TPPmark2014

November 17, 2014

Let $\mathbf{N} = \{0, 1, 2, 3, \dots\}$ be the set of all natural numbers, $p \in \mathbf{N}$ and $q \in \mathbf{N}$. We denote $(p \mod q) = r$ if and only if there exist $k \in \mathbf{N}$ and $r \in \mathbf{N}$ such that p = kq + r and $0 \leq r < q$. Further, we denote $(q \mid p)$ if and only if $(p \mod q) = 0$. Prove the following questions:

- (i) For any $a \in \mathbf{N}$, $(a^2 \mod 3) = 0$ or $(a^2 \mod 3) = 1$.
- (ii) Let $a \in \mathbf{N}$, $b \in \mathbf{N}$ and $c \in \mathbf{N}$. If $a^2 + b^2 = 3c^2$ then (3 | a), (3 | b) and (3 | c).
- (iii) Let $a \in \mathbf{N}$, $b \in \mathbf{N}$ and $c \in \mathbf{N}$. If $a^2 + b^2 = 3c^2$ then a = b = c = 0.