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On the differences of the partition function
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Introduction. A lot has been written about the differences ∆rp(n) of
the partition function p(n) (see Odlyzko [4] for the history of the problem).
Odlyzko settled the main problem by proving that ∆rp(n) alternates in sign
up to a certain value, n = n0(r), and then it stays positive. He also proved
the asymptotic formula

n0(r) ∼
6
π2

r2 log2 r as r →∞ .

The convergence to the limit is, however, very slow. E.g. for r = 75,

6
π2

752 log2 75 = 63744

while n0(75) = 140372. Even for r = 1000,

6
π2

10002 log2 1000 = 29008508

while n0(1000) is conjectured to be 53338056.
Using the WKB method on the difference equation for ∆rp(n), Knessl

and Keller [3] obtained a remarkably exact (though complicated) equation
for n0(r). Solving it they found the correct value of n0(r) within 2 units up
to r = 75.

The aim of this paper is to find a more exact formula than Odlyzko’s.
Using the general theory in [2] we find an exact formula for ∆rp(n). Taking
just the first two terms and using an asymptotic formula for Bessel functions
we obtain an equation which is similar to the one of Knessl and Keller. It
is easier to solve for r as a function of n = n0(r) and we get

Theorem 1. Put

x1 =
24
π2

(
n0(r)−

r

2
− 1

24

)
and a =

π2

6
.
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Then

r =
a
√

x1

log x1

{
1− 1

log2 x1

+
25
12
· 1
log4 x1

− 1803
320

· 1
log6 x1

+ . . .

}
+

log 2
log x1

− 3
log2 x1

− 1
2
· 1
log3 x1

+
10
3
· 1
log4 x1

+
5
4
· 1
log5 x1

− 2363
320

· 1
log6 x1

+
2
a
· 1
√

x1 log x1
+

a

12
· 1
√

x1 log2 x1

. . .

R e m a r k. Already the equation

r =
a
√

x1

log x1

has a solution giving rather good estimates. Thus if r = 75 we get n0 =
138500, compared to n0(75) = 140372.

It seems hard to invert the formula in Theorem 1 to get n0 as a function r.
Here is a modest attempt.

Theorem 2. Put r1 =
12
π2

r. Then let

t0 = r1(log r1 + log log r1 + log log log r1 + . . .)

where the sum continues as long as the terms are positive. Put

t1 = t0 ·
log t0 − 1

t0
r1
− 1

.

Then

x1 ≈
t21(

1−
(

r1

2t1

)2)2 .

Example 1. If r = 75, Theorem 2 gives n0 ≈ 140235 compared to the
correct value n0 = 140372. For r = 20 we (accidentally) get n0 ≈ 5622
instead of n0(20) = 5620.

The best approximation to n0(r) comes from using the first two terms
in the exact formula for ∆rp(n). Define

Lν(x) =
∞∑

n=0

xn

n!Γ (n + ν + 1)
.

Then we have

Theorem 3. Put

x =
π2

6

(
n0 −

r

2
− 1

24

)
.
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Then x is approximately the solution to the transcendental equation

Lr+3/2(x) = 2−5/2(12/π2)rL3/2(x/4) .

Finally, a method is outlined to find an approximate solution by using
Theorem 2. Then the equation in Theorem 3 is solved by using Newton–
Raphson’s algorithm. This is very simple since

d

dx
Lν(x) = Lν+1(x) .

Thus a direct method is obtained where no fitting is necessary (as in [3]).

P r o o f s. The generating function for rth differences is

g(x) =
∞∑

n=0

∆rp(n)xn =
(1− x)r∏∞

ν=1(1− xν)
.

Using the terminology of [2] we set

F (x) =
∞∑

n=0

p(n)xn =
∞∏

ν=1

(1− xν)−1 .

Hence

S(x) =
g(x)
F (x)

= (1− x)r .

The “general formula” together with Rademacher’s formula for p(n) now
gives ([2], Main Theorem)

∆r(n) = 2π

(
π

12

)3/2 ∞∑
k=1

∑
(h,k)=1

ω(h, k)e−2πihn/kk−5/2

×S(e−(D−2πih/k))L3/2

(
π2

6k2

(
n− 1

24

))
where

Lλ(x) =
∞∑

ν=0

xν

ν!Γ (ν + λ + 1)
.

First we consider only the first two terms (ω(1, 1) = ω(1, 2) = 1). We get

S(e−D) = (1− e−D)r = 2re−rD/2

(
sinh

D

2

)r

= e−rD/2Dr

(
1 +

r

24
D2 + . . .

)
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and

S(−e−D) = (1 + e−D)r = 2re−rD/2

(
cosh

D

2

)r

= 2re−rD/2

(
1 +

r

8
D2 + . . .

)
.

It follows that

∆r(n) = 2π

(
π

12

)3/2{
e−rD/2Dr

(
1 +

r

24
D2 + . . .

)
L3/2

(
π2

6

(
n− 1

24

))
+(−1)n2−5/2 · 2re−rD/2

(
1 +

r

8
D2 + . . .

)
L3/2

(
π2

24

(
n− 1

24

))
+ . . .

}
.

Put a = π2/6 and x = a(n− r/2− 1/24). Then

∆r(n) = 2π

(
π

12

)3/2{
arLr+3/2(x) +

r

24
ar+2Lr+7/2(x) + . . .

+(−1)n2r−5/2

(
L3/2(x/4) +

ra2

128
L7/2(x/4) + . . .

)
+ . . .

}
.

Here we use

DrL3/2(a(n− 1/24)) = arLr+3/2(a(n− 1/24))

and

e−rD/2Lν(a(n− 1/24)) = Lν(a(n− r/2− 1/24)) (Taylor’s theorem) .

Let us first ignore the higher order terms. Both the first term and the
absolute value of the second term increase with x. For small x the second
term dominates (due to the factor 2r−5/2 and Lr+3/2(0) = 1/Γ (r + 3/2)).
Thus ∆r(n) alternates in sign until the first term dominates. This will occur
since Lr+3/2(x) is larger than L3/2(x/4) for large x (see the asymptotic
estimates used later in the proof). The critical value n0(r) is obtained when
the two terms are equal.

Estimate of the higher order terms. By Rademacher ([5], pp. 291–
292) we have

p(n) = 2π

(
π

12

)3/2 ∞∑
k=1

Ak(n)k−5/2L3/2

(
π2

6k2

(
n− 1

24

))
and the estimate

|Ak(n)| ≤ 2k3/4 .
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We estimate the rth difference of the kth term:

|∆rfk| = 2π
(

π

12

)3/2

k−5/2

×
∣∣∣∣ r∑

ν=0

(−1)ν

(
r

ν

)
Ak(n− ν) · L3/2

(
π2

6k2

(
n− ν − 1

24

))∣∣∣∣
≤ 2π

(
π

12

)3/2

k−5/2 · 2 · k3/4 · 2rL3/2

(
π2n

6k2

)
since

∑r
ν=0

(
r
ν

)
= 2r. Using

L3/2(x) ≤ 1
2
√

π
· e2

√
x

x

and the fact that L3/2(x) increases with x we get

L3/2

(
π2n

6k2

)
≤ L3/2

(
π2n

6 · 32

)
≤ 1

2
√

π
· 54
π2
· e2π

√
n/(3

√
6)

n
.

Hence

|∆rfk| ≤
9

2
√

3
2rk−7/4 e2π

√
n/(3

√
6)

n
and

∞∑
k=3

|∆rfk| ≤
9

2
√

3
2rζ(7/4)

e2π
√

n/(3
√

6)

n
.

Let us compare this with the second term

|∆rf2| ≈ 2r−5/2L3/2

(
π2

24

(
n− r

2
− 1

24

))
≈ 24 · 2r

(2π)5/2
·
exp( π√

6

√
n− r/2− 1/24)

n− r/2− 1/24
≈ 3

√
2

π5/2
· 2r eπ

√
n/
√

6

n
.

Hence∑∞
k=3 |∆rfk|
|∆rf2|

≤ π5/2
√

3/8 ζ(7/4)e−π
√

n/(3
√

6) ≤ 25 · e−0.4275
√

n .

Since we have tables of n0(r) up to r = 75, we may assume that r ≥ 75 and
hence n ≥ 140000, which implies that the right hand side is ≤ 10−69 so we
can safely neglect the higher order terms.

We get the equation (to determine n0(r))

ar

(
Lr+3/2(x) +

ra2

24
Lr+7/2(x) + . . .

)
= 2r−5/2

(
L3/2(x/4) +

ra2

128
L7/2(x/4) + . . .

)
.



178 G. Almkvist

Now Lγ(x) is a modified Bessel function:

Jγ(z) = (z/2)γLγ(−z2/4) .

Using formula 9.7.7 in Abramowitz–Stegun ([1], p. 378) we get

Lν(x) =
1√
2π

· 2νe
√

ν2+4x

(ν2 + 4x)1/4(ν +
√

ν2 + 4x)ν

{
1 +

6x− ν2

12(ν2 + 4x)3/2
+ . . .

}
.

Furthermore, we have

L3/2(x/4) ≈ 2√
π

e
√

x

x

(
1− 1√

x

)
,

L7/2(x/4) ≈ 8√
π

e
√

x

x2

(
1− 6√

x
+

15
x
− 15

x
√

x

)
.

Thus

Lν+2(x) ≈ 4
ν2 + 4x

Lν(x) ≈ 1
x

Lν(x)

and

L7/2(x/4) ≈ 4
x

L3/2(x) .

Putting ν = r + 3/2 we get the equation

arLν(x)
(

1 +
ra2

6(ν2 + 4x)
+ . . .

)
= 2r−5/2L3/2(x/4)

(
1 +

ra2

32x
+ . . .

)
.

Neglecting the second terms in the parenthesis (when r = 75 they are of
order 0.00003) we get

Lr+3/2(x)
L3/2(x/4)

= 2−5/2

(
12
π2

)r

,

which is the equation in Theorem 1.
Substituting the asymptotic expressions for the Bessel functions we get

the equation

1√
2π

· 2νare
√

ν2+4x

(ν2 + 4x)1/4(ν +
√

ν2 + 4x)ν

{
1 +

6x− ν2

12(ν2 + 4x)3/2

}{
1 +

ra2

24x

}
= 2r−5/2 · 2√

π
· e
√

x

x

(
1− 1√

x

)(
1 +

ra2

32x

)
.

Taking logarithms (deleting terms of order O(r2/x2)) we get (using ν =
r + 3/2 and (6x− ν2)/(2(ν2 + 4x)3/2) ≈ 1/(16

√
x))

1
2

log 32 + r log a +
√

ν2 + 4x− 1
4

log(ν2 + 4x)

− ν log(ν +
√

ν2 + 4x) +
1

16
√

x
+

ra2

24x
≈
√

x− log x− 1√
x

+
ra2

32x
.
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C. Knessl has informed me that this equation agrees up to O(1/
√

x) with
Result 1 in [3]. Expand everything in sight in powers of ν/

√
x:√

ν2 + 4x = 2
√

x

(
1 +

ν2

8x
− ν4

128x2
+

ν6

8192x3
− . . .

)
,

log(ν2 + 4x) = log 4 + log x +
ν2

4x
− ν4

32x2
+

ν6

192x3
− . . . ,

log(ν +
√

ν2 + 4x) =
∫ dν√

ν2 + 4x
=

1
2
√

x

∫ dν√
1 + ν2/(4x)

=
1

2
√

x

∫ (
1− ν2

8x
+

3ν4

128x2
− . . .

)
dν

= log 2 +
1
2

log x +
ν

2
√

x
− ν3

48x
√

x
+

3
1280

ν5

x2
√

x
− . . .

Substituting this we get

r

2
(log x− 2 log a + 2 log 2) ≈ 1

2
log 2 +

√
x− 1

4
ν2

√
x

+
1

192
· ν4

x
√

x
− 43

20480
· ν6

x2
√

x
+

17
16
· 1√

x

− ν2

16x
+

1
96
· ra2

x
+

ν4

128x2
− ν6

768x3
.

Put

x1 =
4x

a2
=

24
π2

(
n− r

2
− 1

24

)
.

Then

r log x1 = log 2 + 2
√

x− 1
2
· ν2

√
x

+
1
96
· ν4

x
√

x
− 43

10240
· ν6

x2
√

x

+
17
8
· 1√

x
− ν2

8x
+

1
48
· ra2

x
+

ν4

64x2
− ν6

384x3
+ . . .

Using the fact that ν = r + 3/2 and solving for r successively we get

r =
a
√

x1

log x1

{
1 +

1
log2 x1

+
25
12
· 1
log4 x1

− 1803
320

· 1
log6 x1

}
(∗∗)

+
log 2
log x1

− 3
log2 x1

− 1
2
· 1
log3 x1

+
10
3
· 1
log4 x1

+
5
4
· 1
log5 x1

− 2363
320

· 1
log6 x1

+ . . . +
2
a
· 1
√

x1 log x1
+

a

12
· 1
√

x1 log2 x1

+ . . .

Now we want to invert the relation, i.e. solve for x1 in terms of r. We begin
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by solving the equation

r =
a
√

x1

log x1
=

a

2
·
√

x1

log
√

x1
.

Make the substitutions

r1 =
2r

a
=

12
π2

r , t =
√

x1 .

Hence t = r1 log t and we get

t = r1 log(r1 log t) = r1(log r1 + log log t)
= r1(log r1 + log log r1 + log log log t) = . . .

We stop at

t0 = r1(log r1 + log log r1 + log log log r1 + . . .)

where we continue as long as the terms are positive. Then we take t0 as an
approximate solution of

f(t) = t− r1 log t = 0

and get a better solution t1 by Newton–Raphson, i.e.

t1 = t0 −
f(t0)
f ′(t0)

= t0 −
t0 − r1 log t0

1− r1

t0

= t0 ·
log t0 − 1

t0
r1
− 1

.

Putting this into the original equation (∗∗) we get

(∗∗∗) x1 ≈
t21(

1−
(

r1

2t1

)2)2 .

Finally, a remark about the computation of n0(r). First, an approximate
solution x0 to the equation

f(x) = Lr+3/2(x)− CL3/2(x/4) = 0 (with C = 2−5/2(12/π2)r)

is found using (∗∗∗). Then a better solution is obtained by using Newton–
Raphson. We have

f ′(x) = Lr+5/2(x)− 1
4CL5/2(x/4)

so

x ≈ x0 −
Lr+3/2(x0)− CL3/2(x0/4)
Lr+5/2(x0)− 1

4CL5/2(x0/4)
.

The procedure can be easily repeated.

Numerical examples. 1. Let r = 75. Then the method in Theorem 2
gives n0 = 140235. Iterating Newton–Raphson 5 times on Lr+3/2(x) −
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CL3/2(x/4) = 0 gives n0 = 140372.969 suggesting that n0(75) = 140372,
which is correct.

2. Let r = 1000. Then fitting in Theorem 1 gives n0 ≈ 53338036. Then
two iterations as above give n0 ≈ 53338056.74 suggesting that n0(1000) =
53338056. The L-function was computed by adding 10000 terms. Using the
more exact formula (with Lr+7/2(x) etc.) did not change the result.
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