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What Educated Citizens Should Know 
About Statistics and Probability 

Jessica UTTS 

Much has changed since the widespread introduction of statistics 
courses into the university curriculum, but the way introductory 
statistics courses are taught has not kept up with these changes. 
This article discusses the changes, and the way the introductory 
syllabus should change to reflect them. In particular, seven ideas 
are discussed that every student who takes elementary statistics 
should learn and understand in order to be an educated citi- 
zen. Misunderstanding these topics leads to cynicism among 
the public at best, and misuse of study results by policy-makers, 
physicians, and others at worst. 

KEY WORDS: Coincidences; Practical significance; Statis- 
tics education; Statistical literacy; Survey bias. 

1. INTRODUCTION 

Statistical studies are prominently featured in most major 
newspapers on a daily or weekly basis, yet most citizens, and 
even many reporters, do not have the knowledge required to 
read them critically. When statistics courses were first intro- 
duced, they were taken primarily by students who intended to 
pursue their own research, or were in disciplines that required 
them to analyze data as part of their training. The focus of those 
courses was on computation, and little emphasis was placed on 
how to integrate information from study design to final conclu- 
sions in a meaningful way. Much has changed since then, in 
three ways: the audience, the tools available to students, and the 
world around us. 

At many universities, students in a large proportion of majors 
are required to take an introductory statistics course. Most of 
these students will never actually do statistical analyses of their 
own. Therefore, we should be preparing them to read and un- 
derstand studies conducted and analyzed by others, published in 
journals, and reported by the media. Anecdotally, the audience 
has changed in two other ways as well. First, students in introduc- 
tory statistics courses seem less adept at quantitative reasoning 
than in earlier days, perhaps because of the broader representa- 
tion of majors. And there are more returning students, who may 
have different interests than traditional college-age students. 

There is no question that the tools available for use by the 
students have changed in recent years. Most students come to 
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college with a sophisticated calculator, at least capable of find- 
ing means and standard deviations, and often capable of doing 
most of the procedures taught in introductory statistics courses. 
Further, there is universal access to computers, and programs 
like Excel have standard statistical features. Even the use of sta- 
tistical software has changed over the past few decades, with 
programs like Minitab and SPSS being menu-driven, making 
them easy for novices to learn and use. 

The world around us has changed as well. Statistical studies 
are reported regularly in newspapers and magazines, so students 
are likely to encounter them on a routine basis. And, for class- 
room use, there is an abundance of examples available on the 
Internet through sites like those of the Gallup Organization, USA 
Today, the Bureau of Labor Statistics, and so on. Further, many 
journal articles are available on-line, so it is easy for instructors 
and students to find complete examples of the design, imple- 
mentation, analysis, and conclusions of statistical studies. 

The consequence of all of these changes is that there is less 
need to emphasize calculations, and more need to focus on 
understanding how statistical studies are conducted and inter- 
preted. Relevant and interesting examples are readily available. 
Yet many instructors have not made any changes in how they 
teach introductory statistics. 

2. SEVEN IMPORTANT TOPICS 

There are of course many important topics that need to be dis- 
cussed in an elementary statistics course. For this article, I have 
selected seven topics that I have found to be commonly mis- 
understood by citizens, including the journalists who present 
statistical studies to the public. In fact researchers themselves, 
who present their results in journals and at the scientific meet- 
ings from which the journalists cull their stories, misunderstand 
many of these topics. If all students of introductory statistics 
understood them, there would be much less confusion and mis- 
interpretation related to statistics and probability and findings 
based on them. In fact the public is often cynical about statistical 
studies, because these misunderstandings lead to the appearance 
of a stream of studies with conflicting results. This is particularly 
true of medical studies, where the misunderstandings can have 
serious consequences when neither physicians nor patients can 
properly interpret the statistical results. 

A summary of the seven topics covered in this article is pre- 
sented first, followed by a more in-depth explanation with ex- 
amples for each topic: 

1. When it can be concluded that a relationship is one of cause 
and effect, and when it cannot, including the difference between 
randomized experiments and observational studies. 

2. The difference between statistical significance and practi- 
cal importance, especially when using large sample sizes. 
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3. The difference between finding "no effect" or "no differ- 
ence" and finding no statistically significant effect or difference, 
especially when using small sample sizes. 

4. Common sources of bias in surveys and experiments, such 
as poor wording of questions, volunteer response, and socially 
desirable answers. 

5. The idea that coincidences and seemingly very improbable 
events are not uncommon because there are so many possibili- 
ties. 

6. "Confusion of the inverse" in which a conditional probabil- 
ity in one direction is confused with the conditional probability 
in the other direction. 

7. Understanding that variability is natural, and that "normal" 
is not the same as "average." 

3. CAUSE AND EFFECT 

Probably the most common misinterpretation of statistical 
studies in the news is to conclude that when a relationship is 
statistically significant, a change in an explanatory variable is 
the cause of a change in the response variable. This conclusion 
is appropriate only under very restricted conditions, such as for 
large randomized experiments. For single observational stud- 
ies, it is rarely appropriate to conclude that one variable caused 
a change in another. Therefore, it is important for students of 
statistics to understand the distinction between randomized ex- 
periments and observational studies, and to understand how the 
potential for confounding variables limits the conclusions that 
can be made from observational studies. 

As an example of this problem, an article appeared in USA To- 
day titled "Prayer can lower blood pressure" (Davis 1998). The 
article reported on an observational study funded by the United 
States National Institutes of Health, which followed 2,391 peo- 
ple aged 65 or over for six years. One of the conclusions reported 
in the article read: 

Attending religious services lowers blood pressure more than tuning 
into religious TV or radio, a new study says. People who attended a 
religious service once a week and prayed or studied the Bible once a 
day were 40% less likely to have high blood pressure than those who 
don't go to church every week and prayed and studied the Bible less 
(Davis 1998). 

The headline and the displayed quote both indicate that pray- 
ing and attending religious services actually causes blood pres- 
sure to be lower. But there is no way to determine a causal 
relationship based on this study. It could be that people who are 
healthier are more able to attend religious services, so the causal 
relationship is the reverse of what is attributed. Or, it could be 
that people who are more socially inclined are less stressed and 
thus have lower blood pressure, and are more likely to attend 
church. There are many other possible confounding variables in 
this study that could account for the observed relationship. The 
problem is that readers may mistakenly think that if they alter 
their behavior with more prayer and church attendance, it will 
cause their blood pressure to lower. 

Another example illustrates that even researchers can make 
this mistake. An article in The Sacramento Bee (Perkins 1999) 
reported on an observational study of a random sample of more 
than 6,000 individuals with an average age of 70 when the study 

began. The study followed them over time and found that a 
majority, over 70%, of the participants did not lose cognitive 
functioning over time. One result was quoted as "Those who 
have diabetes or high levels of arteriosclerosis in combination 
with a gene for Alzheimer's disease are eight times more likely 
to show a decline in cognitive function" (Perkins 1999). So far, 
so good, because the reporter is not implying that the increased 
risk is causal. However, one of the original researchers (if quoted 
accurately) was not so careful. The researcher was quoted as fol- 
lows: "That has implications for prevention, which is good news. 
If we can prevent arteriosclerosis, we can prevent memory loss 
over time, and we know how to do that with behavior changes- 
low-fat diets, weight control, exercise, not smoking, and drug 
treatments" (Perkins 1999). 

In other words, the researcher is assuming that high levels of 
arteriosclerosis are causing the decline in cognitive functioning. 
But there are many possible confounding variables that may 
cause both high levels of arteriosclerosis and decline in cognitive 
functioning, such as genetic disposition, certain viruses, lifestyle 
choices, and so on. 

Resisting the temptation to make a causal conclusion is par- 
ticularly difficult when a causal conclusion is logical, or when 
one can think of reasons for how the cause and effect mecha- 
nism may work. Therefore, when illustrating this concept for 
students, it is important to give many examples and to discuss 
how confounding variables may account for the relationship. 
Fortunately, examples are easy to find. Most major newspapers 
and Internet news sites report observational studies several times 
a week, and they often make a possibly erroneous causal con- 
clusion. 

4. STATISTICAL SIGNIFICANCE AND PRACTICAL 
IMPORTANCE 

Students need to understand that a statistically significant find- 
ing may not have much practical importance. This is especially 
likely to be a problem when the sample size is large, so it is easy 
to reject the null hypothesis even if there is a very small effect. 

As an example, the New York Times ran an article with the 
title "Sad, Lonely World Discovered in Cyberspace" (Harmon 
1998). It said, in part: 

People who spend even a few hours a week online have higher levels 
of depression and loneliness than they would if they used the computer 
network less frequently... it raises troubling questions about the nature 
of 'virtual' communication and the disembodied relationships that are 
often formed in cyberspace (Harmon 1998). 

It sounds like the research uncovered a major problem for 
people who use the Internet frequently. But on closer inspection, 
the magnitude of the difference was very small. On a scale from 
1 (more lonely) to 5, self-reported loneliness decreased from an 
average of 1.99 to 1.89, and on a scale from 0 (more) to 3 (less), 
self-reported depression decreased from an average of .73 to .62. 

Here is another example of how a very large sample size re- 
sulted in a statistically significant difference that seems to be 
of little practical importance to the general public. The origi- 
nal report was in Nature (Weber, Prossinger, and Seidler 1998), 
and a Reuters article on the Yahoo Health News Web site ran 
a headline "Spring Birthday Confers Height Advantage" (Feb. 
18, 1998). The article described an Austrian study of the heights 
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of 507,125 military recruits, in which a highly significant differ- 
ence was found between recruits born in the spring and the fall. 
The difference in average heights was all of .6 centimeters, or 
about 1/4 inch. While that may be important to researchers who 
are studying growth issues, the difference is hardly what most 
of us would consider to be "a height advantage." 

A related common problem is when multiple comparisons or 
analyses are done, but only those that achieve statistical signifi- 
cance are reported. In most studies a variety of relationships are 
examined, but only those achieving statistical significance are 
reported in the media. For instance, a randomized experiment 
studying the effect of taking aspirin or hormones may examine 
their relationship with multiple outcomes, such as heart disease, 
stroke, and various types of cancer. If the researchers have not 
adjusted for multiple comparisons, it is misleading to focus on 
the relationships that achieved statistical significance as if those 
were the only ones tested. Although the multiple analysis prob- 
lem is not discussed in detail here, it is important to discuss it 
with students when explaining cautions about interpreting sta- 
tistical significance. 

5. LOW POWER VERSUS NO EFFECT 

It is also important for students to understand that sample size 
plays a large role in whether or not a relationship or difference is 
statistically significant, and that a finding of "no difference" may 
simply mean that the study had insufficient power. For instance, 
suppose a study is done to determine whether more than a ma- 
jority of a population has a certain opinion, so the test considers 
Ho : p = .5 versus Ha : p > .5. If in fact as much as 60% of 
the population has that opinion, a sample size of 100 will only 
have power of .64. In other words, there is still a 36% chance 
that the null hypothesis will not be rejected. Yet, reporters often 
make a big deal of the fact that a study has "failed to replicate" 
an earlier finding, when in reality the magnitude of the effect 
mimics that of the original study, but the power of the study was 
too low to detect it as statistically significant. 

As an example with important consequences, a February 1993 
conference sponsored by the United States National Cancer In- 
stitute (NCI) conducted a meta-analysis of eight studies on the 
effectiveness of mammography as a screening device. The con- 
clusion about women aged 40-49 years was: "For this age group 
it is clear that in the first 5-7 years after study entry, there is no 
reduction in mortality from breast cancer that can be attributed 
to screening" (Fletcher et al. 1993). 

The problematic words are that there is no reduction. A debate 
ensued between the NCI and American Cancer Society. Here are 
two additional quotes that illustrate the problem: 

A spokeswoman for the American Cancer Society's national office said 
Tuesday that the ... study would not change the group's recommenda- 
tion because it was not big enough to draw definite conclusions. The 
study would have to screen 1 million women to get a certain answer 
because breast cancer is so uncommon in young women (San Jose 
Mercury News, Nov. 24, 1993). 

Even pooling the data from all eight randomized controlled trials pro- 
duces insufficient statistical power to indicate presence or absence of 
benefit from screening. In the eight trials, there were only 167,000 
women (30% of the participants) aged 40-49, a number too small to 
provide a statistically significant result (Sickles and Kopans 1993). 

The confidence interval for the relative risk after seven years 
of follow-up was .85 to 1.39, with a point estimate of 1.08, 
indicating that there may be a small reduction in mortality for 
women in this age group, or there may be a slight increase (see 
Utts 1999, p. 433). The original statement that there was "no 
reduction in mortality" is dangerously misleading. 

The lesson to convey in this context is that students should be 
wary when they read that a study found no effect or relationship 
when the researchers expected there to be one. Generally, this 
conclusion is newsworthy only when it contradicts earlier find- 
ings or common wisdom. It is important in such cases to find 
out the size of the sample, and if possible, to find a confidence 
interval for the results. If the confidence interval is wide or if 
it tends to be more to one side of chance than the other, there 
is reason to suspect that the study may not have had sufficient 
power to detect a real difference or relationship. 

Power is no longer a topic to be avoided in an introductory 
course because it is easy to find software that can do the calcu- 
lations, and the concept is no more difficult than the concept of 
Type 1 and Type 2 errors. Minitab will calculate power for most 
of the tests taught in an elementary statistics course, and there 
are Web sites available as well. A good Internet source with 
links to hundreds of sites for statistical calculations, including 
power, is http://members.aol.com/johnp71/javastat.html, main- 
tained by John Pezzullo. 

6. BIASES IN SURVEYS 

There are many different sources through which bias can be 
introduced into surveys. Some of the more egregious are difficult 
to detect unless all of the details are understood. For example, a 
Gallup Poll released on July 9, 1999, based on a random sample 
of 1,016 U.S. adults, asked two different questions in random 
order, each of which could be used to report the percentage of 
people who think creationism should be taught in public schools 
in the United States. The two questions and the proportion that 
answered "Favor" were: 

Question 1: Do you favor or oppose teaching creationism 
ALONG WITH evolution in public schools? (68% favor). 

Question 2: Do you favor or oppose teaching creationism 
INSTEAD OF evolution in public schools? (40% favor). 

Notice that depending on one's own opinion, these results 
could be misused to advantage. Someone in favor of creationism 
could report that 68% think it should be taught, while someone 
opposed to creationism could report that only 40% think it should 
be taught. 

It's not just the wording of questions that can cause bias to be 
introduced. There are many other details of how a survey is done 
that may seem minor but that can have major consequences. For 
instance, sometimes the order in which questions are asked can 
change the results. Clark and Schober (1992, p. 41) reported on 
a survey that asked the following two questions: 

1. How happy are you with life in general? 

2. How often do you normally go out on a date? About 
times a month. 

There was almost no relationship between the respondents' 
answers to the two questions. But when the survey was done 
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again with Question 2 being asked first, the answers were highly 
related. Clark and Schober speculated that in that case, respon- 
dents interpreted Question 1 to mean "Now, considering what 
you just told me about dating, how happy are you with life in 
general?" Respondents naturally think that questions on a sur- 
vey are supposed to be related, and any issues brought to mind 
by one question may influence subsequent answers. 

There are many other ways in which question wording, ques- 
tion order, method of sample selection and other issues can 
bias survey results. See Tanur (1992), Utts (1999), or Utts and 
Heckard (2003) for more discussion and examples. 

7. PROBABLE COINCIDENCES 

Most people have experienced one or more events in their 
lives that seem to be improbable coincidences. Some such events 
are so surprising that they attract media attention, often with 
estimates of how improbable they are. For instance, Plous (1993) 
reported a story in which a Mr. and Mrs. Richard Baker left a 
shopping mall, found what they thought was their car in the 
parking lot, and drove away. A few minutes later they realized 
that they had the wrong car. They returned to the parking lot 
to find the police waiting for them. It turned out that the car 
they were driving belonged to another Mr. Baker, who had the 
same car, with an identical key! Plous reported that the police 
estimated the odds at a million to one. 

The problem with such stories and computations is that they 
are based on asking the wrong question. The computation most 
likely applies to that exact event happening. A more logical 
question is: What is the probability of that or a similar event 
happening sometime, somewhere, to someone? In most cases, 
that probability would be very large. 

For instance, I was once on a television talk show about luck 
with a man who had won the million-dollar New York State 
lottery twice, and the host of the show thought this demonstrated 
extraordinary luck. Although it may have been wonderful for that 
individual, Diaconis and Mosteller (1989) reported that there is 
about an even chance of the same person winning a state lottery 
in the United States in a seven-year period. That was precisely 

the interval between the two wins for this person. 
It is not easy to calculate precise probabilities for coinci- 

dences, but it is possible to show students calculations that ap- 
proximate the order of magnitude. For instance, there are many 
stories about twins raised separately who meet as adults and dis- 
cover that they have striking characteristics in common. Perhaps 
their wives or children have the same names, and they drive the 
same kind of car, and they work in the same profession. As a 
crude approximation, suppose the probability of a "match" on 
any given item for two people of the same age and sex is 1/50 
and that whether there is a match on one item is independent of 
whether there is a match on other items. Further, suppose in the 
course of getting to know each other they discuss 200 items, cer- 
tainly not an unrealistic number. Then the number of "matches" 
is a binomial random variable with n = 200 and p = .02. The 
expected number of matches is four, and even the probability of 
6 or more matches is relatively high, at about .21. But the focus 
in this kind of encounter is on the striking matches, and not on 
the many dozens of topics that were discussed but did not match. 

Even if an event with extremely low probability of occurrence 
is reported, remember that there are over six billion people in 
the world, with many circumstances occurring to each one daily. 
Therefore, there are surely going to be some that seem incredible. 
In fact if something has only a one in a million probability of 
happening to any particular person in a given day, it will happen, 
on average, to over 6000 people in the world, each day. When 
the media reports an incredible coincidence it should be viewed 
from this perspective. 

8. CONFUSION OF THE INVERSE 

Most teachers of statistics know that probability can be very 
confusing to students, and that intuition about probability is not 
very good. Psychologists have identified a version of this prob- 
lem that leads to important misunderstandings, called "confu- 
sion of the inverse." The basic problem is that people confuse the 
conditional probability P(A B) with the conditional probability 
P(BIA). 

As an example, Eddy (1982) presented this scenario to 100 
physicians: 

One of your patients has a lump in her breast. You are almost certain 
that it is benign, in fact you would say there is only a 1% chance that 
it is malignant. But just to be sure, you have the patient undergo a 
mammogram, a breast X-ray designed to detect cancer. 
You know from the medical literature that mammograms are 80% accu- 
rate for malignant lumps and 90% accurate for benign lumps. In other 
words, if the lump is truly malignant, the test results will say that it is 
malignant 80% of the time and will falsely say it is benign 20% of the 
time. If the lump is truly benign, the test results will say so 90% of the 
time and will falsely declare that it is malignant only 10% of the time. 

Sadly, the mammogram for your patient is returned with the news that 
the lump is malignant. What are the chances that it is truly malignant? 

Most of the physicians responded with an answer close to 
75%. But in fact, given the probabilities presented, the correct 
answer is only about 7.5%! Eddy reported: "When asked about 
this, the erring physicians usually report that they assumed that 
the probability of cancer given that the patient has a positive 
X-ray was approximately equal to the probability of a positive 
X-ray in a patient with cancer (1982, p. 254)." In other words, 
the physicians confused the probability of a positive test given 
that the woman has cancer with the probability that the woman 
has cancer given that the test was positive. 

Most medical tests have low false positive and false negative 
rates, yet the probability of having the disease, given that a test 
result is positive, can still be quite low if the initial probability of 
having the disease is low. In that case, most positive test results 
will be false positives. 

I find that the easiest way to illustrate this concept for stu- 
dents is through what I call a "hypothetical hundred thousand" 
(Utts and Heckard 2003, p. 228), which is a table showing the 
theoretical breakdown of results for 100,000 people. Table 1 il- 
lustrates the breakdown using the numbers for the example Eddy 
presented to the physicians. Notice that of the 10,700 patients 
whose test is malignant, only 800, or about 7.5% actually had a 
malignancy. Because there were so many more women with be- 
nign lumps than malignant lumps, the 10% of them with a false 
positive test made up the large majority of positive test results. 

There are numerous other situations where confusion of the in- 
verse may apply. For example, a study released by the American 
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Table 1. Breakdown of Actual Status Versus Test Status for 
a Rare Disease 

Test is malignant Test is benign Total 

Actually malignant 800 200 1,000 
Actually benign 9,900 89,100 99,000 
Total 10,700 89,300 100,000 

Automobile Association Foundation for Traffic Safety (Stutts et 
al. 2001) was widely publicized because it found that only 1.5% 
of drivers in accidents reported that they were using a cell phone, 
whereas, for example, 10.9% reported that they were distracted 
by another occupant in the car. Many media reports concluded 
that this meant that talking on a cell phone was much less likely 
to cause an accident than other distractions, like talking with 
someone in the car or attending to the radio. 

But notice that this is confusing two conditional probabilities. 
The reported proportion of accidents of .015 (1.5%) for which 
the driver was using a cell phone is an estimate of the proba- 
bility that a driver was using a cell phone, given that he or she 
had an accident. The probability of interest is the inverse-the 
probability that a driver will have an accident, given that he or 
she is using a cell phone. That probability cannot be found from 
the reported data because it depends on the prevalence of cell 
phone use. But, it is almost certainly true that many more drivers 
are talking with other occupants of the car than talking on a cell 
phone at any given time. This study was criticized for other as- 
pects as well; for an interesting critique see the article by the 
hosts of the "Car Talk" radio show (Magliozzi and Magliozzi 
2001); one of whom (Tom) has a Ph.D. in Management from 
Boston University and a good understanding of statistics. 

9. AVERAGE VERSUS NORMAL 

The seventh concept students need to understand is that of 
natural variability and its role in interpreting what is "normal." 
Here is a humorous example, described by Utts and Heckard 
(2003). A company near Davis, California was having an odor 
problem in its wastewater facility, which they tried to blame on 
"abnormal" rainfall: 

Last year's severe odor problems were due in part to the extreme weather 
conditions created in the Woodland area by El Ninio [according to a 
company official]. She said Woodland saw 170 to 180 percent of its 
normal rainfall. "Excessive rain means the water in the holding ponds 
takes longer to exit for irrigation, giving it more time to develop an odor 
(Goldwitz 1998). 

The problem with this reasoning is that yearly rainfall is ex- 
tremely variable. In the Davis, California area, a five-number 
summary for rainfall in inches, from 1951 to 1997, is 6.1, 12.1, 
16.7, 25.4, 37.4. (A five-number summary includes the low, first 
quartile, median, third quartile, and high values.) The rainfall for 
the year in question was 29.7 inches, well within the "normal" 
range. The company official, and the reporter, confused "aver- 
age" with "normal." This mistake is very common in reports of 
temperature and rainfall data, as well as in other contexts. The 
concept of natural variability is so crucial to the understanding 
of statistical results that it should be reinforced throughout the 
introductory course. 

10. CONCLUSION 

The issues discussed in this article constitute one list of com- 
mon and important misunderstandings in statistics and probabil- 
ity. There are obviously others, but I have found these to be so 
prevalent that it is likely that millions of people are being misled 
by them. It is the responsibility of those of us teaching intro- 
ductory statistics to make sure that our students are not among 
them. 

Many universities now have statistical or numerical liter- 
acy courses in addition to the traditional introductory statistics 
course, and it may be tempting to think that these topics belong 
in those courses rather than in the traditional courses. But that 
misses the point. What good is it to know how to carry out a t 
test if a student can not read a newspaper article and determine 
that hypothesis testing has been misused? 

It is not difficult to incorporate the topics covered in this ar- 
ticle into the traditional curriculum, and in fact students enjoy 
hearing about them if they are presented with good examples. 
The discussion of topics 2 and 3, on the relationship between 
statistical significance and sample size, should be part of the 
discussion of Type 1 and Type 2 errors. Topics 5 and 6 can be 
incorporated into the syllabus with probability, and in fact make 
interesting examples of finding probabilities. Topic 7 on natural 
variability as part of what's normal, can be taught in the early 
part of the course when discussing averages and measures of 
variability. 

Topic 1, on avoiding implications of cause and effect based 
on observational studies, and Topic 4 about biases in surveys 
are the only ones that may require additions to the syllabus. 
But I think it's important to give at least a brief overview of 
types of statistical studies and how they are done, so that the 
data collection process is not a complete mystery for students. 
One lecture explaining the difference between an observational 
study and a randomized experiment, and the role of confounding 
variables in the interpretation of observational studies would 
do more to prepare students for reading the news than a dozen 
lectures on statistical inference procedures. 

The focus of this article has been on helping students inter- 
pret statistical studies. What about students who will eventually 
carry out their own research and data analysis? I think these ideas 
are even more important for those students to learn. I serve on 
many PhD exam committees for students who are doing research 
across a wide range of disciplines. There are two questions I ask 
every student. One is to explain the meaning of a p value. The 
other has to do with replicating a study with an important find- 
ing, but using a smaller sample size-the researcher is surprised 
to find that the replication study was not statistically significant. 
I ask students to give possible explanations. I am sorry to report 
that many students have difficulty answering these questions, 
even when they are told in advance that I'm going to ask them. 
I will know we have fulfilled our mission of educating the cit- 
izenry when any student who has taken a statistics class can 
answer these questions and similar ones on the topics in this 
article and related conceptual topics. 
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