Performance of Quicksort

We will count the number C(n) of comparisons performed by quicksort
in sorting an array of size n.

We have seen that partition() performs n comparisons (possibly n—1 or
n+1, depending on the implementation).

In fact, n—1 is the lower bound on the number of comparisons that
any partitioning algorithm can perform.

The reason is that every element other than the pivot must be
compared to the pivot; otherwise we have no way of knowing
whether it goes left or right of the pivot.

So our recurrence for C(n) is:

(C(n) =n+ C(k=1) + C(n—k), C(0)=C(1)=0| (k= final position
of pivot element)

Sort right subarray
by recursive call
to quicksort

Sort left subarray
by recursive call
to quicksort

A bad case (actually the worst case): At every step, partition()
splits the array as unequally as possible (k=1 or k= n).

Then our recurrence becomes
C(n)=n+Cmn-1), C(0)=C(1)=0

This is easy to solve.

C(n) = n+C(n-1)
= n+n-1+Cmn-2)
= n+n-1+n-2+C(n-3) 0
=n+tn-1+n-2+..+3+2+€EH
=m+n-1+n2+...+3+2+1)-1
= n(nt+1)/2 -1
n/2
This is terrible. It is no better than simple quadratic time
algorithms like straight insertion sort.

Q

A good case (actually the best case): At every step, partition()
splits the array as equally as possible (k= (n+1)/2; the left and right
subarrays each have size (n—1)/2)).

This is possible at every step only if n =2*—1 for some k.
However, it is always possible to split nearly equally. The
recurrence becomes

C(n)=n+2C((n-1)/2), C(0)=C(1)=0,
which we approximate by
C(n)=n+2C(n/2), C(1)=0
This is the same as the recurrence for mergesort, except that the

right side has » in place of n—1. The solution is essentially the
same as for mergesort:

C(n) = nlg(n).

This is excellent — essentially as good mergesort, and essentially
as good as any comparison sorting algorithm can be.

The expected case: Here we assume either (i) the array to be Dividing by n(n+1) gives
partitioned is randomly ordered, or (ii) the pivot element is selected C(n)/(n+1) = C(n—1)/n + 2n-1)/ (n(n+1))
from a random position in the array. '

.)) To a very good approximation,
In either case, the pivot element will be a random element of the

array to be partitioned. That is, for k=1, 2, ..., n, the probability C(n)/(n+1) =C(n=1)/n+2/n.
that the pivot element is the ™ largest element of the array is 1/n.) B
(Recall that, if the pivot element is the &A™ largest element of the Now if let D(n) = C(n)/(n+1),, then the recurrence becomes
array, it ends up after partitioning in position k.) D(n)=D(n-1) +2/n, D(1)=0.
In the recurrence This is easy to solve:
C(n) =n+ C(k=1) + C(n—k), C(0)=C(1)=0, D(n) = D(n—1) +2/n

all values of k are equally likely. We must average over all £.
C(n) =(1/n) Z”H (n+ C(k-1) + C(n—k)), C(0)=C(1)=0,
=n+1nX,_, Cth-1)+ (1/n)Z,_, C(n—k)

D(n-2) +2/(n-1)+2/n
D(n-3) +2/(n-2) +2/(n—1)+2/n
0

DA +2/2+2/3+...+2/(n=2) +2/(n=1)+2/n

n -l o = 2In(n) -2
Note: ZLF] C(k—1)= Z;:) C(i), by substituting i = k—1. ~ 2In(n)
Zk=1 C(n—k)= z[=o C(i), by substituting i = n—k. = 21In(2) lg(n)
So our recurrence becomes ~ 1.391g(n)

Cn) =n+@Q2/m)Y_, C(i), or So C(n) = (n+1) D(n) ~ 1.39 (n+1) Ig(n), or |C(n) ~ 1.39 nlg(n)|
nC(n)=n*+23"" C(i)

The expected case for quicksort is fairly close to the best case
Writing down the same recurrence with n—1 replacing n, we get (only 39% more comparisons) and nothing like the worst case.

(n=1)C(n-1) = (n=1)* + 23" C(i).

In most (not all) tests, quicksort turns out to be a bit faster than

Subtracting this recurrence from the one above it gives
mergesort.

nC(n) — (n-1)C(n—1) = n* — (n—-1)*>+ 2C(n—1), or

Quicksort performs 39% more comparisons than mergesort, but
nC(n)=(n+1)C(n-1) + 2n-1

much less movement (copying) of array elements.

We saw that, in the expected case, quicksort performs one
exchange for every six comparisons, or about 1.39nlg(n)/6 =~
0.23 nlg(n) exchanges.

A slightly different partitioning algorithm performs one move
(copy) for each three comparisons, or about 0.46n1g(n) moves.

By contrast, the version of mergesort given in class performs
2 nlg(n) moves, although this can be reduced to nlg(n) moves
— still more than twice as many as quicksort is likely to
perform.

With a randomized version of quicksort (pivot element chosen
randomly), the standard deviation in the number of comparisons is also
small.

The probability of performing substantially more than 1.39 nlg(n)
comparisons is extremely low.

Quicksort is not stable, since it exchanges nonadjacent elements.

If stability is not required, quicksort provides a very attractive
alternative to mergesort.

Quicksort is likely to run a bit faster than mergesort — perhaps 1.2
to 1.4 times as fast.

Quicksort requires less memory than mergesort.

A good implementation of quicksort is probably easier to code than
a good implementation of mergesort.

