
Performance
 
of Quicksort 

We will count the number C(n) of comparisons performed by quicksort 
in sorting an array of size n. 

We have seen that partition() performs n comparisons (possibly n−1 or 
n+1, depending on the implementation). 

 In fact, n−1 is the lower bound on the number of comparisons that 
any partitioning algorithm can perform. 

 The reason is that every element other than the pivot must be 
compared to the pivot; otherwise we have no way of knowing 
whether it goes left or right of the pivot. 

So our recurrence for C(n) is: 

 C(n) = n + C(k−1) + C(n−k),   C(0) = C(1) = 0    

A bad case (actually the worst case):  At every step, partition() 
splits the array as unequally as possible (k = 1 or k = n). 

 Then our recurrence becomes 

  C(n) = n + C(n−1),  C(0) = C(1) = 0 

 This is easy to solve. 

     

Sort right subarray 
by recursive call 

 to quicksort 

Sort left subarray 
by recursive call  

to quicksort 

Partition 

(k = final position  
  of pivot element) 

   C(n) =  n + C(n−1) 
    =  n + n−1 + C(n−2) 
    =  n + n−1 + n−2 + C(n−3) 
    =  n + n−1 + n−2 + ... + 3 + 2 + C(1) 
    =  (n + n−1 + n−2 + ... + 3 + 2 + 1) − 1 

    =  n(n+1)/2  − 1 

    ≈  n2 /2 

This is terrible.  It is no better than simple quadratic time 
algorithms like straight insertion sort. 

A good case (actually the best case):  At every step, partition() 
splits the array as equally as possible (k = (n+1)/2; the left and right 
subarrays each have size (n−1)/2)). 

 This is possible at every step only if n = 2k−1 for some k.  
However, it is always possible to split nearly equally.  The 
recurrence becomes  

   C(n) = n + 2C((n−1) /2),  C(0) = C(1) = 0,  

which we approximate by 

   C(n) = n + 2C(n/2),  C(1) = 0 

 This is the same as the recurrence for mergesort, except that the 
right side has n in place of n−1.  The solution is essentially the 
same as for mergesort: 

   C(n) = n lg(n). 

 This is excellent — essentially as good mergesort, and essentially 
as good as any comparison sorting algorithm can be.  

0 



The expected case:   Here we assume either (i) the array to be 
partitioned is randomly ordered, or (ii) the pivot element is selected 
from a random position in the array. 

In either case, the pivot element will be a random element of the 
array to be partitioned.  That is, for k = 1, 2, ..., n, the probability 
that the pivot element is the kth largest element of the array is 1/n.  
(Recall that, if the pivot element is the kth largest element of the 
array, it ends up after partitioning in position k.)  

In the recurrence   

  C(n) = n + C(k−1) + C(n−k),  C(0) = C(1) = 0, 

all values of k are equally likely.  We must average over all k. 

    C(n) = (1/n) ∑
n
k=1 (n + C(k−1) + C(n−k)),   C(0) = C(1) = 0,  

   = n + (1/n)∑
n
k=1 C(k−1) + (1/n)∑

n
k=1 C(n−k) 

Note: ∑
n
k=1 C(k−1) = ∑

n
i
−
=

1

0 C(i),  by substituting i = k−1. 

  ∑
n
k=1 C(n−k) = ∑

n
i
−
=

1

0 C(i),  by substituting i = n−k. 

So our recurrence becomes 

   C(n) = n + (2/n)∑
n
i
−
=

1

0 C(i),   or 

   nC(n) = n2 + 2∑
n
i
−
=

1

0 C(i) 

Writing down the same recurrence with n−1 replacing n, we get 

   (n−1) C(n−1) = (n−1)2 + 2∑
n
i
−
=

2

0 C(i). 

Subtracting this recurrence from the one above it gives 

 nC(n) − (n−1) C(n−1) = n2 − (n−1)2 + 2C(n−1),  or 

 nC(n) = (n+1) C(n−1) + 2n−1 

0 

Dividing by n(n+1) gives 

 C(n) / (n+1) = C(n−1) /n + (2n−1) /(n (n+1)). 

To a very good approximation,  

 C(n) / (n+1) = C(n−1) /n + 2/n. 

Now if let D(n) = C(n) / (n+1) , then the recurrence becomes 

 D(n) = D(n−1) + 2 / n,   D(1) = 0. 

This is easy to solve: 

    D(n) =  D(n−1) + 2 / n 
   =  D(n−2) + 2 / (n−1) + 2 / n 
   =  D(n−3) + 2 / (n−2) + 2 / (n−1) + 2 / n 

   =  D(1) + 2 / 2 + 2 / 3 + ... + 2 / (n−2) + 2 / (n−1) + 2 / n 

=  2 ln(n) − 2 

≈  2 ln(n) 

=  2 ln(2) lg(n) 

≈  1.39 lg(n) 

So C(n) = (n+1) D(n) ≈ 1.39 (n+1)  lg(n),  or   C(n) ≈ 1.39 n lg(n)  

The expected case for quicksort is fairly close to the best case 
(only 39% more comparisons) and nothing like the worst case. 

In most (not all) tests, quicksort turns out to be a bit faster than 
mergesort.   

 Quicksort performs 39% more comparisons than mergesort, but 
much less movement (copying) of array elements.   



We saw that, in the expected case, quicksort performs one 
exchange for every six comparisons, or about 1.39 n lg(n) / 6 ≈ 
0.23 n lg(n)  exchanges. 

A slightly different partitioning algorithm performs one move 
(copy) for each three comparisons, or about 0.46 n lg(n)  moves. 

By contrast, the version of mergesort given in class performs 
2n lg(n) moves, although this can be reduced to n lg(n) moves  
— still more than twice as many as quicksort is likely to 
perform. 

With a randomized version of quicksort (pivot element chosen 
randomly), the standard deviation in the number of comparisons is also 
small.  

The probability of performing substantially more than 1.39 n lg(n) 
comparisons is extremely low. 

Quicksort is not stable, since it exchanges nonadjacent elements. 

If stability is not required, quicksort provides a very attractive 
alternative to mergesort.   

 Quicksort is likely to run a bit faster than mergesort — perhaps 1.2 
to 1.4 times as fast. 

Quicksort requires less memory than mergesort. 

A good implementation of quicksort is probably easier to code than 
a good implementation of mergesort. 


