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Abstract 

This paper aims to identify the effect of using the 
maximum likelihood (ML) parameter estimation 
method when data do not meet the assumption of 
multivariate normality and are not continuous. Both 
ML and the diagonally weighted least squares 
(DWLS) procedure were applied to simulated sets of 
data, which have different distributions and include 
variables that can take different numbers of possible 
values. Results were also compared to the ideal 
situation of a data set consisting of continuous, 
normally distributed variables. Outcomes indicate 
that ML provides accurate results when data are 
continuous and uniformly distributed, but is not as 
precise with ordinal data that is not treated as 
continuous, especially when variables have a small 
number of categories and data do not meet the 
assumption of multivariate normality. In contrast, 
DWLS provides more accurate parameter estimates, 
and a model fit that is more robust to variable type 
and non-normality. 

1. Introduction

LISREL 8 software is frequently used for 
confirmatory factor analysis and provides a choice of 
seven estimation methods of parameter estimation: 
instrumental variables method (IV), two stage least 
squares (TSLS), unweighted least squares (ULS), 
generalized least squares (GLS), maximum 
likelihood (ML), weighted least squares (WLS), and 
diagonal weighted least squares (DWLS) [4]. These 
methods have different purposes, as well as different 
underlying assumptions.  

In social sciences, confirmatory factor analysis 
is frequently conducted with ordinal data, because 

measurement instruments often consist of Likert 
scale items. Furthermore, in numerous situations 
data do not have a multivariate normal distribution. 
These aspects violate the assumptions of some 
estimation methods, and should be taken into 
account when estimating model parameters. When 
assumptions are not taken into consideration, model 
fit indicators may be biased, and lead to potentially 
incorrect decisions about the hypothesized theory. 
For instance, inflated chi-square values and standard 
errors may increase the probability of Type I error, 
because in such situations it is more likely to reject a 
correctly specified model than expected by chance. 
Similarly, overoptimistic parameter estimates and fit 
indices may increase the probability of Type II error, 
because researchers are more likely to accept a 
potentially misspecified model. 

2. Theoretical Framework

Inferential statistics rely on the assumption that 
data are normally distributed. The multivariate 
normal distribution is a generalization of the 
univariate normal distribution to higher dimensions. 
A matrix has a multivariate normal distribution when 
all of its linear components are normally distributed. 

Non-normality is indicated by the degree of 
skewness and kurtosis. Skewness occurs when 
responses are more frequent at one part of the 
measurement scale, and affects the variance-
covariance among variables. Kurtosis reflects the 
flatness in data distribution. Leptokurtic data are 
more peaked than normal, whereas platykurtic data 
are flatter and more dispersed on the X-axis, with 
low frequencies on the Y-axis. Both leptokurtic and 
platykurtic data impact the accuracy of statistical 
procedures [9]. There is no consensus regarding an 
acceptable degree of non-normality, but most often 
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cut-off values are 2 for univariate skewness, 7 for 
univariate kurtosis, and 3 for multivariate kurtosis 
[5]. 

ML is the most popular estimation procedure, 
most likely because it is the default option in 
LISREL [9]. It is a normal theory estimator, and 
assumes that the sample has an adequate size, 
observations are independent (randomly selected), 
the model is correctly specified, and data are 
multivariate normal and continuous. Like other 
normal theory estimators (GLS), ML employs an 
iterative estimation process, which minimizes the 
difference between the observed sample covariance 
matrix and the model implied covariance matrix. The 
model parameters obtained with this method 
maximize the likelihood of observing the available 
data if one were to collect data from the same 
population again. This estimation procedure is 
recommended over other normal theory estimators, 
because its results are less biased when the model is 
misspecified [5]. 

With non-normal continuous data, ML produces 
relatively accurate parameter estimates, but the bias 
in chi-square and standard errors increases with non-
normality [2]. Even when the model is correctly 
specified, the use of ML in conditions of 
multivariate non-normality results in inflated chi-
squares, particularly when the data have a leptokurtic 
distribution [3]. Consequently, fit indices such as the 
Tucker-Lewis Index (TLI), the root-mean square 
error approximation (RMSEA), and the comparative 
fit index (CFI), which are functions of chi-square, 
are also biased. Although ML produces accurate 
parameter estimates with non-normal continuous 
data, the standard errors are underestimated, 
especially when data are leptokurtic. [6] 

Due to the discrete nature of categorical data, 
some authors consider it to be inherently non-normal 
[8]. However, when ordinal data have a large 
number of categories and are approximately normal, 
ML does not produce severely biased results. Bias 
tends to increase as the number of response 
categories decreases, and multivariate non-normality 
increases. Because ML computational procedures are 
based on Pearson product-moment (PPM) 
correlational techniques, when the number of 
response categories is small, the fit indices, 
parameter estimates, and standard errors can be 
biased.   [5] 

When data are both ordinal and non-normal, 
using ML inflates the chi-square and the root mean 
square residual (RMR), and underestimates the non-

normed fit index (NNFI), and the goodness of fit 
index (GFI). Furthermore, the bias in parameter 
estimates and standard errors increases when data 
are skewed or kurtotic, when there are few response 
categories, the sample is small, or the relationships 
between factors and indicators are weak [1]. 

Because of the assumption of multivariate 
normal distribution, it is generally recommended to 
use ML only when the violations of multivariate 
normality are only slight. Additionally, ML can be 
used with ordinal data only if variables can take at 
least 5 different values, and they are treated as 
continuous when computing the correlation or 
covariance matrix [10]. 

In situations in which the assumption of 
multivariate normality is severely violated and/or 
data are ordinal, the diagonally weighted least 
squares (DWLS) method provides more accurate 
parameter estimates. The DWLS is the robust WLS 
method, and is based on the polychoric correlation 
matrix of the variables included in the analysis. It 
uses only the diagonal of weights in inversion, and 
all weights in estimation of fit and standard error. 
There is little research on the advantages and 
disadvantages of using this estimation procedure. As 
opposed to WLS, this method can be used with small 
sample sizes, large models, as well as skewed and 
ordinal data. It uses the asymptotic variance from the 
asymptotic covariance matrix, which is produced by 
PRELIS [10].  

 
3. Data Sources 
 

The five data sets used in the study were 
artificially generated and have a sample size of 500 
cases, which meets the requirement of 5-20 cases per 
parameter estimate. One data set represents the ideal 
situation of having a perfectly normal distribution 
and continuous variables. The other four data sets 
consist of ordinal variables. Two of them have three 
category data, whereas the other two have seven 
category data. In both cases, one data set is 
multivariate normal, while the other is non-normally 
distributed (Table 1). All data sets were screened 
using Jöreskog and Sörbom's PRELIS software. By 
default, PRELIS recognizes categorical data and 
treats it accordingly, by using polychoric correlation 
to compute covariance matrices. Polychoric 
correlation allows the estimation of the correlation 
between theorized normally distributed continuous 
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latent variables, by using the coresponding observed 
ordinal variables. 

Additionally, for each data set PRELIS was also 
used to compute asymptotic covariance matrices for 
categorical variables. These matrices are not 
required to apply the ML method, but must be 
included when using DWLS.  They are not used in 
iterations, and therefore, do not affect parameter 
estimates, and do not have to be inverted. However, 
they should be used to compute robust standard 
errors and Chi-Squares, which are corrected for non-
normality.  

In addition to these procedures, ordinal variables 
were also treated as continuous, and covariance 

matrices were computed using a simple Pearson 
product moment correlation. 
 
4. Confirmatory Factor Analysis 

 
All data sets were used to replicate the true 

model illustrated in Figure 1, which has 20 variables 
and five factors (four variables per factor). All the 
variables in the true model have factor loadings of 
.7, and all factor correlations are .3. 

As indicated in Table 2, the T rule [4] shows 
that the model is overidentified: it provides sufficient 
information to estimate the requested parameters and 
enough degrees of freedom are left to be able to 
compute and compare fit indices.                          .

 
 

Table 1. Data sets. 
Continuous Ordinal 

 3 Category Data 7 Category Data 
Normal Normal Non-Normal Normal Non-Normal 

500 500 500 500 500 
 
 

 
Figure 1. Estimated model. 
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Table 2. Using the T rule to determine whether 
the estimated model is overidentified. 
 

Available 
Information 

Information to 
Estimate 

Degrees of 
Freedom 

210 46 164 
 Errors 20  
 Loadings 20  
 Relationships 

between 
Factors 

6  

 
 

With each one of the four ordinal data sets, 
confirmatory factor analysis was conducted using 
three different procedures. In the first procedure, 
ordinal variables were treated as continuous, and 
parameters were estimated using the default 
LISREL method (ML). In the second procedure 
variables were treated as ordinal (default option), 
and parameters were estimated using the DWLS 
method, for which the asymptotic covariance matrix 
was also computed. The last procedure treated 
variables as ordinal, and used ML the estimation 
method without including the asymptotic covariance 
matrix. In summary, the first method uses the 
default estimation procedure, the second method 
uses the default variable type, and the third method 
uses default options for both variable type and 
estimation procedure. For comparison, the model 
was also estimated using the normally distributed 
data with continuous variables, using the ML 
procedure. Parameter estimates and goodness of fit 
indices resulted from all methods were compared to 
determine whether or not they might lead to 
different results.  

 
5. Results 

 
As indicated in Table 3, with the three category 

and the seven category data, the DWLS method 
estimates factor loadings, standard errors and factor 
correlations most precisely (closest to the true 
model), with both multivariate normal and non-
normal distributions.  

Although factor loadings are closer to .7 when 
non-normal three category data is treated as ordinal 
and ML is used, the standard errors are very large 
and the factor correlations are poorly estimated. 
Results depend more on the correct identification of 

variable type, rather than addressing the variable 
distribution. Even when the use of ML is justified 
by normal distribution and variables are treated as 
continuous, results are biased because this method is 
not adequate for categorical data. DWLS has less 
restrictive assumptions, but the statistical quality of 
the estimates remains to be determined. For the 
three category data, this method produces a 
relatively large number of significant modification 
indices, suggesting that some items should load to 
different factors (this does not coincide with the true 
model). 

Maximum likelihood is the most precise 
method, when the data are continuous and normally 
distributed. However, this is rarely the case in social 
science research. With ordinal data, maximum 
likelihood was more sensitive to variable type than 
normal distribution. Nevertheless, the impact of 
ordinal data is attenuated when the number of 
categories is larger. 

In addition to factor loadings, standard errors, 
factor correlation and modification indices, 
goodness of fit indices for each solution were 
compared to determine which of the estimating 
procedures produces the model that best fits the 
data. 

As shown in Table 4, chi-square values 
associated with each estimating procedure are 
significant. However, the chi-square test is sensitive 
to both sample and model size, and can lead to the 
inappropriate rejection of plausible models. 
Therefore chi-square divided by the degrees of 
freedom was used as an index of model fit. 
Generally, values lower than 3 indicate a good 
model fit. The lowest Chi-square/df ratios occur 
when ML is used and data is treated as continuous, 
(or has a larger number of categories). However, 
ML artificially inflates the model fit, whereas 
DWLS computes robust Chi-Squares and 
subsequent indices, by correcting for non-normality.  

The RMSEA index estimates how well the 
proposed model approximates reality [7]. Values 
between .05 and 08 indicate a fair model fit, 
whereas values smaller than .05 show and excellent 
fit. In most cases, DWLS method has the lowest 
RMSEA index (close to 0), indicating that this 
method has the lowest average error left 
unaccounted for, and the model fits the data almost 
perfectly.  
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Table 3. Range of parameters estimates and number of significant modification indices for each data 
set and estimation procedure. 

 Loadings Standard Errors Factor Correlations Significant Modification Indices 
Norm Cont ML (.65-.71) 

all significant 
(.48-.58) 

all significant 
(.23-.39) 

all significant 
0 

3NCont ML (.53-.71) 
all significant 

(.53-.72) 
all significant 

(.26-.31) 
all significant 

0 

3Ncateg DWLS (.60-.77) 
all significant 

(.40-.64) 
all significant 

(.27-.33) 
all significant 

2 

3Ncateg ML (.59-.78) 
all significant 

(.39-.66) 
all significant 

(.26-.32) 
all significant 

7 

3NNCont ML (.43-.57) 
all significant 

(.82-.62) 
all significant 

(.06-.28) 
all significant 

0 

3NNcateg DWLS (.58-.77) 
all significant 

(.41-66) 
all significant 

(.09-.35) 
all significant 

10 

3NNcateg ML (.62-.74) 
all significant 

(.48-.66) 
all significant 

(.08-.36) 
all significant 

0 

7NCont ML (.56-.71) 
all significant 

(.50-.69) 
all significant 

(.31-.37) 
all significant 

2 

7Ncateg DWLS (.65-.72) 
all significant 

(.48-.67) 
all significant 

(.31-.37) 
all significant 

0 

7Ncateg ML (.57-.72) 
all significant 

(.48-.68) 
all significant 

(.31-.38) 
all significant 

3 

7NNCont ML (.47-.67) 
all significant 

(.55-.76) 
all significant 

(.19-.36) 
all significant 

2 

7NNcateg DWLS (.63-.80) 
all significant 

(.36-.67) 
all significant 

(.19-.43) 
all significant 

2 

7NNcateg ML (.57-.78) 
all significant 

(.39-.67) 
all significant 

(.18-.42) 
all significant 

29 

 
Table 4. Fit indices. 

Chi-
Square 

df Chi-
Square/ df 

RMSEA 
(CI 90%) 

SRMR ECVI 
(CI 90%) 

AIC NNFI AGFI 

Norm Cont ML 165.46 164 1.01 .0042 (.00;.02) .029 .52 (.51;.58) 256.46 1.0 .96 
3NContML 129.67 164 0.79 0.0 (.0-.0) .027 .51(.51-.51) 221.67 1.01 .97 
3NcategDWLS 260.29 164 1.59 0.0 (.0-.0) .032 .51(.51-.51) 224.31 1.01 .99 
3NcategML 259.86 164 1.58 .034 (.03--.04) .033 .71(.63-.80) 351.86 .98 .94 
3NNContML 165.61 164 1.01 .004 (.00-.07) .037 .52(.51-.59) 257.61 1.0 .96 
3NNcategDWLS 1116.84 164 6.81 0.0 (.0-.0) .076 .51(.51-.51) 6062.50 1.01 .98 
3NNcategML 1090.85 164 6.65 .11 (.10-.11) .077 2.37(.22-.59) 6062.5 .77 .77 
7NContML 182.73 164 1.11 .015 (.0-.07) .033 .55(.51-.62) 274.73 1.00 .95 
7NcategDWLS 214.46 164 1.31 .014 (.0-.025) .034 .55(.51-.62) 272.03 1.00 .99 
7NcategML 213.65 164 1.03 .025 (.01-.03) .035 .61(.54-.70) 305.65 .99 .95 
7NNContML 188.89 164 1.51 .017 (.0-.03) .038 .56(.51-.64) 280.89 .99 .95 
7NNcategDWLS 549.19 164 3.34 0.0 (.0-.01) .054 .51(.51-.53) 233.14 1.0 .98 
7NNcategML 540.48 164 3.29 .068 (.062-.074) .055 1.27(1.13-1.42) 632.48 .92 .87 
Benchmark   < 3 

acceptable 
fit 

0=perfect fit 
<.05 good fit 
<.08 fair fit 
>.10 poor fit 

Lowest value shows better 
fit. 
 

>.9 acceptable 
fit 
>.95 good fit 
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SRMR reflects the size of the fitted residuals, 
with small values indicating a better fit [7]. 
Regardless of the number of data categories and 
variable distribution, the ML estimation method 
produces the lowest SRMR values, if the data is 
treated as continuous.  

The ECVI value shows how well the proposed 
model is expected to cross-validate, and low values 
indicate good model-fit [7]. Results obtained with 
the different estimation methods show that in most 
cases the model obtained with DWLS is most likely 
to cross validate. The AIC index is used to compare 
models with different numbers of latent variables, 
taking into account the model complexity and fit [7]. 
AIC values that are closest to 0 show the most 
parsimonious model. Regardless of data distribution, 
the maximum likelihood method produces a lower 
AIC index when the data has only three categories, 
and is treated as continuous. When the data has 
seven categories and the DWLS method is used, AIC 
indicates a more parsimonious model. 

NNFI indicates how much better a model fits 
the data relative to a model with no structure, 
assuming that sampling error explains covariation 
among measured variables [7]. The closer its values 
are to one, the better is the model fit. When the data 
are normally distributed, both ML (when variables 
are treated as continuous) and DWLS provide high 
NNFI values. Nevertheless, when the assumption of 
multivariate normality is not met, NNFI indicates 
that the DWLS method produces a model that better 
fits the data. 

AGFI indicates how much variance the 
proposed model accounts for [2]. Values above .9 
are generally considered acceptable, while an AGFI 
value of .95 indicates that the proposed model fits 
the data very well. This index is used to compare the 
fit of different models with the same data, and is 
adjusted for the degrees of freedom of a model 
relative to the number of variables. It is, therefore, 
an important index to consider in interpreting the 
results of our analysis. In all cases, regardless of data 
distribution and number of data categories, the best 
AGFI values are recorded when the data is treated as 
ordinal, and the DWLS method is used to estimate 
model parameters.  

Goodness of fit analysis also indicates that in all 
situations, estimation is less precise when both 
default LISREL options are used: data is treated as 
categorical, and parameters are computed based on 
maximum likelihood. This outcome is not 
unexpected, because there is a mismatch between the 

nature of the data and the estimation method used: 
covariance matrices are based on polychoric 
correlations, but ML treats variables as continuous, 
and the asymptotic covariance matrix is not included 
in the analysis. Model fit is more drastically affected 
when the distribution is skewed, because the ML 
assumption of multivariate normality is not met.  

 
6. Conclusion 

 
Based on the results presented above it can be 

concluded that the methods of parameter estimation 
in confirmatory factor analysis should be carefully 
chosen, by taking into account the extent to which 
the data sets utilized meet their inherent 
assumptions. ML is adequately used in a perfect case 
scenario, when the data are continuous and 
uniformly distributed. The accuracy of this 
estimation method is mostly affected when it is used 
with ordinal data that is not treated as continuous, 
especially when variables have a small number of 
categories. Additional estimation error occurs when 
the data does not meet the assumption of 
multivariate normality. In contrast, DWLS provides 
more accurate parameter estimates, and the fit of the 
model is more robust to variable type and non-
normality.  

Therefore, it is critical to investigate the 
distribution of the data before estimating parameters, 
and to address the variable type by choosing the 
most appropriate estimation method. When 
researchers do not check these assumptions and 
simply employ the default estimation procedure, 
results may be biased and may lead to erroneous 
decisions regarding the model tested. 

 
 
7. Limitations 
 

Although the results presented above support 
the effectiveness of the DWLS estimation method 
with ordinal and multivariate non-normal data, they 
are based on testing only one model. Additionally, 
all items in this model have the same loading value, 
and the same distribution. To better simulate real 
data, further research on this topic should test several 
models and include items with various loadings and 
different distributions.  

Moreover, further investigation is needed to 
determine whether the findings can be replicated 
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with a large number of samples, as well as across 
different sample sizes. 
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