearly,

Dk =
q2k−1

(1− qk)2
Dk−1

=⇒ Fk =
(q − 1)2q2k−1

(1− qk)2
Fk−1

=⇒ (1− qk)2

q2k−1
Fk = (q − 1)2Fk−1.
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By expanding the initial factor as a Taylor series about q = 1, we see that(
k2(q − 1)2 − k3(q − 1)3 +

7k4 + 6k3 − k2

12
(q − 1)4

+
−3k5 − 7k4 − 3k3 + k2

12
(q − 1)5 + · · ·

)
×
( 2k−1∑
j=0

c0,1,2k−j(k)(q − 1)j + higher degree terms
)

=

2k−3∑
r=0

c0,1,2k−2−r(k − 1)(q − 1)r+2 + higher degree terms. (3.6)

By comparing coefficients of (q − 1)2 on either side of (3.6), we find

k2c0,1,2k(k) = c0,1,2k−2(k − 1). (3.7)

Solving the difference equation (3.7) with initial condition c0,1,2(1) = 1
yields (3.2).

Next, by comparing coefficients of (q − 1)3 on either side of (3.6), we
find

k2c0,1,2k−1(k)− k3c0,1,2k(k) = c0,1,2k−3(k − 1). (3.8)

Solving the difference equation (3.8) taking into account c0,1,2k(k) = 1/(k!)2

by (3.2) and initial condition c0,1,1(1) = 1 yields (3.3).
Similarly, compare coefficients of (q−1)4 on either side of (3.6) to obtain

k2c01,2k−2(k)− k3c0,1,2k−1(k) +
7k4 + 6k3 − k2

12
c0,1,2k(k) = c0,1,2k−4(k − 1).

(3.9)
Solve the difference equation (3.9) taking into account both (3.2) and (3.3),
with initial condition c0,1,2(2) = 11

16 gives (3.4).

Equation (3.5) follows analogously from the coefficient of (q− 1)5 on ei-
ther side of (3.6). Obviously, one can continue indefinitely beyond the results
listed in this lemma.

�

Remark 3.3. It appears that the coefficients of the powers of k in the c0,1,r(k)
form a discernible pattern as well. Specifically, we have

c0,1,2k−j(k) =
1

2jj!(k!)2

(
k2j +

j2 − 10j

9
k2j−1

+
1
2j

4 − 12j3 − 43
2 j

2 + 33j

92
k2j−2 + lower degree terms

)
.

Remark 3.4. Note that the formulas for specific coefficients in the partial
fraction decomposition of Dk are analogous to those of the partial fraction

decomposition of
∏N
j=1(1− qj)−1 given by the second author and Zeilberger

in [16, p. 685, Theorem 3.2].
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Theorem 3.5. D(n, k) is a quasipolynomial in n of degree 2k−1 and quasiperiod
lcm(1, 2, . . . , k). Furthermore, the leading terms of D(n, k) are as follows:

D(n, k) =
1

(k!)2(2k − 1)!
n2k−1− 1

2(2k − 2)!k!(k − 2)!
n2k−2+ lower degree terms.

Proof. Each term in the series expansion of Dk of the form ch,j,`q
h/Φ`j yields

a series in which the coefficient of qn is a quasipolynomial in n of quasiperiod
j. Thus D(n, k) is a quasipolynomial of quasiperiod lcm(1, 2, 3, . . . , k) and of
degree 2bk/jc − 1.

The (binomial) series expansion of the term

c0,1,2k(k)

Φ2k
1

=
1

(k!)2Φ2k
1

(by Lemma 3.2)

in the partial fraction decomposition of Dk is

1

(k!)2

∑
n≥0

(
n+ 2k − 1

2k − 1

)
qn. (3.10)

Clearly no other term of the partial fraction decomposition of Dk yields a
coefficient of qn which is of equal or larger degree in n; the degree of

(
n+2k−1
2k−1

)
is 2k − 1, and its leading coefficient is 1/[(k!)2(2k − 1)!].

The coefficient of n2k−2 in D(n, k) arises from two contributions: The
second leading term in the expansion of (3.10) and the leading term in the
coefficient of qn in the series expansion of

c0,1,2k−1(k)

Φ2k−1
1

.

�

4. Computational considerations

4.1. Computation with multisum, Eq. (1.4)

We shall derive a result about the computational complexity of calculating
p(n) using (1.3) and (1.4) as a result of the following brief excursion.

Recall the first Rogers–Ramanujan identity [14]:

First Rogers–Ramanujan identity (series–product form).∑
k≥0

qk
2

(1− q)(1− q2) · · · (1− qk)
=
∏
j≥0

1

(1− q5j+1)(1− q5j+4)
, (4.1)

and its combinatorial interpretation [11, p. 35]

First Rogers–Ramanujan identity (combinatorial form). For integers n, the
number of partitions of n into parts which differ from each other by at least
2 equals the number of partitions of n into parts congruent to ±1 (mod 5).
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Given the similarity between the general term on the left-hand side
of (4.1) and the generating function for D(n, k), it is not surprising that
there are related results. Noting that

qk
2

(1− q)(1− q2) · · · (1− qk)
=:
∑
n≥0

r1(n, k)qn (4.2)

is the generating function for partitions of length k in which parts differ by
at least 2, if we expand (4.2) as we did in the generating function proof of
Lemma 2.1, the following lemma is immediate:

Lemma 4.1. The number of terms in (1.4) equals r1(n, k).

We also note that there is a straightforward bijection between the par-
titions of n− k2 in which no part exceeds k (i.e. the partitions indexing the
sum in (2.1)), and partitions of weight n and length k in which all parts differ
by at least 2.

Summing over all relevant k, that is 1 ≤ k ≤ b
√
nc, we obtain

Proposition 4.2. The number of terms in (1.3), where D(n, k) is calculated
via the multisum (1.4) equals r1(n), the number of partitions of n into parts
which mutually differ by at least 2.

Now, on to the complexity result we were leading up to. Each term on
the right hand side of (1.4) involves a product of k factors, and since k never
exceeds b

√
nc, the number of integer additions and multiplications required

to calculate p(n) using (1.3) via (1.4), is less than b
√
ncr1(n). Taking into

account Lehner’s asymptotic result [10, p. 655, Eq. (12.4) with a = 1] (cf. [1,
p. 97, Ex. 1]),

r1(n) ∼
√

15 + 3
√

5

(60n− 1)3/4
exp

(
π
√

60n− 1

15

)
(4.3)

as n→∞, we immediately have the following

Theorem 4.3. The number of integer operations (additions and multiplica-
tions) required to calculate p(n) using Equation (1.3) via the multisum (1.4)
is of order

O(n−1/4ec
√
n),

as n→∞, where c = 2π/
√

15.

Remark 4.4. The computation of p(n) for all 1 ≤ n ≤ N may be done more
efficiently using Euler’s recurrence [1, p. 12, Cor. 1.8]. The interested reader
may wish to consult [5] for a discussion of efficient algorithms for computing
p(n).
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4.2. Estimation based on quasipolynomial representations of D(n, k)

It is well known that Rademacher’s series (1.2) converges to p(n) extremely
rapidly. In fact, just the k = 1 term provides an excellent approximation
to p(n). How does formula (1.3) compare to Rademacher’s series and how
shall we compare them? As remarked by Hardy and Ramanujan [8, p. 81],
q = 1 is the “heaviest” singularity of the generating function for the partition
function on the unit circle, and accordingly the k = 1 term of (1.2) contributes
more, by far, to the value of p(n) than any other term. Analogously, when we
consider the formula (1.3), the terms of the partial fraction expansion of the
D(n, k) with denominators (q − 1)` are those that have singularity at q = 1.
It is these terms that give rise to the “polynomial part” (i.e. the part with
quasiperiod 1) of the expression for D(n, k) as a sum of quasipolynomials.
Accordingly, while we may write

D(n, 1) = n,

D(n, 2) =
(n− 1)(2n2 − 4n− 3)

48
+ (−1)n

n− 1

16
,

D(n, 3) =
(n− 3)(6n4 − 72n3 + 184n2 + 192n− 235)

25920
− (−1)n

n− 3

64

+
(ωn + ω−n)(n− 3) +

(
n
3

)
81

(where ω := e2πi/3 and
(
n
3

)
is the Legendre symbol),

D(n, 4) =
(n− 6)(6n6 − 216n5 + 2610n4 − 10800n3 − 2451n2 + 60516n− 23905)

17418240

+ (−1)n
(n− 1)(n− 6)(n− 11)

6144
−

(ωn + ω−n)(n− 6) + 3
(
n
3

)
243

+
(in + i−n)(n− 6) + 2(in−1 + i1−n)

256
, etc.

Let us define the “polynomial approximation” D̃(n, k) for each D(n, k) by
extracting the terms of quasiperiod 1, so that

D̃(n, 1) = n,

D̃(n, 2) =
(n− 1)(2n2 − 4n− 3)

48
,

D̃(n, 3) =
(n− 3)(6n4 − 72n3 + 184n2 + 192n− 235)

25920
,

D̃(n, 4) =
(n− 6)(6n6 − 216n5 + 2610n4 − 10800n3 − 2451n2 + 60516n− 23905)

17418240
,

etc.,

and approximate p(n) by both

pD(n) :=

b
√
nc∑

k=1

D̃(n, k) (4.4)
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and by the k = 1 term of (1.2):

pR(n) :=
cosh

(
π
√

2
3

(
n− 1

24

))
2
√

3
(
n− 1

24

) −
sinh

(
π
√

2
3

(
n− 1

24

))
2π
√

2
(
n− 1

24

)3/2 . (4.5)

Remark 4.5. Equivalently, we could define D̃(n, k) to be minus the residue of

Dk(q)/qn+1 at q = 1, or obtain D̃(n, k) from the principal part of the Laurent
series of Dk(q) about q = 1.

Further, numerical experimentation suggests the following rather tight
bound, which has been verified for 1 ≤ n ≤ 500:

Conjecture 4.6. For positive integer n,

|p(n)− pD(n)| ≤
2(n4 )ν−1

νΓ(ν + 1)Γ(ν2 + 1)Γ(ν2 )
, (4.6)

where ν = ν(n) = 27
50 (2 +

√
n).

We also remark that Rademacher, in discussing error estimates for trun-
cated versions of his series for p(n), offers [13, p. 277, Eq. (121.4)], which
implies

|p(n)− pR(n)| < 10
√

2

99π
C3 +

8
√

2

11π
n−3/2

(
sinh(C

√
n)− C

√
n
)

+ 2eC
√
n−1 4

n− 1

(
1

5
√

3
+

1

9π
√

2
(n− 1)−1/2

)
, (4.7)

where C = π
√

2/3. Notice that the right hand side of (4.6) is considerably
smaller than that of (4.7).

Further, Table 1 suggests that the absolute errors for pD(n) and pR(n)
are very close to one another, and small compared to p(n), and all by using
polynomials with rational coefficients, effectively eliminating the need to re-
sort to transcendental numbers and hyperbolic functions! (See the graphs in
Figures 1 and 2.)

We further note that numerical evidence suggests that local maxima of
pR(n)− pD(n) occur when n is one less than a perfect square.

5. Further related multisum results

Following the lead suggested by the unexpected appearance of the first Rogers–
Ramanujan identity in Section 4.1, we mention several other related results.
Many analogous results could be given, but in an effort to keep this article a
reasonable length, we will limit ourselves to three.

Recall the second Rogers–Ramanujan identity [14]:

Second Rogers–Ramanujan identity (series–product form).∑
k≥0

qk
2+k

(1− q)(1− q2) · · · (1− qk)
=
∏
j≥0

1

(1− q5j+2)(1− q5j+3)
, (5.1)
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Table 1. Error in approximation of p(n) by pD(n) and
pR(n) for selected values of n

n p(n) pD(n)− p(n) pR(n)− p(n) pR(n)− pD(n)
5 7 0.25 0.26210 0.01210

10 42 −0.37905 −0.37221 0.00684
15 176 0.39120 0.56047 0.16927
20 627 −1.24394 −1.24232 0.00162
25 1958 2.10036 2.09834 −0.00202
30 5604 −3.72589 −3.72044 0.00545
40 37,338 −7.39250 −7.39081 0.00170
50 204,226 −14.9227 −14.9235 −0.00080
60 966,467 −33.6090 −33.6385 −0.02946
75 8,118,264 79.2210 79.2222 0.00129

100 190,569,292 −347.2173 −347.2167 0.00069
150 40,853,235,313 −4253.1144 −4253.1138 0.00058
200 > 3.97× 1012 −36202.1049 −36202.1042 0.00062
300 > 9.25× 1015 −1442614.889 −1442614.887 0.00168
500 > 2.30× 1021 −560997650.0056 −560997650.0066 −0.00093

and its combinatorial interpretation [11, p. 35].

Second Rogers–Ramanujan identity (combinatorial form). For integers n,
the number of partitions of n into parts which differ from each other by at
least 2 and exceed 1 equals the number of partitions of n into parts congruent
to ±2 (mod 5).

Using reasoning analogous to that of Lemma 4.1, we obtain the

Proposition 5.1. Let r2(n, k) denote the number of partitions of n of length
k in which all parts exceed 1 and mutually differ by at least 2. Then r2(n, k)
equals the number of terms in (1.4) in which mk > 0.

Of course, summing over k from 1 to b
√
nc yields the number of parti-

tions of n enumerated by the second Rogers–Ramanujan identity.
Next we recall perhaps the most famous partition identity of all time:

Euler’s partition theorem. The number of partitions into distinct parts equals
the number of partitions into odd parts.

Let ∆(n, k) denote the number of partitions of n with Durfee square of
order k and all parts distinct. Then

Theorem 5.2.

∆(n, k) =

Uk∑
mk=0

Uk−1∑
mk−1=1

Uk−2∑
mk−2=1

· · ·
U2∑

m2=1

2b1+b2+···+bkχ(m1 6= 0), (5.2)
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Figure 1. pR(n)− pD(n) for 1 ≤ n ≤ 500

where Uj is defined in (1.5), χ(·) is the characteristic function,

m1 = n− k2 −
k∑
h=2

hmh, (5.3)

and

bi =

{
0, if mi = 0 or 1,

1, if mi > 1
.

Proof. Eq. (5.2) was obtained from (1.4) by eliminating every partition enu-
merated by D(n, k) having a repeated part. To achieve this, the following
modifications have been made to (1.4):

1. Lower bounds for mi, i = 2, 3, . . . , k− 1 have been changed from 0 to 1,
because mi = 0 implies that λi = λi+1.

2. The product
∏

(mi + 1) has been replaced by 2b2+···+bk because ρ must
contain at least one part of size i and β must contain at most one part
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Figure 2. pR(n)− pD(n) for 1 ≤ n ≤ 1600

of size i, where the Ferrers graph decomposition λ → (δ, β, ρ) is as in
the combinatorial proof of Lemma 2.1.

3. The factor (1 + n− k2 −
∑
hmh) has been replaced by (2b1χ(m1 6= 0))

to account for the necessary restrictions on parts of size 1.

�

Finally, we note that the similarity between Dk and the general term
of another well-known q-series, Ramanujan’s third order mock-theta func-
tion [20]

f(q) =

∞∑
k=0

qk
2

(1 + q)2(1 + q2)2 · · · (1 + qk)2
. (5.4)

Dyson’s rank of a partition λ is λ1−`(λ), the largest part minus the length [6].
Let r(n, k) denote the coefficient of qn in the kth term of the right hand side
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of (5.4), the expression

qk
2

(1 + q)2(1 + q2)2 · · · (1 + qk)2
.

The following combinatorial argument shows that r(n, k) is the number
of partitions of n with Durfee square of order k and even rank minus the
number of partitions of n with Durfee square of order k and odd rank: Con-
sider an arbitrary partition λ of weight n. Decompose λ into (δ, β, ρ) as in the
combinatorial proof of Lemma 2.1. Note that moving any part between β and
ρ results in λ′ having a rank of the same parity as the rank of λ. Therefore, all
partitions enumerated by a given product

∏
(mi + 1) have ranks of the same

parity. To establish the parity of the rank for a given set {m1, . . . ,mk}, select
λ such that the corresponding β is the empty partition. Then the largest part
λ1 of λ is λ1 = k + m1 + m2 + · · · + mk, and the number of parts equals k.
The result follows, and we have established the following

Theorem 5.3.

r(n, k) =

Uk∑
mk=0

Uk−1∑
mk−1=0

· · ·
U2∑

m2=0

(−1)m1+m2+m3+···+mk

k∏
i=1

(mi + 1), (5.5)

where m1 is given by (5.3) and Uj is given by (1.5).

Thus the coefficient of qn in f(q) (5.4) is given by
∑b√nc
k=1 r(n, k).

6. Conclusion

As demonstrated above, while it is tempting to reduce a (k−1)-fold multisum
to a “simpler” form, the natural ways to do so brings one to quasipolynomial
representations or products of expressions involving floor functions, which
may appear simpler for fixed, numeric k (provided k is sufficiently small)
but appear to be more complicated when considering general, symbolic k (or
even moderately large numeric k). Furthermore, the quasipolynomial repre-
sentations obscure the underlying combinatorics, e.g. through the inclusion of
non-integers and minus signs. Thus we offer equation (1.4) and its immediate
corollary (1.3) as truly combinatorial formulas where each term is a positive
integer that actually counts partitions.

On the other hand, the quasipolynomial representations suggest approx-
imations that are simple (in the sense that they are polynomials with rational
coefficients), yet striking in their apparent level of accuracy. We remark that
|p(n) − pD(n)| < 0.5 when n ≤ 10 and when n = 14, 15. The analogous ap-
proximation using just the sum of the quasiperiod 1 and 2 parts of D(n, k)
approximates p(n) to within 0.5 of the true value for all n ≤ 37 except n = 24
and n = 36. The nearest integer to

∑
1≤k≤

√
nD
∗(n, k), where D∗(n, k) is the

sum of the parts of D(n, k) of quasiperiod at most 4, suffice to find p(n)
exactly for all n < 120.
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