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Abstract

This tutorial covers the Dirichlet distribution, Dirichlet process, Pólya urn (and the associated Chinese
restaurant process), hierarchical Dirichlet Process, and the Indian buffet process. Apart from basic
properties, we describe and contrast three methods of generating samples: stick-breaking, the Pólya urn,
and drawing gamma random variables. For the Dirichlet process we first present an informal introduction,
and then a rigorous description for those more comfortable with probability theory.
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2.1 Pólya’s Urn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 The Stick-breaking Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Basic Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Neutrality, Marginal, and Conditional Distributions . . . . . . . . . . . . . . . . . . . 10
2.2.3 Connecting Neutrality, Marginal Distributions, and Stick-breaking . . . . . . . . . . . 12

2.3 Generating the Dirichlet from Gamma RVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 Proof of the Aggregation Property of the Dirichlet . . . . . . . . . . . . . . . . . . . . 14

2.4 Discussion on Generating Dirichlet Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 The Dirichlet Process: An Informal Introduction 15
3.1 The Dirichlet Process Provides a Random Distribution over Distributions over Infinite Sample

Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Realizations From the Dirichlet Process Look Like a Used Dartboard . . . . . . . . . . . . . . 16
3.3 The Dirichlet Process Becomes a Dirichlet Distribution For Any Finite Partition of the Sample

Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Formal Description of the Dirichlet Process 17
4.1 Some Necessary Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Dirichlet Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 In What Sense is the Dirichlet Process a Random Process? . . . . . . . . . . . . . . . . . . . 17

5 Generating Samples from a Dirichlet Process 18
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1 Introduction to the Dirichlet Distribution

An example of a pmf is an ordinary six-sided die - to sample the pmf you roll the die and produce a number
from one to six. But real dice are not exactly uniformly weighted, due to the laws of physics and the reality
of manufacturing. A bag of 100 real dice is an example of a random pmf - to sample this random pmf you
put your hand in the bag and draw out a die, that is, you draw a pmf. A bag of dice manufactured using a
crude process 100 years ago will likely have probabilities that deviate wildly from the uniform pmf, whereas
a bag of state-of-the-art dice used by Las Vegas casinos may have barely perceptible imperfections. We can
model the randomness of pmfs with the Dirichlet distribution.

One application area where the Dirichlet has proved to be particularly useful is in modeling the distribu-
tion of words in text documents [9]. If we have a dictionary containing k possible words, then a particular
document can be represented by a pmf of length k produced by normalizing the empirical frequency of its
words. A group of documents produces a collection of pmfs, and we can fit a Dirichlet distribution to capture
the variability of these pmfs. Different Dirichlet distributions can be used to model documents by different
authors or documents on different topics.

In this section, we describe the Dirichlet distribution and some of its properties. In Sections 1.2 and 1.4,
we illustrate common modeling scenarios in which the Dirichlet is frequently used: first, as a conjugate prior
for the multinomial distribution in Bayesian statistics, and second, in the context of the compound Dirichlet
(a.k.a. Pólya distribution), which finds extensive use in machine learning and natural language processing.

Then, in Section 2, we discuss how to generate realizations from the Dirichlet using three methods:
urn-drawing, stick-breaking, and transforming Gamma random variables. In Sections 3 and 6, we delve into
Bayesian non-parametric statistics, introducing the Dirichlet process, the Chinese restaurant process, and
the Indian buffet process.

1.1 Definition of the Dirichlet Distribution

A pmf with k components lies on the (k − 1)-dimensional probability simplex, which is a surface in Rk
denoted by ∆k and defined to be the set of vectors whose k components are non-negative and sum to 1, that
is ∆k = {q ∈ Rk |

∑k
i=1 qi = 1, qi ≥ 0 for i = 1, 2, . . . , k}. While the set ∆k lies in a k-dimensional space, ∆k

is itself a (k − 1)-dimensional object. As an example, Fig. 1 shows the two-dimensional probability simplex
for k = 3 events lying in three-dimensional Euclidean space. Each point q in the simplex can be thought of
as a probability mass function in its own right. This is because each component of q is non-negative, and
the components sum to 1. The Dirichlet distribution can be thought of as a probability distribution over
the (k − 1)-dimensional probability simplex ∆k; that is, as a distribution over pmfs of length k.

Dirichlet distribution: Let Q = [Q1, Q2, . . . , Qk] be a random pmf, that is Qi ≥ 0 for i = 1, 2, . . . , k and∑k
i=1Qi = 1. In addition, suppose that α = [α1, α2, . . . , αk], with αi > 0 for each i, and let α0 =

∑k
i=1 αi.

Then, Q is said to have a Dirichlet distribution with parameter α, which we denote by Q ∼ Dir(α), if it has1

f(q;α) = 0 if q is not a pmf, and if q is a pmf then

f(q;α) =
Γ(α0)∏k
i=1 Γ(αi)

k∏
i=1

qαi−1
i , (1)

1The density of the Dirichlet is positive only on the simplex, which as noted previously, is a (k − 1)-dimensional object
living in a k-dimensional space. Because the density must satisfy P (Q ∈ A) =

∫
A f(q;α)dµ(q) for some measure µ, we must

restrict the measure to being over a (k − 1)-dimensional space; otherwise, integrating over a (k − 1)-dimensional subset of a
k-dimensional space will always give an integral of 0. Furthermore, to have a density that satisfies this usual integral relation,
it must be a density with respect to (k−1)-dimensional Lebesgue measure. Hence, technically, the density should be a function
of k − 1 of the k variables, with the k-th variable implicitly equal to one minus the sum of the others, so that all k variables
sum to one. The choice of which k− 1 variables to use in the density is arbitrary. For example, one way to write the density is

as follows: f(q1, q2, . . . , qk−1) =
Γ
(∑k

i=1 αi

)
∏k
i=1 Γ(αi)

∏k−1
i=1 q

αi−1
i

(
1−

∑k−1
i=1 qi

)αk−1
. However, rather than needlessly complicate the

presentation, we shall just write the density as a function of the entire k-dimensional vector q. We also note that the constraint
that

∑
i qi = 1 forces the components of Q to be dependent.
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α = [1, 1, 1] α = [.1, .1, .1]

α = [10, 10, 10] α = [2, 5, 15]

Figure 1: Density plots (blue = low, red = high) for the Dirichlet distribution over the probability simplex in
R3 for various values of the parameter α. When α = [c, c, c] for some c > 0, the density is symmetric about
the uniform pmf (which occurs in the middle of the simplex), and the special case α = [1, 1, 1] shown in
the top-left is the uniform distribution over the simplex. When 0 < c < 1, there are sharp peaks of density
almost at the vertices of the simplex and the density is miniscule away from the vertices. The top-right
plot shows an example of this case for α = [.1, .1, .1], one sees only blue (low density) because all of the
density is crammed up against the edge of the probability simplex (clearer in next figure). When c > 1, the
density becomes concentrated in the center of the simplex, as shown in the bottom-left. Finally, if α is not
a constant vector, the density is not symmetric, as illustrated in the bottom-right.

UWEETR-2010-0006 3
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Figure 2: Plots of sample pmfs drawn from Dirichlet distributions over the probability simplex in R3 for
various values of the parameter α.
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Table 1: Key Notation

Q ∼ Dir(α) random pmf Q coming from a Dirichlet distribution with parameter α
q pmf, which in this tutorial, will often be a realization of a random pmf Q ∼ Dir(α)
qj jth component of the pmf q
q(i) ith pmf of a set of L pmfs
k number of events the pmf q is defined over, so q = [q1, q2, . . . , qk]
α parameter of the Dirichlet distribution
α0 =

∑k
i=1 αi

m = α/α0 normalized parameter vector, mean of the Dirichlet
∆k (k − 1)-dimensional probability simplex living in Rk
vi ith entry of the vector v
v−i the vector v with the i-th entry removed
Γ(s) the gamma function evaluated at s, for s > 0
Γ(k, θ) Gamma distribution with parameters k and θ
D= AD=B means random variables A and B have the same distribution

where Γ(s) denotes the gamma function. The gamma function is a generalization of the factorial function:
for s > 0, Γ(s + 1) = sΓ(s), and for positive integers n, Γ(n) = (n − 1)! because Γ(1) = 1. We denote the
mean of a Dirichlet distribution as m = α/α0.

Fig. 1 shows plots of the density of the Dirichlet distribution over the two-dimensional simplex in R3 for
a handful of values of the parameter vector α. When α = [1, 1, 1], the Dirichlet distribution reduces to the
uniform distribution over the simplex (as a quick exercise, check this using the density of the Dirichlet in
(1).) When the components of α are all greater than 1, the density is monomodal with its mode somewhere
in the interior of the simplex, and when the components of α are all less than 1, the density has sharp peaks
almost at the vertices of the simplex. Note that the support of the Dirichlet is open and does not include
the vertices or edge of the simplex, that is, no component of a pmf drawn from a Dirichlet will ever be zero.

Fig. 2 shows plots of samples drawn IID from different Dirichlet distributions.
Table 2 summarizes some key properties of the Dirichet distribution.
When k = 2, the Dirichlet reduces to the Beta distribution. The Beta distribution Beta(α, β) is defined

on (0, 1) and has density

f(x;α, β) =
Γ(α+ β)
Γ(α)Γ(β)

xα−1(1− x)β−1.

To make the connection clear, note that if X ∼ Beta(a, b), then Q = (X, 1−X) ∼ Dir(α), where α = [a, b],
and vice versa.

1.2 Conjugate Prior for the Multinomial Distribution

The multinomial distribution is parametrized by an integer n and a pmf q = [q1, q2, . . . , qk], and can be
thought of as follows: If we have n independent events, and for each event, the probability of outcome i is qi,
then the multinomial distribution specifies the probability that outcome i occurs xi times, for i = 1, 2, . . . , k.
For example, the multinomial distribution can model the probability of an n-sample empirical histogram, if
each sample is drawn iid from q. If X ∼ Multinomialk(n, q), then its probability mass function is given by

f(x1, x2, . . . , xk | n, q = (q1, q2 . . . , qk)) =
n!

x1! x2! . . . xk!

k∏
i=1

qxii .

When k = 2, the multinomial distribution reduces to the binomial distribution.

UWEETR-2010-0006 5



Table 2: Properties of the Dirichlet Distribution

Density 1
B(α)

∏d
j=1 q

αj−1
j

Expectation αi
α0

Covariance For i 6= j, Cov(Qi, Qj) = −αiαj
α2

0(α0+1)
.

and for all i, Cov(Qi, Qi) = αi(α0−αi)
α2

0(α0+1)

Mode α−1
α0−k .

Marginal Qi ∼ Beta(αi, α0 − αi).
Distributions

Conditional (Q−i | Qi) ∼ (1−Qi) Dir(α−i)
Distribution

Aggregation (Q1, Q2, . . . , Qi +Qj , . . . , Qk) ∼ Dir(α1, α2, . . . , αi + αj , . . . , αk).
Property In general, if {A1, A2, . . . , Ar} is a partition of {1, 2, . . . , k}, then(∑

i∈A1
Qi,
∑
i∈A2

Qi, . . . ,
∑
i∈Ar Qi

)
∼ Dir

(∑
i∈A1

αi,
∑
i∈A2

αi, . . . ,
∑
i∈Ar αi

)
.

The Dirichlet distribution serves as a conjugate prior for the probability parameter q of the multino-
mial distribution.2 That is, if (X | q) ∼ Multinomialk(n, q) and Q ∼ Dir(α), then (Q | X = x) ∼ Dir(α+x).

Proof. Let π(·) be the density of the prior distribution for Q and π(·|x) be the density of the posterior
distribution. Then, using Bayes rule, we have

π(q | x) = γf(x | q)π(q)

= γ

(
n!

x1! x2! . . . xk!

k∏
i=1

qxii

)(
Γ(α1 + . . .+ αk)∏k

i=1 Γ(αi)

k∏
i=1

qαi−1
i

)

= γ̃

k∏
i=1

qαi+xi−1
i

= Dir(α+ x).

Hence, (Q | X = x) ∼ Dir(α+ x).

1.3 The Aggregation Property of the Dirichlet

The Dirichlet has a useful fractal-like property that if you lump parts of the sample space together you
then have a Dirichlet distribution over the new set of lumped-events. For example, say you have a Dirichlet
distribution over six-sided dice with α ∈ R6

+, but what you really want to know is what is the probability
of rolling an odd number versus the probability of rolling an even number. By aggregation, the Dirichlet

2This generalizes the situation in which the Beta distribution serves as a conjugate prior for the probability parameter of
the binomial distribution.

UWEETR-2010-0006 6



distribution over the six dice faces implies a Dirichlet over the two-event sample space of odd vs. even, with
aggregated Dirichlet parameter (α1 + α3 + α5, α2 + α4 + α6).

In general, the aggregation property of the Dirichlet is that if {A1, A2, . . . , Ar} is a partition of
{1, 2, . . . , k}, then

(∑
i∈A1

Qi,
∑
i∈A2

Qi, . . . ,
∑
i∈Ar Qi

)
∼ Dir

(∑
i∈A1

αi,
∑
i∈A2

αi, . . . ,
∑
i∈Ar αi

)
.

We prove the aggregation property in Sec. 2.3.1.

1.4 Compound Dirichlet

Consider again a bag of dice, and number the dice arbitrarily i = 1, 2, . . . , L. For the ith die, there is an
associated pmf q(i) of length k = 6 that gives the probabilities of rolling a one, a two, etc. We will assume
that we can model these L pmfs as coming from a Dir(α) distribution. Hence, our set-up is as follows:

Dir(α) iid−−→

q(1)

q(2)

...
q(L)

,

where q(1), q(2), . . . , q(L) are pmfs. Further, suppose that we have ni samples from the ith pmf:

Dir(α) iid−−→

q(1)
iid−−→ x1,1, x1,2, . . . , x1,n1 , x1

q(2)
iid−−→ x2,1, x2,2, . . . , x2,n2 , x2

...
q(L) iid−−→ xL,1, xL,2, . . . , xL,nL , xL.

Then we say that the {xi} are realizations of a compound Dirichlet distribution, also known as a multi-
variate Pólya distribution.

In this section, we will derive the likelihood for α. That is, we will derive the probability of the observed
data {xi}Li=1, assuming that the parameter value is α. In terms of maximizing the likelihood of the observed
samples in order to estimate α, it does not matter whether we consider the likelihood of seeing the samples in
the order we saw them, or just the likelihood of seeing those sample-values without regard to their particular
order, because these two likelihoods differ by a factor that does not depend on α. Here, we will disregard
the order of the observed sample values.

The i = 1, 2, . . . , L sets of samples {xi} drawn from the L pmfs drawn from the Dir(α) are conditionally
independent given α, so the likelihood of α can be written as the product:

p(x | α) =
L∏
i=1

p(xi | α). (2)

For each set of the L pmfs, the likelihood p(xi | α) can be expressed using the total law of probability over
the possible pmf that generated it:

p(xi | α) =
∫
p(xi, q(i) | α) dq(i)

=
∫
p(xi | q(i), α) p(q(i) | α) dq(i)

=
∫
p(xi | q(i)) p(q(i) | α) dq(i). (3)

Next we focus on describing p(xi | q(i)) and p(q(i) | α) so we can use (3). Let nij be the number of
outcomes in xi that are equal to j, and let ni =

∑k
j=1 nij . Because we are using counts and assuming that

UWEETR-2010-0006 7



order does not matter, we have that (Xi | q(i)) ∼ Multinomialk(ni, q(i)), so

p(xi | q(i)) =
ni!∏k
i=1 nij !

k∏
j=1

(
q
(i)
j

)nij
. (4)

In addition, (Q(i) | α) ∼ Dir(α), so

p(q(i) | α) =
Γ(α0)∏k
i=1 Γ(αj)

k∏
j=1

(
q
(i)
j

)αj−1

. (5)

Therefore, combining (3), (4), and (5), we have

p(xi | α) =
ni!∏k
j=1 nij !

Γ(α0)∏k
j=1 Γ(αj)

∫ k∏
j=1

(
q
(i)
j

)nij+αj−1

dq(i).

Focusing on the integral alone,

∫ k∏
j=1

(
q(i)
)nij+αj−1

dq(i) =

∏k
j=1 Γ(nij + αj)

Γ(
∑k
j=1(nij + αj)

∫ Γ(
∑k
j=1(nij + αj)∏k

j=1 Γ(nij + αj)

k∏
j=1

(
q
(i)
j

)nij+αj−1

dq(i)

 ,

where the term in brackets on the right evaluates to 1 because it is the integral of the density of the
Dir(ni + α− 1) distribution.

Hence,

p(xi | α) =
ni!∏k
j=1 nij !

Γ(α0)

Γ(
∑k
j=1(nij + αj))

k∏
j=1

Γ(nij + αj)
Γ(αj)

,

which can be substituted into (2) to form the likelihood of all the observed data.
In order to find the α that maximizes this likelihood, take the log of the likelihood above and maximize

that instead. Unfortunately, there is no closed-form solution to this problem and there may be multiple
maxima, but one can find a maximum using optimization methods. See [3] for details on how to use the
expectation-maximization (EM) algorithm for this problem and [10] for a broader discussion including using
Newton-Raphson. Again, whether we consider ordered or unordered observations does not matter when
finding the MLE because the only affect this has on the log-likelihood is an extra term that is a function of
the data, not the parameter α.

2 Generating Samples From a Dirichlet Distribution

A natural question to ask regarding any distribution is how to sample from it. In this section, we discuss
three methods: (1) a method commonly referred to as Pólya’s urn; (2) a “stick-breaking” approach which
can be thought of as iteratively breaking off pieces of (and hence dividing) a stick of length one in such a
way that the vector of the lengths of the pieces is distributed according to a Dir(α) distribution; and (3) a
method based on transforming Gamma-distributed random variables. We end this section with a discussion
comparing these methods of generating samples.

2.1 Pólya’s Urn

Suppose we want to generate a realization of Q ∼ Dir(α). To start, put αi balls of color i for i = 1, 2, . . . , k
in an urn, as shown in the left-most picture of Fig. 3. Note that αi > 0 is not necessarily an integer, so we
may have a fractional or even an irrational number of balls of color i in our urn! At each iteration, draw one
ball uniformly at random from the urn, and then place it back into the urn along with an additional ball

UWEETR-2010-0006 8



Dirichlets: the Polya Urn Story (Blackwell and MacQueen 1973)

!!"" # #
!!

"!"

"#!!""

$%& '()(*&+&) '&),'&-+./&0 1.).-23&+ 2(, '()(*&+&) $ ! %#!

4(-2 56 +2& & -5*'5%&%+, 56 +2& '*6 7&+, ( 8%.98& -535):
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>2(+ '*6 5/&) +2& & -535), ?5 @58 &%? 8' <.+2A

;+()+B 1.)!CD E EF" G6+&) E ?)(< G6+&) D ?)(<, G6+&) H ?)(<,

Figure 3: Visualization of the urn-drawing scheme for Dir([2 1 1]), discussed in Section 2.1.

of the same color. As we iterate this procedure more and more times, the proportions of balls of each color
will converge to a pmf that is a sample from the distribution Dir(α).

Mathematically, we first generate a sequence of balls with colors (X1, X2, . . .) as follows:

Step 1: Set a counter n = 1. Draw X1 ∼ α/α0. (Note that α/α0 is a non-negative vector whose entries
sum to 1, so it is a pmf.)

Step 2: Update the counter to n + 1. Draw Xn+1 | X1, X2, . . . , Xn ∼ αn/αn0, where αn = α +
∑n
i=1 δXi

and αn0 is the sum of the entries of αn. Repeat this step an infinite number of times.

Once you have finished Step 2, calculate the proportions of the different colors: let Qn = (Qn1, Qn2, . . . , Qnk),
where Qni is the proportion of balls of color i after n balls are in the urn. Then, Qn →d Q ∼ Dir(α) as
n → ∞, where →d denotes convergence in distribution. That is, P (Qn1 ≤ z1, Qn2 ≤ z2, . . . , Qnk ≤ zk) →
P (Q1 ≤ z1, Q2 ≤ z2, . . . , Qk ≤ zk) as n→∞ for all (z1, z2, . . . , zk).

Note that this does NOT mean that in the limit as the number of balls in the urn goes to infinity the
probability of drawing balls of each color is given by the pmf α/α0.

Instead, asymptotically, the probability of drawing balls of each color is given by a pmf that is a realization
of the distribution Dir(α). Thus asymptotically we have a sample from Dir(α). The proof relies on the
Martingale Convergence Theorem, which is beyond the scope of this tutorial.

2.2 The Stick-breaking Approach

The stick-breaking approach to generating a random vector with a Dir(α) distribution involves iteratively
breaking a stick of length 1 into k pieces in such a way that the lengths of the k pieces follow a Dir(α)
distribution. Figure 4 illustrates this process with simulation results. We will assume that we know how to
generate random variables from the Beta distribution. In the case where α has length 2, simulating from the
Dirichlet is equivalent to simulating from the Beta distribution, so henceforth in this section, we will assume
that k ≥ 3.

2.2.1 Basic Idea

For ease of exposition, we will first assume that k = 3, and then generalize the procedure to k > 3. Over the
course of the stick-breaking process, we will be keeping track of a set of intermediate values {ui}, which we
use to ultimately calculate the realization q. To begin, we generate Q1 from Beta(α1, α2 + α3) and set u1

equal to its value: u1 = q1. Then, generate
(

Q2
1−Q1

| Q1

)
from Beta(α2, α3). Denote the result by u2, and

set q2 = (1 − u1)u2. The resulting vector u = (u1, (1 − u1)u2, 1 − u1 − (1 − u1)u2) comes from a Dirichlet
distribution with parameter vector α. This procedure can be conceptualized as breaking off pieces of a stick
of length one in a random way such that the lengths of the k pieces follow a Dir(α) distribution.

Now, let k > 3.
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α = (1, 1, 1) α = (0.1, 0.1, 0.1)

α = (10, 10, 10) α = (2, 5, 15)

Figure 4: Visualization of the Dirichlet distribution as breaking a stick of length 1 into pieces, with the mean
length of piece i being αi/α0. For each value of α, we have simulated 10 sticks. Each stick corresponds to
a realization from the Dirichlet distribution. For α = (c, c, c), we expect the mean length for each color, or
component, to be the same, with variability decreasing as α → ∞. For α = (2, 5, 15), we would naturally
expect the third component to dominate.

Step 1: Simulate u1 ∼ Beta
(
α1,
∑k
i=2 αi

)
, and set q1 = u1. This is the first piece of the stick. The

remaining piece has length 1− u1.

Step 2: For 2 ≤ j ≤ k−1, if j−1 pieces, with lengths u1, u2, . . . , uj−1, have been broken off, the length of the

remaining stick is
∏j−1
i=1 (1−ui). We simulate uj ∼ Beta

(
αj ,
∑k
i=j+1 αi

)
and set qj = uj

∏j−1
i=1 (1−ui).

The length of the remaining part of the stick is
∏j−1
i=1 (1− ui)− uj

∏j−1
i=1 (1− ui) =

∏j
i=1(1− ui).

Step 3: The length of the remaining piece is qk.

Note that at each step, if j − 1 pieces have been broken off, the remainder of the stick, with length∏j−1
i=1 (1− ui), will eventually be broken up into k− j + 1 pieces with proportions distributed according to a

Dir(αj , αj+1, . . . , αk) distribution.

2.2.2 Neutrality, Marginal, and Conditional Distributions

The reason why the stick-breaking method generates random vectors from the Dirichlet distribution relies
on a property of the Dirichlet called neutrality, which we discuss and prove below. In addition, the marginal
and conditional distributions of the Dirichlet will fall out of our proof of the neutrality property for the
Dirichlet.

Neutrality Let Q = (Q1, Q2, . . . , Qk) be a random vector. Then, we say that Q is neutral if for each
j = 1, 2, . . . , k, Qj is independent of the random vector 1

1−QjQ−j . In the case where Q ∼ Dir(α), 1
1−QjQ−j

is simply the vector Q with the j-th component removed, and then scaled by the sum of the remaining
elements. Furthermore, if Q ∼ Dir(α), then Q exhibits the neutrality property, a fact we prove below.
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Proof of Neutrality for the Dirichlet: Without loss of generality, this proof is written for the case that
j = k. Let Yi = Qi

1−Qk for i = 1, 2, . . . , k − 2, Yk−1 = 1 −
∑k−2
i=1 Qi, and Yk = Qk. Consider the following

transformation T of coordinates between (Y1, Y2, . . . , Yk−2, Yk) and (Q1, Q2, . . . , Qk−2, Qk):

(Q1, Q2, . . . , Qk−2, Qk) = T (Y1, Y2, . . . , Yk−2, Yk) = (Y1(1− Yk), Y2(1− Yk), . . . , Yk−2(1− Yk), Yk).

The Jacobian of this transformation is
1− Yk 0 0 · · · 0 −Y1

0 1− Yk 0 · · · 0 −Y2

...
...

...
. . .

...
...

0 0 0 · · · 1− Yk −Yk−2

0 0 0 · · · 0 1

 , (6)

which has determinant with absolute value equal to (1− Yk)k−2.
The standard change-of-variables formula tells us that the density of Y is f(y) = (g ◦ T )(y) × |det(T )|,

where

g(q) = g(q1, q2, . . . , qk−2, qk;α) =
Γ
(∑k

i=1 αi

)
∏k
i=1 Γ(αi)

 ∏
i 6=k−1

qαi−1
i

1−
∑
i6=k−1

qi

αk−1−1

(7)

is the joint density of Q. Substituting (7) into our change of variables formula, we find the joint density of
the new random variables:

f(y;α) =
Γ
(∑k

i=1 αi

)
∏k
i=1 Γ(αi)

(
k−2∏
i=1

(yi(1− yk))αi−1

)
yαk−1
k

(
1−

k−2∑
i=1

yi(1− yk)− yk

)αk−1−1

(1− yk)k−2.

We can simplify one of the terms of the above by pulling out a (1− yk):

1−
k−2∑
i=1

yi(1− yk)− yk = (1− yk)

(
1−

k−2∑
i=1

yi

)
= yk−1(1− yk).

Hence,

f(y;α) =
Γ
(∑k

i=1 αi

)
∏k
i=1 Γ(αi)

(
k−1∏
i=1

yαi−1
i

)
yαk−1
k (1− yk)w,

where w =
∑k−2
i=1 (αi − 1) + αk−1 − 1 + k − 2 =

∑k−1
i=1 αi − 1, so we have

f(y;α) =

 Γ
(∑k

i=1 αi

)
Γ(αk)Γ

(∑k−1
i=1 αi

)yαk−1
k (1− yk)

∑k−1
i=1 αi−1

Γ
(∑k−1

i=1 αi

)
∏k−1
i=1 Γ(αi)

k−1∏
i=1

yαi−1
i


= f1(yk;αk,

k−1∑
i=1

αi)f2(y1, y2, . . . , yk−1;α1, α2, . . . , αk−1)

= f1(qk;αk,
k−1∑
i=1

αi)f2

(
q1

1− qk
,

q2
1− qk

, . . . ,
qk−1

1− qk
;α−k

)
,

where

f1(yk;αk,
k−1∑
i=1

αi) =
Γ
(∑k

i=1 αi

)
Γ(αk)Γ

(∑k−1
i=1 αi

)yαk−1
k (1− yk)

∑k−1
i=1 αi−1 (8)
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is the density of a Beta distribution with parameters αk and
∑k−1
i=1 αi, while

f2(y1, y2, . . . , yk−1;α−k) =
Γ
(∑k−1

i=1 αi

)
∏k−1
i=1 Γ(αi)

k−1∏
i=1

yαi−1
i (9)

is the density of a Dirichlet distribution with parameter α−k. Hence, the joint density of Y factors into a
density for Yk and a density for (Y1, Y2, . . . , Yk−1), so Yk is independent of the rest, as claimed.

In addition to proving the neutrality property above, we have proved that the marginal distribution of Qk,
which is equal to the marginal distribution of Yk by definition, is Beta

(
αk,
∑k−1
i=1 αi

)
. By replacing k with

j = 1, 2, . . . , k in the above derivation, we have that the marginal distribution of Qj is Beta
(
αj ,
∑
i 6=j αj

)
.

This implies that

f(y−j | yj) =
f(y;α)
f1(yj ;α)

= f2(y1, y2, . . . , yk−1;α−k) =
Γ
(∑k−1

i=1 αi

)
∏k−1
i=1 Γ(αi)

k−1∏
i=1

yαi−1
i ,

so

(Y−j | Yj) ∼ Dir(α−j)

⇒
((

Q−j
1−Qj

)
| Qj

)
∼ Dir(α−j)

⇒ (Q−j | Qj) ∼ (1−Qj) Dir(α−j). (10)

2.2.3 Connecting Neutrality, Marginal Distributions, and Stick-breaking

We can use the neutrality property and the marginal and conditional distributions derived above to
rigorously prove that the stick-breaking approach works as advertised. The basic reasoning of the proof
(and by extension, of the stick-breaking approach) is that in order to sample from the joint distribution of
(Q1, Q2, . . . , Qk) ∼ Dir(α), it is sufficient to first sample from the marginal distribution of Q1 under α, then
sample from the conditional distribution of (Q2, Q3, . . . , Qk | Q1) under α. We apply this idea recursively
in what follows.

Case 1: j = 1: From Section 2.2.2, marginally, Q1 ∼ Beta
(
α1,
∑k
i=2 αi

)
, which corresponds to the

method for assigning a value to Q1 in the stick-breaking approach. What remains is to sample from
((Q2, Q3, . . . , Qk) | Q1), which we know from (10), is distributed as (1−Q1) Dir(α2, α3, . . . , αk). So, in
the case of j = 1, we have broken off the first piece of the stick according to the marginal distribution
of Q1, and the length of the remaining stick is 1 − Q1, which we break into pieces using a vector of
proportions from the Dir(α2, α3, . . . , αk) distribution.

Case 2: 2 ≤ j ≤ k− 2, which we treat recursively: Suppose that j − 1 pieces have been broken off, and the
length of the remainder of the stick is

∏j−1
i=1 (1 − Qi). This is analogous to having sampled from the

marginal distribution of (Q1, Q2, . . . , Qj−1), and still having to sample from the conditional distribution
((Qj , Qj+1, . . . Qk) | (Q1, Q2, . . . , Qj−1)), which from the previous step in the recursion is distributed

as
[∏j−1

i=1 (1−Qi)
]

Dir(αj , αj+1, . . . , αk). Hence, using the marginal distribution in (8), we have that

(Qj | (Q1, Q2, . . . , Qj−1)) ∼
[∏j−1

i=1 (1−Qi)
]

Beta
(
αj ,
∑k
i=j+1 αi

)
, and from (9) and (10), we have
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that

((Qj+1, Qj+2, . . . , Qk) | (Q1, Q2, . . . , Qj))

∼

[
j−1∏
i=1

(1−Qi)

]
(1−Qj) Dir(αj+1, αj+2, . . . , αk)

D=

[
j∏
i=1

(1−Qi)

]
Dir(αj+1, αj+2, . . . , αk),

where =d means equal in distribution. This completes the recursion.

Case 3: j = k − 1, k: Picking up from the case of j = k − 2 above, we have that ((Qk−1, Qk) |
(Q1, Q2, . . . , Qk−2)) ∼

[∏k−2
i=1 (1−Qi)

]
Dir(αk−1, αk). Hence, we simply split the remainder of the

stick into two pieces by drawing Qk−1 ∼
[∏k−2

i=1 (1−Qi)
]

Beta(αk−1, αk) and allowing Qk to be the
remainder.

Note that the aggregation property (see Table 2) is a conceptual corollary of the stick-breaking view of
the Dirichlet distribution. We provide a rigorous proof of the aggregation property in the next section.

2.3 Generating the Dirichlet from Gamma RVs

We will argue that generating samples from the Dirichlet distribution using Gamma random variables is
more computationally efficient than both the urn-drawing method and the stick-breaking method. This
method has two steps which we explain in more detail and prove in this section:

Step 1: Generate gamma realizations: for i = 1, . . . , k, draw a number zi from Γ(αi, 1).

Step 2: Normalize them to form a pmf: for i = 1, . . . , k, set qi = zi∑k
j=1 zj

. Then q is a realization of Dir(α).

. The Gamma distribution Γ(κ, θ) is defined by the following probability density:

f(x;κ, θ) = xκ−1 e
−x/θ

θκΓ(κ)
. (11)

κ > 0 is called the shape parameter, and θ > 0 is called the scale parameter.3,4 One important property
of the Gamma distribution that we will use below is the following: Suppose Xi ∼ Γ(κi, θ) are independent
for i = 1, 2, . . . , n; that is, they are on the same scale but can have different shapes. Then, S =

∑n
i=1Xi ∼

Γ (
∑n
i=1 κi, θ).

To prove that the above procedure creating Dirichlet samples from Gamma r.v. draws works, we use
the change-of-variables formula to show that the density of Q is the density corresponding to the Dir(α)
distribution. First, recall that the original variables are {Zi}k1 , and the new variables are Z,Q1, . . . , Qk−1.
We relate them using the transformation T :

(Z1, . . . , Zk) = T (Z,Q1, . . . , Qk−1) =

(
ZQ1, . . . , ZQk−1, Z

(
1−

k−1∑
i=1

Qi

))
.

3There is an alternative commonly-used parametrization of the Gamma distribution (denoted by Γ(α, β)) with pdf
f(x;α, β) = βαxα−1e−βx/Γ(α). To switch between parametrizations, we set α = κ and β = 1/θ. β is called the rate
parameter. We will use the shape parametrization in what follows.

4Note that the symbol Γ (the Greek letter gamma) is used to denote both the gamma function and the Gamma distribution,
regardless of the parametrization. However, because the gamma function only takes one argument and the Gamma distribution
has two parameters, the meaning of the symbol Γ is assumed to be clear from its context.
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The Jacobian matrix (matrix of first derivatives) of this transformation is:

J(T ) =



Q1 Z 0 0 · · · 0
Q2 0 Z 0 · · · 0
Q3 0 0 Z · · · 0
...

...
...

...
...

...
Qk−1 0 0 · · · 0 Z

1−
∑k−1

1 Qi −Z −Z −Z · · · −Z


, (12)

which has determinant Zk−1.
The standard change-of-variables formula tells us that the density of (Z,Q1, . . . , Qk−1) is f = g ◦ T ×

|det(T )|, where

g(z1, z2, . . . , zk;α1, . . . , αk) =
k∏
i=1

zαi−1
i

e−zi

Γ(αi)
(13)

is the joint density of the original (independent) random variables. Substituting (13) into our change of
variables formula, we find the joint density of the new random variables:

f(z, q1, . . . , qk−1) =

(
k−1∏
i=1

(zqi)αi−1 e
−zqi

Γ(αi)

)(z(1−
k−1∑
i=1

qi

))αk−1

e−z(1−
∑k−1
i=1 qi)

Γ(αk)

 zk−1

=

(∏k−1
i=1 q

αi−1
i

)(
1−

∑k−1
i=1 qi

)αk−1

∏k
i=1 Γ(αi)

z(
∑k
i=1 αi)−1e−z.

Integrating over z, the marginal distribution of {Qi}k−1
i=1 is

f(q) = f(q1, . . . , qk−1) =
∫ ∞

0

f(z, q1, . . . , qk−1)dz

=

(∏k−1
i=1 q

αi−1
i

)(
1−

∑k−1
i=1 qi

)αk−1

∏k
i=1 Γ(αi)

∫ ∞
0

z(
∑k
i=1 αi)−1e−zdz

=
Γ
(∑k

i=1 αi

)
∏k
i=1 Γ(αi)

(
k−1∏
i=1

qαi−1
i

)(
1−

k−1∑
i=1

qi

)αk−1

,

which is the same as the Dirichlet density in (1).
Hence, our procedure for simulating from the Dirichlet distribution using Gamma-distributed random

variables works as claimed.

2.3.1 Proof of the Aggregation Property of the Dirichlet

We have now introduced the tools needed to prove the Dirichlet’s aggregation property as stated in Sec. 1.3.

Proof of the Aggregation Property: We rely on the property of the Gamma distribution that says
that if Xi ∼ Γ(κi, θ) for i = 1, 2, . . . , n, then

∑n
i=1Xi ∼ Γ (

∑n
i=1 κi, θ). Suppose (Q1, Q2, . . . , Qk) ∼ Dir(α).
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Then, we know that Q = Z/
(∑k

i=1 Zi

)
, where Zi ∼ Γ(αi, θ) are independent. Then,(∑

i∈A1

Qi,
∑
i∈A2

Qi, . . . ,
∑
i∈Ar

Qi

)

=
1∑k
i=1 Zi

(∑
i∈A1

Zi,
∑
i∈A2

Zi, . . . ,
∑
i∈Ar

Zi

)

=d
1∑k

i=1 Γ(αi, 1)

(
Γ

(∑
i∈A1

αi, 1

)
,Γ

(∑
i∈A2

αi, 1

)
, . . . ,Γ

(∑
i∈Ar

αi, 1

))

=d Dir

(∑
i∈A1

αi,
∑
i∈A2

αi, . . . ,
∑
i∈Ar

αi

)
.

2.4 Discussion on Generating Dirichlet Samples

Let us compare the three methods we have presented to generate samples from a Dirichlet: the Pólya urn,
stick-breaking, and the Gamma transform. The Pólya urn method is the least efficient because it depends
on a convergence result, and as famed economist John Maynard Keynes once noted, “In the long run, we are
all dead.” One needs to iterate the urn-drawing scheme many times to get good results, and for any finite
number of iterations of the scheme, the resulting pmf is not perfectly accurate.

Both the stick-breaking approach and the Gamma-based approach result in pmfs distributed exactly
according to a Dirichlet distribution.5 However, if we assume that it takes the same amount of time to
generate a Gamma random variable as it does a Beta random variable, then the stick-breaking approach is
more computationally costly. The reason for this is that at each iteration of the stick-breaking procedure,
we need to perform the additional intermediate steps of summing the tail of the α vector before drawing
from the Beta distribution and then multiplying by

∏j−1
i=1 (1 − Qi). With the Gamma-based approach, all

we need to do after drawing Gamma random variables is to divide them all by their sum, once.

3 The Dirichlet Process: An Informal Introduction

We first begin our description of the Dirichlet process with an informal introduction, and then we present
more rigorous mathematical descriptions and explanations of the Dirichlet process in Section 4.

3.1 The Dirichlet Process Provides a Random Distribution over Distributions
over Infinite Sample Spaces

Recall that the Dirichlet distribution is a probability distribution over pmfs, and we can say a random pmf
has a Dirichlet distribution with parameter α. A random pmf is like a bag full of dice, and a realization
from the Dirichlet gives us a specific die. The Dirichlet distribution is limited in that it assumes a finite set
of events. In the dice analogy, this means that the dice must have a finite number of faces. The Dirichlet
process enables us work with an infinite set of events, and hence to model probability distributions over
infinite sample spaces.

As another analogy, imagine that we stop someone on the street and ask them for their favorite color.
We might limit their choices to black, pink, blue, green, orange, white. An individual might provide a

5This is true as long as we can perfectly sample from the Beta and Gamma distributions, respectively. All “random-number
generators” used by computers are technically pseudo-random. Their output appears to produce sequences of random numbers,
but in reality, they are not. However, as long as we don’t ask our generator for too many random numbers, the pseudo-
randomness will not be apparent and will generally not influence the results of the simulation. How many numbers is too
many? That depends on the quality of the random-number generator being used.
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different answer depending on his mood, and you could model the probability that he chooses each of these
colors as a pmf. Thus, we are modeling each person as a pmf over the six colors, and we can think of each
person’s pmf over colors as a realization of a draw from a Dirichlet distribution over the set of six colors.

But what if we didn’t force people to choose one of those six colors? What if they could name any
color they wanted? There is an infinite number of colors they could name. To model the individuals’ pmfs
(of infinite length), we need a distribution over distributions over an infinite sample space. One solution is
the Dirichlet process, which is a random distribution whose realizations are distributions over an arbitrary
(possibly infinite) sample space.

3.2 Realizations From the Dirichlet Process Look Like a Used Dartboard

The set of all probability distributions over an infinite sample space is unmanageable. To deal with this, the
Dirichlet process restricts the class of distributions under consideration to a more manageable set: discrete
probability distributions over the infinite sample space that can be written as an infinite sum of weighted
indicator functions. You can think of your infinite sample space as a dartboard, and a realization from a
Dirichlet is a probability distribution on the dartboard marked by an infinite set of darts of different lengths
(weights).

The kth indicator δyk marks the location of the kth dart-of-probability such that δyk(B) = 1 if yk ∈ B,
and δyk(B) = 0 otherwise. Each realization of a Dirichlet process has a different and infinite set of these
dart locations. Further, the kth dart has a corresponding probability weight pk ∈ [0, 1] and

∑∞
k=1 pk = 1.

So, for some set B of the infinite sample space, a realization of the Dirichlet process will assign probability
P (B) to B, where

P (B) =
∞∑
k=1

pkδyk(B). (14)

Dirichlet processes have found widespread application to discrete sample spaces like the set of all words,
or the set of all webpages, or the set of all products. However, because realizations from the Dirichlet process
are atomic, they are not a useful model for many continuous scenarios. For example, say we let someone pick
their favorite color from a continuous range of colors, and we would like to model the probability distribution
over that space. A realization of the Dirichlet process might give a positive probability to a particular shade
of dark blue, but zero probability to adjacent shades of blue, which feels like a poor model for this case.
However, in cases the Dirichlet process might be a fine model. Say we ask color professionals to name
their favorite color, then it would be reasonable to assign a finite atom of probability to Coca-cola can red,
but zero probability to the nearby colors that are more difficult to name. Similarly, darts of probability
would be needed for international Klein blue, 530 nm pure green, all the Pantone colors, etc., all because of
their “nameability.” As another example, suppose we were asking people their favorite number. Then, one
realization of the Dirichlet process might give most of its weight to the numbers 1, 2, . . . , 10, a little weight
to π, hardly any weight to sin(1), and zero weight to 1.00000059483813 (I mean, whose favorite number is
that?).

As we detail in later sections, the locations of the darts are independent, and the probability weight
associated with the kth dart is independent of its location. However, the weights on the darts are not
independent. Instead of a vector α with one component per event in our six-color sample space, the Dirichlet
process is parameterized by a function (specifically, a measure) α over the sample space of all possible colors
X . Note that α is a finite positive function, so it can be normalized to be a probability distribution β. The
locations of the darts yk are drawn iid from β. The weights on the darts pk are a decreasing sequence, and
are a somewhat complicated function of α(X ), the total mass of α.

3.3 The Dirichlet Process Becomes a Dirichlet Distribution For Any Finite
Partition of the Sample Space

One of the nice things about the Dirichlet distribution is that we can aggregate components of a Dirichlet-
distributed random vector and still have a Dirichlet distribution (see Table 2).
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The Dirichlet process is constructed to have a similar property. Specifically, any finite partition of the
sample space of a Dirichlet process will have a Dirichlet distribution. In particular, say we have a Dirichlet
process with parameter α (which you can think of as a positive function over the infinite sample space X ).
And now we partition the sample space X into M subsets of events {B1,B2,B3, . . . ,BM}. For example, after
people tell us their favorite color, we might categorize their answer as one of M = 11 major color categories
(red, green, blue, etc). Then, the Dirichlet process implies a Dirichlet distribution over our new M -color
sample space with parameter (α(B1), α(B2), α(BM )), where α(Bi) for any i = 1, 2, . . . ,M is the integral of
the indicator function of Bi with respect to α:

α(Bi) =
∫
X
1Bi(x)dα(x),

where 1Bi is the indicator function of Bi.

4 Formal Description of the Dirichlet Process

A mathematically rigorous description of the Dirichlet process requires a basic understanding of measure
theory. Readers who are not familiar with measure theory can pick up the necessary concepts from the very
short tutorial Measure Theory for Dummies [6], available online.

4.1 Some Necessary Notation

Let X be a set, and let B be a σ-algebra on X ; that is B is a non-empty collection of subsets of X such that
(1) X ∈ B; (2) if a set B is in B then its complement Bc is in B; and (3) if {Bi}∞i=1 is a countable collection
of sets in B then their union ∪∞i=1Bi is in B. We call the couple (X ,B) a measurable space. The function
µ : B → [0,∞] defined on elements of B is called a measure if it is countably additive and µ(∅) = 0. If
µ(X ) = 1, then we call the measure a probability measure.

4.2 Dirichlet Measure

We will denote the collection of all the probability distributions on (X ,B) by P. The Dirichlet Process was
introduced by Ferguson, whose goal was to specify a distribution over P that was manageable, but useful
[4]. He achieved this goal with just one restriction: Let α be a finite non-zero measure (just a measure, not
necessarily a probability measure) on the original measurable space (X ,B). Ferguson termed P a Dirichlet
process with parameter α on (X ,B) if for any finite measurable partition {Bi}ki=1 of X , the random vector
(P (B1), . . . , P (Bk)) has Dirichlet distribution with parameters (α(B1), . . . , α(Bk)). (We call {Bi}ki=1 a finite
measurable partition of X if Bi ∈ B for all i = 1, . . . , k, Bi ∩ Bj = ∅ if i 6= j and ∪ki=1Bi = X .) If P is a
Dirichlet process with parameter α, then its distribution Dα is called a Dirichlet measure.

As a consequence of Ferguson’s restriction, Dα has support only for atomic distributions with infinite
atoms, and zero probability for any non-atomic distribution (e.g. Gaussians) and for atomic distributions
with finite atoms [4]. That is, a realization drawn from Dα is a measure:

P =
∞∑
k=1

pkδyk , (15)

where δx is the Dirac measure on X : δx(A) = 1 if x ∈ A and 0 otherwise; {pk} is some sequence of weights;
and {yk} is a sequence of points in X . For the proof of this property, we refer the reader to [4].

4.3 In What Sense is the Dirichlet Process a Random Process?

A process is a collection of random variables indexed by some set, where all the random variables are defined
over the same underlying set, and the collection of random variables has a joint distribution.
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For example, consider a two-dimensional Gaussian process {Xt} over time. That is, for each time t ∈ R,
there is a two-dimensional random vector Xt ∼ N2(0, I). Note that {Xt} is a collection of random variables
whose index set is the real line R, each random variable Xt is defined over the same underlying set, which
is the plane R2. This collection of random variables has a joint Gaussian distribution. A realization of this
Gaussian process would be some function f : R→ R2.

Similarly, a Dirichlet process is a collection of random variables whose index set is the σ-algebra B. Just
as any time t for the Gaussian process example above corresponds to a Gaussian random variable Xt, any set
B ∈ B has a corresponding random variable P̃ (B) ∈ [0, 1]. You might think that because the marginals in a
Gaussian process are random variables with Gaussian distribution, the marginal random variables {P̃ (B)} in
a Dirichlet process will be random variables with Dirichlet distributions. However, this is not true, as things
are more subtle. Instead, the random vector [P̃ (B) 1− P̃ (B)] has a Dirichlet distribution with parameters
α(B) and α(X )− α(B). Equivalently, a given set B and its complement set BC form a partition of X , and
the random vector [P̃ (B) P̃ (BC)] has a Dirichlet distribution with parameters α(B) and α(BC).

Because of the form of the Dirichlet process, it holds that P̃ (B) =
∑∞
k=1 p̃kδỹk(B), where in this context

p̃k and ỹk denote random variables.
What is the common underlying set that the random variables are defined over? Here, it’s the domain for

the infinity of underlying random components p̃k and ỹk, but because the {p̃k} are a function of underlying
random components {θ̃i} ∈ [0, 1], one says that the common underlying set is ([0, 1]×X )∞. We say that the
collection of random variables {P̃ (B)} for B ∈ B has a joint distribution, whose existence and uniqueness
is assured by Kolmogorov’s existence theorem [8].

Lastly, a realization of the Dirichlet process is a probability measure P : B → [0, 1].

5 Generating Samples from a Dirichlet Process

How do we generate samples from a Dirichlet process? In this section we describe stick-breaking, the Pólya
urn process, and the Chinese restaurant process, of which the latter two are different names for the same
process.

In all cases, we generate samples by generating the sequences {pk} and {yk}, then using (15) (or equiv-
alently (14)) to produce a sample measure P . The {yk} are simply drawn randomly from the normalized
measure α/α(X ). The trouble is drawing the {pk}, in part because they are not independent of each other
since they must sum to one. Stick-breaking draws the pk exactly, but one at a time: p1, then p2, etc.
Since there are an infinite number of pk, it takes an infinitely long time to generate a sample. If you stop
stick-breaking early, then you have the first k − 1 coefficients exactly correct.

The Pólya Urn process also takes an infinitely long time to generate the {pk}, but does so by iteratively
refining an estimate of the weights. If you stop Pólya Urn process after k−1 steps, you have an approximate
estimate of up to k− 1 coefficients. We describe the Pólya urn and Chinese restaurant process first because
they are easier.

5.1 Using the Pólya Urn or Chinese Restaurant Process to Generate a Dirichlet
Process Sample

The Pólya sequence and the Chinese restaurant process (CRP) are two names for the same process due to
Blackwell-MacQueen, which asymptotically produces a partition of the natural numbers [2]. We can then
use this partition to produce the {pk} needed for (15).

The Pólya sequence is analogous to the Pólya urn described in Section 2.1 for generating samples from
a Dirichlet distribution, except now there are an infinite number of ball colors and you start with an empty
urn. To begin, let n = 1, and

Step 1: Pick a new color with probability distribution α/α(X ) from the set of infinite ball colors. Paint a
new ball that color and add it to the urn.
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Indexing Partition Labels

Pólya Urn sequence of draws of balls ball colors

Chinese Restaurant Process sequence of incoming customers different dishes
(equivalently, different tables)

Clustering sequence of the natural numbers clusters

Table 3: Equivalences between different descriptions of the same process.

Step 2: With probability n
n+α(X ) , pick a ball out of the urn, put it back with another ball of the same color,

and repeat Step 2. With probability α(X )
n+α(X ) , go to Step 1.

That is, one draws a random sequence (X1, X2, . . .), where Xi is a random color from the set
{y1, y2, . . . , yk, . . . , y∞}. The elegance of the Pólya sequence is that we do not need to specify the set
{yk} ahead of time.

Equivalent to the above two steps, we can say that the random sequence (X1, X2, . . .) has the following
distribution:

X1 ∼
α

α(X )

Xn+1|X1, . . . , Xn ∼
αn

αn(X )
, where αn = α+

n∑
i=1

δXi .

Since αn(X ) = α(X ) + n, equivalently:

Xn+1|X1, . . . , Xn ∼
n∑
i=1

1
α(X ) + n

δXi +
1

α(X ) + n
α.

The balls of the kth color will produce the weight pk, and we can equivalently write the distribution of
(X1, X2, . . .) in terms of k. If the first n draws result in K different colors y1, . . . , yK , and the kth color
shows up mk times, then

Xn+1|X1, . . . , Xn ∼
K∑
k=1

mk

α(X ) + n
δyk +

1
α(X ) + n

α.

The Chinese restaurant interpretation of the above math is the following: Suppose each yk represents a
table with a different dish. The restaurant opens, and new customers start streaming in one-by-one. Each
customer sits at a table. The first customer at a table orders a dish for that table. The nth customer
chooses a new table with probability α(X )

α(X )+n (and orders a dish), or chooses to join previous customers with
probability n

α(X )+n . If he chooses a new table, he orders a random dish distributed as α/α(X ). If the nth
customer joins previous customers and there are already K tables, then he joins the table with dish yk with
probability mk/(n− 1), where mk is the number of customers already enjoying dish yk.

Note that the more customers enjoying a dish, the more likely a new customer will join them. We
summarize the different interpretations in Table 3.

After step N , the output of the CRP is a partition of N customers across K tables, or equivalently a
partition of N balls into K colors, or equivalently a partition of the natural numbers 1, 2, . . . , N into K sets.
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For the rest of this paragraph, we will stick with the restaurant analogy. To find the expected number of
tables, let us introduce the random variables Yi, where Yi is 1 if the ith customer has chooses a new table
and 0 otherwise. If TN =

∑N
i=1 Yi then TN is the number of tables occupied by the first N customers. The

expectation of TN is (see [1])

E[TN ] = E

[
N∑
i=1

Yi

]
=

N∑
i=1

E[Yi] =
N∑
i=1

α(X )
α(X ) + i− 1

.

If we let N →∞, then this infinite partition can be used to produce a realization pk to produce a sample
from the Dirichlet process. We do not need the actual partition for this, only the sizes m1,m2, . . .. Note
that each mk is a function of N , which we denote by mk(N). Then,

pk = lim
N→∞

mk(N)
α(X ) +N

. (16)

Blackwell and MacQueen proved that αn
αn(X ) converges to a discrete probability measure whose distribu-

tion is a Dirichlet measure with parameter α [2] .

5.1.1 Using Stick-breaking to Generate a Dirichlet Process Sample

Readers who are not familiar with measure theory can safely ignore the more advanced mathematics of this
section and still learn how to generate a sample using stick-breaking.

We know that the Dirichlet realizations are characterized by the atomic distributions of the form (15).
So we will characterize the distribution of the {p̃k, ỹk}, which will enable us to generate samples from
Dα. However, it is difficult to characterize the distribution of the {p̃k, ỹk}, and instead we characterize the
distribution of a different set {θ̃k, ỹk}, where {θ̃k} will allow us to generate {p̃k}.

Consider the countably-infinite random sequence ((θ̃k, ỹk))∞k=1 that takes values in ([0, 1] × X )∞. All
the {θ̃k}∞k=1 and all the {ỹk}∞k=1 are independent, each θ̃k has beta distribution B(1, α(X )) and each ỹk is
distributed according to β, where β = α/α(X ).

Kolmogorov’s existence theorem says that there is a probability space (Ω,A,P), where A is a σ-algebra
on Ω and P is a probability measure on A, such that the random sequence ((θ̃k, ỹk))∞k=1 on (Ω,A,P) has the
joint distribution Dα. This is wonderful because as soon as we connect the {θk} to the {pk}, we will be able
to generate samples from Dα.

The random sequence ((θ̃k, ỹk))∞k=1 is a map from ([0, 1]×X )∞ into P. Draw a realization ((θk, yk))∞k=1 as
described above. Then to form a corresponding probability distribution in P from this sequence we can use
the stick-breaking method as follows. Let p1 = θ1; that is, break off a θ1 portion of a unit-long stick. What
remains has length 1− θ1. Break off a θ2 fraction of the remaining stick; that is, let p2 = θ2(1− θ1). What
is left after this step is a (1− θ1)(1− θ2) long stick. In the kth step, we have a stick of length

∏k−1
i=1 (1− θi)

remaining, and to produce pk, we break off a θk portion of it, so pk = θk
∏k−1
i=1 (1 − θi). The result is a

sequence (pi)ki=1 and we can use this sequence directly to produce a probability distribution P in P:

P (((θk, yk))∞k=1) =
∞∑
k=1

pkδyk .

We can think of P as a stochastic process on (Ω,A,P) taking values in P. The index set of this random
process is the set B.

5.2 Conditional Distribution of a Dirichlet Process

Let P be a random probability measure on (X ,B). We say that X1, . . . , Xn is a sample of size n from P
if for any m = 1, 2, . . . and measurable sets A1, . . . , Am, C1, . . . Cn, the probability of X1 ∈ C1, . . . , Xn ∈ Cn
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given P (A1), . . . , P (Am), P (C1), . . . , P (Cn) is (see [4])

P
(
X1 ∈ C1, . . . , Xn ∈ Cn

∣∣ P (A1), . . . , P (Am), P (C1), . . . , P (Cn)
)

=
n∏
i=1

P (Ci) a.s.

In other words, X1, . . . , Xn is a sample of size n from P if the events {X1 ∈ C1}, . . . , {Xn ∈ Cn} are
independent of the rest of the process and they are independent among themselves.

Let P be a Dirichlet process on (X ,B). Then the following theorem proved in [4] gives us the conditional
distribution of P given a sample of size n:

Theorem 5.2.1. Let P be a Dirichlet process on (X ,B) with parameter α, and let X1, . . . , Xn be a sample of
size n from P . Then the conditional distribution of P given X1, . . . , Xn is a Dirichlet process with paramater
α+

∑n
i=1 δXi .

5.3 Estimating the Dirichlet Process Given Data

The description of a draw from a Dirichlet process requires an infinite sum. This is not practical, so we need
to consider ways to approximate the draw by finite sums. There are at least two ways to do this.

The most natural one is the truncation method. Suppose we want to generate the draw P by using the
stick-breaking method. But, instead of generating the whole infinite sum, we may stop after finding the
first N terms of it. The resulting measure won’t necessarily be a probability measure, so to ensure that
we use probability measures to approximate P we need to set the last draw θN to 1 instead of drawing it
from Beta(1, α(X )). If we call the resulting probability measure PN , then PN (g) → P (g) almost surely as
N →∞ for any bounded continuous function g : X → R, where PN (g) =

∫
gdPNand P (g) =

∫
gdP [7].

Another way to approximate the draw P is more surprising. It is called the finite-dimensional Dirichlet
prior and it is constructed in the following way. Let (q1, . . . , qN ) ∼ Dir (α(X )/N, . . . , α(X )/N) and draw
Zi, i = 1, . . . , N from β = α

α(X ) . Then the finite-dimensional Dirichlet prior PN is simply

PN =
N∑
i=1

qiδZi .

This prior converges to P in a different way as the previous approximation. For any measurable g : X → R
that is integrable w.r.t. β we have that PN (g)→ P (g) in distribution.

5.4 Hierarchical Dirichlet Process (the Chinese Restaurant Franchise Interpre-
tation)

To explain the hierarchical Dirichlet process (see [12]) consider the following scenario. Suppose we have
several Dirichlet processes that are independent but controlled by the same parameter α. Then in general,
we cannot relate the samples drawn from one process to samples drawn from another process. For example,
suppose X is the interval [0, 1] and α is the Lebesgue measure and we have two Chinese restaurant processes
on [0, 1]. The probability of seeing the same sample in both processes is 0. With the hierarchical Dirichlet
process one does not assume a common parameter α, but instead draws a probability measure G0 from a
Dirichlet process with parameter α. We would like to use G0 as a parameter for a new Dirichlet process,
but the parameter of a Dirichlet process is not necessarily a probability measure. We need an additional
parameter α0 > 0, and then we can use α0G0 as the parameter for a new independent Dirichlet process.
Since G0 is itself a realization of a Dirichlet process, we know its form:

G0 =
∞∑
i=1

qiδXi .

Now, if we have several independent Dirichlet processes sharing the same parameter α0G0 then the
corresponding Chinese restaurant processes can be generated separately and in the same fashion as was
described in 5.1.
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The Chinese restaurant franchise interpretation of the hierarchical Dirichlet process is the following:
Suppose we have a central menu (with dishes specified by the δ darts of G0) and at each restaurant each
table is associated with a dish from this menu. A guest, by choosing a table, chooses a menu item. The
popularity of different dishes can differ from restaurant to restaurant, but the probability that two restaurants
will offer the same dish (two processes share a sample) is non-zero in this case.

6 Random Binary Matrices and the Indian Buffet Process

In this section, we discuss random binary matrices and random binary measures over matrices.
The Indian buffet process (IBP) [5] is a method to generate binary matrices that have a fixed number

of rows N , and a variable number of non-trivial columns K. It can be useful if one needs to generate or
model the generation of binary matrices with certain constraints (details below). It can also be motivated
as producing, after a correction, samples of a matrix beta distribution. Why is it called the IBP? How is it
related to the CRP? As we describe in this section, the IBP and CRP have in common that: (i) the two are
often interpreted in terms of customers and dishes; (ii) stick-breaking can be used to generate samples from
both of them; and (iii) they can be used to generate samples of partitions. First, we discuss random binary
matrices, then describe the IBP, then review the stick-breaking variant of the IBP.

6.1 He’ll Have the Curry Too and an Order of Naan

To begin, let us first construct a Bernoulli matrix distribution over binary matrices of fixed size N ×K. The
N rows can be thought to correspond to objects (or later, customers), and the K columns to features (later,
dishes). Each of the N objects can possess any of the K features. Each object has the same probability to
possess a given feature: the probability that the ith object possesses the kth feature is πk. We can use a
binary matrix to describe which object possesses which feature. Let Z be a random binary matrix of size
N ×K whose entry Zik is 1 with probability πk. That is, Zik ∼ Ber(πk), where Ber(πk) is the Bernoulli
distribution with parameter πk, and each Zik is independent of the other matrix entries. We now have a
distribution over binary matrices parameterized by the natural number N and the vector π ∈ [0, 1]K .

Next, consider a distribution over the vector parameter π. Let α > 0 be a scalar (eventually, this α will
be a parameter of the IBP but we are not ready to discuss the IBP yet), and let π be random such that
πk ∼ Beta(α/K, 1). This beta-Bernoulli matrix distribution can be used as a way to generate Bernoulli
matrix distributions (and hence, we can say it is a distribution over random matrices), or it can be used in
a compound-fashion to generate a sample binary matrix by first drawing a π, and then drawing a binary
matrix from the above Bernoulli matrix distribution with parameter π. The probability of seeing a particular
N ×K binary matrix z from this compound beta-Bernoulli matrix distribution is

P (Z = z) =
K∏
k=1

α
KΓ

(
mk + α

K

)
Γ(N −mk + 1)

Γ
(
N + 1 + α

K

) , where mk =
N∑
i=1

zik, (17)

that is, the probability of a particular random matrix z only depends on mk, which is the number of
appearances of the kth feature summed over the N rows. Note, we are not yet at the IBP.

Next, note from (17) that the probability of a particular matrix z is the same as the probability of
any another matrix z′ that was formed by permuting columns of z. Let z ∼ z′ denote that z′ is such
a column-permutation of z. Column-permutation is an equivalence relation on the set of N × K binary
matrices. Let [z] denote the equivalence class of matrix z such that [z] is the set of all matrices that can
be formed by permuting columns of z. At this point it is useful to consider the customer-dish analogy
for a binary matrix. Let the N rows correspond to N customers, and the K columns correspond to K
different dishes. So a column denotes which customer ordered that particular dish. Now, and this is key -
in this analogy when we permute the columns the dish label goes with it. The ordering of the K columns
is considered to be the order in which you choose the dishes. For example, consider a z and a column
permutation of it z′:
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z =


curry naan aloo dahl

0 1 0 0
1 0 1 0
1 1 1 1

 and its permutation z′ =


naan curry aloo dahl

1 0 0 0
0 1 1 0
1 1 1 1

 .

The matrix z can be interpreted (reading left-to-right and top-to-bottom) as, “The first customer ordered
naan, the second customer ordered curry and then ordered aloo, the third customer ordered curry and then
naan and then aloo and then dahl.” The matrix z′ swaps the order of the curry and naan columns, and
would be interpreted (reading left-to-right and top-to-bottom) as, “The first customer ordered naan, the
second customer ordered curry and then aloo, and the third customer ordered naan and then curry and
then aloo and then dahl. So the only difference in interpretation of the orders is the ordering of the dishes.
With this interpretation, a column permutation does not change what gets ordered by whom. So if that is
all we care about, then rather than consider the probability of each matrix z, we want to deal with the
probability of seeing any matrix from the equivalence class [z], or more directly, deal with the probabilities
of seeing each of the possible equivalence classes.

How many matrices are in the equivalence class [z]? To answer that important question, let us assign a
number to each of the 2N different binary {0, 1}N vectors that could comprise a column. Form the one-to-one
correspondence (bijection) h that maps the kth column onto the set of numbers {0, . . . , 2N − 1}:

h(zk) =
N∑
i=1

zik2N−i.

Since h is one-to-one, we can now describe a particular possible column using the inverse mapping of h, for
example h−1(0) corresponds to the column [0 0 0 . . . 0]T . Now suppose a matrix z has K0 columns of h−1(0),
and K1 number of columns of h−1(1), and so on up to K2N−1 columns of h−1(2N − 1). Then the cardinality
of [z] is the ways to arrange those columns:

cardinality of [z] =
K!∏2N−1

b=0 Kb!
.

Thus the probability of seeing any matrix in the equivalence class of z is

P (Z ∈ [z]) =
K!∏2N−1

b=0 Kb!
P (Z = z)

=
K!∏2N−1

b=0 Kb!

K∏
k=1

α
KΓ

(
mk + α

K

)
Γ(N −mk + 1)

Γ
(
N + 1 + α

K

) . (18)

Equation (18) is a distribution over the equivalence classes (that is, over the column-permutation-equivalent
partitions of the set of binary matrices), and its left-hand side could equally be written P ([Z] = [z]).

What happens if there are infinite dishes possible (as is said to be the case at Indian buffets in London)?
If we keep the Kb fixed and take the limit K →∞ in (18), we get that:

PK→∞(Z ∈ [z]) =
αK+∏2N−1
b=1 Kb!

e−αHN
K+∏
k=1

(N −mk)!(mk − 1)!
N !

, (19)

where K+ =
∑2N−1
b=1 Kb is the number of columns of Z that are not completely zero (that is K+ is the

number of dishes that at least one person orders) and HN =
∑N
i=1

1
i is the Nth harmonic number. This is

an interesting case because we do not have to decide ahead of time how many dishes K+ are going to be
ordered, and yet this distribution assigns positive probabilities to K+ = 1, 2, . . . .... One begins (correctly)
to feel that there is something very Poisson going on here...
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6.2 Generating Binary Matrices with the IBP

Finally we are ready to tell you about the IBP. The IBP is a method to generate binary matrices using
Poisson random variables, and as we describe shortly, creates samples of equivalence classes that are (after
a correction) as if drawn from the beta-Bernoulli matrix partition distribution given by (19).

IBP: Let there beN customers and infinitely many different dishes (a banquet befitting Ganesha himself).

Step 1: The first customer chooses K(1) different dishes, where K(1) is distributed according to a Poisson
distribution with parameter α.

Step 2: The second customer arrives and chooses to enjoy each of the dishes already chosen for the table
with probability 1/2. In addition, the second customer chooses K(2) ∼ Poisson(α/2) new dishes.

Steps 3 through N : The ith customer arrives and chooses to enjoy each of the dishes already chosen for
the table with probability mki/i, where mki is the number of customers who have chosen the kth dish
before the ith customer. In addition, the ith customer chooses K(i) ∼ Poisson(α/i) new dishes.

After the N steps one has a N ×K+ binary matrix z that describes the customers’ choices, where K+

can be calculated as K+ =
∑N
i=1K

(i). Note there are many binary matrices that cannot be generated by
the IBP, such as the example matrix z given above, because the first customer cannot choose to have the
second dish (naan) but not the first dish (curry). Let Υ be the set of all matrices that can be generated by
the IBP. The probability of generating a matrix z ∈ Υ by the IBP is

P (Z = z) =
αK+∏N
i=1K

(i)!
e−αHN

K+∏
k=1

(N −mk)!(mk − 1)!
N !

for z ∈ Υ, and zero otherwise. (20)

Note the IBP distribution given in (20) is not the beta-Bernoulli matrix distribution we described in
the last section, for one the IBP assigns zero probability to many sample matrices would be generated by
the beta-Bernoulli. However, the two are related in terms of the distribution of the column-permutation
equivalence classes of the binary matrices. For each equivalence class, there is at least one matrix in Υ, but
for some equivalence classes there is more than one such matrix in Υ. This unequal sampling by the IBP
of the different equivalence classes has to be corrected for if we want to use the IBP realizations as samples
from the same probability distribution over the equivalence classes given (19). This correction factor is the
relative cardinality of the actual column-permutation equivalence class [z] compared to the cardinality of
that equivalence class in Υ. This ratio is

υ([z]) =

K+!∏2N−1
b=1 Kb!

K+!∏N
i=1K

(i)!

=
∏N
i=1K

(i)!∏2N−1
b=1 Kb!

. (21)

The goal here is to create a distribution that is close to one given by (19), because we would like to use
it as a prior. To do this we can use the IBP: Generate M matrices {z(m)}Mm=1 using the IBP and calculate
the corresponding histogram. The distribution we created this way is not the one we are after. To find the
desired distribution, that is to find the probability P ([z]) for any particular z we need to identify an m such
that [z(m)] = [z] and multiply the value we get from the histogram belonging to z(m) by υ([z]).

There are two problems with this in practice. First, it is combinatorically-challenging to determine if two
matrices are from the same equivalence class, so counting how many of which equivalence classes you have
seen given the IBP-generated sample matrices is difficult. Second, you end up with a histogram over the
equivalence classes with some number of samples that you do not get to choose (you started with M sample
matrices, but you do not end up with M samples of the equivalence classes).
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6.3 A Stick-breaking Approach to IBP

Just as there are multiple ways to generate samples from a Dirichlet process (i.e. urn versus stick-breaking),
Teh et al. showed that IBP sample matrices could instead by generated by a stick-breaking approach [11].
In the original paper ,the authors integrated out the parameters πk by using the Beta priors [5]. The stick-
breaking approach instead generates each πk probability that any customer will want the kth dish, and then
after generating all the πk’s, draws N iid samples from a Bernoulli corresponding to each πk to fill in the
entries of the binary matrix. The only difficulty is that we assumed the number of features K → ∞, so to
use stick-breaking to get exact samples it will take a long time. In practice, we simply stop after some choice
of K. As we describe below, this is not so bad an approximation, because more popular dishes tend to show
up earlier in the process.

As before, let πk ∼ Beta(α/K, 1) and zik ∼ Ber(πk). The density is

pk(πk) =
α

K
π
α
K−1

k

and the corresponding cumulative distribution function (cdf) is

Fk(πk) =
∫ πk

−∞

α

K
s
α
K−1I(0 ≤ s ≤ 1)ds = π

α
K

k I(0 ≤ πk ≤ 1) + I(1 ≤ πk), (22)

where I(A) is the indicator (or characteristic) function of the set A, and the second indicator in the above
just confirms the cdf does not grow past πk = 1.

Rather than directly generating {πk}, we will generate the order statistics: let µ1 ≥ µ2 ≥ · · · ≥ µK−1 ≥
µK be the sorted {πk} such that µ1 = maxk πk and µK = mink πk. Warning: we will abuse notation slightly
and use µk to mean either a random variable or its realization, but each usage should be clear from context
and will consider k to be a generic variable.

Since the random variables {π1, . . . , πK} are independent, the cdf of µ1 is the product of the cdfs of all
the πks:

F (µ1) =
K∏
k=1

Fk(µ1) =
(
µ
α
K
1 I(0 ≤ µ1 ≤ 1) + I(1 ≤ µ1)

)K
= µα1 I(0 ≤ µ1 ≤ 1) + I(1 ≤ µ1). (23)

Since F (µ1) is differentiable almost everywhere, the corresponding density exists and can be expressed

p(µ1) = αµα−1
1 (24)

From (23) and (24), one sees that µ1 ∼ Beta(α, 1). At this point you should be hearing the faint sounds of
stick-breaking in the distance.

Next, say we already had the distributions for {µ1, . . . , µm} , µ(1:m), and wanted to specify the cdf for
µm+1. The probability of P (µm+1 < x|µ(1:m)) is 1 if x ≥ µm and

∏
l∈L ClP (πl < x) where L is a set of

K −m indices and Cl is the normalization constant from the definition of the conditional probability. Since
we are working with order statistics we can be sure that for m indices (for those, that belong to µ(1:m)) the
condition πl < x won’t be satisfied. Since all the πks are independent and identically distributed we don’t
need to worry about the concrete indices only about how many of them are there.

The constant C−1
l is the same for all l ∈ L:∫ µm

0

α

K
s
α
K−1ds = µ

α
K
m ,

therefore ∏
l∈L

ClP (πl < x) = CK−ml Fk(x)K−m

and
F (x|µ(1:m)) = P (µm+1 < x|µ(1:m)) = µ

−α(K−m)
K

m x
α(K−m)

K 1(0 ≤ x ≤ µm) + 1(µm ≤ x). (25)
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Switching to using µm+1 to denote a realization, and substituting (22) into (25), we can write (25) as

F (µm+1|µ(1:m)) = µ
−α(K−m)

K
m µ

α(K−m)
K

m+1 I(0 ≤ µm+1 ≤ µm) + I(µm ≤ µm+1). (26)

In the limit K →∞,

FK→∞(µm+1|µ(1:m)) = µ−αm µαm+1I(0 ≤ µm+1 ≤ µm) + I(µm ≤ µm+1).

with corresponding density

p(µm+1|µ(1:m)) = αµ−αm µα−1
m+1I(0 ≤ µm+1 ≤ µm)

Next, define a new set of random variables {νk}, where ν1 = µ1 ∼ Beta(α, 1) and νk+1 = µk+1
µk

. Then
dνk+1 = 1

µk
dµk+1 and we can derive their density as follows:

αµ−αk µα−1
k+1 I(0 ≤ µk+1 ≤ µk)dµk+1 = αµ−α+1

k µα−1
k+1 I(0 ≤ µk+1

µk
≤ 1)

1
µk
dµk+1

= ανα−1
k+1 I(0 ≤ νk+1 ≤ 1)dνk+1

= dF (νk+1).

Thus νk ∼ Beta(α, 1) for all k. We can generate the νk and µ1 ∼ Beta(α, 1) using Beta random variables, and
then compute µk+1 = νk+1µk =

∏k+1
i=1 νi. This generation mechanism can be interpreted as stick-breaking.

Take a stick of length 1 and break off ν1 portion of it and keep it. Next, break off a ν2 portion of the piece
you keep and throw away the rest. Etc. Since we are only interested in sampling the column-permutation
equivalence classes, we can use the {µk} in order for each column, and not worry about the original πk.
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