TPPmark2014

November 17, 2014

Let $\mathbf{N}=\{0,1,2,3, \cdots\}$ be the set of all natural numbers, $p \in \mathbf{N}$ and $q \in \mathbf{N}$. We denote $(p \bmod q)=r$ if and only if there exist $k \in \mathbf{N}$ and $r \in \mathbf{N}$ such that $p=k q+r$ and $0 \leqq r<q$. Further, we denote $(q \mid p)$ if and only if $(p \bmod q)=0$. Prove the following questions:
(i) For any $a \in \mathbf{N},\left(a^{2} \bmod 3\right)=0$ or $\left(a^{2} \bmod 3\right)=1$.
(ii) Let $a \in \mathbf{N}, b \in \mathbf{N}$ and $c \in \mathbf{N}$. If $a^{2}+b^{2}=3 c^{2}$ then (3|a), (3|b) and (3|c).
(iii) Let $a \in \mathbf{N}, b \in \mathbf{N}$ and $c \in \mathbf{N}$. If $a^{2}+b^{2}=3 c^{2}$ then $a=b=c=0$.

