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Abstract

Automatic linguistic indexing of pictures is an important but highly challenging problem for
researchers in computer vision and content-based image retrieval. In this paper, we introduce a
statistical modeling approach to this problem. Categorized images are used to train a dictionary
of hundreds of statistical models each representing a concept. Images of any given concept are
regarded as instances of a stochastic process that characterizes the concept. To measure the
extent of association between an image and the textual description of a concept, the likelihood
of the occurrence of the image based on the characterizing stochastic process is computed. A
high likelihood indicates a strong association. In our experimental implementation, we focus on
a particular group of stochastic processes, that is, the two-dimensional multiresolution hidden
Markov models (2-D MHMMs). We implemented and tested our ALIP (Automatic Linguistic
Indexing of Pictures) system on a photographic image database of 600 different concepts, each
with about 40 training images. The system is evaluated quantitatively using more than 4,600
images outside the training database and compared with a random annotation scheme. Exper-
iments have demonstrated the good accuracy of the system and its high potential in linguistic
indexing of photographic images.

Index Terms — Content-based image retrieval, image classification, hidden Markov model,
computer vision, statistical learning, wavelets.

1 Introduction

A picture is worth a thousand words. As human beings, we are able to tell a story from a picture
based on what we have seen and what we have been taught. A 3-year old child is capable of building
models of a substantial number of concepts and recognizing them using the learned models stored
in her brain. Can a computer program learn a large collection of semantic concepts from 2-D or
3-D images, build models about these concepts, and recognize them based on these models? This
is the question we attempt to address in this work.

Automatic linguistic indexing of pictures is essentially important to content-based image re-
trieval and computer object recognition. It can potentially be applied to many areas including
biomedicine, commerce, the military, education, digital libraries, and Web searching. Decades of
research have shown that designing a generic computer algorithm that can learn concepts from
images and automatically translate the content of images to linguistic terms is highly difficult.
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Much success has been achieved in recognizing a relatively small set of objects or concepts
within specific domains. There is a rich resource of prior work in the fields of computer vision,
pattern recognition, and their applications [9]. Space limitation does not allow us to present a broad
survey. Instead we try to emphasize some work most related to what we propose. The references
below are to be taken as examples of related work, not as the complete list of work in the cited
areas.

1.1 Related work on indexing images

Many content-based image retrieval (CBIR) systems have been developed since the early 1990s. A
recent article published by Smeulders et al. reviewed more than 200 references in this ever changing
field [20]. Readers are referred to that article and some additional references [2, 17, 18, 25, 23, 4,
11, 26] for more information.

Most of the CBIR projects aimed at general-purpose image indexing and retrieval systems
focusing on searching images visually similar to the query image or a query sketch. They do not
have the capability of assigning comprehensive textual description automatically to pictures, i.e.,
linguistic indexing, because of the great difficulty in recognizing a large number of objects. However,
this function is essential for linking images to text and consequently broadening the possible usages
of an image database.

Many researchers have attempted to use machine learning techniques for image indexing and
retrieval [16, 24]. In 1997, a system developed by Minka and Picard included a learning component.
The system internally generated many segmentations or groupings of each image’s regions based on
different combinations of features, then learned which combinations best represented the semantic
categories given as examples by the user. The system requires the supervised training of various
parts of the image.

A growing trend in the field of image retrieval is to automate linguistic indexing of images by
statistical classification methods. The Stanford SIMPLIcity system [22] uses statistical classifica-
tion methods to group images into rough semantic classes, such as textured-nontextured, graph-
photograph. Potentially, the categorization enhances retrieval by permitting semantically-adaptive
searching methods and by narrowing down the searching range in a database. The approach is lim-
ited because these classification methods are problem specific and do not extend straightforwardly.

Recent work in associating images explicitly with words was done at the University of California
at Berkeley by Barnard and Forsyth [1] and Duygulu et al. [8]. Using region segmentation, Barnard
and Forsyth [1] explored automatically annotating entire images; and Duygulu et al. [8] focused
on annotating specific regions. The work has achieved some success for certain image types. But
as pointed out by the authors in [1], one major limitation is that the algorithm relies on seman-
tically meaningful segmentation, which is in general unavailable to image databases. Automatic
segmentation is still an open problem in computer vision [27, 19].

1.2 Our approach

In our work, categories of images, each corresponding to a concept, are profiled by statistical models,
in particular, the 2-dimensional multi-resolution hidden Markov model (2-D MHMM) [13]. The
pictorial information of each image is summarized by a collection of feature vectors extracted at
multiple resolutions and spatially arranged on a pyramid grid. The 2-D MHMM fitted to each image
category plays the role of extracting representative information about the category. In particular, a
2-D MHMM summarizes two types of information: clusters of feature vectors at multiple resolutions
and the spatial relation between the clusters, both across and within resolutions. As a 2-D MHMM



is estimated separately for each category, a new category of images added to the database can be
profiled without repeating computation involved with learning from the existing categories. Since
each image category in the training set is manually annotated, a mapping between profiling 2-D
MHMMs and sets of words can be established. For a test image, feature vectors on the pyramid grid
are computed. Consider the collection of the feature vectors as an instance of a spatial statistical
model. The likelihood of this instance being generated by each profiling 2-D MHMM is computed.
To annotate the image, words are selected from those in the text description of the categories
yielding highest likelihoods.

Readers are referred to Li and Gray [14] for details on 2-D MHMM. Many other statistical
image models have been developed for various tasks in image processing and computer vision.
Theories and methodologies related to Markov random fields (MRFs) [6, 10, 12, 3] have played
important roles in the construction of many statistical image models. For a thorough introduction
to MRFs and their applications, see Kindermann and Snell [12] and Chellappa and Jain [3]. Given
its modeling efficiency and computational convenience, we consider 2-D MHMMSs an appropriate
starting point for exploring the statistical modeling approach to linguistic indexing.

1.3 Outline of the paper

The remainder of the paper is organized as follows: the architecture of the ALIP (Automatic
Linguistic Indexing of Pictures) system is introduced in Section 2. The model learning algorithm
is described in Section 3. Linguistic indexing methods are described in Section 4. In Section 5,
experiments and results are presented. We conclude and suggest future research in Section 6.

2 System architecture

The system has three major components, the feature extraction process, the multiresolution statis-
tical modeling process, and the statistical linguistic indexing process. In this section, we introduce
the basics about these individual components and their relationships.

2.1 Feature extraction

The system characterizes localized features of training images using wavelets. In this process, an
image is partitioned into small pixel blocks. For our experiments, the block size is chosen to be 4 x4
as a compromise between the texture detail and the computation time. Other similar block sizes
can also be used. The system extracts a feature vector of six dimensions for each block. Three of
these features are the average color components of pixels in the block. The other three are texture
features representing energy in high frequency bands of wavelet transforms [5]. Specifically, each
of the three features is the square root of the second order moment of wavelet coefficients in one
of the three high frequency bands. The features are extracted using the LUV color space, where L
encodes luminance, and U and V encode color information (chrominance). The LUV color space is
chosen because of its good perception correlation properties.

To extract the three texture features, we apply either the Daubechies-4 wavelet transform or
the Haar transform to the L component of the image. These two wavelet transforms have better
localization properties and require less computation compared to Daubechies’ wavelets with longer
filters. After a one-level wavelet transform, a 4 x 4 block is decomposed into four frequency bands
as shown in Figure 1. Each band contains 2 x 2 coefficients. Without loss of generality, suppose
the coefficients in the HL band are {c i, ¢k 41, k41,1, Ck+1,41}- One feature is then computed as



% :HLL joL

S BN

LH HH

original image  wavelet transform

Figure 1: Decomposition of images into frequency bands by wavelet transforms.

f= %\/22:0 2]1-:0 ciﬂ-’lﬂ- . The other two texture features are computed in a similar manner
using the LH and HH bands, respectively.

These wavelet-based texture features provide a good compromise between computational com-
plexity and effectiveness. Unser [21] has shown that moments of wavelet coefficients in various
frequency bands can effectively discern local texture. Wavelet coefficients in different frequency
bands signal variation in different directions. For example, the HL band reflects activities in the
horizontal direction. A local texture of vertical strips thus has high energy in the HL. band and low
energy in the LH band.

2.2 Multiresolution statistical modeling
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Figure 2: The architecture of the statistical modeling process.

Figure 2 illustrates the flow of the statistical modeling process of the system. We first manually
develop a series of concepts to be trained for inclusion in the dictionary of concepts. For each
concept in this dictionary, we prepare a training set containing images capturing the concept.
Hence at the data level, a concept corresponds to a particular category of images. These images
do not have to be visually similar. We also manually prepare a short but informative description



about any given concept in this dictionary. Therefore, our approach has the potential to train a
large collection of concepts because we do not need to manually create a description about each
image in the training database.

Block-based features are extracted from each training image at several resolutions. The statisti-
cal modeling process does not depend on a specific feature extraction algorithm. The same feature
dimensionality is assumed for all blocks of pixels. A cross-scale statistical model about a concept
is built using training images belonging to this concept, each characterized by a collection of mul-
tiresolution features. This model is then associated with the textual description of the concept and
stored in the concept dictionary.

In the current work, we focus on building statistical models using images that are pre-categorized
and annotated at a categorical level. Many databases contain images not initially categorized, for
example, those discussed in [7, 8]. If each image is annotated separately, there are a number
of possible approaches to generating profiling models. A clustering procedure can be applied to
the collection of annotation words. A cluster of words can be considered as a concept. Images
annotated with words in the same cluster will be pooled to train a model. A detailed discussion
on word clustering for the purpose of auto-annotation is provided in [8]. A more sophisticated
approach involves clustering images and estimating a model using images in the same cluster. The
clustering of images and the estimation of models can be optimized in an overall manner based on
a certain higher-level statistical model of which the image clusters and profiling 2-D MHMDMs are
components. We have not experimented with these approaches.

2.3 Statistical linguistic indexing
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Figure 3: The architecture of the statistical linguistic indexing process.



The system automatically indexes images with linguistic terms based on statistical model com-
parison. Figure 3 shows the statistical linguistic indexing process of the system. For a given image
to be indexed, we first extract multiresolution block-based features by the same procedure used to
extract features for the training images.

To quantify the statistical similarity between an image and a concept, the likelihood of the
collection of feature vectors extracted from the image is computed under the trained model for the
concept. All the likelihoods, along with the stored textual descriptions about the concepts, are
analyzed by the significance processor to find a small set of statistically significant index terms
about the image. These index terms are then stored with the image in the image database for
future keyword-based query processing.

2.4 Major advantages

Our system architecture has several major advantages:

1. If images representing new concepts or new images in existing concepts are added into the
training database, only the statistical models for the involved concepts need to be trained
or retrained. Hence, the system naturally has good scalability without invoking any extra
mechanism to address the issue. The scalability enables us to train a relatively large number
of concepts at once.

2. In our statistical model, spatial relations among image pixels and across image resolutions
are both taken into consideration. This property is especially useful for images with special
texture patterns. Moreover, the modeling approach enables us to avoid segmenting images
and defining a similarity distance for any particular set of features. Likelihood can be used
as a universal measure of similarity.

3 The model-based learning of concepts

In this section, we present in details statistical image modeling process which learns a dictionary
of a large number of concepts automatically. We describe here assumptions of the 2-D MHMM
modified from a model originally developed for the purpose of image segmentation [13]. The model
is aimed at characterizing the collection of training images, each in their entireties, within a concept.

3.1 Image modeling

For the purpose of training the multiresolution model, multiple versions of an image at different
resolutions are obtained first. The original image corresponds to the highest resolution. Lower
resolutions are generated by successively filtering out high frequency information. Wavelet trans-
forms [5] naturally provide low resolution images in the low frequency band (the LL band).

To save computation, features are often extracted from non-overlapping blocks in an image. An
element in an image is therefore a block rather than a pixel. Features computed from one block at a
particular resolution form a feature vector and are treated as multivariate data in the 2-D MHMM.
The 2-D MHMM aims at describing statistical properties of the feature vectors and their spatial
dependence. The numbers of blocks in both rows and columns reduce by half successively at each
lower resolution. Obviously, a block at a lower resolution covers a spatially more global region of
the image. As indicated by Figure 4, a block at a lower resolution is referred to as a parent block,
and the four blocks at the same spatial location at the higher resolution are referred to as child



/\

Parent Child
block blocks

Figure 4: The image hierarchy across resolutions

blocks. We will always assume such a “quad-tree” split in the sequel since the extension to other
hierarchical structures is straightforward.

We first review the basic assumptions of the single resolution 2-D HMM as presented in [15].
In the 2-D HMM, feature vectors are generated by a Markov model that may change state once
every block. Suppose there are M states, the state of block (4, j) being denoted by s; ;. The feature
vector of block (i,7) is u;j. We use P(-) to represent the probability of an event. We denote
(', 5") < (i,7) if ' < iori =i,5 <j,in which case we say that block (7', j') is before block (i, 7).
The first assumption is that

P(s;j | context) = amn,,

context = {syjr,up i : (4',5) < (i,5)},

where m = s; 1, n = s;j 1, and [ = s; ;. The second assumption is that given every state, the
feature vectors follow a Gaussian distribution. Once the state of a block is known, the feature
vector is conditionally independent of information on other blocks. The covariance matrix X, and
the mean vector ug of the Gaussian distribution vary with state s.

The fact only feature vectors are observable in a given image accounts for the name “Hidden”
Markov Model. The state of a feature vector is conceptually similar to the cluster identity of a
vector in unsupervised clustering. As with clustering, the state of a vector is not provided directly
by the training data and hence needs to be estimated. In clustering, feature vectors are considered
as independent samples from a given distribution. In the 2-D HMM, feature vectors are statistically
dependent through the underlying states modeled by a Markov chain.

For the MHMM, denote the set of resolutions by R = {1,..., R}, with » = R being the finest
resolution. Let the collection of block indices at resolution r be

NO = {(5,5): 0 <i <w/2P77,0 < j < z/287").

Images are represented by feature vectors at all the resolutions, denoted by uz(r]), r €R, (i,j) €
N . The underlying state of a feature vector is SE? At each resolution r, the set of states is
{1(’"), 201 ., M,gr)}. Note that as states vary across resolutions, different resolutions do not share
states.

To structure statistical dependence among resolutions, a first-order Markov chain is assumed
across the resolutions. In particular, given the states at the parent resolution, the states at the
current resolution are conditionally independent of the other preceding resolutions, so that

P{s{") :r e R, (i,5) e N}
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In addition, given its state ngnj), a feature vector ugj;) at any resolution is conditionally independent

of any other states and feature vectors. As the states are unobservable, during model estimation,
different combinations of states need to be considered. An important quantity to compute is the
joint probability of a particular set of states and the feature vectors. Based on the assumptions,
we can compute this probability by the following chain rule:

P ul) e R, (6,5) e NOY = PO W) (4, 5) e NOY x

S g Yig
P{Sz(?j)7uz(,2j) 2 (1,7) € N(2)|s,(€1,l) Dk D) e N Y e x
P{s u™ - (i,5) e N® 7D 2 (k1) e NEDY (1)

At the coarsest resolution, r = 1, feature vectors are assumed to be generated by a single resolution
2-D HMM. At a higher resolution, the conditional distribution of a feature vector given its state is
assumed to be Gaussian. The parameters of the Gaussian distribution depend upon the state at
the particular resolution.

Resolution 1

Figure 5: The hierarchical statistical dependence across resolutions

Given the states at resolution r — 1, statistical dependence among blocks at the finer resolution
7 is constrained to sibling blocks (child blocks descended from the same parent block). Specifically,
child blocks descended from different parent blocks are conditionally independent. In addition,
given the state of a parent block, the states of its child blocks are independent of the states of their
“uncle” blocks (non-parent blocks at the parent resolution). State transitions among sibling blocks
are governed by the same Markovian property assumed for a single resolution 2-D HMM. The state
transition probabilities, however, depend on the state of their parent block. To formulate these
assumptions, denote the child blocks at resolution r of block (k,[) at resolution r — 1 by

D(k,1) = {(2k,20), (2k + 1,2), (2k, 20l + 1), (2k + 1,21 + 1)} .
According to the assumptions,

Pisf) 3) €NO [ () €Ny = [T PLsl) : o) € DRI |57y
(k,J)eENC—D

where P{sz(rj) : (4,7) € D(k,1)| 3,(:!_1)} can be evaluated by transition probabilities conditioned on

(=) (r=1)y.

55, , denoted by amyn,l(skl We thus have a different set of transition probabilities a,,



for every possible state in the parent resolution. The influence of previous resolutions is exerted
hierarchically through the probabilities of the states, which can be visualized in Figure 5. The joint
probability of states and feature vectors at all the resolutions in Eq. (1) is then derived as

P{s(r) (r) reR,(i,j) e N} = P{”, 1-):(7l,j)€N(1)}><

z]’
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Figure 6: In the statistical modeling process, spatial relations among image pixels and across
image resolutions are both taken into consideration. Arrows, not all drawn, indicate the transition
probabilities captured in the statistical model.

To summarize, a 2-D MHMM captures both the inter-scale and intra-scale statistical depen-
dence. The inter-scale dependence is modeled by the Markov chain over resolutions. The intra-scale
dependence is modeled by the HMM. At the coarsest resolution, feature vectors are assumed to be
generated by a 2-D HMM. Figure 6 illustrates the inter-scale and intra-scale dependencies modeled.
At all the higher resolutions, feature vectors of sibling blocks are also assumed to be generated by
2-D HMMs. The HMMs vary according to the states of parent blocks. Therefore, if the next coarser
resolution has M states, then there are, correspondingly, M HMMs at the current resolution.

The 2-D MHMM can be estimated by the maximum likelihood criterion using the EM algorithm.
The computational complexity of estimating the model depends on the number of states at each
resolution and the size of the pyramid grid. In our experiments, the number of resolutions is 3;
the number of states at the lowest resolution is 3; and those at the two higher resolutions are 4.
Details about the estimation algorithm, the computation of the likelihood of an image given a 2-D
MHMM, and computational complexity are referred to [13].

4 The automatic linguistic indexing of pictures

In this section, we describe the component of the system that automatically indexes pictures with
linguistic terms. For a given image, the system compares the image statistically with the trained
models in the concept dictionary and extracts the most statistically significant index terms to
describe the image.



For any given image, a collection of feature vectors at multiple resolutions {ugjnj), reR,(i,j]) €
(r)

N} is computed as described in Section 3. We regard {u; ;,r € R,(i,7) € N} as an instance
of a stochastic process defined on a multiresolution grid. The similarity between the image and a
category of images in the database is assessed by the log likelihood of this instance under the model
M trained from images in the category, that is,

log P{uz(-,rj),r € R,(i,7) € N | M} .

A recursive algorithm [13] is used to compute the above log likelihood. After determining the
log likelihood of the image belonging to any category, we sort the log likelihoods to find the few
categories with the highest likelihoods. Suppose k top-ranked categories are used to generate
annotation words for the query. The selection of k is somewhat arbitrary. An adaptive way to
decide k is to use categories with likelihoods exceeding a threshold. However, it is found that the
range of likelihoods computed from a query image varies greatly depending on the category the
image belongs to. A fixed threshold is not useful. When there are a large number of categories in
the database, it is observed that choosing a fixed number of top-ranked categories tends to yield
relatively robust annotation.

Words in the description of the selected k categories are candidates for annotating the query
image. If a short description for the query is desired, a certain mechanism needs to be used to
choose a subset of words. There are many possibilities. A system can provide multiple choices for
selecting words with only negligible increase of computational load, especially in comparison with
the amount of computation needed to obtain likelihoods and rank them. Inspired by hypothesis
testing, we explore in detail a particular scheme to choose words. Suppose in the annotation of
the k categories, a word appears j times. If we can reject the hypothesis that the & categories are
chosen randomly based on the number of times the word arises, we gain confidence in that the k
categories are chosen because of similarity with the query. To reject the hypothesis, we compute
the probability of the word appearing at least j times in the annotation of k randomly selected
categories. A small probability indicates it is unlikely that the word has appeared simply by chance.
Denote this probability by P(j,k). It is given by

k m\ (n—m k
AN . (z)(k—z)_ i< m m! (n —m)! k! (n — k)!
P(J’k)_iz:j"l(zgm) (%) _;I( S m = (k=i (o —m—k+ Dl

where I(-) is the indicator function that equals 1 when the argument is true and 0 otherwise, n
is the total number of image categories in the database, and m is the number of image categories
that are annotated with the given word. The probability P(j, k) can be approximated as follows
using the binomial distribution if n,m >> k,

k

k
Pk =3 (’j)pi(l D=

1=j 1=j

where p = m/n is the percentage of image categories in the database that are annotated with this
word, or equivalently, the frequency of the word being used in annotation. A small value of P(j, k)
indicates a high level of significance for a given word. We rank the words within the description
of the most likely categories according to their statistical significance. Most significant words are
used to index the image.

Intuitively, assessing the significance of a word by P(j,k) is attempting to quantify how sur-
prising it is to see the word. Words may have vastly different frequencies of being used to annotate
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image categories in a database. For instance, much more categories may be described by “land-
scape” than by “dessert”. Therefore, obtaining the word “dessert” in the top ranked categories
matched to an image is in a sense more surprising than obtaining “landscape” since the word
“landscape” may have a good chance of being selected even by random matching.

The proposed scheme of choosing words favors “rare” words. Hence, if the annotation is correct,
it tends to provide relatively specific or interesting information about the query. On the other hand,
the scheme is risky since it avoids to a certain extent using words that fit a large number of image
categories.

5 Experiments

To validate the methods we have described, we implemented the components of the ALIP system
and tested with a general-purpose image database including about 60,000 photographs. These
images are stored in JPEG format with size 384 x 256 or 256 x 384. The system was written in
the C programming language and compiled on two UNIX platforms: LINUX and Solaris. In this
section, we describe the training concepts and show indexing results.

5.1 Training concepts

We conducted experiments on learning-based linguistic indexing with a large number of concepts.
The system was trained using a subset of 60,000 photographs based on 600 CD-ROMs published
by COREL Corp. Typically, each COREL CD-ROM of about 100 images represents one distinct
topic of interest. Images in the same CD-ROM are often not all visually similar. Figure 7 shows
the those images used to train the concept of Paris/France with the description: “Paris, European,
historical building, beach, landscape, water”. Images used to train the concept male are shown in
Figure 8. For our experiment, the dictionary of concepts contains all 600 concepts, each associated
with one CD-ROM of images.

We manually assigned a set of keywords to describe each CD-ROM collection of 100 photographs.
The descriptions of these image collections range from as simple or low-level as “mushrooms” and
“flowers” to as complex or high-level as “England, landscape, mountain, lake, European, people,
historical building” and “battle, rural, people, guard, fight, grass”. On average, 3.6 keywords are
used to describe the content of each of the 600 image categories. It took the authors approximately
10 hours to annotate these categories. In Table 1 and 2, example category descriptions are provided.

While manually annotating categories, the authors made efforts to use words that properly
describe nearly all if not all images in one category. It is possible that a small number of images
are not described accurately by all words assigned to their category. We view them as “outliers”
introduced into training for the purpose of estimating the 2-D MHMM. In practice, outliers often
exist for various reasons. There are ample statistical methods to suppress the adverse effect of them.
On the other hand, keeping outliers in training will testify the robustness of a method. For the
model we use, the number of parameters is small relative to the amount of training data. Hence the
model estimation is not anticipated to be affected considerably by inaccurately annotated images.
We therefore simply use those images as normal ones.

5.2 Categorization performance in a controlled database
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ID | Category Descriptions

0 | Africa, people, landscape, animal

10 | England, landscape, mountain, lake, European, people, historical building
20 | Monaco, ocean, historical building, food, European, people
30 | royal guard, England, European, people

40 | vegetable

50 | wild life, young animal, animal, grass

60 | European, historical building, church

70 | animal, wild life, grass, snow, rock

80 | plant, landscape, flower, ocean

90 | European, historical building, grass, people
100 | painting, European

110 | flower

120 | decoration, man-made

130 | Alaska, landscape, house, snow, mountain, lake
140 | Berlin, historical building, European, landscape
150 | Canada, game, sport, people, snow, ice

160 | castle, historical building, sky

170 | cuisine, food, indoor

180 | England, landscape, mountain, lake, tree

190 | fitness, sport, indoor, people, cloth

200 | fractal, man-made, texture

210 | holiday, poster, drawing, man-made, indoor
220 | Japan, historical building, garden, tree

230 | man, male, people, cloth, face

240 | wild, landscape, north, lake, mountain, sky
250 | old, poster, man-made, indoor

260 | plant, art, flower, indoor

270 | recreation, sport, water, ocean, people

280 | ruin, historical building, landmark

290 | sculpture, man-made

Table 1: Examples of the 600 categories and their descriptions. Every category has 40 training
images.
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ID | Category Descriptions

300 | Stmoritz, ski, snow, ice, people

310 | texture, man-made, painting

320 | texture, natural

330 | train, landscape, man-made

340 | Virginia, historical building, landscape, rural
350 | wild life, art, animal

360 | work, people, cloth

370 | architecture, building, historical building
380 | Canada, British Columbia, landscape, mountain
390 | blue

400 | Canada, landscape, historical building

410 | city, life, people, modern

420 | Czech Republic, landscape, historical building
430 | Easter egg, decoration, indoor, man-made
440 | fashion, people, cloth, female

450 | food, man-made, indoor

460 | green

470 | interior, indoor, man-made

480 | marine time, water, ocean, building

490 | museum, old, building

500 | owl, wild life, bird

510 | plant, flower

520 | reptile, animal, rock

530 | sail, boat, ocean

540 | Asia, historical building, people

550 | skin, texture, natural

560 | summer, people, water, sport

570 | car, man-made, landscape, plane, transportation
580 | US, landmark, historical building, landscape
590 | women, face, female, people

Table 2: Examples of the 600 categories and their descriptions (continued). Every category has 40
training images.
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Figure 7: Training images used to learn a given concept are not necessarily all visually similar.
For example, these 40 images were used to train the concept of Paris/France with the category
description: “Paris, European, historical building, beach, landscape, water”.

Figure 8: Training images used to learn the concept of male with the category description: “man,
male, people, cloth, face”.



% Africa | beach b.ulld_ buses dino- ele- flowers | horses | o | food
mgs saurs | phants tains

Africa 52 2 4 0 8 16 10 0 6 2
beach 0 32 6 0 0 0 2 2 58 0
buildings 8 4 64 0 8 6 0 0 6 4
buses 0 18 6 46 2 8 0 0 16 4
dinosaurs 0 0 0 0 100 0 0 0 0 0
elephants 8 0 2 0 8 40 0 8 34 0
flowers 0 0 2 0 0 0 90 0 2 6
horses 0 2 0 0 0 4 24 60 4 6
mountains 0 6 6 0 2 2 0 0 84 0
food 6 4 0 2 6 0 8 0 6 68

Table 3: Results of the automatic image categorization experiments. Each row lists the percentage
of images in one category classified to each of the 10 categories by the computer. Numbers on the
diagonal show the classification accuracy for each category.

To provide numerical results on the performance, we evaluated the system based on a controlled
subset of the COREL database, formed by 10 image categories (African people and villages, beach,
buildings, buses, dinosaurs, elephants, flowers, horses, mountains and glaciers, food), each contain-
ing 100 pictures. In the next subsection, we provide categorization and annotation results with
600 categories. Because many of the 600 categories share semantic meanings, the categorization
accuracy is conservative for evaluating the annotation performance. For example, if an image of the
category with sceneries in France is categorized wrongly into the category with European scenes,
the system is still useful in many applications. Within this controlled database, we can assess an-
notation performance reliably by categorization accuracy because the tested categories are distinct
and share no description words.

We trained each concept using 40 images and tested the models using 500 images outside the
training set. Instead of annotating the images, the program was used to select the category with
the highest likelihood for each test image. That is, we use the classification power of the system
as an indication of the annotation accuracy. An image is considered to be annotated correctly if
the computer predicts the true category the image belongs to. Although these image categories
do not share annotation words, they may be semantically related. For example, both the “beach”
and the “mountains and glaciers” categories contain images with rocks, sky, and trees. Therefore,
the evaluation method we use here only provides a lower bound for the annotation accuracy of the
system. Table 3 shows the automatic classification result. Each row lists the percentage of images
in one category classified to each of the 10 categories by the computer. Numbers on the diagonal
show the classification accuracy for every category.

5.3 Categorization and annotation results

A statistical model is trained for each of the 600 categories of images. Depending on the complexity
of a category, the training process takes between 15 to 40 minutes of CPU time, with an average
of 30 minutes, on an 800 MHz Pentium III PC to converge to a model. These models are stored
in a fashion similar to a dictionary or encyclopedia. The training process is entirely parallelizable
because the model for each concept is estimated separately.

We randomly selected 4,630 test images outside the training image database and processed
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these images by the linguistic indexing component of the system. For each of these test images, the
computer program selected 5 concepts in the dictionary with the highest likelihoods of generating
the image. For every word in the annotation of the 5 concepts, the value indicating its significance,
as described in Section 4, is computed. The median of all these values is 0.0649. We use the median
as a threshold to select annotation words from those assigned to the 5 matched concepts. Recall
that a small value implies high significance. Hence a word with a value below the threshold is
selected.

Number of images
@
g
S

1 2 3 4 5 6 9 10 11 12 13 14

7 8
Number of words selected to annotate

Figure 9: The histogram of the numbers of words assigned to the test images by our system.
For each word in the annotation of the 5 matched categories, a value indicating its significance is
computed and thresholded by 0.0649. A word with a value below the threshold is selected.

The histogram of the numbers of words assigned to the test images is provided in Figure 9. These
numbers range from 1 to 14 with median 6. The unique image with only one word assigned to it
is shown in Figure 10(a). This image is automatically annotated by “fractal”, while the manual
description of its category contains two words: “fractal” and “texture”. There are two images
annotated with as many as 14 words, which are shown in Figure 10(b) and (c). For the first image,
the manual annotation contains “mountain”, “snow”, “landscape”; and the automatically assigned
words are “mountain”, “rockies”, “snow”, “ice”, “glacier”, “sky”, “ski”, “winter”, “water”, “surf”,
“up”, “boat”, “ship”, “no-fear”. The only word discarded by thresholding is “cloud” which would
be a good description of the image although not included in the manual annotation. The value
indicating its significance is 0.073, quite close to the threshold. Several words outside the manual
annotation in fact describe the image quite accurately, e.g., “rockies”, “glacier”, “sky”. This
example shows that the computer annotation can sometimes be more specific than the manual
annotation which tends to stay at a general level in order to summarize all the images in the
category. For the second image, the manual annotation includes “season”, “landscape”, “autumn”,
“people”, and “plant”. The word “autumn” used to annotate the category is not very appropriate
for this particular image. The automatically annotated words have no overlap with the manual
annotation. The word “people” is marginally discarded by thresholding. Other words assigned to
this images include “sport”, “fitness”, “fight”.

To quantitatively assess the performance, we first compute the accuracy of categorization for the
randomly selected test images, and then compare the annotation system with a random annotation
scheme. Although the ultimate goal of ALIP is to annotate images linguistically, presenting the
accuracy of image categorization helps to understand how the categorization supports this goal.
Due to the overlap of semantics among categories, it is important to evaluate the linguistic indexing
capability. Because ALIP’s linguistic indexing capability depends on a categorized training database
and a categorization process, the choice of annotation words for the training image categories may
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(c)

Figure 10: Three test images. (a): This image is annotated with 1 word by ALIP. (b) and (c):
These two images are annotated with 14 words by ALIP.

improve the usefulness of the training database. The experimental results we are to present here
show that both ALIP’s image categorization process and linguistic indexing process are of good
accuracy.

The accuracy of categorization is evaluated in the same manner as described in Section 5.2. In
particular, for each test image, the category yielding the highest likelihood is identified. If the test
image is included in this category, we call it a “match”. The total number of matches for the 4,630
test images is 550. That is, an accuracy of 11.88% is achieved. In contrast, if random drawing is
used to categorize the images, the accuracy is only 0.17%. If the condition of a “match” is relaxed
to having the true category covered by the highest ranked two categories, the accuracy of ALIP
increases to 17.06%, while the accuracy for the random scheme increases to 0.34%.

In Table 4, we list the percentage of images whose true categories are included in their corre-
sponding top-ranked k (k = 1, 2,..., 5) categories in terms of likelihoods computed by ALIP. As a
comparison, we computed the number of categories required to cover the true category at the same
accuracy using random selection. When m categories are randomly selected from 600 categories,
the probability that the true category is included in the m categories is g5 (derived from sampling
without replacement). Therefore, to achieve an accuracy of 11.88% by the random scheme, 72
categories must be selected. Table 4 shows details about the comparison.

Accuracy 11.88% | 17.06% | 20.76% | 23.24% | 26.05%

Number of top-ranked
categories required by ALIP

Number of categories required

by a random selection scheme 72 103 125 140 151

Table 4: Comparison between the image categorization performance of ALIP and that of a random
selection scheme. Accuracy is the percentage of test images whose true categories are included in
top-ranked categories. ALIP requires substantially fewer categories to achieve the same accuracy.

To compare with the random annotation scheme, all the words in the annotation of the 600
categories are pooled to compute their frequencies of being used. The random scheme selects words
independently according to the marginal distribution specified by the frequencies. To compare with
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words selected by our system using the 0.0649 threshold, 6 words are randomly generated for each
image. The number 6 is the median of the numbers of words selected for all the images by our
system, hence considered as a fair value to use. The quality of a set of annotation words for a
particular image is evaluated by the percentage of manually annotated words that are included in
the set, referred to as the coverage percentage. It is worthy to point out that this way of evaluating
the annotation performance is “pessimistic” because the system may provide accurate words that
are not included in the manual annotation, as shown by previous examples. An intelligent system
tends to be punished more by the criterion in comparison with a random scheme because among
the words not matched with manually assigned ones, some may well be proper annotation. For our
system, the mean coverage percentage is 21.63%, while that of the random scheme is 9.93%. If all
the words in the annotation of the 5 matched concepts are assigned to a query image, the median of
the numbers of words assigned to the test images is 12. The mean coverage percentage is 47.48%,
while that obtained from assigning 12 words by the random scheme is 17.67%. The histograms of
the coverage percentages obtained by our system with and without thresholding and the random
scheme are compared in Figure 11.

One may suspect that the 4,630 test images, despite of being outside the training set, are rather
similar to training images in the same categories, and hence are unrealistically well annotated. We
thus examine the annotation of 250 images taken from 5 categories in the COREL database using
only models trained from the other 595 categories, i.e., no image in the same category as any of the
250 images is used in training. The mean coverage percentages obtained for these images by our
system with and without thresholding at 0.0649 are 23.20% and 48.50%, both slightly higher than
the corresponding average values for the previous 4,630 test images. The mean coverage percentages
achieved by randomly assigning 6 and 12 words to each image are 10.67% and 17.27%. It is thus
demonstrated that for these 250 images, relying merely on models trained for other categories, the
annotation result is at least as good as that of the large test set.

It takes an average of 20 minutes of CPU time to compute all the likelihoods of a test image
under the models of the 600 concepts. The computation is highly parallelizable because processes
to evaluate likelihoods given different models are independent. The average amount of CPU time
to compute the likelihood under one model is only 2 seconds. We are planning to implement the
algorithms on massively parallel computers and provide real-time online demonstrations in the
future.

Automatic and manual annotation of the over 4600 test images can be viewed on the Web!.
Figure 12 shows the computer indexing results of 21 randomly selected images outside the training
database. Annotation results on four photos taken by the authors and hence not in the COREL
database are reported in Figure 13. The method appears to be highly promising for automatic
learning and linguistic indexing of images. Some of the computer predictions seem to suggest
that one can control what is to be learned and what is not by adjusting the training database of
individual concepts.

6 Conclusions and future work

In this paper, we demonstrated our statistical modeling approach to the problem of automatic
linguistic indexing of pictures for the purpose of image retrieval. We used categorized images
to train a dictionary of hundreds of concepts automatically. Wavelet-based features are used to
describe local color and texture in the images. After analyzing all training images for a concept,

'http://wang.ist.psu.edu/IMAGE/alip.html
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Figure 11: The histograms of the coverage percentages obtained by the ALIP system with and
without thresholding and the random scheme based on a test set of 4,630 images.
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Image Computer Computer Computer
predictions predictions predictions
building,sky,lake, snow,animal, people,European,
landscape, wildlife,sky, female

European,tree

food,indoor,
cuisine,dessert

skyline,
sky, New York,
landmark

pattern,flower,
red,dining

San Diego,
ocean side,
beach,Florida,
Thailand,building

flower,flora,
plant,fruit,
natural,texture

ancestor,
drawing,
fitness,

history, indoor

cloth,ice,people

people,
European,
man-made,
water

plant,flower,
garden

ocean,paradise,
San Diego,
Thailand,
beach,fish

relic,Belgium,
Portugal,art

travel,fountain,
European,
Florida,
beach,building

hair style,
occupation,face,
female,cloth

lake,Portugal,
glacier,mountain,
water

modern,parade,
people

elephant,Berlin,
Alaska

fitness,indoor,
Christmas,
cloth,holiday

Africa,Kenya,
Zimbabuwe,
animal,cave

night,cyber,
fashion,female

Figure 12: Annotations automatically generated by our computer-based linguistic indexing algo-
rithm. The dictionary with 600 concepts was created automatically using statistical modeling and
learning. Test images were randomly selected outside the training database.
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P: historical building, P: animal, grass

P: building,
snow, sky, tree, (bridge), river, Italy, (squirrel)
landscape sky, Europe

Figure 13: Test results using photos not in the COREL collection. Statistical models learned from
the COREL collection can be used to index other photographic images. These photos were taken
by the authors. P: Photographer annotation. Words appeared in the annotation of the 5 matched
categories are underlined. Words in parenthesis are not included in the annotation of any of the
600 training categories.

a two-dimensional multiresolution hidden Markov model (2-D MHMM) is created and stored in a
concept dictionary. ITmages in one category are regarded as instances of a stochastic process that
characterizes the category. To measure the extent of association between an image and the textual
description of an image category, we compute the likelihood of the occurrence of the image based
on the stochastic process derived from the category. We have demonstrated that the proposed
methods can be used to train models for 600 different semantic concepts and these models can be
used to index images linguistically.

The major advantages of our approach are (1) models for different concepts can be independently
trained and retrained; (2) a relatively large number of concepts can be trained and stored; (3)
spatial relation among image pixels within and across resolutions is taken into consideration with
probabilistic likelihood as a universal measure.

The current system implementation and the evaluation methodology have several limitations.

e We train the concept dictionary using only 2-D images without a sense of object size. It is
believed that the object recognizer of human beings is usually trained using 3-D stereo with
motion and a sense of object sizes. Training with 2-D still images potentially limits the ability
of accurately learning concepts.

e As pointed out by one of the anonymous reviewers, the COREL image database is not ideal
for training the system because of its biases. For instance, images in some categories, e.g.,
‘tigers’, are much more alike than a general sampling of photographs depicting the concept.
On the other hand, images in some categories, e.g., ‘Asia’, are widely distributed visually,
making it impossible to train such a concept using only a small collection of such images.
Until this limitation is thoroughly investigated, the evaluation results reported should be
interpreted cautiously.

e For a very complex concept, i.e., when images representing it are visually diverse, it seems
that 40 training images are insufficient for the computer program to build a reliable model.
The more complex the concept is, the more training images and CPU time are needed. This
is similar to the learning process of a person, who in general needs more experience and longer
time to comprehend more complex concepts.
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In the future work, we may improve the indexing speed of the system by using approximation
in the likelihood computation. A rule-based system may be used to process the words annotated
automatically to eliminate conflicting semantics. Moreover, besides assigning words to an image,
weights can be given to the words in the mean time to indicate the believed extent of description
appropriateness. Experiments with different applications such as biomedicine and art could be
interesting.
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