CHAPTER

ITERATORS

4] INTRODUCTION

An iterator is an object interface to a list.

The object’s member data consists of the list and some state information
marking a “current position” in the list. The iterator supports one method,
which we will call NEXTVAL. The NEXTVAL method returns the list element at the
current position and updates the current position so that the next time NEXTVAL
is called, the next list element will be returned.

Why would anyone want an object interface to a list? Why not just use a
list? There are several reasons. The simplest is that the list might be enormous, so
large that you do not want to have it in memory all at once. It is often possible
to design iterators to generate list items as they’re requested, so that only a small
part of the list need ever be in memory at once.

4.1.1 Filehandles Are Iterators

Iterators are familiar to everyone who has ever programmed in Perl, because file-
handles are iterators. When you open a file for reading, you get back a filehandle
object:

open(FILEHANDLE, 'filename');
We'll look at filehandles first because they are a familiar example that exhibit

all the advantages of iterators. A filehandle does represent a list, namely the list
of lines from a file. The NEXTVAL operation is written in Perl as <FILEHANDLE>.

115

116

CHAPTER 4 lterators

When you do <FILEHANDLE>, Perl returns the line at the current position and
updates the current position so that the next time you do <FILEHANDLE> you get
the next line.

Imagine an alternate universe in which the Perl open function yielded not a
filehandle but instead, a list of lines:

@lines = open('filename'); # alternate universe interface

Almost any programmer asked to criticize this interface will complain that this
would consume too much memory if the file is very large. One of the principal
reasons for filehandles is that files can be so large and need to be represented in
programs in some way other than as a possibly enormous list of lines.

Another problem with the imaginary iterator-less version is the following
common pattern:

open(FILEHANDLE, 'filename');
while (<FILEHANDLE>) {
last if /Plutonium/;
}
close FILEHANDLE;
do something with $_;

This code opens a file and reads through it looking for a record that contains
the word “Plutonium”. When it finds the record, it exits the loop immedi-
ately, closes the file, and then does something with the record it just extracted.
On average, it has to search only half of the file, because the plutonium will
typically be somewhere near the middle; it might even get lucky and find it
right at the beginning. In the worst case, the plutonium is at the end of the
file, or is missing entirely, and the program has to read the whole file to discover
that.

In the imaginary alternate universe with no filehandles, we get the worst case
every time:

alternate universe interface
@lines = open('filename');
for (@lines) {

last if /Plutonium/;

}
do something with $_;

4.1 INTRODUCTION

Even if the plutonium is at the beginning of the file, the alternate universe
open() still reads the entire file, a colossal waste of I/O and processor time.

Unix programmers, remembering that Perl’s open function can also open
a pipe to a command, will object even more strenuously:

@lines = open("yes |"); # alternate universe interface

Here Perl runs the Unix yes command and reads its output. But there’s a terrible
problem: the output of yes is infinite. The program will hang in an infinite
loop at this line until all memory is exhausted, and then it will drop dead.
The filehandle version works just fine.

4.1.2 Iterators Are Objects

The final advantage of an iterator over a plain array is that an iterator is an
object, which means it can be shared among functions.

Consider a program that opens and reads a Windows INI file. Here’s an
example of an INI file:

[Display]
model=Samsui

[Capabilities]
supports_3D=y

power_save=n

The file is divided into sections, each of which is headed by a title like
[Display] or [Capabilities]. Within each section are variable definitions such
as model=Samsui. model is the name of a configuration variable and Samsui is
its value.

A function to parse a single section of an INI file might look something

like this:

sub parse_section {
my $fh = shift;
my $title = parse_section_title($fh);
my %variables = parse_variables($fh);

return [$title, \%variables];

117

118

CHAPTER 4 lterators

The function gets a filehandle as its only argument. parse_section() passes
the filehandle to the parse_section_title() function, which reads the first line
and extracts and returns the title; then parse_section() passes the same file-
handle to parse_variables(), which reads the rest of the section and returns
a hash with the variable definitions. Unlike an array of lines, $fh keeps track
of the current position in the INI file, so that parse_section_title() and
parse_variables() don’t read the same data. Instead, parse_variables() picks
up wherever parse_section_title left off. The corresponding code with an
array wouldn't work:

sub parse_section {
my @lines = @_;
my $title = parse_section_title(@lines);
my %variables = parse_variables(@lines);

return [$title, \%variables];

There would be no way for parse_section_title() to remove the section title
line from @1ines. (This is a rather contrived example, but illustrates the possible
problem. Packaging up @lines as an object, even by doing something as simple
as passing \@lines instead, solves the problem.)

4.1.3 Other Common Examples of Iterators

Like all good, simple ideas, iterators pop up all over. If you remember only one
example, remember filehandles, because filehandles are ubiquitous. But Per] has
several other examples of built-in iterators. We'll take a quick tour of the most
important ones.

Dirhandles are analogous to filehandles. They are created with the opendir
function, and encapsulate a list of directory entries that can be read with the
readdir operator:

opendir D, "/tmp";
@entries = readdir D;

But readdir in scalar context functions as an iterator, reading one entry at a time
from D:

opendir D, "/tmp";
while (my $entry = readdir D) {

42 HOMEMADE ITERATORS

Do something with $entry

The built-in glob operator is similar, producing one file at a time whose name
matches a certain pattern:

while (my $file = glob("/tmp/*.[ch]™)) {
Do something with $file

Perl hashes always have an iterator built in to iterate over the keys or values
in the hash. The keys and values functions produce lists of keys and values,
respectively. If the hash is very large, these lists will be large, so Perl also provides
a function to operate the iterator directly, namely each:

while (my $key = each %hash) {
Do something with $key

Normally the Perl regex engine just checks to see if a string matches a pattern,
and reports true or false. However, it’s sometimes of interest what part of the
target string matched. In list context, the m//g operator produces a list of all
matching substrings:

@matches = ("12:34:56" =~ m/(\d+)/9);

Here @matches contains ("12", "34", "56"). In scalar context, m//g becomes
the NEXTVAL operation for an iterator inside the regex, producing a different
match each time:

while ("12:34:56" =~ m/(\d+)/g) {

do something with $1

We will see this useful and little-known feature in more detail in Chapter 8.
Now we'll see how we can build our own iterators.

4.7 HOMEMADE ITERATORS

Our dir_walk(Q) function from Chapter 1 took a directory name and a call-
back function and searched the directory recursively, calling the callback for

119

120

CHAPTER 4 lterators

each file and directory under the original directory. Now let’s see if we can
structure dir_walk() as an iterator. If we did, then instead of searching the direc-
tory, dir_walk() would return an iterator object. This object would support a
NEXTVAL operation, which would return a different file or directory name each
time it was called.

First le’s make sure that doing this is actually worthwhile. Suppose we
had such an iterator. Could we still use it in callback style? Certainly. Suppose
make_iterator were a function that constructed an iterator that would return
the filenames from a directory tree. Then we would still be able to emulate the
original dir_walk() like this:

sub dir_walk {
my ($dir, $filefunc, $dirfunc, $user) = @_;
my $iterator = make_iterator($dir);
while (my $filename = NEXTVAL($iterator)) {
if (-f $filename) { $filefunc->($filename, $user) }

else { $dirfunc->($filename, S$user) }

Here I've written NEXTVAL($iterator) to represent the NEXTVAL operation. Since
we don’t know yet how the iterator is implemented, we don’t know what the real
syntax of the NEXTVAL operation will be.

This example shows that the iterator version is at least as powerful as the
original callback version. However, if we could build it, the iterator version
would have several advantages over the callback version. We would be able to
stop part way through processing the directory tree, and then pick up later where
we left off, and we would have a file-tree-walk object that we could pass around
from one function to another.

We'll use a really excellent trick to build our iterator: the iterator
will be a function. The NEXTVAL operation on the iterator will simply be
to call the function. When we call the iterator function it will do some
computing, figure out what the next filename is, and return it. This
means that the NEXTVAL($iterator) in our example code is actually doing
$iterator->Q).

The iterator will need to retain some state information inside it, but we've
already seen that Perl functions can do that. In Chapter 3, memoized functions
were able to retain the cache hash between calls.

Before we get into the details of the dir_walk() iterator, let’s try out the
idea on a simpler example.

42 HOMEMADE ITERATORS 121

4.2.1 A Trivial Iterator: upto()

Here’s a function called upto() that builds iterators, and which is mostly useful as
an example. Given two numbers, 72 and 7, it returns an iterator that will return
all the numbers between 72 and 7, inclusive:

sub upto { CODE LIBRARY

my ($m, $n) = @_; upto
return sub {
return $m <= $n ? $m++ : undef;
1
}
my $it = upto(3, 5);

This constructs an iterator object that will count from 3 up to 5 if we ask it to.
The iterator object is just an anonymous subroutine that has captured the values
of $mand $n.

The iterator is a subroutine, returned by the final return sub { ... }
statement. Because the iterator is a subroutine, its NEXTVAL operation is sim-
ply invoking the subroutine. The subroutine runs and returns a value; this is
the next value from the iterator. To get the next value (“kick the iterator”) we
simply do:

my $nextval = $it->Q;

This stores the number 3 into $nextval. If we do it again, it stores 4. If we do
it a third time, it stores 5. Any calls after that will return undef.
To loop over the iterator’s values:

while (defined(my $val = $it->())) {
now do something with $val, such as:
print "$val\n";

This prints 3, 4, 5, and then quits the loop.
This may have a substantial memory savings over something like:

for my $val (1 .. 10000000) {
now do something with $val

122 CHAPTER 4 lterators

which, until Perl 5.005, would generate a gigantic list of numbers before starting
the iteration.

If you have a sweet tooth, you can put some syntactic sugar on your
serial:

CODE LIBRARY package Iterator_Utils;

Iterator_Utils.pm use base Exporter;
@EXPORT_OK = qw(NEXTVAL Iterator
append imap igrep
iterate_function filehandle_iterator list_iterator);
%EXPORT_TAGS = ('all' => \@EXPORT_OK);
sub NEXTVAL { $_[0]->(O) }

Then in place of the preceding examples, we can use this:
my $nextval = NEXTVAL($it);
and this:

while (defined(my $val = NEXTVAL($it))) {

now do something with $val

We'll do this from now on.

The internal operation of the iterator is simple. When the subroutine is
called, it returns the value of $m and increments $m for next time. Eventually, $m
exceeds $n, and the subroutine returns an undefined value thereafter. When an
iterator runs out of data this way, we say it has been exbausted. We'll adopt the
convention that a call to an exhausted iterator returns an undefined value, and
then see some alternatives to this starting in Section 4.5.

SYNTACTIC SUGAR FOR MANUFACTURING
ITERATORS

From now on, instead of writing return sub { ... } in a function, we
will write return Iterator { ... } to make it clear that an iterator is being
constructed:

sub upto {

my ($m, $n) = @_;

42 HOMEMADE ITERATORS 123

return Iterator {
return $m <= $n ? $m++ : undef;

};

This bit of sugar is easy to accomplish:
sub Iterator (&) { return $_[0] }
when we write this:
Iterator { ... }
Perl behaves as though we had written:
Iterator(sub { ... })

instead. Once past the sugar, the Iterator() function itself is trivial. Since the
iterator is the anonymous function, it returns the argument unchanged.

Using this Iterator() sugar may make the code a little easier to understand.
It will also give us an opportunity to hang additional semantics on iterator con-
struction if we want to, by adding features to the Iterator() function. We will
see an example of this in Section 4.5.7.

422 dir_walkQ

Now that we've seen a function that builds simple iterators, we can investigate a
more useful one, which builds iterators that walk a directory tree and generate
filenames one at a time:

iterator version
sub dir_walk {
my @queue = shift;
return Iterator {
while (@queue) {
my $file = shift Gqueue;
if (-d $file) {
opendir my $dh, $file or next;
my @newfiles = grep {$_ne "." && $_ ne ".."} readdir $dh;
push @queue, map "$file/$_", @newfiles;

CODE LIBRARY

dir-walk-iterator

124

CHAPTER 4 lterators

}

return $file;
} else {
return;

The pattern here is the same as in upto(). dir_walk() is a function that sets up
some state variables for the iterator and then returns a closure that captures the
state variables. When the closure is executed, it computes and returns the next
filename, updating the state variables in the process.

The closure maintains a queue of the files and directories that it hasn’t yet
examined. Initially, the queue contains only the single top-level directory that
the user asked it to search. Each time the iterator is invoked, it removes the
item at the front of the queue. If this item is a plain file, the iterator returns it
immediately; if the item is a directory, the iterator reads the directory and queues
the directory’s contents before returning the name of the directory.

After enough calls to the iterator, the queue will become empty. Once this
happens, the iterator is exhausted, and further calls to the iterator will return
undef. In this case, undef doesn’t cause a semipredicate problem, because no
valid filename is ever undef.

There is one subtle point to make here. The items in @queue must be full
paths like . /src/per1/japh.p1, not basenames like japh.p1, or else the -d oper-
ator won't work. A common error when using -d is to get the basenames back
from readdir and test them with -d immediately. This doesn’t work, because
-d, like all file operators, interprets a bare filename as a request to look for that
name in the current directory. In order to use -d, we have to track the directory
names also.

The map function accomplishes this. When we read the filenames out of
the directory named $file with readdir, we get only the basenames. The map
appends the directory name to each basename before the result is put on the
queue. The result is full paths that work properly with -d.

Even if we didn’t need the full paths for use with -d, the user of the iterator
probably needs them. It’s not usually useful to be told that the program has
located a file named japh.p1 unless you also find out which directory it’s in.

4.2.3 On Clever Inspirations

Although this works well, it has one big defect: it appears to have
required cleverness. The original dir_walk() from Chapter 1 was reasonably

42 HOMEMADE ITERATORS

straightforward: process the current file, and if it happens to be a directory, make
recursive calls to process its contents. The iterator version is not recursive; in
place of recursion, it maintains a queue.

The problem that the queue is solving is that a recursive function maintains
alot of state on Perl’s internal call stack. Here’s the recursive function dir_walk()
again:

sub dir_walk {
my ($top, $code) = @_;
my $DIR;
$code->($top);

if (-d $top) {
my $file;
unless (opendir $DIR, $top) {
warn "Couldn’t open directory $top: $!; skipping.\n";

return;

}

while ($file = readdir $DIR) {
next if $file eq '.'|| $file eq '
dir_walk("$top/$file", $code);

}

Each recursive call down in the while loop must save the values of $top, $code,
$DIR, and $file on the call stack; when dir_walk() is re-entered, new instances
of these variables are created. The values must be saved so that they can be
restored when the recursive call returns; at this time, the new instances are
destroyed.

When the dir_walk() function finally returns to its original caller, all of the
state information that was held in $top, $code, $DIR, and $file has been lost.
In order for the iterator to simulate a recursive function, it needs to be able to
return to its caller without losing all that state information.

Recursion is essentially an automatic stack-management feature. When our
function makes a recursive call, Perl takes care of saving the function’s state
information on its private, internal stack, and restoring it again as necessary.
But here the automatic management isn't what we want; we need manual control
over what is saved and restored, so recursion doesn’t work. Instead, we replace the
call stack with the @queue variable and do all our stack management manually,
with push and shift.

125

126 CHAPTER 4 lterators

CODE LIBRARY

interesting-files

}@__H
;!

5

}w i
}hi

(_h

w
o~
o
~

O —-0

FIGURE 4.I Depth-first traversal/breadth-first traversal.

The cost of the manual stack management is the trouble we have to go to.
But the payoff, as do-it-yourselfers know, is flexibility. A recursive function for
directory walking usually traverses the tree in depth-first order, visiting all the
contents of each directory before moving on to the next directory. Sometimes
we might prefer a breadth-first search, where all the files and directories at one
level of the tree are visited before those lower down. Figure 4.1 illustrates both
methods.

To get the recursive function to traverse the tree in breadth-first order or
in any order other than depth-first is very difficult. But the iterator version
accomplishes this easily. The previous iterator code traverses the directory in
breadth-first order. If we replace shift with pop, @queue behaves as a stack,
rather than a queue, and the iterator generates its output in depth-first order,
exactly as the original recursive function did.

Replacing the recursion with the queue seems like a clever inspiration, but
clever inspirations are usually in short supply. In Chapter 5, we'll see that any
recursive function can be turned into an iterator in a formulaic way, so that
we can save our clever inspirations for something else.

4.3 EXAMPLES

Let’s see some possibly useful examples of iterators. We'll start with a replacement
for File::Find, a variation on dir_walk(). It searches a directory hierarchy,
looking for possibly interesting files:

sub interesting_files {

my $is_interesting = shift;

43 EXAMPLES

my @Qqueue = @_;
return Iterator {
while (@queue) {
my $file = shift Gqueue;
if (-d $file) {
opendir my $dh, $file or next;
my @newfiles = grep {$_ne "." && $_ ne ".."} readdir $dh;
push @queue, map "$file/$_", @newfiles;
}
return $file if $is_interesting->($file);
}

return;

};

Here we've made only a few changes. interesting_files() accepts a callback,
$is_interesting, which will return true if its argument is the name of an “inter-
esting” file. We'll also allow the user to specify more than one initial directory to
search. This is trivial: We just take all the given directory names and load them
into the initial queue.

The returned iterator is very similar. Instead of returning every file that it
finds in the queue, the iterator returns only if the file is interesting, as determined
by the callback. Otherwise, the iterator shifts another file off the queue and tries
again. If the queue is exhausted before an interesting file is found, control leaves
the while loop and the iterator returns undef. If the user calls the iterator again,
the queue is still empty, so the iterator returns undef immediately.

To use this, we might write:

Files are deemed to be interesting if they mention octopuses
sub contains_octopuses {

my $file = shift;

return unless -T $file && open my($fh), "<", $file;

while (<$fh>) {

return 1 if /octopus/i;

}

return;
}
my $octopus_file =

interesting_files(\&contains_octopuses, 'uploads', 'downloads');

127

128 CHAPTER 4 lterators
Now that we have the iterator, we can find all the interesting files:

while ($file = NEXTVAL(S$octopus_file)) {
do something with the file

Or perhaps we only want to know if there are any interesting files at all:

if (NEXTVAL($next_octopus)) {

yes, there is an interesting file
} else {

no, there isn’t.
}

undef $next_octopus;

With a recursive function, we might have had trouble stopping the function
when we found the interesting file; with the iterator, it’s trivial, since it only
searches as far as is necessary to find the first interesting file, and then leaves
the rest of the hierarchy unsearched and waiting in the queue. When we undef
$next_octopus, this saved state is discarded, and the memory used for storing it

is freed.

4.3.1 Permutations

A permutation is a rearrangement of the items in a list. A frequently asked ques-
tion in newsgroups is how to produce all the permutations of a certain list.
For example, the permutations of the list ('red', 'yellow', 'blue') are:

C ['red', 'yellow', 'blue'l,
['red', 'blue', 'yellow'],
['yellow', 'red', 'blue'l,
['yellow', 'blue', 'red'l],
['blue', 'red', 'yellow'],
['bTue', 'yellow', 'red'],

It’s not completely clear to me why this is useful. Last time it came up in the
newsgroup, I asked the poster, and he explained that he was trying to generate

43 EXAMPLES

a name for a new product by assembling short phrases or syllables into different
orders. Regardless of whether this is a good idea, it does seem to be something
people want to do.

A beginner who tries to solve this problem may be completely puzzled.
A programmer with more experience will immediately try to write a recursive
function to generate the list, and will usually produce something that works.
For example, here’s the solution from the Perl Frequently Asked Questions List,
written by Tom Christiansen and Nathan Torkington:

sub permute {
my @items = @{ $_[0] };
my @perms = @{ $_[1] };
unless (@items) {
print "@perms\n";
} else {
my (@newitems,@newperms, $i);
foreach $i (0 .. $#items) {
@newitems = @items;
@newperms = @perms;
unshift(@newperms, splice(@newitems, $i, 1));

permute([@newitems], [@newperms]);

}
sample call:
permute([qw(red yellow blue green)], [1);

Items are removed from @items and placed onto the end of @perms. When all
the items have been so placed, @items is empty and the resulting permutation,
which is in @perms, is printed. (We should probably replace the print with a
call to a callback.) The important part of this function is the else clause. In this
clause, the function removes one of the unused items from the @items array,
appends it to the end of the @perms array, and calls itself recursively to distribute
the remaining items.

This solution works, but has a glaring problem. If you pass in a list of ten
items, it doesn’t return until it has printed all 3,628,800 permutations. This is
likely to take a lot of time — twenty or thirty minutes on my computer. If we
modify the function to generate a list of permutations, it’s even worse. It returns
a list of 3,628,800 items, each of which is an array of 10 items. This is likely to
use up a substantial portion of your computer’s real memory; if it does, your OS
is likely to start thrashing while trying to compute the result, and it will take an

129

130 CHAPTER 4 Iterators

CODE LIBRARY

permute

even longer time to finish. The function is inefficient to begin with, because it
performs six array copies per call, a total of 24,227,478 copies in our preceding
example above. The function is simply too slow to be practical except in trivial
cases. And since we probably cant use all of the 3.6 million permutations anyway,
most of the work is wasted.

This is the sort of problem that iterators were made to solve. We want to
generate a list of permutations, but the list might be enormous. Rather than
generating the entire list at once, as the FAQ solution does, we will use an
iterator that generates the permutations one at a time.

To make an iterator for permutations requires either an insight, or tech-
niques from later in the chapter. The insight-requiring version is interesting and
instructive, so we'll look at it briefly before we move into the more generally
useful versions that require less insight.

Regardless of the internals of permute (), here’s how we'll be using it:

my $it = permute('A'..'D");

while (my @ = NEXTVAL($it)) {
print "@p\n";

The function permute() constructs the iterator itself:

sub permute {

my @items = @_;

my @pattern = (0) x @items;

return Iterator {
return unless @pattern;
my @result = pattern_to_permutation(\@pattern, \@items);
@pattern = increment_pattern(@pattern);
return @result;

b

Each permutation is represented by a “pattern” that says in what order to select
elements from the original list. Suppose the original list is ('A", 'B', 'C’,
'D'). A pattern of 2 0 1 0 selects (and removes) item 2 from the original
list, the 'C', leaving ('A', 'B', 'D'); then item 0, 'A', from the remain-
ing items; then item 1, the 'D', then item 0, the 'B'; the result is the
permutation ('C', 'A', 'D', 'B'). This selection process is performed by

43 EXAMPLES

pattern_to_permutation():

sub pattern_to_permutation {
my $pattern = shift;
my @items = @{shift(Q};
my @r;
for (@$pattern) {
push @r, splice(@items, $_, 1);
}
@r;
}

The generation of the patterns is the interesting part. What patterns make
sense? If there are four items in the original list, then the first element of the
pattern must be a number between 0 and 3, the second element must be a
number between 0 and 2, the third must be 0 or 1, and the last element must
be 0. Each pattern corresponds to a different permutation; if we can generate
all possible patterns, we can generate all possible permutations.

Generating all the patterns is performed by increment_pattern(). For this
example, it generates the following patterns in the following order:

0000 1100 2200
0010 1110 2210
0100 1200 3000
0110 1210 3010
0200 2000 3100
0210 2010 3110
1000 2100 3200
1010 2110 3210

What is the pattern here? It turns out that getting from one pattern to the next
is rather simple:

1. Scan the numbers in the pattern from right to left.

2. Ifyou can legally increment the current number, do so, and halt.

3. Otherwise, change the current number to 0 and continue.
4

If you fall off the left end, then the sequence was the last one.

This algorithm should sound familiar, because you learned it a long time ago.
It’s exactly the same as the algorithm you use to count:

210397
210398

131

132

CHAPTER 4 lterators

210399
210400
210401

To increment a numeral, scan the digits right to left. If you find a digit that you
can legally increment (that is, a digit that is less than 9) then increment it, and
stop; you are finished. Otherwise, change the digit to 0 and continue leftwards.
If you fall off the left end, it’s because every digit was 9, so that was the last
number. (You can now extend the number by inferring and incrementing an
unwritten 0 just past the left end.)

To count in base 2, the algorithm is again the same. Only the definition of
“legal digit” changes: instead of “less than 10” it is “less than 2”. To generate the
permutation patterns, the algorithm is the same, except that this time “legal”
means “the digit in the z#th column from the right may not exceed 7.”

The elements of the permutation pattern are like the wheels of an imaginary
odometer. But where each wheel on a real odometer is the same size, and carries
numbers from 0 to 9 (or 0 to 1 on planets where the odometer reads out in
base 2), each wheel in the permutation odometer is a different size. The last one
just hasa 0 on it; the next has justa 0 and a 1, and so on. But like a real odometer,
each wheel turns one notch when the wheel to its right has completed a whole
revolution.

The code to manage a regular odometer looks like this:

sub increment_odometer {
my @odometer = @_;

my $wheel = $#odometer; # start at rightmost wheel

until ($odometer[$wheel] < 9 || $wheel < 0) {
$odometer[$wheel] = 0;

$wheel--; # next wheel to the left
3
if ($wheel < 0) {

return; # fell off the left end; no more sequences
} else {

$odometer[$wheel]++; # this wheel now turns one notch

return @odometer;

4.3 EXAMPLES 133

The code to produce the permutation patterns is almost exactly the same:

sub increment_pattern {
my @odometer = @_;

my $wheel = $#odometer; # start at rightmost wheel

until ($odometer[$wheel] < $#odometer-$wheel || $wheel < 0) {
$odometer[$wheel] = 0;

$wheel--; # next wheel to the Teft
}
if ($wheel < 0) {

return; # fell off the left end; no more sequences
} else {

$odometer[$wheel]++; # this wheel now turns one notch
return @odometer;

We can simplify the code with a little mathematical trickery. Just as we can
predict in advance what positions the wheels of an odometer will hold after
we've travelled 19,683 miles, even if it reads out in base 2, we can predict what

positions the wheels of our pattern-odometer will hold the 19,683rd time we
call it:

sub n_to_pat { CODE LIBRARY

my @odometer; permute-n
my ($n, $length) = @_;
for my $i (1 .. $length) {
unshift @odometer, $n % $i;
$n = int($n/$1);
}

return $n ? () : @odometer;

permute() must change a little to match, since the state information is now
a simple counter instead of an entire pattern:

sub permute {
my @items = @_;
my $n = 0;
return Iterator {

]34' CHAPTER 4 lterators

CODE LIBRARY

permute-flop

my @pattern = n_to_pat($n, scalar(@items));
my @result = pattern_to_permutation(\@pattern, \@items);
$n++;

return @result;

This last function is an example of a useful class of iterators that return

£(0),£(1),f(2),... for some function f:

sub iterate_function {
my $n = 0;
my $f = shift;
return Iterator {
return $f->($n++);

b

This is an iterator that generates values of a function for » = 0,1,2.... You
might want many values of the function, or few; an iterator may be a more
flexible way to get them than a simple loop, because it is a data structure.

The permutation iterators shown here do a lot of splicing. pattern_to_
permutation() copies the original list of items and then dismantles it; every time
an element is removed the other elements must be shifted down in memory to
fill up the gap. With enough ingenuity, it’s possible to avoid this, abandoning
the idea of the patterns. Instead of starting over with a fresh list every time, in
the original order, and then using the pattern to select items from it to make the
new permutation, we can take the previous permutation and just apply whatever
transformation is appropriate to turn it into the new one:

sub permute {
my @items = @_;
my $n = 0;
return Iterator {

$n++, return @items if $n==0;

my $i;

my $p = $n;

for ($i=1; $i<=@items && $p%$i==0; $i++) {
$p /= $1;

}

my $d = $p % $1i;

1

43 EXAMPLES

my $j = @items - $i;
return if $j < 0;

@items[$j+1..%#items] = reverse @items[$j+1..%$#items];
@items[$],$j+%d] = @items[$j+%d,$j];

$n++;
return @items;

b

The key piece of code here is the pair of slice assignments of @i tems. The insight
behind this code is that at any given stage, we can ignore the first few items
and concentrate only on the last few. Let’s say we're rearranging just the last
three items. We start with something like ... A B C D and produce the various
rearrangements of the last three items, ending with ... A D C B.

At this point, the last three items are in backwards order. We need to put
them back in forward order (this is the assignment with the reverse) and then
switch the A, the next item over, with one of the three we just finished permuting.
(This is the second assignment.) We need to do this three times, first switching A
with B, then with C, and finally with D; after each switch, we run again through all
possible permutations of the last three items. Of course, there are complications,
since permuting the last three items involves applying the same process to the
last fwo items, and is itself part of the process of permuting the last four items.

4.3.2 Genomic Sequence Generator

In 1999, I got email from a biologist at the University of Virginia. He was working
on the Human Genome Project, dealing with DNA. DNA is organized as a
sequence of base pairs, each of which is typically represented by the letter A, ¢, G,
or T. The information carried in the chromosome of any organism can be recorded
as a string of these four letters. A bacteriophage will have a few thousand of these
symbols, and a human chromosome will have between 30 and 300 million.
Much of the Human Genome Project involved data munging on these strings;
Perl was invaluable for this munging. (For more details about this, see Lincoln
Stein’s widely-reprinted article “How Perl Saved the Human Genome Project.”")

The biologist who wrote to me wanted a function that, given an input
pattern like "A(CGT)CGT", would produce the output list ('ACCGT', 'AGCGT',

The Perl Journal, Vol 1, #2 (Summer 1996) pp. 5-9

135

136 CHAPTER 4 lterators

'ATCGT"). The (CGT) in the input is a wildcard that indicates that the second

position may be filled by any one of the symbols C, G, or T. Similarly, an input

of "A(CT)G(AQ)" should yield the list ("ACGA", 'ATGA', 'ACGC', 'ATGC'). He

had written a recursive function to generate the appropriate output list, but was

concerned that he would run into memory limitations if he used it on long,

ambiguous inputs, where the result would be a list of many thousands of strings.
An iterator is exactly the right solution here:

CODE LIBRARY sub make_genes {

make-genes-1 my $pat - Sh‘ift;
my @tokens = split /[(Q1/, $pat;
for (my $i = 1; $i < @tokens; $i += 2) {
$tokens[$i] = [0, split(//, $tokens[$i1)];
}
my $FINISHED = O0;
return Iterator {
return if $FINISHED;
my $finished_incrementing = 0;
my $result = "";
for my $token (@tokens) {
if (ref $token eq "") { # plain string
$result .= $token;
} else { # wildcard
my ($n, @c) = @$token;
$result .= $c[$n];
unless ($finished_incrementing) {
if ($n == $#c) { $token->[0] = 0 }
else { $token->[0]++; $finished_incrementing = 1 }

}
$FINISHED = 1 unless $finished_incrementing;

return $result;

Here the input pattern "AA(CGT)CG(AT)" is represented by the following data
structure, which is stored in @tokens:

["AA",
[0, "c", "G", "T"1,

43 EXAMPLES

e,
[0, "A", "T"],

The code to construct the data structure uses some tricks:

my @tokens = split /[(Q]1/, $pat;
for (my $i = 1; $i < @tokens; $i += 2) {
$tokens[$i] = [0,split(//, $tokens[$i])];

The peculiar-looking sp1it pattern says that $pat should be split wherever there
is an open- or a close- parenthesis character. The return value has the convenient
property that the wildcard sections are always in the odd-numbered positions
in the resulting list. For example, "AA(CGT)CG(AT)" is split into ("AA", "CGT",
"CG", "AT"). Even if the string begins with a delimiter, sp1it will insert an
empty string into the initial position of the result: "(A)C" is split into (",
AT, MO,

The following code processes only the wildcard parts of the resulting @tokens
list:

for (my $i = 1; $i < @tokens; $i += 2) {
$tokens[$i] = [0,split(//, $tokens[$i1)];

The odd-numbered elements of ("AA"™, "CGT", "CG", "AT") are transformed
by this into ("AA", [0, "C", "G", "T"1, "CG", [0, "A", "T"1). The iter-
ator then captures this list, which is stored in @tokens. Elements of this list
that are plain strings correspond to the non-wildcard parts of the input pat-
tern, and are inserted into the output verbatim. Elements that are arrays
correspond to the wildcard parts of the input pattern and indicate choice
points.

The internal structure of the iterator is similar to the structure of the per-
mutation generator. When it’s run, it scans the token string, one token at a time.
During the scan, it does two things: It accumulates an output string, and it
adjusts the numeric parts of the wildcard tokens. Tokens are handled differently
depending on whether they are plain strings (ref $token eq "") or wildcards.
Plain strings are just copied directly to the result.

Wildcard handling is a little more interesting. The wildcard token is first
decomposed into its component parts:

my ($n, @c) = @$token;

137

138

CHAPTER 4 lterators

$n says which element of @c should be chosen next:
$result .= $c[$n];

Then the iterator may need to adjust $n to have a different value so that a
different element of @c will be chosen next time. In the permutation-pattern
generator, we scanned from right to left, resetting wheels to zero until we found
one small enough to be incremented. Here we're scanning from left to right, but
the principle is the same. $finished_incrementing is a flag that tells the iterator
whether it has been able to increment one of the digits, after which it doesnt
need to adjust any of the others:

unless ($finished_incrementing) {
if ($n == $#c) { $token->[0] =0 }
else { $token->[0]++; $finished_incrementing = 1 }

The function can increment the value in a wildcard token if it would still index
a valid element of @c afterwards. Otherwise, the value is reset to zero and the iter-
ator keeps looking. This is analogous to the way we used increment_pattern()
earlier to cycle through all possible permutation patterns; here we use the
same sort of odometer technique to cycle through all possible selections of the
wildcards.

When we have cycled through all the possible choices, the numbers in the
wildcard tokens all have their maximum possible values; we can recognize this
condition because we will have scanned all of them without finding one we
could increment, and so $finished_incrementing will still be false after the
scan. The iterator sets the $FINISHED flag so that it doesn’t start over again from
the beginning; thereafter, the iterator returns immediately, without generating
a string:

$FINISHED = 1 unless $finished_incrementing;

There’s nothing in this iterator that treats A, C, T, and G specially, so we can use
it as a generic string generator:

my $it = make_genes('(abc)(de)-(12)");
print "$s\n" while $s = NEXTVAL($it);

The output looks like this:

ad-1
bd-1

cd-1
ae-1
be-1
ce-1
ad-2
bd-2
cd-2
ae-2
be-2

ce-2

4.3 EXAMPLES 139

Biologists don’t usually use (ACT) to indicate a choice of A, C, or T; they typically
use the single letter H. I dont know if the biologist who asked me this question
was trying to avoid confusing me with unnecessary detail, or if he really did want
to handle patterns like (ACT). But supposing that we want to handle the standard
abbreviations, a simple preprocessor will take care of it:

4.3.3

%n_expand = qw(N ACGT
B CGT D AGT H ACT V ACG
K GT M ACR AG S CGWATYCT;
sub make_dna_sequences {
my $pat = shift;
for my $abbrev (keys %n_expand) {
$pat =~ s/$abbrev/($n_expand{$abbrev})/g;
}

return make_genes($pat);

Filehandle Iterators

CODE LIBRARY

make-genes-2

Now we'll see how to turn an ordinary Perl filehandle into a synthetic closure-
based iterator. Why would we want to this? Because in the rest of the chapter
we'll develop many tools for composing and manipulating iterators, and these
tools apply just as well to Perl filehandles as long as we use the following little

wrapper:

sub filehandle_iterator {
my $fh = shift;
return Iterator { <$th> };

140

CHAPTER 4 lterators

We can now use:

my $it = filehandle_iterator(*STDIN);
while (defined(my $1ine = NEXTVAL($it))) {
do something with $T1ine

4.3.4 A Flat-File Database

Now let’s do a real application. We'll develop a small flat-file database. A flaz-file
database is one that stores the data in a plain text file, with one record per line.
Our database will have a format something like this:

LASTNAME : FIRSTNAME : CITY: STATE : OWES
db. txt Adler:David:New York:NY:157.00

Ashton:ETaine:Boston:MA:0.00
Dominus:Mark:Philadelphia:PA:0.00
Orwant:Jon:Cambridge:MA:26.30
Schwern:Michael:New York:NY:149658.23
Wall:Larry:Mountain View:CA:-372.14

The first line is a header, sometimes called a schema, that defines the names of
the fields; the later lines are data records. Each record has the same number of
data fields, separated by colons. This sample of the data shows only six records,
but the file might contain thousands of records. For large files, the iterator
approach is especially important. A flat-file database must be searched entirely
for every query, and this is slow. By using an iterator approach, we will allow
programs to produce useful results before the entire file has been scanned.

We'll develop the database as an object-oriented class, F1atDB. The F1atDB
class will support a new method that takes a data filename and returns a database

handle object:

package Flatos;

FlatDB.pm

my $FIELDSEP = qr/:/;

sub new {
my $class = shift;
my $file = shift;
open my $fth, "<", $file or return;
chomp(my $schema = <$fth>);

43 EXAMPLES

my @field = split $FIELDSEP, $schema;

my %fieldnum = map { uc $field[$_] => $_ } (0..$#field);

bless { FH => $fh, FIELDS => \@field, FIELDNUM => \%fieldnum,
FIELDSEP => $FIELDSEP } => $class;

The database handle object contains a number of items that might be useful, in
addition to the open data filehandle itself. For our sample database, the contents

of the database handle object look like this:

FH => (the handle),
FIELDS => ['LASTNAME', 'FIRSTNAME', 'CITY', 'STATE', 'OWES'],
FIELDNUM => { CITY => 2,

FIRSTNAME => 1,

LASTNAME => 0,

OWES => 4,

STATE => 3,

1,

FIELDSEP => qr/:/,

The database handle object will support a query method that takes a field name
and a value and returns all the records that have the specified value in the field.
But we don’t want query to simply read all the records in the data file and return
a list of matching records, because that might be very expensive. Instead, query
will return an iterator that will return matching records one at a time:

usage: $dbh->query(fieldname, value)
returns all records for which (fieldname) matches (value)
use Fcntl ':seek';
sub query {
my $self = shift;
my ($field, $value) = @_;
my $fieldnum = $self->{FIELDNUM}{uc $field};
return unless defined $fieldnum;
my $fh = $self->{FH};
seek $fh, 0, SEEK_SET;
<$th>; # discard schema 1ine

return Iterator {
Jocal $_;
while (<$fh>) {
chomp;

141

]42 CHAPTER 4 lterators

my @fields = split $self->{FIELDSEP}, $_, -1;
my $fieldval = $fields[$fieldnum];
return $_ if $fieldval eq $value;

}

return;

1

query first looks in the FIELDNUM hash to ascertain two things. First, is the
requested field name actually a field in the database, and second, if so, what
number column is it? The result is stored in $fieldnum; if the field name is
invalid, query returns undef to indicate an error. Otherwise, the function seeks
the filehandle back to the beginning of the data to begin the search, using the
seek function.

seek() has a rather strange interface, inherited from the original design of
Unix in the 1970s: seek($fh, $position, $whence) positions the filehandle so
that the next read or write will occur at byte position $position. The $whence
argument is actually the integer 0, 1, or 2, but mnemonic names for these
values are provided by the standard Per]l Fent1 module. If $whence is the con-
stant SEEK_SET, $position is interpreted as a number of bytes forward from the
beginning of the file. Here we use seek($fh, 0, SEEK_SET), which positions the
handle at the beginning of the file, so that the following <$fh> reads and discards
the schema line.

The query function then returns the iterator, which captures the values of
$self, $fh, $fieldnum, and $value.

The iterator is quite simple. When it’s invoked, it starts reading data lines
from the database. It splits up each record into fields, and compares the appro-
priate field value (in $fields[$fieldnum]) with the desired value (in $value).
If there’s a match, it returns the current record immediately; if not, it tries the
next record. When it reaches the end of the file, the while loop exits and the
function returns an undefined result to indicate failure.

The iterator is planning to change the value of $_ in the while loop. Since
$_ is a global variable, this means that the function calling the iterator might get
a nasty surprise:

$_ = "'I Tove you';
NEXTVAL ($Q) ;
print $_;

We don’t want the invocation of $q to change the value of $_. To prevent this, the
iterator uses Tocal $_. This saves the old value of $_ on entry to the iterator, and

43 EXAMPLES

arranges for the old value to be automatically restored when the iterator returns.
With this Tocal line, it is safe for the iterator to use $_ any way it wants to.
You should probably take this precaution in any function that uses $_.

A simple demonstration:

use FlatDB;
my $dbh = FlatDB->new('db.txt') or die $!;

my $q = $dbh->query('STATE', 'NY');
while (my $rec = NEXTVAL($q)) {
print $rec;

The output is:

AdTler:David:New York:NY:157.00
Schwern:Michael:New York:NY:149658.23

Many obvious variations are possible. We might support different kinds of
queries, which return a list of the fields, or a list of just some of the fields.
Or instead of passing a field—value pair, we might pass a callback function that

will be called with each record and returns true if the record is interesting:

use FlatDB;
my $dbh = FlatDB->new('db.txt') or die $!;

my $q = $dbh->callbackquery(sub { my %F=@_; $F{STATE} eq 'NY'});
while (my $rec = NEXTVAL($q)) {
print $rec;

Output as before

With callbackquery we can ask for a list of the people who owe more than $10,
which was impossible with ->query:

my $q = $dbh->callbackquery(sub { my %F=@_; $F{OWES} > 10 });
Similarly, we can now use Perl’s full regex capabilities in queries:

my $q = $dbh->callbackquery(sub { my %F=@_; $F{FIRSTNAME} =~ /"M/ });

143

144

CHAPTER 4 lterators

This callback approach is much more flexible than hardwiring every possible
comparison type into the iterator code, and it’s easy to support:

use Fcntl ':seek';
sub callbackquery {
my $self = shift;
my $is_interesting = shift;
my $fh = $self->{FH};
seek $th, 0, SEEK_SET;
<$fh>; # discard header Tline

return Iterator {

Tocal $_;

while (<$fh>) {
chomp;
my %F;
my @fieldnames = @{$self->{FIELDS}};
my @fields = split $self->{FIELDSEP};
for (0 .. $#fieldnames) {

$F{$fieldnames[$_]1} = $fields[$_];

}
return $_ if $is_interesting->(%F);
}
return;
}
}

The only major change here is in the iterator itself, mostly to set up the %F
hash that is passed to the callback. I originally had a hash slice assignment
instead of the for loop:

@F{@{$self->{FIELDS}}} = split $self->{FIELDSEP};

The punctuation made my eyes glaze over, so I used the loop instead.

IMPROVED DATABASE

The database code we've just seen has one terrible drawback: All of the iterators
share a single filehandle, and this means that only one iterator can be active at
any time. Consider this example:

use FlatDB;
my $dbh = FlatDB->new('db.txt') or die $!;

43 EXAMPLES

my $ql1 = $dbh->query('STATE', 'MA');
my $q2 = $dbh->query('STATE', 'NY');
for (1..2) {

print NEXTVAL($ql), NEXTVAL($q2);

Wed like this to print both NY records and both MA records, but it doesn’s; it
produces only one of each:

Ashton:Elaine:Boston:MA:0.00
Schwern:Michael:New York:NY:149658.23

What goes wrong? We would like $q1 to generate records 2 and 4, and $q2
to generate records 1 and 5. The sequence of events is shown in Figure 4.2.
$q1 executes the first time, and searches through the database looking for an
MA record. In doing so, it skips over record 1 (David Adler) and then locates
record 2 (Elaine Ashton), which it returns. The filehandle is now positioned at
the beginning of the third record. When we invoke $q2, this is where the search
continues. $q2 won't find record 1, because the handle is already positioned
past record 1. Instead, the iterator skips the next two records, until it finds
record 5 (Michael Schwern), which it returns. The filehandle is now positioned
just before record 6 (Larry Wall). When $q1 executes the second time, it skips
record 6, reaches the end of the file, and returns undef. All further calls to both
iterators produce nothing but undef because the filehandle is stuck at the end of
the file. Although some commercial databases (such as Sybase) have this same
deficiency, we can do better, and we will.

The obvious solution is to have a separate filehandle for each iterator. But
open filehandles are a limited resource, and a program might have many active
iterators at any time, so we'll adopt a different solution. Each iterator will
remember the position in the file at which its last search left off, and when
it is invoked, it will reset the handle to that position and continue. This allows
several iterators to share the same filehandle without getting confused.

We need to make only a few changes to query to support this:

usage: $dbh->query(fieldname, value)
returns all records for which (fieldname) matches (value)

use Fcntl ':seek';
sub query {
my $self = shift;
my ($field, $value) = @_;

my $fieldnum = $self->{FIELDNUM}{uc $field};

145

146

CHAPTER 4 lterators

HEADER
1 Adler NY
2 Ashton MA

3 Dominus PA
4 Orwant MA
5 Schwern NY

6 Wall

CA

| $ql I (state = MA)

HEADER

1 Adler NY
2 Ashton MA
3 Dominus PA
4 Orwant MA
5 Schwern NY

6 Wall

CA

HEADER

1 Adler NY
2 Ashton MA
3 Dominus PA
4 Orwant MA
5 Schwern NY

6 Wall CA (state = NY)
NEXTVAL ($q1) = undef
HEADER (state = MA)
1 Adler NY
2 Ashton MA
3 Dominus PA
4 Orwant MA
5 Schwern NY
6 Wall CA (state = NY)
NEXTVAL ($q2) = undef
HEADER $ql| (state = MA)
1 Adler NY i
2 Ashton MA

3 Dominus PA
4 Orwant MA
5 Schwern NY

6 Wall

CA

$q2 | (state = NY)

NEXTVAL ($G1) = undef

FIGURE 4.2 Interference between two query handles.

return unless defined $fieldnum;

my $fh = $self->{FH};

seek $th, 0, SEEK_SET;

<$th>; # discard header line
my $position = tell $fh;

return Iterator {

local $_;

seek $fh, $position, SEEK_SET;

while (<$fh>) {
chomp;
$position = tell $fh;
my @fields = split $self->{FIELDSEP};
my $fieldval = $fields[$fieldnum];
return $_ if $fieldval eq $value;

}

return;

};

callbackquery with bug fix
use Fcntl ':seek';
sub callbackquery {

my $self = shift;

my $is_interesting = shift;

my $fh = $self->{FH};

seek $fh, 0, SEEK_SET;

<$th>; # discard header 1line

my $position = tell $fh;

return Iterator {
local $_;
seek $fh, $position, SEEK_SET;
while (<$fh>) {
$position = tell $fh;
my %F;
my @fieldnames = @{$self->{FIELDS}};
my @fields = split $self->{FIELDSEP};
for (0 .. $#fieldnames) {
$F{$fieldnames[$_1} = $fields[$_];
}

return $_ if $is_interesting->(%F);

43 EXAMPLES

147

]48 CHAPTER 4 lterators

}

return;

};

1;

The iterators here capture one additional value, $position, which records the
current position of the filehandle in the file; initially this position is at the start
of the first data record. This position is supplied by the Perl tel1 operator,
which returns the filehandle’s current position; if this position is later used with
seek $fh, $position, SEEK_SET, the filehandle will be set back to that position.
This is precisely what the iterators do whenever they are invoked. Regardless of
what other functions have used the filehandle in the meantime, or where they
have left it, the first thing the iterators do is to seek the filehandle back to the
current position using the seek operator. Each time an iterator reads a record,
it updates its notion of the current position, again using tell, so its seek in a
future invocation will skip the record that was just read.
With this change, our two-iterators-at-once example works perfectly:

Ashton:ETaine:Boston:MA:0.00
Adler:David:New York:NY:157.00
Orwant:Jon:Cambridge:MA:26.30
Schwern:Michael:New York:NY:149658.23

4.3.5 Searching Databases Backwards

Perhaps the most common occurrence of a flat-file database is a process log file.
Anyone who runs a web server knows that the server can churn out megabytes
of log information every day. These logs are essentially flat databases. Each line
represents a request for a web page, and includes fields that describe the source
of the request, the page requested, the date and time of the request, and the
outcome of the request. A sample follows:

208.190.220.160 - - [04/Aug/2001:08:14:29 -0400] "GET /-mjd/pictures/new.gif HTTP/1.1"
200 95 "http://perl.plover.com/" "Mozilla/5.0 (Macintosh; U; PPC; en-US; rv:0.9.2)
Gecko/20010629"

195.3.19.207 - - [04/Aug/2001:13:39:11 -0400] "GET /pics/small-sigils.gif HTTP/1.1" 200 1586
"http://perl.plover.com/" "Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0; DigExt)"

43 EXAMPLES]49

192.94.94.33 - - [07/Aug/2001:12:06:34 -0400] "GET /yak/Identity/s1ide005.htm1 HTTP/1.0"
200 821 "http://perl.plover.com/yak/Identity/s1ide004.htm1" "Mozilla/4.6 [en]
(X11; I; SunOS 5.8 sun4u)"

199.93.193.10 - - [13/Aug/2001:13:04:39 -0400] "GET /yak/dirty/miller_glenn_r.jpg HTTP/1.0"
200 4376 "http://perl.plover.com/yak/dirty/s1ide009.htm1" "Mozilla/4.77 [en] (X11; U;
Sun0S 5.6 sun4u)"

216.175.77.248 - - [15/Aug/2001:14:25:20 -0400] "GET /yak/handson/examples/wordsort.pl
HTTP/1.0" 200 125 "http://perl.plover.com:80/yak/handson/examples/" "Wget/1.5.3"
194.39.218.254 - - [16/Aug/2001:07:44:02 -0400] "GET /pics/medium-sigils.gif HTTP/1.0" 304 -

"http://perl.plover.com/Tocal.html" "Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)"
210.239.93.70 - msdw [22/Aug/2001:01:29:28 -0400] "GET /class/msdw-tokyo/ HTTP/1.0" 401 469

"http://perl.plover.com/class/" "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 4.0)"
151.204.38.119 - - [25/Aug/2001:13:48:01 -0400] "GET /yak/path/hanoi06.gif HTTP/1.0" 200 239

"http://perl.plover.com/yak/path/" "Mozilla/4.77 [en] (WinNT; U)"

One of the common tasks of system administrators is to search through the
log files looking for certain matching records; for example, the last time
a certain user visited, or the last time a certain page was fetched. In fact,
Perl itself first rose to prominence as a tool for helping system administrators

answer exactly these sorts of questions. A typical query will look something like
this:

perl -ane 'print $F[10] if $F[6] =~ m{/book/$}' access-Tog

The -n option implies a loop; Perl will automatically read the input file
access-Tog line by line and execute the indicated program once for each line.
The -a option implies that each line will be automatically sp1it into the special
@F array. The -e option introduces the program, which uses the @F array that
was set up by -a. In these log files, field #6 is the path of the page that is being
requested, and field #10 is the URL of the “referring page,” which is the one that
contained a link to the page that is being requested. This query will yield the
URLs of pages that may contain links to the page that talks about the book you
are now reading.

If what you want is all such records, this works very well. But more often,
you are more interested in recent activity than in old activity. The preceding per1
command example produces the records in chronological order, with the oldest
ones first, because that’s the order in which they appear in the file. That means
that to get to the part of interest, you have to wait until the entire file has been
read, analyzed, and printed. If the file is large, this will take a long time.

One solution to this problem is to store the records in reverse order, with
the most recent ones first. Unfortunately, under most operating systems, this is

150

CHAPTER 4 lterators

impossible. Unix, for example, supports appending records only to the end of
a file, not to the beginning.

Instead, we'll build an iterator that can read a file backwards, starting with
the most recent records. If we plug this iterator into our existing query system,
we'll get a flac-file database query system that produces the most recent records
first, with no additional effort.

A QUERY PACKAGE THAT TRANSFORMS
ITERATORS

There is one minor technical problem that we have to solve before we can
proceed. As written, the F1atDB constructor wants a filename, not another iter-
ator. A few changes are necessary to build a version that accepts an arbitrary
iterator:

package FlatDB::Iterator;
my $FIELDSEP = qr/\s+/;

sub new {
my $class = shift;
my $it = shift;
my @field = @_;
my %fieldnum = map { uc $field[$_] => $_ } (0..$%$#field);
bless { FH => $it, FIELDS => \@field, FIELDNUM => \%fieldnum,
FIELDSEP => $FIELDSEP } => $class;

For the original F1atDB package, we assumed that the data file itself would begin
with a schema line. HTTP log files don’t have a schema line, so here we've
assumed that the field names will be passed to the constructor as arguments.
The calling sequence for F1atDB: :Iterator: :new is:

FlatDB::Iterator->new(
$iterator,
gw(address rfc931 username datetime tz method page protocol
status bytes referrer agent)

)N

The qw(...) list specifies the names of the fields in the data that will be
produced by $iterator.

43 EXAMPLES

query requires only trivial changes. The code to skip the descriptor records
goes away, and the code to fetch the next record changes from:

while (<$fh>) {
to:
while (defined ($_ = NEXTVAL($it))) {

A more subtle change is that we must get rid of the seek $fh, 0, SEEK_SET line,
because there’s no analogous operation for iterators. (We'll see in Chapter 6 how
to build iterators that overcome this drawback.) This means that each database
object can be used only for one query. After that, we must throw it away, because
there’s no way to rewind and reread the data:

usage: $dbh->query(fieldname, value)
returns all records for which (fieldname) matches (value)
sub query {

my $self = shift;

my ($field, $value) = @_;

my $fieldnum = $self->{FIELDNUM}{uc $field};

return unless defined $fieldnum;

my $it = $self->{FH};

seek $fh, 0, SEEK_SET;

<$fh>; # discard header 1ine

return Iterator {

Jocal $_;

while (defined ($_ = NEXTVAL($it))) {
my @fields = split $self->{FIELDSEP};
my $fieldval = $fields[$fieldnum];
return $_ if $fieldval eq $value;

}

return;

};

It’s similarly easy to write the amended version of callbackquery.
If $it were an iterator that produced the lines from a log file in reverse order,
we could use:

my $qit =
FlatDB::Iterator->new($it, @FIELDNAMES)->query($field, $value);

151

]52 CHAPTER 4 lterators

And $qit would be an iterator that would generate the specified records from
the file, one at a time, starting with the most recent.

AN ITERATOR THAT READS FILES BACKWARDS

Building an iterator that reads a file backwards is more an exercise in systems
programming than anything else. We'll take the easy way out and use the Unix
tac program as our base. The tac program reads a file and emits its lines in
reverse order:

sub readbackwards {
my $file = shift;
open my($fh), "|-", "tac", $file
or return;

return Iterator { return scalar(<$fth>) };

If tac isn’t available, we can use the File: :ReadBackwards module from CPAN
instead:

use File::ReadBackwards;
sub readbackwards {
my $file = shift;
my $rbw = File::ReadBackwards->new($file)
or return;

return Iterator { return $rbw->readline };

PUTTING IT TOGETHER
We can now search a log file backwards:

my @fields = gw(address rfc931 username datetime tz method

page protocol status bytes referrer agent);

my $logfile = readbackwards("/usr/Tocal/apache/Togs/access-1og")
my $db = FlatDB::Iterator->new($logfile, @fields);
my $q = $db->callbackquery(sub {my %F=@_; $F{PAGE}=-~ m{/book/$3}});
while (1) {

for (1..10) {

43 EXAMPLES

print NEXTVAL(S$q);
}
print "q to quit; CR to continue\n";
chomp(my $resp = <STDIN>);
last if $resp =~ /q/i;

This program starts up fast and immediately produces the most recent few
records, without reading through the entire file first. It uses little memory, even
when there are many matching records.

We had to do some extra work to read a file backwards in the first place,
but once we had done that, we could plug the iterator directly into our existing
query system.

4.3.6 Random Number Generation

Perl comes with a built-in random number generator. The random numbers
are not truly random; they’re what's called pseudo-random, which means they’re
generated by a mechanical process that yields repeatable results. Perl typically
uses the rand, random, or drand48 function provided by the local C library.
A typical random number generator function looks something like this:

my $seed = 1;

sub Rand {
$seed = (27*$seed+11111) & Ox7fff;
return $seed;

This example has poor randomness properties. For example, its output alternates
between odd and even numbers. Don’t use it in any software that needs truly
random numbers.

The Rand() function takes no arguments and returns a new ‘random”
number. The random number generator has an internal value, called the seed.
Each time it is invoked, it performs a transformation on the seed, saves the new
seed, and returns the new seed. Since the output for Rand depends only on the
seed, we can think of it as generating a single sequence of numbers:

11138
16925

153

154

CHAPTER 4 lterators

[\

9334
985
4938
13365
11518
27185
24210
9421

We can see that the sequence produced by Rand must eventually repeat. Because
the output is always an integer less than 32,768, if we call Rand 32,769 times, two
of the calls must have returned the same value, let’s say . This means that the seed
was v both times. But since the output of Rand depends only on the value of the
seed, the outputs that follow the second appearance of » must be identical to those
that followed the first appearance; this shows that the sequence repeats after no
more than 32,768 calls. It might, of course, repeat much sooner than that. The
length of the repeated portion is called the period of the generator. The sample
random number generator shown here has a period of only 16384. Changing
the 27 to 29 will increase the period to 32768. (The design of random number
generators is a topic of some complexity. The interested reader is referred to
The Art of Computer Programming, Volume II,*> for more information about
this.)

Since the output of the generator depends only on the seed, and the seed is
initialized to 1, this random number generator will generate the same sequence
of numbers, starting with 1, 11138, 16925, ... each time the program is run.

Sometimes this is desirable. Suppose the program crashes. You might like
to rerun it under the debugger to see what went wrong. But if the program’s
behavior depended on a sequence of random numbers, it will be important to
be able to reproduce the same sequence of numbers, or else the debugging run
may not do the same thing and may not reveal the problem.

Nevertheless, when you ask for random numbers, you usually want them to
be different every time. For this reason, random number generators come with
an auxiliary function for initializing the seed:

sub SRand {
$seed = shift;

The Art of Computer Programming, Volume II: Seminumerical Algorithms, Donald E. Knuth,
Addison—Wesley.

43 EXAMPLES

To get unpredictable random numbers, we call the SRand() function once, at
the beginning of the program, with an argument that will vary from run to run,
such as the current time or process ID number:

SRand($$);

The random generator will start at a different place in the sequence each time
the program is run. If the program saves the seed in a file, the seed can be
re-used later during a debugging run to force the generator to produce the
same sequence of random numbers a second time.

This design is very common; C libraries come with paired sets of functions
called rand and srand, or random and srandom, or drand48 and srand48, which
are analogous to Rand() and SRand Q). The Perl built-in rand and srand functions
work the same way, and are usually backed by one or another of the C function
pairs.

This interface has several problems, however. One is that it’s not clear
who has responsibility for seeding the random generator. Suppose you have
the following program:

use CGI::Push;

my $seed = shift || $$;
srand($seed);

open LOG, "> $logfile" or die ... ;
print LOG "Random seed: $seed\n";

do_push(...);

Normally, the program is run with no command-line argument, and the
random number generator is seeded with the process ID as usual. The seed
is then saved to the debugging log. If the program fails, it can be rerun, and the
same seed can be supplied as a command-line argument.

However, there’s a problem. The CGI::Push module also needs to generate
random numbers, and it makes its own call to srand when do_push() is called.
This will overwrite the seed that the main program wanted to use.

Imagine the problems this could cause. Suppose the main program had saved
its seed to a file for use in a later debugging session, and then the program did
indeed crash. You start the debugger, and tell the program to re-use the same
seed. And it does, up until the call to do_push, which re-seeds the generator, using
its own seeding policy, which knows nothing of your debugging strategy. After
the call to do_push, all the random numbers produced by rand are unpredictable
again. The more separate modules the program uses, the more likely they are

155

]56 CHAPTER 4 lterators

CODE LIBRARY

rng-iterator.pl

to fight over the random number seed like drunken fraternity brothers fighting
over the remote control.

A related problem concerns the generator itself. Recall that our example
generator generates a sequence of 16,384 numbers before repeating, but with
careful choice of the constants, we can improve it to get the maximum possible
period of 32,768. Now consider the following program:

use Foo;

while (<>) {
my $random = Rand();
do something with $random
foo(;

Unbeknownst to the author of this program, the foo function, imported from
the Foo module, also generates a random number using Rand. This means that
the pool of 32,768 random numbers is split between the main program and foo,
with the main program getting the first, third, fifth, seventh random numbers,
and so on, and the foo function getting the second, fourth, six, eighth, and so
on. Since the main program is seeing only half of the pool of numbers, the period
of the sequence it sees is only half as big. Whatever is done with $random, it will
repeat every 16,384 lines. Even though we were at some pains to make the pool
of random numbers as large as possible, our efforts were foiled, because both
sources of random data were drawing from the same well of entropy.

The underlying problem here is that the random number generator is
a single global resource, and the seed is a global variable. Global variables
almost always have this kind of allocation problem. Iterators provide a solution.
It’s easy to convert the Rand function to an iterator:

sub make_rand {
my $seed = shift || (time & Ox7fff);
return Iterator {
$seed = (29*$seed+11111) & Ox7fff;

return $seed;

Calling make_rand() returns an iterator that generates a different random
number each time it is called. The optional argument to make_rand() specifies

4.4 FILTERS AND TRANSFORMS]57

the seed; if omitted, it is derived from the current time of day. Revisiting the last
example:

use Foo;

my $rng = make_rand();

while (<>) {
my $random = NEXTVAL($rng);
do something with $random
foo();

The main program now has its own private random number generator, repre-
sented by $rng. This generator is not available to foo. foo can allocate its own
random number generator, which is completely independent of $rng. Each gen-
erator is seeded separately, so there is no question about who bears responsibility
for the initial seeding. Each part of the program is responsible for seeding its
own generators at the time they are created.

If it is desirable for two parts of the program to share a generator for some
reason, they can do that simply by sharing the iterator object.

4.4 FILTERS AND TRANSFORMS

Because iterators are objects, we can write functions to operate on them. What
might be useful? Since iterators encapsulate lists, we should expect that the same
sort of functions that are useful for lists will also be useful for iterators. Two of
Perl’s most useful list functions are grep and map. grep filters a list, returning
a new list of all the elements that possess some property. map transforms a list,
applying an operation to each element, and returning a new list. Both of these
are useful operations for iterators.
In the diagrams that follow, iterators will be represented as follows:

Do something
with value

Iterator

The boxes represent actions, as in a regular flow chart. When an iterator is
kicked, it emits a value, which is represented by the dotted line coming out of
the left-hand side. Solid arrows represent the flow of control, dotted arrows the
flow of data.

158 CHAPTER 4 lterators

4.4.1 dmapQ
We'll see the iterator version of map first because it’s simpler:

sub imap {
my ($transform, $it) = @_;
return Iterator {
my $next = NEXTVAL($it);
return unless defined $next;

return $transform->($next);

imap() takes two arguments: a callback function and an iterator. It returns
a new iterator whose output is the same as that of the original iterator, but
with every element transformed by the callback function:

imap($f, $it)
$it
[kick R
$it "
_____ $F I
" e

OoArOA "k gee6

(HOoN)

For example, suppose we wanted a random number generator that behaved
more like Perl’s built-in generator, returning a fraction between 0 and 1 instead
of an integer between 0 and 32767. We could rewrite make_rand(), but there’s
no need if we have imap():

my $rng = imap(sub { $_[0] / 37268 }, make_rand());
make_rand() constructs an iterator that generates a random integer, as before.

We pass the iterator to imap(), which returns a different iterator, which is
stored in $rng. When we invoke $rng, it calls the original iterator, which

4.4 FILTERS AND TRANSFORMS]59

returns an integer; this is stored in $next and passed to $transform, which
divides the integer by 32768 and returns the result. The first few outputs from
$rng are:

0.298915960072985
0.174170870451862
0.0735751851454331
0.673312224965118
0.480626811205324
0.168267682730493
0.781635719652249
0.104996243425995
0.705269936674895
0.528147472362348

The syntax for imap() is a little cumbersome. Since it’s analogous to map, it
would be nice if it had the same syntax. Fortunately, Perl allows this. The first
step is to add a prototype to imapQ):

sub imap (&$) {
my ($transform, $it) = @_;
return Iterator {
my $next = NEXTVAL(S$it);
return unless defined $next;
return $transform->($next);
}
}

The (&$) tells Perl that imap() will get exactly two arguments, that the first
will be a code reference (& symbolizes subroutines) and the second will be a scalar
($ symbolizes scalars). When we announce to Per] that a function’s first argument
will be a code reference, the announcement triggers a change in the Perl parser to
allow the word sub to be omitted from before the first argument and the comma
to be omitted after — just as with map and grep. We can now write:

my $rng = imap { $_[0] / 37268 } make_rand();
The $ in the prototype will ensure that make_rand() will be called in scalar

context and will produce a single scalar result; normally, it would be called in
list context and might produce many scalars.

160 CHAPTER 4 lterators

The only difference between this syntax and map’s is that we had to use $_[0]
in the code block instead of $_. If we are willing to commit more trickery, we
can use $_ instead of $_[0] in the code reference, just as with map:

sub imap (&$) {
my ($transform, $it) = @_;
return Iterator {
Tocal $_ = NEXTVAL(S$it);
return unless defined $_;
return $transform->Q);

Instead of storing the output of the underlying iterator into a private $next
variable, we store it into $_. Then we needn't pass it explicitly to $transform;
$transform can see the value anyway, because $_ is global. As usual, we use Tocal
to save the old value of $_ before we overwrite it. We can now write:

my $rng = imap { $_ / 37268 } make_rand(Q);

which has exactly the same syntax as map.

442 -dgrepQ

The trickery is the same for igrep(), and only the control flow is different:

sub igrep (&%) {
my ($is_interesting, $it) = @_;
return Iterator {
Tocal $_;
while (defined ($_ = NEXTVAL($it))) {
return $_ if $is_interesting->Q);
}

return;

The iterator returned by igrep() kicks the underlying iterator repeatedly until it
starts returning undef (at which point igrep() gives up and also returns undef)
or it returns an interesting item, as judged by the $is_interesting callback
(see Figure 4.3). When it finds an interesting item, it returns it.

4.4 FILTERS AND TRANSFORMS

igrep($f, $it)

*\\\\\\‘ " $it

$it

igrep
LO0AAOO tel) OOO0...

FIGURE 4.3 1igrepQ.

Now that we have igrep(), we no longer need interesting_files(), which
searched a directory tree and returned the interesting files. Instead, we can get
the same effect by filtering the output of dir_walk(:

instead of my $next_octopus =
interesting_files(\&contains_octopuses, 'uploads', 'downloads");

my $next_octopus = igrep { contains_octopuses($_) }
dir_walk('uploads', 'downloads');

while ($file = NEXTVAL($next_octopus)) {
do something with the file

4.4.3 T1ist_iterator()
Sometimes it’s convenient to have a way to turn a list into an iterator:

sub list_iterator {
my @items = @_;
return Iterator {
return shift @items;

};

161

162 CHAPTER 4 lterators

@its

4

\ 0
sitsCol| |[i%

¢ 1
< 454555520
PR Shift s
@its Q

(J

@@@ append
- ~ AALIOGOO
AAA

FIGURE 4.4 append().

list_iterator('fish', 'dog', 'carrot') produces an iterator that generates
"fish', then 'dog', then 'carrot', and then an infinite sequence of undefined
values.

4.4.4 append()

map and grep arent the only important operations on lists. Some of the most
important operations don't even have names, because they’re so common. One
of these is the append() operation (see Figure 4.4), which attaches two or more
lists together head-to-tail to yield a single list.

sub append {
my @its = @_;
return Iterator {
while (@its) {

4.5 THE SEMIPREDICATE PROBLEM

my $val = NEXTVAL($its[0]);

return $val if defined $val;

shift @its; # Discard exhausted iterator
}
return;

b

We call append () with zero or more iterators as arguments. It returns a new
iterator that produces all the items from the first iterator, followed by all the
items from the second iterator, and so on. For example, append(upto(1,3),
upto(5,8), upto(9,11)) returns an iterator that yields the values 1, 2, 3, 5, 6,
7,8,9, 10, 11 in order, and undefined values thereafter.

The while loop invokes the first iterator in the argument list; if it yields
an undefined value, the first iterator is exhausted, so it is discarded (by the
shift) and the next argument is tried. This continues until a nonempty iterator
is found or the argument list is itself exhausted. Then the loop exits and the
iterator returns the value from the nonempty iterator, if there was one, or undef
if not.

45 THE SEMIPREDICATE PROBLEM

So far, our iterators have all indicated exhaustion by returning the undefined
value. For the examples we've seen, this is perfectly adequate. An undefined
value can never be confused with any number, any file path, any permutation of
a list, or any string. But in general, an iterator might generate data that includes
the undefined value. For example, consider an iterator whose job is to generate
values from certain columns of a SQL database. SQL databases have a special
NULL value that is different from every number and every string. It’s natural to
represent this NULL value in Perl with undef, and in fact the Perl DBI module does
this. But if the database field can potentially contain any string value or NULL,
then the iterator cannot use undef to indicate end-of-data as well as NULL.

Most of our iterator utility functions, such as imap(), will become confused
if the iterator generates undef as a valid data value. If the iterator returns undef to
indicate that the database contained NULL, the utility function will erroneously
conclude that the iterator has been exhausted.

You may recall from Chapter 3 that this is called the semipredicate problem.
Our iterators are semipredicates because they return undef to indicate exhaus-
tion, and a data value otherwise. The difficulty occurs when we need undef
to sometimes be understood as a data value instead of as a flag indicating
exhaustion.

163

164

CHAPTER 4 lterators

4.5.1 Avoiding the Problem

There are several ways around this. One is simply to declare that no iterator is
ever allowed to return an undefined value; if undef is a legal return, the iterator
must be restructured to return its data in some other format. Suppose we have
an iterator that might return any scalar value, including undef:

sub make_iterator {

return Iterator {
my $return_value;

if (exhausted) {
return;

} else {
return $return_value;

This won’t work because the caller will not be able to distinguish an iterator
returning undef to indicate exhaustion from one that happens to be returning
an undefined value of $return_value. We can restructure this iterator to be
unambiguous:

array reference version
sub make_iterator {

return Iterator {
my $return_value;

if (exhausted) {
return;
} else {
return [$return_value];

The iterator now always returns an array reference, except that it returns undef
when it is exhausted. When $return_value is undefined, the iterator returns
[undef], which is easily distinguished from undef because it is defined. In fact,
the caller doesn’t even need to use defined, because the exhaustion indicator is
false, while all other possible returns, including [undef], are true.

4.5 THE SEMIPREDICATE PROBLEM

Often this simple solution imposes no extra costs. The Perl DBI module uses
this strategy in some cases. The $sth->fetchrow_arrayref method returns a row
of data from the result of a database query using an undefined return to indicate
that there are no more rows available.

Each row may contain undefined values, which represent the database’s
NULL entries, and if a row contains only one field, it may be a single NULL. But
fetchrow_arrayref always returns the row data as an array reference, so a row
with a single NULL is easily distinguished from the undef that indicates that no
more rows are available:

while (my $row = $sth->fetchrow_arrayref) {
do something with this $row

}

no more rows
A related solution is to require that the iterator be used only in list context:

list-context-only version
sub make_iterator {

return Iterator {
my $return_value;

if (exhausted) {
return Q;

} else {
return $return_value;

Now a successful call to the iterator always returns a value, and when the itera-
tor is exhausted it stops returning values. We can use it like this:

while (($val) = NEXTVAL(S$iterator)) {
do something with $val
3

iterator is exhausted

The value of a list assignment when used as the condition of a while or i f state-
ment is the number of values returned on the right-hand side of the assignment.
Even if the iterator returns a list such as (undef) or (0), the condition tested by

165

166

CHAPTER 4 lterators

while will be 1, which is true. When the iterator is exhausted, it will return an
empty list, the condition will evaluate to 0, and the loop will exit.

4.5.2 Alternative undefs

Sometimes we don’t want to avoid the semipredicate problem by returning lists
or arrayrefs, or we can't. For DBI, the technique is natural, because the data in a
row of a database is naturally represented as an array. But if our iterator returns
only single scalars, it may be inconvenient to wrap up every value as an array
reference just to unwrap it again in the caller. There are several strategies for
dealing with the problem instead of avoiding it this way.

The first strategy is that when we construct the iterator, we could supply
a special value that we know will never be returned normally. This value could
be captured in the iterator, something like this:

sub make_iterator {

I
l@

my (..., $final_value, ...)

return Iterator {

if (exhausted) { return $final_value }

However, this would be annoying, since we'd have to inform functions like
imap() what the special final value was for each iterator they needed to process.
It’s possible to construct a single value that will work for every iterator in the
entire program, so that the iterators and the functions that use them can all
assume it.

To construct such a value, we use a trick borrowed from the C language.
In C, many functions return pointers; for example, the memory allocator
(malloc) returns a pointer to a block of unused memory, and the fopen function
returns a pointer to C’s version of a filehandle object. C has a special pointer
value, called the null pointer, which these functions return when there is an error.
The null pointer’s only useful property is that it compares unequal to any valid
pointer.

Occasionally a C programmer wants to write a function that can return
pointers, and indicate two sorts of errors with two different special values.
The null pointer will serve for one of these two, but what will be the other
one? In C there’s an easy solution: use malloc to allocate a byte and return a

4.5 THE SEMIPREDICATE PROBLEM

pointer to it; this will serve as the alternative special value. No other valid pointer
will ever point to that address, because malloc has reserved it.

We can do an analogous thing in Perl. We will invent a new value that
can’t possibly be confused with any legal data value, including undef. We will
use this “alternative undef” in place of the real undef. How can we do that? Its
simple:

$EXHAUSTED = [];

$EXHAUSTED is now guaranteed to be distinct from any other value our pro-
gram will ever generate. If a value is not an arrayref, we can distinguish it from
$EXHAUSTED, which is an arrayref. If a value is an arrayref, then it must refer to
a different array than $EXHAUSTED does, unless it was copied from $EXHAUSTED
itself. That is,

\@a == $EXHAUSTED

is guaranteed to be false for all arrays @a. Similarly, [...] == $EXHAUSTED is
guaranteed to be false, because [...] generates a new, fresh array, which is
different from the one in $EXHAUSTED.

We can now write functions, analogous to undef and defined, to generate
and detect special values:

my $EXHAUSTED = [];

1like 'undef()'
sub special () { return $EXHAUSTED }

Tike 'not defined()'
sub is_special ($) {
my $arg = shift;
ref($arg) && $arg == $EXHAUSTED;

Having done this, we can build an iterator that uses $EXHAUSTED to indicate
end-of-data:

sub dbi_query_iterator {

my ($sth, @params) = @_;

167

168

CHAPTER 4 lterators

$sth->execute(@params) or return ;
return Iterator {
my $row;
if ($sth && $row = $sth->fetchrow_arrayref()) {
return $row->[0];
} else { # exhausted
undef $sth;
return special(Q);

$sth is a Perl DBI object that represents a SQL statement. dbi_query_iterator()
takes this object and yields an iterator that will produce the results of the query,
one at a time. It asks the database to execute the query by calling $sth->execute;
if this fails it returns failure. Otherwise, the iterator uses the DBI method
fetchrow_arrayref to fetch the next row of data from the database; it extracts
the first item from the row, if there was one, and returns it. This item might be
undef, which indicates a NULL database value.

When there are no more rows, fetchrow_arrayref returns undef. The iter-
ator discards the private copy of $sth and returns the special value. Since the
special value is distinguishable from any other scalar value, the caller receives an
unambiguous indication that no more data is forthcoming. On future calls, the
iterator continues to return the special value.

The caller can use the iterator this way:

until (is_special(my $value = NEXTVAL($iterator))) {
do something with $value
}

no more data

It might seem that we could simplify the definition of is_special() by
eliminating the test for ref($arg):

MIGHT NOT ALWAYS WORK
sub is_special {

my $arg = shift;

$arg == $EXHAUSTED;

But this isn't so. If $arg were an integer, and we were very unlucky, the test
might yield true! Comparing an integer to a reference with == actually compares

4.5 THE SEMIPREDICATE PROBLEM

the integer to the machine address at which the referenced data is stored, and
these two numbers might match. Similarly, using plain eq without the addi-
tional ref test wouldn't be enough, because $arg might happen to be the string
ARRAY (0x436c1d) and might happen to match the stringized version of the refer-
ence exactly. So we need to check $arg for referencehood before using == or eq.
This kind of failure is extremely unlikely, but if it 4id happen it could be very
difficult to reproduce, and it might take us weeks to track down the problem,
so it’s better to be on the safe side.

4.5.3 Rewriting Utilities

If we switch from using an undefined value to using a special value, it looks
like all the code that uses iterators, including functions like imap(), will have
to be rewritten, because we've changed the interface specification. For example,
imap() becomes:

sub special_imap {
my ($transform, $it) = @_;
return Iterator {
my $next = NEXTVAL($it);
return special() if dis_special($next);
return $transform->($next);

It might seem that we need to pick an interface and then stick with it, but
we don’t necessarily. Suppose we write all our utilities to use the special-value
interface; our imap () is actually the special_imap() above.

Now we want to use some iterator, say $uit, that uses the undef convention
instead of the special-value convention. Do we have to re-implement imap() and
our other utilities to deal with the new undef iterators? No, we don’t:

sub undef_to_special {
my $it = shift;
return Iterator {
my $val = NEXTVAL($it);
return defined($val) ? $val : special(Q) ;

We can’t pass $uit directly to imap(), but we can pass undef_to_special (Suit)
instead, and it will do what we want. undef_to_special() takes an undef-style

169

170

CHAPTER 4 lterators

iterator and turns it into a special-value-style iterator. It is like a mask that an
iterator can wear to pretend that its interface is something else. Any undef-
style iterator can put on the undef_to_special() mask and pretend to be an
special-value-style iterator.

We could also write a similar special_to_undef() mask function to convert
the other way. Of course, it wouldn’t work correctly on iterators that might
return undefined values.

4.5.4 Tterators That Return Multiple Values

The “special value” solution to the semipredicate problem works adequately, but
has the disadvantage that the special() and is_special() functions may have
to be exported everywhere in the program. (And also the possible disadvantage
that it may be peculiar.) Since functions in Perl can return multiple values, and
an iterator is just a function, a more straightforward solution may be to have the
iterator return two values at a time; the second value will indicate whether the
iterator is exhausted:

sub dbi_query_iterator {
my ($sth, @params) = @_;
$sth->execute(@params) or return ;
return Iterator {
my $row;
if ($sth && $row = $sth->fetchrow_arrayref()) {
return ($row->[0], 1);
} else { # exhausted
if ($sth) { $sth->finish; undef $sth; }
return (undef, 0);

To use this, the caller writes something like:

while (my ($val, $continue) = NEXTVAL($iterator)) {
Tlast unless $continue;
do something with $val...

}

now it is empty

4.5 THE SEMIPREDICATE PROBLEM 171

4.5.5 Explicit Exhaustion Function

The iterator knows when it is exhausted, and it will tell us if we ask it. But we
haven’t provided any way to do that; all we can do is ask it for the next value with
the NEXTVAL operator. We would like to be able to ask the iterator two types of
questions: “Are you empty?” and if not, “Since you're not empty, what is the next
item?” There’s an obvious hook to hang this expansion on: Since the iterator is
simply a function, we will pass it an argument to tell it which question we want
answered. To preserve compatibility (and to optimize the common case) we'll
leave the iterator’s behavior the same when it is called without arguments; calling
it with no arguments will continue to ask an iterator to return its next value. But
we'll add new semantics: if we pass the iterator the string "exhausted?", it will
return a true or false value indicating whether or not it is empty. With this new
functionality added, our dbi_query_iterator() becomes:

sub dbi_query_iterator {
my ($sth, @params) = @_;
$sth->execute(@params) or return ;
my $row = $sth->fetchrow_arrayref();
return Iterator {
my $action = shift() || 'nextval';
if ($action eq 'exhausted?') {
return ! defined $row;
} elsif ($action eq 'nextval') {
my $oldrow = $row;
$row = $sth->fetchrow_arrayref;
return $oldrow->[0];

The iterator now returns undef either when the rows are exhausted or when
the value in the row happens to be NULL, and the caller can’t tell which. But
that doesn’t matter, because the caller of this iterator isn’t looking for undef to
know when to stop reading the iterator. Instead, the caller is doing this:

until ($iterator->('exhausted?')) {
my $val = NEXTVAL(S$iterator);

}

now it is empty

172 CHAPTER 4 lterators
We can provide syntactic sugar for 'exhausted?' that is analogous to NEXTVAL:

sub EXHAUSTED {
$_[0]->("exhausted?');

This loop then becomes:

until (EXHAUSTED($iterator)) {
my $val = NEXTVAL($iterator);

}

now it is empty
Or, if you don’t like unti1, we could define the obvious MORE function, and write:

while (MORE($iterator)) {
my $val = NEXTVAL($iterator);

}

now it is empty

A mask function allows iterators in the old, undef-returning style to support
EXHAUSTED queries:

sub undef_to_exhausted {
my $it = shift;
my $val = NEXTVAL(S$it);
return Iterator {
my $action = shift || 'nextval';
if ($action eq 'nextval') {
my $oldval = $val;
$val = NEXTVAL($it);
return $oldval;
} elsif ($action eq 'exhausted?') {
return not defined $val;

If our versions of utilities such as imap() are set up to support the NEXTVAL/
EXHAUSTED interface, we can still use the old-style iterators with them, by wrap-
ping them in an undef_to_exhausted() mask. Similarly, the utilities produce

4.5 THE SEMIPREDICATE PROBLEM

iterators with the NEXTVAL/EXHAUSTED interface, so if we want to use one in the
old undef style (and we know that’s safe) we can build a mask function that goes
the other way:

sub exhausted_to_undef {
my $it = shift;
return Iterator {
if (EXHAUSTED($it)) { return }
else { return NEXTVAL($it) }

It’s better if all our iterators conform to the same interface style, of course, but
the mask functions show that they don’t have to, and that if we make the wrong
choice early on and have to switch to a different system later on, we can do
that, or if we want to use the simple style for most iterators and save the more
complicated two-operation interface for a few cases, we can do that also.

Interfacing different sorts of iterators is something we've also been doing
implicitly through the entire chapter. In Section 4.3 we saw filehandle_
iterator(), which is essentially a mask function: it converts one kind of iter-
ator (a filehandle) into another (our synthetic, function-based iterators). If we
needed to, we could go in the other direction and write a mask function that
would wrap up one of our iterators as a filehandle, using Perl’s tied filehandle
interface. We will see how to do this in Section 4.6.3.

Similarly, the various versions of dbi_query_iterator() were also mask
functions, converting from DBI’s statement handles to function-based iterators.
We could go in the other direction here if we had to, probably by building an
object class that obeyed the DBI statement handle interface, but implementing
our own versions of ->fetchrow_arrayref and the like.

4.5.6 Four-Operation Iterators

As long as we're on the topic of iterators that support two kinds of queries
(one for exhaustion and one for the next value), we might as well see this
idea in its full generality. The C-style for loop has a very general model of
iteration:

for (initialize; test; update) {

action;

173

]74' CHAPTER 4 lterators

Occasionally you may need an equally general iterator:

for ($it->('start'); not $it->('exhausted?'); $it->('next')) {
do something with $it->('value');

exhausted? here is as in the previous section. The next operation doesn't return
anything; it just tells the iterator to forget the current value and to get ready to
deliver the next value. value tells the iterator to return the current value; if we
make two calls to $it->('value') without $it->("next') in between, we'll get
the same value both times.

start initializes the iterator. An explicit start call simplifies the code in some
of the iterators we've seen already. For example, dbi_query_iterator() had to
do fetchrow_arrayref() in two places, once to initialize itself, and once after
every NEXTVAL:

sub dbi_query_iterator {
my ($sth, @params) = @_;
$sth->execute(@params) or return;
my $row = $sth->fetchrow_arrayref();
return Iterator {
my $action = shift() || 'nextval';
if ($action eq 'exhausted?') {
return ! defined $row;
} elsif ($action eq 'nextval') {
my $oldrow = $row;
$row = $sth->fetchrow_arrayref;

return $oldrow;

Here’s the four-operation version of the same function. Although it does more,
the code is almost the same length:

sub dbi_query_iterator {
my ($sth, @params) = @_;
$sth->execute(@params) or return ;
my $row;
return Iterator {

my $action = shiftQ;

4.5 THE SEMIPREDICATE PROBLEM

if ($action eq 'exhausted?') {
return ! defined $row;
} elsif ($action eq 'value') {
return $row;
} elsif ($action eq 'next' || $action eq 'start'){
$row = $sth->fetchrow_arrayref;
} else {
die "Unknown iterator operation 'S$action'";

We can still support the old NEXTVAL operation if we want to:

sub dbi_query_iterator {
my ($sth, @params) = @_;
$sth->execute(@params) or return ;
my $row;
return Iterator {
my $action = shift() || 'nextval';
if ($action eq 'exhausted?') {
return ! defined $row;
} elsif ($action eq 'value') {
return $row;
} elsif ($action eq 'next'|| $action eq 'start'
|| $action eq 'nextval') {
return $row = $sth->fetchrow_arrayref;
} else {
die "Unknown iterator operation 'S$action'";

Here calling start twice has a possibly surprising effect: start and next are
identical! Sometimes it’s useful to have start mean that the iterator should start
over at the beginning, forcing it to go back to the beginning of its notional list.
The cost of this is that the iterator has to remember a list of all the values it
has ever produced, in case someone tells it to start over. It also complicates the
programming. While this is occasionally useful enough to be worth the extra
costs, it’s usually simpler to declare that calling start twice on the same iterator
is erroneous.

175

176

CHAPTER 4 lterators

4.5.7 Tterator Methods

People can be funny about syntax, and Per] programmers are even more obsessed
with syntax than most people. When Larry Wall described the syntax of Perl 6 for
the first time, people were up in arms because he was replacing the -> operator
with . and the . operator with _. Even though there is only a little difference
between:

$it->start
and:

$it->("start')
people love the first one and hate the second one. It’s easy to make the first syntax
available though. The first syntax is an object method call, so we need to make
our iterators into Perl objects. We do that with a small change to the Iterator()
function:

sub Iterator (&) {

my $it = shift;
bless $it => 'Iter';

Now we can add whatever methods we want for iterators:

sub Iter::start { $_[0]->("'start") }
sub Iter::exhausted { $_[0]->('exhausted?') }
sub Iter::next { $_[0]->("next") }
sub Iter::value { $_[0]->('value") }

The prototypical loop, which looked like this:
for ($it->('start'); not $it->('exhausted?'); $it->('next')) {
do something with $it->('value');
}

can now be written like this:

for ($it->start; not $it->exhausted; $it->next) {
do something with $it->value;

4.6 ALTERNATIVE INTERFACES TO ITERATORS

4.6 ALTERNATIVE INTERFACES TO
ITERATORS

We've already seen that there are two ways to get the next value from any of these
iterators. We can use:

$next_value = NEXTVAL($iterator);
or, equivalently, we can write:
$next_value = $iterator->Q);

which is just what NEXTVAL is doing behind the scenes.
So much for syntax; semantics is more interesting. Since an iterator is just a
function, we aren’t limited to iterators that return scalar values.

4.6.1 Using foreach to Loop Over More Than One Array

An occasional question is how to loop over two arrays simultaneously. Perl
provides foreach, and the equivalent for, which are convenient when you want
to loop over a single array:

for $element (@) {
do something with $element

}

But suppose you want to write a function that compares two arrays element by
element and reports whether they are the same? (The obvious notation, @x ==
@y, returns true whenever the two arrays have the same length.) You'd like to loop
over pairs of corresponding elements, but there’s no way to do that. The only
obvious way out is to loop over the array indices instead:

sub equal_arrays (\@\@) {
my ($x, $y) = @_;

return unless @$x == @$y; # arrays are the same Tlength?
for my $i (0 .. $#$x) {

return unless $x->[$i1] eq $y->[$i]; # mismatched elements
}
return 1; # arrays are equal

}
To call this function, we write:

if (equal_arrays(@x, @y)) { ... }

177

178 CHAPTER 4 lterators

The (\@\@ prototype tells Perl that the two argument arrays should be passed
by reference, instead of being flattened into a single list of array elements. Inside
the function, the two references are stored into $x and $y. The @$x == @$y test
makes sure that the two arrays have equal lengths before examining the elements.

An alternative approach is to build an iterator that can be used whenever
this sort of loop is required:

sub equal_arrays (\@\@) {
my ($x, $y) = @_
return unless @$x == @$y;
my $xy = each_array(@_);
while (my ($xe, $ye) = NEXTVAL($xy)) {
return unless $xe eq $ye;
}

return 1;

The following iterator, invented by Eric Roode, does the trick:

sub each_array {
my @arrays = @_;
my $cur_elt = 0;

my $max_size = 0;

Get the length of the Tongest input array
for (@arrays) {

$max_size = @$_ if @$_ > $max_size;

return Iterator {
$cur_elt = 0, return () if $cur_elt >= $max_size;
my $i = $cur_elt++;
return map $_->[$i], @arrays;

1

The caller of this function passes in references to one or more arrays, which
are stored into @arrays. The iterator captures this variable, as well as $cur_elt,
which records its current position. Each time the iterator is invoked, it gathers
one element from each array and returns the list of elements; it also increments
$cur_elt for next time. When $cur_elt is larger than the last index of the

4.6 ALTERNATIVE INTERFACES TO ITERATORS

largest array, the iterator is exhausted and returns the empty list instead, resetting
$cur_elt so that the iterator can be used again.

Another place where this function might be useful is in generating HTML
forms. Suppose @labels contains a list of user-visible labels for radio buttons,
say ('Alaska', 'Alabama', ... 'Yukon Territory'),and @values contains the
internal tags that will be sent back by the browser when the user selects each
button, say ('AK', 'AL', ..., 'YT").

Probably these arrays should have been structured as an array of arrays,
(['Alaska', 'AK'], ['Alabama', 'AL'], ...), but thats not always conve-
nient or even possible. (It’s tempting to say that the structure should have been
a hash, but that’s a mistake for several reasons: the hash loses the order of the
data; also, neither labels nor values are required to be distinct.)

With the multiple-list iterator, we can write things like:

my $buttons = each_array(\@labels, \@values);

while (my ($1abel, $value) = NEXTVAL($buttons)) {
print HTML qg{<input type=radio value="$value"> $label
\n};

The version Eric Roode uses has a clever twist:

sub each_array (\@;\@\@\@\@\@\@\@\@\@\@\e\e\e\e\e\e\ae\a\a\a\a\a\a\@®) {

my @arrays = 0_;

The prototype here says that the arguments will be arrays, and will be passed
implicitly by reference, and that there will be at least one. The ; character sepa-
rates the required arguments from the optional ones. Because of the prototype,
Eric can leave off the backslashes in calls to each_array(), and write:

$ea = each_array(@a, @b, @c, @d);
While this is slightly more convenient for his common case, it forecloses the
possibility of passing literal array references or array references contained in scalar

variables, so that:

$aref = \@a;
$ea = each_array($aref, [1,2,3]);

179

180

CHAPTER 4

Iterators

becomes illegal; it must be written in this somewhat bizarre form:

$ea = each_array(@$aref, @{[1,2,3]1});

Besides, a more interesting use for the argument space is coming up.

argument:

If the first argument is not an array ref, we shift it off into $stop_type, which
otherwise defaults to "maximum". Only "maximum" and "minimum" are supported

sub each_array {

my @arrays = 0_;

my $stop_type = ref $arrays[0] ? 'maximum' : shift @arrays;
my $stop_size = @{$arrays[0]};

my $cur_elt = 0;

Get the length of the Tongest (or shortest) input array
if ($stop_type eq 'maximum') {
for (@arrays) {
$stop_size = @$_ if @$_ > $stop_size;
}
} elsif ($stop_type eq 'minimum') {
for (@arrays) {
$stop_size = @$_ if @$_ < $stop_size;
}
} else {

croak "each_array: unknown stopping behavior '$stop_type'";

return Iterator {
return () if $cur_elt >= $stop_size;
my $i = $cur_elt++;
return map $_->[$i], @arrays;

};

It’s not clear what the best behavior is when the function is passed arrays
of different lengths, say (1,2,3) and ("'A",'B",'C",'D"). The preceding version
returns four pairs: (1, 'A'), (2, 'B'), (3, 'C'), and (undef, 'D'). It might
be preferable in some circumstances to have the iterator become exhausted at
the end of the shortest input array, instead of the longest. To get this behavior,
just replace the maximum computation with a minimum. We can also provide
a version of each_array that has either behavior, depending on an optional

4.6 ALTERNATIVE INTERFACES TO ITERATORS 181

here. As usual, we can gain flexibility and eliminate the repeated code by allowing
a callback argument to specify the method for selecting the stopping point:

sub each_array {

my @arrays @_;
my $stop_func = UNIVERSAL::isa($arrays[0], 'ARRAY') ? 'maximum' : shift @arrays;

my $stop_size = @{$arrays[0]};

my %stop_funcs = ('maximum'=>
sub { $_[0] > $_[11 ? $_[0] : $_[1] },
"minimum'=>
sub { $_[0] < $_[1]1 ? $_[0] : $_[1] },
)3

unless (ref $stop_func eq '"CODE') {
$stop_func = $stop_funcs{$stop_func}

or croak "each_array: unknown stopping behavior '$stop_func'";

Get the length of the longest (or shortest) input array
for (@arrays) {

$stop_size = &$stop_func($stop_size, scalar @$_);

my $cur_elt = 0;

return Iterator {
return () if $cur_elt >= $stop_size;
my $i = $cur_elt++;
return map $_->[$i], @arrays;

3
each_array now has several calling conventions. The basic one we’ve seen already:
my $each = each_array(\@x, \@y, ...);
This builds an iterator that produces one list for each element in the longest
input array. The first argument to each_array may also be a callback function

that is used to generate the array limit:

sub max { $_[0] > $_[1] ? $_[0] : $_[1] 3;
my $each = each_array(\&max, \@x, \@y, ...);

182

CHAPTER 4 lterators

The callback function is given two arguments: the current stopping size and the
size of one of the arrays. It returns a new choice of stopping size. In the preced-
ing example, it returns the maximum. The third way of calling each_array is to
pass a string key that symbolizes a commonly chosen function:

my $each = each_array('maximum', \@x, \@y, ...);

This selects a canned maximum function from the table %stop_funcs.
We can get a different behavior by supplying a more interesting function:

my $all_equal = sub {
if ($_[0] == $_[1]) { return $_[0] }
croak "each_array: Not every array has length $_[0]";

b
my $each = each_array($all_equal, \@x, \@y, ...);

Here each_array croaks unless every input array has the same length. If this
behavior turns out to be frequently needed, we can add the $a11_equal function
to the %stop_funcs table and support:

my $each = each_array('all_equal', \@x, \@y, ...);

without breaking backward compatibility.

4.6.2 An Iterator with an each-Like Interface

Every Perl hash contains an iterator component, which is accessed by each().
Each call to each() produces another key from the hash, and, in list context, the
corresponding value.

Following this model, we can make a transformation function, analogous
to imap(), that may produce a more useful result:

sub eachlike (&$) {
my ($transform, $it) = @_;
return Iterator {
Tocal $_ = NEXTVAL($it);
return unless defined $_;
my $value = $transform->Q);
return wantarray ? ($_, $value) : $value;

4.6 ALTERNATIVE INTERFACES TO ITERATORS

eachlike() transforms an iterator by applying a function to every element of the
iterator. In scalar context, the iterators produced by eachlike() behave exactly
the same as those produced by imap(). But in list context, an eachlike () iterator
returns two values: the original, unmodified value, and the transformed value.
For example:

my $n = eachlike { $_ * 2 } upto(3,5);
This loop will print the values 6, 8, 10, just as if we had used imapQ):
while (defined(my $q = NEXTVAL($n))) {
print "$g\n";
}
This loop will print 3 6,4 8,5 10:
while (my @gq = NEXTVAL($n)) {
print "@g\n";

}

Our implementation of dir_walk() took a callback argument; the callback
function was applied to each filename in the directory tree, and the iter-
ator returned the resulting values. This complicated the implementation of
dir_walk(). eachlike () renders this complication entirely unnecessary. It’s quite
enough for dir_walk() to return plain filenames, because in place of:

my $it = dir_walk($DIR, sub { ... });
‘We can now use:
my $it = eachlike { ... } dir_walk($DIR);

In scalar context, $it will behave as if it had been generated by the former, more
complicated version of dir_walk(). But in addition, it can also be used like this:

while (my ($filename, $value) = NEXTVAL(S$it)) {
do something with the filename or the value or both

For example, print out all the dangling symbolic links in a directory:

my $it = eachlike { -1 && ! -e } dir_walk($DIR);
while (my ($filename, $badlink) = NEXTVAL($it)) {
print "$filename is a dangling 1ink" if $badlink;

183

184

CHAPTER 4 lterators

4.6.3 Tied Variable Interfaces

The ordinary interface to an iterator may be unfamiliar. By using Perl’s tie
feature, which allows us to associate any semantics we want with a perl variable,
we can make an iterator look like an ordinary scalar. Or rather, it will look like
one of Perl’s magical scalars, such as $! or $., which might contain different
values depending on when it’s examined.

SUMMARY OF tie

In Perl, scalar variables may be #ied. This means that access to the variable is medi-
ated by a Perl object. The tie function associates the variable with a particular
object, which we say is tied to the variable.

Suppose the scalar $s is tied to the object $o.

When you write this: Perl actually does this instead:

print $s; print $0->FETCHQ);
$r = $s; $r = $0->FETCHQ);
$s = $value; $0->STORE($value);

If anyone tries to read from or write to $s, then instead of doing whatever it
would usually do, Perl makes a method call on $o instead. An attempt to read
$s turns into $0->FETCHQ). The return value of the FETCH method is reported
as being the value stored in $s.

Similarly, an attempt to do $s = $value turns into $o->STORE($value).
It is the responsibility of the STORE method to store the value somewhere so
that it can be retrieved by a later call to FETCH.

To tie a scalar variable in Perl, we use the built-in tie operator:

tie $scalar, 'Package', ARGUMENTS...

This makes a method call to Package->TIESCALAR(ARGUMENTS. ..). TIESCALAR
must be an object constructor. The object that it returns is the one that will
be associated with $scalar and which will receive subsequent FETCH and STORE
messages.

Here’s a (silly) example:

package CIA;
sub TIESCALAR {
my $package = shift;

4.6 ALTERNATIVE INTERFACES TO ITERATORS

my $self = {};
bless $self => $package;
}
sub STORE { }
sub FETCH { "<<Access forbidden>>" }

This is an implementation of an extra-secret tied scalar. If we tie a scalar into the
CIA package, all data stored into it becomes inaccessible:

tie $secret, 'CIA';
This creates the association between $secret and the object constructed by
CIA::TIESCALAR. Accesses to $secret will turn into FETCH and STORE methods
on the object:

$secret = 'atomic ray';
Instead of storing 'atomic ray' in the usual way, STORE is invoked. It’s passed
the object and new value as arguments, but it just throws them away, without
storing the data anywhere. That’s OK, because if you later ask the scalar what it
contains:

print "The secret weapon is '$secret'.\n"
The output is:

The secret weapon is '<<Access forbidden>>'.

which is pleasantly mysterious, and has the side benefit of defending national
security.

TIED SCALARS

We can use this feature to associate a tied scalar variable with an iterator. When
the value of the scalar variable is examined, Perl gets control behind the scenes,
kicks the iterator, and reports the next iterator value as the current value of the
variable.

package Iterator2Scalar;

sub TIESCALAR {
my ($package, $it) = @_;

185

186

CHAPTER 4 lterators

my $self = { It => $it };
bless $self => $package;

sub FETCH {
my ($self) = @_;
NEXTVAL($self->{It});

sub STORE {
require Carp;
Carp::croak("Iterator 1is read-only");

Now we can use:
tie $nextfile, 'Iterator2Scalar', dir_walk($DIR);

while ($filename = $nextfile) {
do something with $filename

TIED FILEHANDLES

A tied scalar interface to an iterator produces a magical variable that encapsulates
the iterator. This may be an intuitive interface in some cases, but it may also
be peculiar. The user may be surprised to find that the variable’s value changes
spontaneously, or that the variable can’t be assigned to.

Since Perl 5.004, filehandles have also been tie-able. A filehandle is often the
most natural interface for a synthetic iterator. Since filehandles are examples of
iterators, nobody will get any surprises when our filehandle behaves like an iter-
ator or displays iterator-like limitations. People won't be surprised if a filehandle
returns a different value each time it’s read. They won’t be surprised that they
can't assign a value to it. They won't be surprised when a filehandle refuses to
be rewound back to the beginning, since even ordinary filehandles don’t always
support that. They might be surprised by the handle’s failure to support the getc
operator, but more likely they won't even notice that it’s missing.

The interface to tied filehandles is similar to that for tied scalars. Since
filehandles aren't first-class variables in Perl, the caller passes an entire glob, and
the tie operator ties the filehandle part of the glob:

tie *IT, 'Iterator2Handle', $iterator;

4.7 AN EXTENDED EXAMPLE: WEB SPIDERS 187

This calls the Iterator2Handle::TIEHANDLE constructor method, which is
analogous to TIESCALAR:

package Iterator2Handle;
sub TIEHANDLE {
my ($package, $iterator) = @_;

my $self = { IT => $iterator };
bless $self => $package;

When the user tries to read from the handle using the usual <IT> notation, Perl
will call the READLINE method on the tied object:
sub READLINE {
my $self = shift;
return NEXTVAL($self->{IT});

To use the iterator, the user now does:

$some_value = <IT>;

while ($nextval = <IT>) {
do something with $nextval
They can even use Perl’s shortcut for reading a filehandle in a while loop:

while (<IT>) {
do something with $_

4.7 AN EXTENDED EXAMPLE:
WEB SPIDERS

We'll now use the tools provided to build a replacement for Ave Wrigley’s
WwW: : SimpleRobot module, which traverses a web site, invoking a callback for

188

CHAPTER 4 lterators

each page. SimpleRobot provides two callback hooks, one of which is called for
documents that can’t be retrieved, the other for documents that can. It also
supports options to specify whether the traversal will be breadth- or depth-first,
and a regex that the URLs of the retrieved documents must match.

Our robot, which we'll call Grasshopper, will be at once simpler and more
flexible. The robot will be embedded in an iterator, and the iterator will simply
recurn URLs. If the user wants a callback invoked for each URL, they can add
one with imap.

Our basic tools will be the LwP::Simple and HTML::LinkExtor mod-
ules. LwP::Simple provides a simple interface for building web clients.
HTML: : LinkExtor parses an HTML page and returns a list of all the links found
on the page. Here is the first cut:

use HTML::LinkExtor;
use LWP::Simple;

sub traverse {
my @queue = @_;

my %seen;

return Iterator {
while (@queue) {
my $url = shift @queue;
$url =- s/#.%$//;
next if $seen{$urll}++;

my ($content_type) = head($url);
if ($content_type =~ m{ text/html\b}) {
my $html = get($url);
push @queue, get_Tlinks($url, $html);
}
return $url;
}

return; # exhausted

The pattern here should be familiar; it’s the same as the pattern we followed for
walk_tree. The iterator maintains a queue of unvisited URLs, initialized with
the list of URLSs the user requests that it visit. Whenever the iterator is invoked,
it gets the first item in the queue, reads it for more URLs, adds these URLs to the

4.7 AN EXTENDED EXAMPLE: WEB SPIDERS

end of the queue, and returns the URL. When the queue is empty, the iterator
is exhausted.

Use of the iterator structure was essential. A simple recursive formulation
just doesn’t work. Recursive searches always do DEFS, so a recursive robot will
follow the first link on the first page to arrive at the second page, then follow the
first link on the second page, then the first link on the third page, and so on,
never returning to any page to process the other links there until it hits a dead
end. Dead ends on the web are unusual, so the recursive robot goes wandering
off into cyberspace and never comes back. Breadth-first search is almost always
preferable for this application, but with a simple recursive function there’s no
way to get BES.

There are a few web-specific features in the code. Some URLs may contain
an anchor component, indicated by a # sign followed by the anchor name;
this doesn't identify a document, so we discard it. (The specification for URLs
guarantees that any other # sign in the URL will be represented as %23, so this
substitution should be safe.) The iterator maintains a hash, %seen, which records
whether or not it has visited a URL already; if it has, then the URL is skipped. It
uses the head function, supplied by LwP: :Simple, to find out whether the URL
represents an HTML document, and if not it doesn’t bother searching that
document for links. In theory, head is supposed to indicate to the server that we do
not want the entire document content; we want only meta-information, such as
its content-type and length. In practice, the world is full of defective servers (and
working servers running defective CGI programs) that send the entire document
anyway. We've done the best we can here; if the server is going to send the
document even though we asked it not to, there’s nothing we can do about that.

If the document does turn out to be HTML, we use the get function,
also supplied by LWP: :SimpTle, to retrieve the content, which we then pass into
get_Tlinks. get_links will parse the HTML and return a list of all the link
URLs found in the document. Here it is:

sub get_Tlinks {
my ($base, $html) = @_;
my @links;
my $more_Tlinks = sub {
my ($tag, %attrs) = @_;
push @links, values %attrs;

1

HTML: :LinkExtor->new($more_1links, $base)->parse($html);

return @links;

189

190

CHAPTER 4 lterators

The structure of get_11inks is a little peculiar, because HTML: : LinkExtor uses an
unfortunate interface. The new call constructs an HTML: :LinkExtor object. We
give the constructor a callback function, $more_Tinks, and a base URL, $base.
The callback function is invoked whenever the object locates an HTML element
that contains a link. The link URLSs themselves will be transformed into absolute
URLs, interpreted relative to $base.

Parsing the document is triggered by the ->parse method. We pass the
HTML document as the argument. The object parses the document, invoking
the callback each time it finds an HTML element that contains links. When
were done parsing the document, the object is no longer needed, so we never
store it anywhere; we create it just long enough to call a single method on it.

The callback we supply to the HTML: : LinkExtor object is called once for
each link-bearing HTML element. The arguments are the tag of the element,
and a sequence of attribute—value pairs for its link-bearing attributes. For
example, if the element is:

<img border=0 src="pics/medium-sigils.gif" height=71 width=151

align=right lowsrc="pics/small-sigils.gif" alt="$@%">
The arguments to the callback will be:

('IMG', 'SRC' => '.../pics/medium-sigils.gif’,
"LOWSRC' => '.../pics/small-sigils.gif',)

Our callback discards the tag, extracts the URLs, and pushes them into the
@links array. When the parse is complete, we return @11inks.

4.7.1 Pursuing Only Interesting Links

The first cut of Grasshopper is almost useful. The one thing it’s missing is a
way to tell the robot not to pursue links to other web sites. We'll do that by
inserting a callback filter function into get_1inks(). After get_Tinks() extracts
a list of links, it will invoke the user-supplied callback on this list. The call-
back will filter out the links that it doesnt want the robot to pursue, and
return a list of the interesting links. The call to traverse will now look like
this:

traverse($is_interesting_link, $urll, ...);

We need to make some minor changes to traverse():

4.7 AN EXTENDED EXAMPLE: WEB SPIDERS

Version with 'interesting links' callback

sub traverse {
my $interesting_links = sub { @_ };
$interesting_links = shift if ref $_[0] eq 'CODE';

push @queue, $interesting_links->(get_1inks($url, $htm1));

Now we can ask it to traverse a single web site:

my $top = 'http://perl.plover.com/';
my $interesting = sub { grep /"\Q$top/o, @_ };

my $urls = traverse($interesting, $top);

This is already reasonably useful. Here’s a program that copies every reachable
file on a site:

use File::Basename;
while (my $url = NEXTVAL(Surls)) {
my $file = $url;
$file =~ s/"\Q$top//o;
my $dir = dirname($file);
system('mkdir', '-p', $dir) == 0 or next;
open F, ">", $file or next;
print F get($url);

Here’s a program to check whether any internal links on the site are bad:

while (my $url = NEXTVAL(Surls)) {
print "Bad 1ink to: $url" unless head($url);

This last example exposes two obvious weaknesses in the current design. We can
find out that $ur1 is bad, but the iterator never tells us what page that bad URL
appeared on, so we can’t do anything about it. And the way we find out that $ur1
is bad is rather silly. The iterator itself has just finished doing a head operation
on this very URL, so were repeating work that was just done a moment ago.
The second of these is easier to repair. Since the information is available anyway,

191

192 CHAPTER 4 lterators

we'll just have the iterator return it. In scalar context, it will return a URL; in list
context, it will return a URL, a hash of header information, and the content, if
available:

sub traverse {

my (%head, $html);
@head{qw(TYPE LENGTH LAST_MODIFIED EXPIRES SERVER)} = head($url);
if ($head{TYPE} =- m{ text/html1\b}) {
$html = get($url);
push @queue, $interesting_links->(get_links($url,$html));
}
return wantarray ? ($url, \%head, $htm1) : $url;

The bad link detector now becomes:

while (my ($url, $head) = NEXTVAL(Surls)) {
print "Bad link to: $ur1\n" unless $head->{TYPE};

The site copier is:

use File::Basename;
while (my ($url, $head, $content) = NEXTVAL($urls)) {
next unless $head->{TYPE};
my $file = $url;
$file =~ s/"\Q$top//o;
my $dir = dirname($file);
system('mkdir', '-p', $dir) == 0 or next;
open F, ">", $file or next;
$content = get($url) unless defined $content;
print F $content;

4.7.2 Referring URLs

Including the referring URL is alittle trickier, because by the time a URL shows up
at the front of the queue, we've long since forgotten where we saw it. The solution

4.7 AN EXTENDED EXAMPLE: WEB SPIDERS

is to record the referring URLs in the queue also. Queue members will now be
pairs of URLs. We will make the queue into an array of references to two-element
arrays:

[URL to investigate,
URL of the page where we saw it (the 'referrer')]

The traverse function is now:

sub traverse {
my $interesting_links = sub { shift; @_ };
$interesting_Tlinks = shift if ref $_[0] eq 'CODE';
my @queue = map [$_, 'supplied by user'], @_;
my %seen;

return Iterator {
while (@queue) {
my ($url, $referrer) = @{shift @queue};
Surl =~ s/#.%$//;
next if $seen{$url}++;

my (%head, $html);
@head{qw(TYPE LENGTH LAST_MODIFIED EXPIRES SERVER)} = head($url);
if ($head{TYPE} =~ m{ " text/html\b}) {
my $html = get($url);
push @queue,
map [$_, $urll,
$interesting_links->($url, get_1links($url, $html));

}

return wantarray ? ($url, \%head, $referrer, $html) : $url;
}
return; #exhausted

Instead of just copying the original URL list into the queue, we now anno-
tate each one with a fake referrer. When we shift an item off the queue, we
dismantle it into a URL and a referrer. The URL is treated as before. The referrer
is passed to the $interesting_links callback, and each interesting link in the
resulting list is annotated with its own referrer, the current URL, before being
put into the queue. In list context, we return the referrer of each URL along with
the other information about the document.

193

]94' CHAPTER 4 lterators

Our bad link detector is now :

my $top = 'http://perl.plover.com/"'
my $interesting = sub { shift; grep / \Q$top/o, @_ };

my $urls = traverse($interesting, $top);

while (my ($url, $head, $referrer) = NEXTVAL($urls)) {
next if $head->{TYPE};

print "Page '$referrer' has a bad 1ink to '$url'\n";

Or, using igrep in the natural way:

my $top = 'http://perl.plover.com/';
my $interesting = sub { shift; grep /"\Q$top/o, @_ };

my $urls = igrep_1 { not $_[1]1{TYPE} } traverse($interesting, $top);

while (my ($url, $head, S$referrer) = NEXTVAL($urls)) {

print "Page '$referrer' has a bad 1ink to '$url'\n";

The igrep_1 here is a variation on igrep that filters a sequence of list
values instead of a sequence of scalar values:

sub igrep_1 (&$) {
my ($is_interesting, $it) = @_;
return Iterator {
while (my @vals = NEXTVAL($it)) {
return @vals if $is_interesting->(@vals);
}

return;

Returning to the web spider, we might write:

while (my (url, Shead, $referrer) = NEXTVAL($urls)) {
print "Page '$referrer' has a bad 1link to '$url'\n";

print "Edit now? ";

4.7 AN EXTENDED EXAMPLE: WEB SPIDERS

my $resp = <>;
if ($resp =- /7y/i) {

system $ENV{EDITOR}, url_to_filename($referrer);
} elsif ($resp =~ /"*q/i) {

last;

Note that if the user enters quit to exit the loop and go on with the rest of the
program, this doesn’t foreclose the possibility that sometime later, they might
continue from where they left off.

We now have a library good enough to check for bad offsite links as well as
bad intrasite links:

my $top = 'http://perl.plover.com/';
my $interesting = sub { my $ref = shift;
$ref =- /"\Q$top/o ? @_ : O };

my $urls =igrep_1 { not $_[1]{TYPE} } traverse($interesting, $top);

while (my (url, Shead, $referrer) = NEXTVAL($urls)) {

The only thing that has changed is the $interesting callback that determines
which links are worth pursuing. Formerly, links were worth pursuing if they
pointed to a http://perl.plover.com/ page. Now they're worth pursuing as long
as they're referred to by some http://perl.plover.com/ page. The checker will
investigate pages at other sites, but it won’t investigate the links on the pages at
those sites.

This works well, but there’s a more interesting solution available. If we think
about how were using the queue, we can see that the queue itself could be
an iterator! We kick it periodically to produce another item for consideration
by traverse()’s iterator, and then apply various transformations (s/#.%$//) and
filters (next if $seen{$url1}++) to the result. This is only going to get more com-
plicated, so we'll probably get a win if we can leverage the tools we've developed
for dealing with such structures:

sub traverse {
my $interesting_link;
$interesting_Tlink = shift if ref $_[0] eq 'CODE';

195

196

CHAPTER 4 lterators

my @queue = map [$_, 'supplied by user'], @_;
my %seen;
my $q_it = igrep { ! $seen{$_->[01}++ }
imap { $_->[0] =- s/#.%$//; $_}
Iterator { return shift(@queue) };

if ($interesting_link) {
$g_it = igrep {$interesting_link->(@$_)} $q_it;

return imap {
my ($url, $referrer) = @$_;
my (%head, $html);

@head{gw(TYPE LENGTH LAST_MODIFIED EXPIRES SERVER)} = head($url);
if ($head{TYPE} =~ m{ text/htm1\b}) {

$html = get($url);

push @queue,

map [$_, $url],
get_links($url, $html);
}
return wantarray ? ($url, \%head, $referrer, $html) : $url;
} $q_it;

The innermost iterator, the one that actually accesses the queue, shifts the first
item off, as before, and returns it. Applications of imap and igrep trim fragment
anchors off the URL and filter out URLs that have been seen already. Inside
of the callbacks, $_->[0] is the URL and $_->[1] is the referrer. $q_it is the
main queue iterator. NEXTVAL ($q_it) will return the next URL/referrer pair that
traverse should process.

If the user has supplied an $interesting_link function, we insert it into
the queue iterator $q_it, where it will discard uninteresting links. If not, we
ignore it completely, rather than inserting the identity function as a placeholder.
Another change here is that because $interesting_1ink is filtering the output of
the queue iterator, it processes only one URL at a time, rather than an entire list.

The $interesting_Tink function will receive the same implicit $_ that the
other segments of $q_it do, but for convenience we also pass the URL and
referrer via the usual @_ mechanism. Our earlier examples:

Do not pursue links to other sites
my $interesting = sub { shift; grep /"\Q$top/o, @_ };

4.7 AN EXTENDED EXAMPLE: WEB SPIDERS 197

Do not pursue Tinks found on other sites
my $interesting = sub { my $ref = shift;
$ref =- /"\Q$top/o ? @_ : O };

now become:

Do not pursue Tinks to other sites
my $interesting = sub { $_[0] =- /"\Q$top/o };

Do not pursue links found on other sites
my $interesting = sub { $_[1] =- /"\Q$top/o };

The main while(@queue) { ... shift @queue .. } control is replaced with a
call to imap, which maps the head, get, and queue updating behavior over $q_it.

Note that although we've added some code to support the new style, we've
also deleted corresponding old code, so that both versions of the function are
about the same length. This is to be expected, since the two functions are doing
the same thing.

4.7.3 robots.txt

Let’s add one more feature, one not supported by Www::SimpleRobot. Some
sites don’t want to be walked by robots, or want to warn robots away from
certain portions of their web space. For example, /finance/admin/reports/
might actually be a CGI program, and asking for the document at
/finance/admin/reports/2000/12/24/08 .html would actually execute the pro-
gram, which would compile the appropriate report and return it. Rather than
storing 87,000 reports on the disk, on the off-chance that someone might want
one, they are generated on demand. This is a good strategy when normal usage
patterns are to request only a few reports per day.

A web robot that blunders into this part of the HTML space can waste a
lot of network bandwidth and processing time on both ends of the connection,
requesting thousands of reports. In the worst case, the report space might be
infinite, and the robot will never get out.

To prevent this sort of accident, many sites advertise lists of the parts of their
web space that robots should stay away from. Each site stores its robot policy in
a file named/robots. txt. Good robots respect the policy laid out in this file.?

2

3 There are, unfortunately, very few good robots.

198

CHAPTER 4 lterators

Here is a segment of http://www.pathfinder.com/robots. txt:

Welcome to Pathfinder’s robots.txt

User-agent: *

Disallow: /cgi-bin/

Disallow: /event.ng/

Disallow: /money/moneyl01/
Disallow: /offers/cp/

Disallow: /FoodWine/images/

Disallow: /FoodWine/trecipes/
Disallow: /FoodWine/aspen/

User-agent: Mozilla

Disallow: /cgi-bin/Money/netc/story.cgi

User-agent: MSIECrawler
Disallow: /

Blank lines and lines beginning with # signs are comments and are ignored.
User-agent: * marks the beginning of a section that applies to all robots.
The Disallow lines are requests that robots not retrieve any documents whose
URLs have any of the indicated prefixes. The sections at the bottom labelled
Mozilla and MSIECrawler apply only to those browsers; other browsers can
ignore them.

The Perl module www: :RobotRules parses these files and returns an object
that can be queried about the status of any URL:

my $rules = WWW::RobotRules->('Grasshopper/1.0");

Grasshopper/1.0 is the name of our robot. This instructs the www: : RobotRules
object to pay attention to directives addressed to Grasshopper/1.0, and to ignore
those addressed to Mozi11a, MSIECrawler, and other browsers.

We add a set of rules to the object with the ->parse method. It has two
arguments: the contents of the robots.txt file, and the URL at which we
found it. We can call ->parse multiple times to add rules files for different sites.

4.7 AN EXTENDED EXAMPLE: WEB SPIDERS

To query the object about a URL, we use $rules->allowed($url). This returns
true if the rules allow us to visit the URL, false otherwise.

We will use igrep() to add a filter to the queue iterator $q_it. The filter will
check each URL against the currently known set of robot rules and will discard
it unless the rules allow it. Additionally, if the URL appears to refer to a site that
hasn’t been visited yet, the filter will attempt to load the robots. txt file from
that site and add it to the current set of rules.

The filter callback will be manufactured by the following function:

use WWW: :RobotRules;
use URI::URL;

sub make_robot_filter {
my $agent = shift;
my %seen_site;
my $rules = WWW::RobotRules->new($agent);
return sub {
my $url = url(shiftQ);
return 1 unless $url->scheme eq 'http';
unless ($seen_site{$url->netloc}++) {
my $robots = $url->clone;
$robots->path('/robots.txt');
$robots->frag(undef);
$rules->parse($robots, get($robots));
}

$rules->allowed($url)

};

We can’t simply use a single, named function, because the robot filter function
needs to be able to capture private versions of the variables $rules and %seen_si te,
and named functions don’t capture properly. We could have embedded the
robot filter closure as a private function inside of traverse(), but I felt that
traverse() was getting a little too long.

We're using the URI::URL module here, which provides convenience
methods for parsing and constructing URLs. In the URL http://perl.
plover.com/perl.html#search, http is the scheme, per1.plover.comis the netloc,
/per1.html is the path, and #search is the fragment. scheme, netloc, path, and
frag methods retrieve or set these sections of a URL. The clone method copies
a URL object and returns a new object.

URLs for schemes other than http are always allowed by the filter, because
other schemes don’t have any mechanisms analogous to robots.txt. You could

199

200 CHAPTER 4 lterators

make an argument that we should filter out mailto URLs and the like, but that
would be more appropriately done by a different filter; this one is only about
enforcing robots. txt rules.

If the URL is from a new site, as recorded in the private %seen_site hash,
the filter constructs the URL for the robots. txt file and attempts to retrieve and

parse it. It then consults the rules to decide whether the original URL will be
discarded.

my $ROBOT_NAME = 'Grasshopper/1.0';

sub traverse {
my $interesting_Tlink;
$interesting_link = shift if ref $_[0] eq 'CODE';
my @queue = map [$_, 'supplied by user'], @_;
my %seen;
my $robot_filter = make_robot_filter ($ROBOT_NAME) ;
my $q_it = igrep { ! $seen{$_->[0]1}++ && $robot_filter->($_->[0]) }
imap { $_->[0] =- s/#.%$//; $_}
Iterator { return shift(@queue) };

4.7.4 Summary

The are only two major features of Www: : SimpTeRobot that we've omitted. One is
depth-first instead of breadth-first searching, which we've already seen is trivial
to support; we just change shift to pop to turn the queue into a stack. With our
iterator-structured queue, this is as simple as replacing:

Iterator { return shift(@queue) };
with:

$depth_first ? Iterator { return pop(@queue) }
Iterator { return shift(@queue) };

The other feature is the depth feature, which allows the user to tell
WwW: : SimpleRobot how far to pursue chains of links. If depth is 5, then the
robot will visit all the pages that are reachable by a path of five or fewer links,
but no pages that can be reached only by paths of six or more links.

4.7 AN EXTENDED EXAMPLE: WEB SPIDERS

With a sufficiently ingenious $interesting_links callback, we can emulate
this feature in the current system. But we might want to add it to the traverse()
function for convenience. This is also only a small change: add the link depth
of each URL to the queue items. It will then be passed automatically to the
$interesting_links callback, which can cut off deep searches by saying:

return unless $_->[2] < $max_depth;

These are the missing features. On the other hand, Grasshopper supports
robots.txt, a major benefit. It also has the feature that it can be incorporated
into a larger program as an auxiliary component. Www: : SimpleRobot will tend
to take over the behavior of any program it’s part of, because once you call the
WwW: : SimpleRobot: : traverse function, you won't get control back until it has
traversed the entire site, which could be a very long time. Grasshopper never takes
control for longer than it takes to retrieve one page (plus possibly the robots. txt
file for a new site), and if the program wants to do something else afterwards, it
can pick up where it left off.

I don’t want to make too much of the operational differences between these
two modules. They both have serious defects stemming from the design of
LwP::SimpTle. But I think there’s one other difference that’s worth pointing out:
Grasshopper requires less than half as much code; one-third if you dont count
the code required to support robots.txt handling, which www::SimpleRobot
doesn’t do.

Where did this benefit come from? The queue structure itself didn’t gain
us much, because WwW: : SimpTeRobot is using the same queue technique that we
are. The object-oriented style of Www: : SimpTeRobot imposes some overhead; with
the functional approach there are no classes to declare. Some of the extra code
in WwW: : SimpleRobot is to support diagnostics, which shouldn’t count, because
I omitted diagnostics from the iterator module. (On the other hand, a 49-line
module probably doesn’t need many diagnostics.)

Probably the greatest contributor to overhead is option checking. With
the functional approach, the module hardly supports any options directly.
WwW: : SimpleRobot has all its options on the inside. To support a new option,
we have to attach it inside the module. Grasshopper is a module that has been
turned inside out, all of its useful hooks are exposed to the caller, who can apply
whatever options they want afterwards via functions like igrep.

201

