Just Formal Enough?
Automated Analysis of EARS Requirements

Levi Liicio', Salman Rahman!, Chih-Hong Cheng', and Alistair Mavin?

! fortiss GmbH, Guerickestrae 25, 80805 Miinchen, Germany
{lucio,cheng}@fortiss.org, salman.rahman@tum.de
2 Rolls-Royce, PO Box 31, Derby, UK

alistair.mavin@rolls-royce.com

Abstract. EARS is a technique used by Rolls-Royce and many other organizations
around the world to capture requirements in natural language in a precise manner.
In this paper we describe the EARS-CTRL tool for writing and analyzing EARS
requirements for controllers. We provide two levels of analysis of requirements written
in EARS-CTRL: firstly our editor uses projectional editing as well as typing (based
on a glossary of controller terms) to ensure as far as possible well-formedness by
construction of the requirements; secondly we have used a controller synthesis tool to
check whether a set of EARS-CTRL requirements is realizable as an actual controller.
In the positive case, the tool synthesizes and displays the controller as a synchronous
dataflow diagram. This information can be used to examine the specified behavior
and to iteratively correct, improve or complete a set of EARS-CTRL requirements.

1 Introduction

When writing requirements for software systems in natural language problems such as ambi-
guity, vagueness, omission and duplication are common [17]. This is due to the the large gap
between natural language and the languages in which code is expressed. Natural language
requirements describe a wide range of concepts of the real, abstract and imaginary worlds.
By contrast, programming languages are used to describe precise sequences of operations
inside a machine. Natural language can be partial, ambiguous and subjective, whilst code
can typically be none of those things.

EARS (Easy Approach to Requirements Syntax) is an approach created at Rolls-Royce
to capture requirements in natural language [17]. EARS is based on practical experience, but
has been shown to scale effectively to large sets of requirements in diverse domains [15, 16].
Application of the approach generates requirements in a small number of patterns. EARS
has been shown to reduce or even eliminate many problems inherent in natural language
requirements [17]. In spite of its industrial success, we are not aware of any published material
describing tool support for EARS. The method is primarily aimed at the early stages of
system construction, as a means of providing clear guidance to requirements engineers when
using natural language to describe system behavior. Automating the writing and analysis
of EARS requirements has not been attempted thus far. It is however reasonable to expect
that, due to the semi-formal nature of the EARS patterns, automated analysis of EARS
specifications can be implemented to improve software development methodologies already
in place at Rolls-Royce and elsewhere.

In this paper we will describe our initial work in the direction of automating the analysis
of EARS requirements. As domain of application, we have chosen to focus on the construc-
tion of controller software. In particular, the EARS requirements for the controller running

stirring
valve 0 engine valve 1

liquid level 2

start button
liquid level 1

0

emergency stop

valve 2

Fig. 1. Liquid Mixing System

example we present in this study have been validated by a requirements engineer at Rolls-
Royce. Aside from being industrially relevant, the controller domain lends itself well to
analyses and syntheses, given its constrained nature. The contributions described in this
paper are as follows:

— An editor for EARS specifications, called EARS-CTRL, based on the projectional editor
MPS (Meta Programming System) [2]. Sentences written in our MPS EARS-CTRL
editor have the look and feel of pure natural language, but are in fact templates with
placeholders for which meaningful terms are proposed to the requirements engineer.

— Automated check of realizability of the requirements as a real controller is provided
at the push of a button. Additionally, when the controller is realizable, a synchronous
dataflow diagram [14] modelling the specified behavior is generated. This information
can be used iteratively to check whether the set of EARS-CTRL requirements correctly
express the desired behavior of the natural language requirements written in EARS.

2 Running Example

Our running example for this study is a liquid mixing system. The controller for this system,
depicted in fig. 1, is supposed to behave as follows: when the start button is pressed, valve 0
opens until the container is filled with the first liquid up to the level detected by the liquid
level 1 sensor. Valve 0 then closes and valve I opens until the container is filled up with
the second liquid up to the level detected by the liquid level 2 sensor. Once both liquids are
poured into the container, they are mixed by the stirring motor for a duration of 60 seconds.
When the mixing process is over, valve 2 opens for 120 seconds, allowing the mixture to
be drained from the container. It is possible to interrupt the process at any point using an
emergency stop button. Pressing this button closes all valves and stops the stirring engine.

3 Expressing and Analyzing Requirements
The first step when writing a set of requirements using EARS-CTRL is to identify the

vocabulary to be used. Fig. 2 depicts the glossary for the liquid mixing system we have
presented in section 2. The glossary defines the name of the controller being built, the

names of the components of the system that interface with the controller (together with
informal descriptions of their purpose), and the sensors and actuators those components
make available. Rules expressing relations between signals are also expressed here.

Glossary For Liquid Mixer

Controller Name: liquid mixer controller List OF Sensors: List OF Actuators:
60 second timer expires valve @ can open

List Of Components: 120 sec timer expires valve @ can close
emergency button —> to stop the process start button is pressed valve 1 can open
start button —> to start the process liquidlevel 1 is reached valve 1 can close
liquid level 1 sensor —-> detects first liguid is loaded liguidlevel 2 is reached valve 2 can open
liguid level 2 sensor -> detects second liquid is loaded emergency butten is pressed valve 2 can close
valve 8 -> valve for first liquid 6@ sec timer can start
valve 1 —> valve for second liquid List of Relations: 12@ sec timer can start
valve 2 -> valve for mixture valve @ : open = not close stirring motor cam start
stirring motor -> mixes the two liquids valve 1 : open = not close stirring motor can stop
60 sec timer —> countdown for mixing valve 2 : open = not close
128 sec timer —> countdown for draining the mixture stirring motor : start = not stop

Fig. 2. EARS-CTRL Glossary for the Container Fusing Controller

Once the glossary is defined, the EARS-CTRL requirements can be written. Our edi-
tor is built using MPS, a projectional meta-editor for DSL development. The projectional
capabilities of the editor make it such that requirements can be edited directly as abstract
syntax trees projected onto a textual view. In practice this means that each requirement
can be added as an instance of a template with placeholders. These placeholders are then
filled by the requirements engineer using the terms defined in the glossary.

When emergency button is pressed occurs , the liquid mixer controller shall |:| valve 2 .

@ close ~listOfResponses (o0.i.e.g.examples.Contain

“ open ~listOfResponses (o.i.e.g.examples.Contain

Fig. 3. Example of adding an EARS-CTRL requirement

3.1 Well-Formedness by Construction

In fig. 4 we depict the action of adding an EARS requirement using our editor. Note that two
aspects of well-formedness by construction are enforced at this point: firstly, by using EARS
templates instances, we guarantee that the form of the requirement is correct; secondly, the
editor provides suggestions for the terms that are added to each of the placeholders as a
range of possibilities extracted from the glossary. Fig. 3 illustrates some examples for the
action associated with the valve 2 component of the system. Note that in the suggestions
associated to this placeholder two constraints are enforced: a) only actions associated with
actuators are proposed, and b) the actions for component valve 2 are limited to the ones
that are described in the glossary in fig. 2.

3.2 Realizability Analysis

Well-formedness by construction, as described in section 3.1, guarantees a certain level of
correctness of individual requirements. EARS-CTRL provides additional mechanisms for
analyzing the interplay of individual requirements in a specification. In particular, at the
press of a button the tool can decide whether the set of requirements is realizable as a
concrete controller. Note that non-realizability is typically due to conflicting requirements.
This analysis is executed by a) transforming EARS-CTRL requirements in LTL (Linear
Temporal Logic) formulas, and b) running the GXW synthesis [6] tool autoCode4 [7] via an
API to attempt to synthesize a controller for those formulas.

M’ Reguirements For Liquid Mixer x

-Requirements For Liquid Mixer

Glossary: Glossary For Liguid Mixer

Reql : While not liquid level 1 is reached , when start button is pressed the liguid mixer controller shall
open valve @ .

Reg2 : When liquid level 1 is reached occurs , the liguid mixer controller shall close valve @ .

Reg3 : While not liquid level 2 is reached , when liguid level 1 is reached the 1liguid mixer controller shall
open valve 1 until emergency button is pressed .

Regd : When liquid level 2 is reached occurs , the liguid mixer controller shall close valve 1 .

Reg5 : When liquid level 2 is reached occurs , the 6@ sec timer shall start .

Regé : When liquid level 2 is reached happens , the liguid mixer controller shall start
stirring motor until 6@ second timer expires or emergency button is pressed .

Req? : When 6@ second timer expires occurs , the 128 sec timer shall start .

Reg8 : When 6@ second timer expires happens , the liguid mixer controller shall open
valve 2 until 128 sec timer expires or emergency button is pressed .

Req9 : When emergency button is pressed occurs , the liquid mixer controller shall close wvalve @ .

Reql® : When emergency butten is pressed occurs , the liquid mixer contreller shall close valve 1 .
Reqll : When emergency butten is pressed occurs , the liquid mixer contreller shall close valve 2 .
Reql2 : When emergency butten is pressed occurs , the liquid mixer contreller shall stop stirring motor

[] Message

@ Error: Parameter assignment for resolution blocks unavailable (the spec is not realizable)

Fig. 4. EARS-CTRL requirements to describe the controller for the liquid mixer system

In fig. 4 we depict a set of requirements® for the running example from section 2 that is
actually not realizable — as can be understood from the pop-up message in the fig. obtained
after running the analysis. When revising the specification, we realized that requirements
Reql and Req9 were in conflict. The reason for this conflict was that, according to Req9,
the emergency button can be pressed at any moment thus closing valve 0. However, Reql
states that valve 0 opens when the start button is pressed. Thus, logically valve 0 could be
simultaneously open and closed — a contradiction.

Regl : While not liquid level 1 is reached , when start button is pressed the liquid mixer controller shall
open valve @ until emergency button is pressed .

Fig. 5. Updated Requirement to allow realizing the liquid mixer controller

To eliminate the contradiction we have replaced Reql in the set of requirements in fig. 4
by the requirement in fig. 5* Adding the condition until emergency button is pressed to the
original version of Reql disallows valve 0 being simultaneously open and closed.

When a set of EARS requirements is realizable, EARS-CTRL imports a synchronous
dataflow diagram from the autoCode4 tool that describes the behavior of the specified con-
troller. The controller can be visualized inside the EARS-CTRL tool as a block diagram
using MPS’s graphical rendering capabilities. Due to space limitations, we direct the reader
to the project’s website [3] for an image of the controller generated for the running exam-
ple. Note that the synthesized controller is imported into EARS-CTRL as an MPS model,
making it possible to further implement automated analyses on this artifact.

3 For analysability reasons, EARS-CTRL’s syntax is slighty different from EARS’. In particular
EARS disavows the usage of “until” clauses and composed logical expressions in a requirement.
4 The requirement in fig. 5 is an instance of template While A, when B the system shall C until D.
The corresponding LTL is of the form C' — (B W (D V —A)), W being the weak-until operator.

3.3 The EARS-CTRL Tool

The EARS-CTRL tool is available as a github project [1]. Note that the tool is distributed
as an MPS project and requires MPS [2] to be installed as pre-requisite. Together with
the functional running example, we distribute with the project the realizable EARS-CTRL
requirements for a simple engine controller, a sliding door controller and quiz controller.

4 Related Work

The quest for automatically generating controller implementation from specifications dates
back to the ideas of Church [8]. However, it was not until recently that researchers inves-
tigated practical approaches to the problem. Methodologies such as bounded synthesis [19]
or GR-1 [18], and the combination of compositional approaches [10] have proven to be ap-
plicable on moderately-sized examples. Based on these results that stand on solid logical
foundations, several projects produced research on the generation of logic formulas from
natural language, with the goal of achieving reactive control synthesis from natural lan-
guage. The ARSENAL project starts from specifications written in arbitrary natural lan-
guage [11] and also uses GR-1 as the underlying synthesis engine. The work of Kress-Gazit
et al. focuses on the synthesis of robot controllers [13]. Their methodology is based on using
template-based natural language that matches the GR-1 framework. The work of Yan et
al. [20] applies to full LTL specifications and includes features such as guessing the I/O par-
titioning and using dictionaries to automatically derive relations between predicates (such
as open(door) = —closed(door)), in order to detect inconsistencies in specifications.

The workflow presented in this paper, although also targeting the use of natural language,
starts with a methodologically different approach. Conceptually, the tool proposes a formal
language with a fixed interpretation, while hiding the formality from end-users; in fact an
end-user specifies the required system behavior using only natural language. Therefore, for
scenarios such as the relation between open(door) and closed(door), the negation relation is
not decided during controller synthesis phase but is given during the requirements design
phase. Although our tool supports producing generic LTL formulas, our decision for using
the autoCode4 tool and the GXW language subset lies on the rationale that, for iterative
validation of requirements, it is necessary that designers understand the structure of con-
trollers. For tools [5,9, 12] supporting GR-1 or bounded synthesis, the synthesized controller
is commonly a generated via BDD dumping or via creating explicit state-machines which
can have thousands of states, making user interaction and inspection difficult. The work
presented here largely draws inspiration from and builds on the knowledge obtained when
building the AF3 [4] tool for the model-driven development of software.

5 Conclusions and Future Work

Due to the early nature of this work, two main technical issues remain to be addressed: a) the
fact that expressing and analysing complex states such as “the valve is 3/4 closed” or “the
quantity of liquid in the container is under quantity X” cannot be reasonably done within
EARS-CTRL (due to the boolean representation in autoCode4 of sensors and actuators);
and b) lifting the information provided by the analysis engine autoCode4 for debugging
EARS-CTRL requirements is currently manually done.

The work described in this paper is an early analysis of the gap between constrained
natural language expressed using EARS and logical specifications that can be automatically

transformed into controllers. Note that while the former enables humans to write require-
ments that are as unambiguous as possible, the latter are developed for computers to process.
While these worlds may overlap, they were not necessarily designed to do so.

Ideally, our tool would have as starting point “pure” EARS requirements. However, given
the gap mentioned above, we had to slightly adapt “classic” EARS to make it amenable to
formal treatment, as briefly mentioned in section 3. The implicit question posed by the title
of this paper — whether EARS is just formal enough for automated analyses (and syntheses)
— is thus partly answered by this work, although additional research is needed. Future efforts
will thus concentrate on automatically bridging this gap such that engineers using EARS-
CTRL are as unaware as possible of the underlying automatic mechanisms of our tool.

Acknowledgements this work was developed for the “IETS3” research project, funded by
the German Federal Ministry of Education and Research under code 01IS15037A /B.

References

EARS-CTRL GitHub project. https://github.com/levilucio/EARS-CTRL.git.

Meta Programming System. https://www.jetbrains.com/mps/.

Wiki for the EARS-CTRL project. https://github.com/levilucio/EARS-CTRL/wiki.

V. Aravantinos, S. Voss, S. Teufl, F. Holzl, and B. Schéitz. AutoFOCUS 3: Tooling Concepts
for Seamless, Model-based Development of Embedded Systems. In ACES-MB (co-located with
MoDELS), pages 19-26, 2015.

5. A. Bohy, V. Bruyere, E. Filiot, N. Jin, and J.-F. Raskin. Acacia+, a Tool for LTL Synthesis.
In CAV, pages 6562—-657. Springer, 2012.

6. C.-H. Cheng, Y. Hamza, and H. Ruess. Structural Synthesis for GXW Specifications. In CAV,
pages 95—-117. Springer, 2016.

7. C.-H. Cheng, E. Lee, and H. Ruess. autoCode4: Structural Reactive Synthesis. In TACAS’17,
accepted for publication. Tool available at: http://autocode4.sourceforge.net.

8. A. Church. Applications of Recursive Arithmetic to the Problem of Circuit Synthesis — Sum-
maries of talks, Institute for Symbolic Logic, Cornell University 1957. Institute for Defense
Analysis, Princeton, New Jersev, 1960.

9. R. Ehlers. Unbeast: Symbolic Bounded Synthesis. In TACAS, pages 272-275. Springer, 2011.

10. E. Filiot, N. Jin, and J.-F. Raskin. Compositional Algorithms for LTL Synthesis. In ATVA,
pages 112-127. Springer, 2010.

11. S. Ghosh, D. Elenius, W. Li, P. Lincoln, N. Shankar, and W. Steiner. ARSENAL: Automatic
Requirements Specification Extraction from Natural Language. In NFM, pages 41-46, 2016.

12. B. Jobstmann, S. Galler, M. Weiglhofer, and R. Bloem. Anzu: A Tool for Property Synthesis.
In CAV, pages 258-262. Springer, 2007.

13. H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Translating Structured English to Robot
Controllers. Advanced Robotics, 22(12):1343-1359, 2008.

14. E. A. Lee and D. G. Messerschmitt. Synchronous Data Flow. Proceedings of the IEEE,
75(9):1235-1245, 1987.

15. A. Mavin and P. Wilkinson. Big Ears (The Return of ”Easy Approach to Requirements Engi-
neering”). In RE, pages 277-282. IEEE, 2010.

16. A. Mavin, P. Wilkinson, S. Gregory, and E. Uusitalo. Listens Learned (8 Lessons Learned
Applying EARS). In RE, pages 276-282. IEEE, 2016.

17. A. Mavin, P. Wilkinson, and M. Novak. Easy Approach to Requirements Syntax (EARS). In
RE, pages 317-322. IEEE, 2009.

18. N. Piterman, A. Pnueli, and Y. Saar. Synthesis of reactive (1) designs. In VMCAI, pages
364-380. Springer, 2006.

19. S. Schewe and B. Finkbeiner. Bounded Synthesis. In ATVA, pages 474-488. Springer, 2007.

20. R. Yan, C. Cheng, and Y. Chai. Formal Consistency Checking Over Specifications in Natural

Languages. In DATE, pages 1677-1682, 2015.

o=

