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SUMMARY

Several indices based on the receiver operating characteristic curve (ROC curve) have previously been found
to possess probabilistic interpretations. However, these interpretations are based on some unrealistic
diagnostic scenarios. In this paper, the author presents a new approach using the Lorenz curve. The author
found that the summary indices of the Lorenz curve, that is, the Pietra index and the Gini index, can be
interpreted in several ways (‘average change in post-test probability’, ‘per cent maximum prognostic
information’, and ‘probability of correct diagnosis’). These interpretations have a close tie with real-world
medical diagnosis, suggesting that these indices are proper measures of test characteristics. Copyright
( 1999 John Wiley & Sons, Ltd.

INTRODUCTION

Recent decades have witnessed a rapid progress in statistical methodologies for medical
diagnosis.1,2 Undoubtedly, the receiver operating characteristic (ROC) curve analysis3,4 stands at
centre stage and receives most of the attention. One of the most important applications of the
ROC curve analysis is to evaluate and compare the ‘overall’ performance of diagnostic or
screening tests. The term ‘overall’ is emphasized, since we are interested in the global picture of
a test but not in the diagnostic performance at a particular cut-off point. Such evaluation and
comparison of the global performances are usually based upon the ‘area under the curve’ (AUC)
index, a summary index of the ROC curve.5 The greater the AUC, the better the overall
performance of a test. The AUC per se also possesses a clear interpretation in that it is equal to the
probability that the test result of a randomly selected diseased subject exceeds that of a randomly
selected non-diseased subject.5

In a previous paper, we introduced two new summary indices of the ROC curve which,
interestingly, also possess probabilistic interpretations.6 The ‘projected length of the curve’ (PLC)
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index corresponds to the probability of a correct diagnosis when one subject — with equal chance
of being diseased or non-diseased — is presented and we make a diagnosis according to which
posterior probability is higher. The ‘area swept out by the curve’ (ASC) index is related to the
correct probability when a pair of subjects (one diseased and the other non-diseased) are
presented and we make a diagnosis after obtaining the actual measurement of the one with lower
test result. The conventional AUC index also fits into such a ‘paired-subjects’ scenario — it
corresponds to making a diagnosis by comparing but not actually measuring their test results.

However, the above characterization of diagnostic performances in probabilistic terms, though
interesting, is in fact unrealistic. In actual diagnostic or screening practices, the subjects seldom
come one by one, each with 50 : 50 chance of being diseased a priori, let along arrive in pairs of
exactly one diseased and one non-diseased. Also it is hard to imagine that anyone would really
bother to randomly select a pair of subjects and compare their test results. In this paper, we adopt
a different approach, turning our attention to the ‘Lorenz curve’.7~10 We first demonstrate how
to construct a Lorenz curve and calculate its summary indices, that is, the Pietra and the Gini
indices.11 Next we show that these indices are arithmetically linked to the changes in the pre-test
and the post-test disease probabilities. In the actual settings, we believe that these changes in
probabilities are what the patients, the doctors and the epidemiologists really care about. Finally,
we compare the Lorenz curve and the ROC curve and discuss briefly some statistical properties of
the Pietra and the Gini indices.

THE LORENZ CURVE AND ITS SUMMARY INDICES

The Lorenz curve has been widely used by economists to assess the distributional properties of
family income and wealth7 and by demographers to quantify the degree of population concentra-
tion.8 Recently it has also been applied to analysing seasonal data in detecting and testing for
temporal clustering of disease occurrences9 and to characterizing exposure—disease association
in human populations.10 The technique, however, has yet to prove its usefulness in medical
diagnosis.

We use the data of Hanley and McNeil5 to illustrate the methodology. The data (see Table I)
consist of the rating results of 109 computed tomographic images obtained from 51 diseased
subjects and 58 non-diseased subjects. The rating is on a five-category scale of ‘definitely normal’,
‘probably normal’, ‘questionable’, ‘probably abnormal’ and ‘definitely abnormal’. The likelihood
ratios (LRs) at the various rating categories for this diagnostic test are also presented. The
likelihood ratio12,13 at category t (denoted as LR

t
) is defined as the ratio of the probability of

having rating result t for a diseased subject to the corresponding probability for a non-diseased
subject. The LR provides the information of at-risk status. The greater the LR value at rating
result t, the greater the risk of being diseased for those rated to be at t. To construct the Lorenz
curve, the rating categories must first be re-arranged according to the values of the respective LRs
(from the lowest to the highest). For these particular data, there is no need to do the re-
arrangement since the LRs are already monotonically increasing. Next, the cumulative percent-
ages for the diseased and the non-diseased are calculated (see Table I). The Lorenz curve (see
Figure 1) is simply the plot of the cumulative percentage of the diseased against the cumulative
percentage of the non-diseased (with straight lines connecting the points). Note that our usage of
the Lorenz curve is actually different from that of economists or demographers (economists often
plot the cumulative percentage of ‘income’ against the cumulative percentage of ‘population’,7
while demographers plot the cumulative percentage of ‘population number’ against the
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Table I. Rating of 109 computed tomographic images

Rating categories Diseased subjects Non-diseased subjects LRs

Numbers % Cum.%* Numbers % Cum.%*

Definitely normal 3 5)88 5)88 33 56)90 56)90 0)10
Probably normal 2 3)92 9)80 6 10)34 67)24 0)38
Questionable 2 3)92 13)73 6 10)34 77)59 0)38
Probably abnormal 11 21)57 35)29 11 18)97 96)55 1)14
Definitely abnormal 33 64)71 100)00 2 3)45 100)00 18)76

Total 51 100)00 58 100)00

* Cumulative percentage
s Likelihood ratio.

Figure 1. The Lorenz curve of the example in Table I. The Gini index is twice the area between the Lorenz curve and the
diagonal line. The Pietra index is twice the area of the largest triangle (dotted line) inscribed in the Lorenz curve and

the diagonal line

cumulative percentage of ‘land area’.8 However, we still call it the Lorenz curve, since they all
involve the same procedures of categorizing, reordering, summing and plotting.

It is clear that for a useless diagnostic test which provides hardly any at-risk information, its LR
will be 1 no matter what the test results would be, and its Lorenz curve will run along the diagonal
line. On the other hand, if the diagnostic test perfectly separates the diseased from the non-
diseased (that is, after the test result has been obtained, say t, the subject is known for sure either
to be the diseased (LR

t
"R) or to be the non-diseased (LR

t
"0)), the corresponding Lorenz

curve would coincide with the x-axis throughout and then jump to the uppermost point (1, 1).
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This observation suggests that between these two extreme cases, a more bowed Lorenz curve may
indicate a better diagnostic test, while the flatter the curve, the less diagnostic a test is. It is
desirable then to have summary indices able to quantify such ‘bowedness’, For the Lorenz curve,
this is not difficult since the curve is constrained by the concavity and continuity properties.11 We
can define the Pietra index as twice the area of the largest triangle (see Figure 1) which can be
inscribed in the area between the Lorenz curve and the diagonal line. We can also define the Gini
index as twice the area between the Lorenz curve itself and the diagonal line. Equivalently, we
may define the two indices as the ratios of the aforementioned two areas to the area of the triangle
below the diagonal line. Clearly, these two indices are between 0 and 1.

Assume that the cumulative percentages of the non-diseased and the diseased subjects are
denoted by X

i
and ½

i
(i"1, 2,2 , K), respectively (note that K represents the number of

categories of the diagnostic test and that the data have been re-arranged according to the LRs).
For the example in Table I, the indices of Pietra and Gini can be calculated as below (the straight
lines indicate the determinant of the 2]2 matrix):

Pietra" max
1)i)K~1

AK
X

i
1

½
i

1 KB
"maxAK
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INTERPRETATION OF THE PIETRA AND THE GINI INDICES

It is of interest to note that such geometrically defined indices can be interpreted in several ways.
All suggest that they are ideal for evaluating and comparing the performances of diagnostic tests.
These are explained in the following.

Average Change in Post-Test Probability

Here we seek to quantify the diagnostic performance of a test by its ability to revise the disease
probability. Before a test is applied, the best guess of whether a subject is the diseased or the
non-diseased is to use the ‘disease prevalence’ (denoted by P (D)). However, this is a rough
indicator, since the population to which the test is applied may consist of heterogeneous subjects,
some of which are at a higher risk of being diseased, while others may be at a lower risk. After
testing, depending on the test result ¹

i
, the ‘post-test disease probability’ (denoted as P (D D¹

i
))

may be higher or lower than the ‘pre-test probability’ (or the prevalence) and therefore subjects
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with varying degrees of risk are sorted out. It is conceivable that the larger the difference between
the post-test and the pre-test probabilities, the better the test can revise the probability. Since the
extent of this probability revision depends on the test results, we use the average value — the
‘average absolute change in the disease probability provided by the testing’ (denoted as *P) — as
an indicator of the global performance of a test. The formal definition of *P is presented
below:

*P"

K
+
i/1

P (¹
i
) DP (D D¹

i
)!P (D) D

where the P(¹
i
) denotes the probability of obtaining a test result ¹

i
. Its role in the equation is

to serve as a weighting factor for the averaging. Note that the P (¹
i
) can be calculated by

P (¹
i
)"P (D)P (¹

i
DD)#[1!P(D)]P (¹

i
DND), where the ND denotes the ‘non-diseased’. The

P (D D¹
i
) can be calculated using the conventional Bayes rule.13

For the example in Table I, we have calculated the *P assuming that the computed to-
mographic rating experiment was applied to different settings with P(D)"0)2, 0)5 and 0)9,
respectively (see Table II). It turns out interestingly that it is related to the Pietra index by

*P"2P(D)[1!P(D)]Pietra.

A formal proof of the above relation is presented in the Appendix. For a binary test, the Pietra
index is equal to SEN#SPE!1, the Youden index14 (we use ‘SEN’ and ‘SPE’ to denote
‘sensitivity’ and ‘specificity’), and therefore *P"2P(D)[1!P(D)] (SEN#SPE!1). This latter
expression has appeared in two previous papers,15,16 where the *P was dubbed the ‘expected
gain in certainty’15 and the ‘prognostic information’,16 respectively.

In the above, the global performance of a test is quantified by the average change between the
post-test and the pre-test probabilities. However, another measure can also be considered, that is,
the ‘average absolute difference in post-test probabilities of two randomly selected subjects’
(denoted as *P*). We present the formal definition below:

*P*"
K
+
i/1

K
+
j/1

P (¹
i
)P (¹

j
) DP (D D¹

i
)!P (D D¹

j
) D.

For any two subjects, the likelihood of disease is the same before testing (they stand at the same
starting point). However, as a consequence of testing, the two subjects become separated
(the post-test probabilities become different). The larger the mean ‘separation’ (the *P*) a
diagnostic test can attain, the more prognostic information it provides for the subjects being
tested.

For the example in Table I, we also calculate the *P* with P (D)"0)2, 0)5 and 0)9, respectively
(see Table II). This time we found that it is related to the Gini index (the proof is given in the
Appendix):

*P*"2P(D)[1!P (D)]Gini.

Per Cent Maximum Prognostic Information

Let us consider a perfect test and examine the maximum values the *P and *P* can attain (the
maximum prognostic information). A perfect test when positive (¹

`
) indicates, without error,

that the subject being tested is the diseased (that is, P (D D¹
`

)"1) and when negative (¹
~
)
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Table II. Performance indices of the computed tomographic rating experiments in diagnostic settings of
different disease prevalences

Rating categories P (D)"0)2 P (D)"0)5 P (D)"0)9

P (¹
i
) P (D D¹

i
) P (¹

i
) P (D D¹

i
) P (¹

i
) P (D D¹

i
)

Definitely normal 0)4669 0)0252 0)3139 0)0937 0)1098 0)4820
Probably normal 0)0906 0)0866 0)0713 0)2749 0)0456 0)7733
Questionable 0)0906 0)0866 0)0713 0)2749 0)0456 0)7733
Probably abnormal 0)1949 0)2214 0)2027 0)5321 0)2131 0)9110
Definitely abnormal 0)1570 0)8243 0)3408 0)9494 0)5858 0)9941

*P 0)2044 0)3193 0)1149
2P(D)[1!P (D)]Pietra 0)2044 0)3193 0)1149
*P* 0)2516 0)3932 0)1415
2P(D)[1!P (D)]Gini 0.2516 0.3932 0.1415

indicates the opposite (P (D D¹
~
)"0). By definition we have
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~
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~
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We obtain the following expressions for the Pietra and the Gini indices:

Pietra"
*P

max*P

and

Gini"
*P*

max*P*
.

Thus we realize that both the Pietra and the Gini are ‘ratio indices’, which measure the ‘per cent
maximum prognostic information’ provided by a less-than-perfect test (relative to the perfect
test). Also, since the above expressions do not depend on P(D), we see that these ‘ratios’ represent
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the ‘inherent’ characteristics of a diagnostic test. ‘Inherent’ here means that they are the properties
of the diagnostic tests per se and do not concern the diagnostic situations where the tests are
administered. We note in passing that the traditional indices of SEN, SPE, LR and the summary
indices of the ROC curve (AUC, PLC, ASC) do not depend on P (D) either.

Probability of Correct Diagnosis

As mentioned earlier, the AUC, the PLC, and the ASC indices of the ROC curve can each be
interpreted as the correct probability under a certain hypothetical diagnostic scenario.6 It is of
interest to find that the same is true for the indices of Pietra and Gini. Let us first consider the
‘single-subject’ scenario (with equal chance of being diseased and non-diseased). After testing, the
post-test probability of this subject can be calculated. A reasonable strategy in this situation is to
make a diagnosis that the subject is a diseased when his/her post-test probability is greater than
0)5, and is a non-diseased when below 0)5. The probability of correct diagnosis using this strategy
(denoted as P

#
) for the example in Table I can be calculated as below:

P
#
"

K
+
i/1

maxA
x
i

2
,
y
i

2B
"maxA

0)5690

2
,
0)0588

2 B#maxA
0)1034

2
,
0)0392

2 B#max A
0)1034

2
,
0)0392

2 B
#maxA

0)1897

2
,
0)2157

2 B#maxA
0)0345

2
,
0)6471

2 B
"0)8193

where the x
i
and y

i
denote the percentage of subjects with test result ¹

i
for the non-diseased and

the diseased, respectively. It is found that such a correct probability is related to the Pietra index
(see Appendix):

P
#
"

1

2
#

Pietra

2
.

Readers can also check that the Pietra index of the Lorenz curve is actually the same index (up to
a scaling factor) as the PLC of the ROC curve.6

Now, let us return to the paired-subjects scenario (one diseased and the other non-diseased).
The AUC index amounts to making a diagnosis by simple comparison of the test outcomes of
these two subjects, and this implies that we do not really have to send the two subjects for actual
measurements; a laboratory test capable of comparing a paired sample suffices. The ASC index is
a step further, corresponding to making a diagnosis not simply by comparison but also by actual
measurement of one of the two subjects.6 The Gini index calls for even more; diagnosis based on
it requires the actual measurement of both subjects. After the measurement, we compare the
post-test disease probabilities of the two subjects and identify the subject with greater post-test
probability as the diseased and the one with lower probability as the non-diseased (in the case
when the two subjects have the same post-test probability, we randomly select one subject as the
diseased one). The correct probability of this new strategy (denoted as P*

#
) can also be calculated
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using simple algebra:

P*
#
"

K
+
i/1

x
iA1!½

i
#

y
i

2B
"0)5690A1!0)0588#

0)0588
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2 B
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2 B
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This time we found that it is related to the Gini index (see Appendix):

P*
#
"

1

2
#

Gini

2
.

As stated before, these last interpretations in terms of correct probability are in fact unrealistic.
Nevertheless, we believe that such interpretations help clarify the relations between the indices of
AUC, PLC, ASC, Pietra and Gini.

COMPARISON BETWEEN LORENZ CURVE AND ROC CURVE

It is of interest to compare the Lorenz curve and the ROC curve. For the computed tomographic
rating example, the Lorenz curve is just the ‘upside-down’ ROC curve (the ROC curve of this
example can be found in figure 1 of reference 5). This is because the test has a monotone LR
function such that it appears the same whether one reorders the data or not. In this case, there is
one-to-one correspondence between the ROC-curve-based indices and the Lorenz-curve-based
ones. That is, Pietra"MVD (maximum vertical distance between the ROC curve and the
diagonal line) and Gini"2AUC!1. Thus one may resort to the conventional ROC curve for
the estimation of the Lorenz curve parameters, when it is known a priori that the at-risk status
increases (or decreases) with increasing values of test results.

However, the reordering procedure will make a difference when one deals with a non-
monotone diagnostic test. In this case, the procedure in effect transforms a ‘wiggly’ ROC curve
to a concave Lorenz curve (concavifying transformation).17 Here we provide such an example.
Shown in Table III is a ‘binormal test’ with *m"1 and a"5.18 ‘Binormal’ implies that the test
results of both the diseased and the non-diseased are normally distributed. The two parameters
(*m and a) describe their relative position. The *m measures the difference of the means of the two
distributions in units of the standard deviation of the non-diseased, and the a is the ratio of the
standard deviations of the diseased to the non-diseased. For ease of presentation we assume
the distribution of the non-diseased to be the standard normal distribution and categorize the
test results into 12 levels ()!2)5, !2)5—!2)0,2, 2)0—2)5, '2)5). Note that in Table III we
have re-arranged the data according to the LRs. It can be seen that the ROC curve of this test
(Figure 2) has portions that fall below the diagonal line. By contrast, the corresponding Lorenz
curve (Figure 3) is concavified.
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Table III. A binormal diagnostic tests with *m"1 and a"5

Test results* Diseased subjects Non-diseased subjects LRt

% Cum.%s % Cum.%s

!0)5 — 0)0 3)87 3)87 19)15 19)15 0)20
0)0 — 0)5 3)94 7)81 19)15 38)29 0)21

!1)0 — !0)5 3)75 11)56 14)99 53)28 0)25
0)5 — 1)0 3)98 15)54 14)99 68)27 0)27

!1)5 — !1)0 3)60 19)15 9)18 77)45 0)39
1)0 — 1)5 3)98 23)13 9)18 86)64 0)43

!2)0 — !1)5 3)43 26)56 4)41 91)04 0)78
1)5 — 2)0 3)94 30)50 4)41 95)45 0)90

!2)5 — !2)0 3)23 33)73 1)65 97)10 1)95
2)0 — 2)5 3)87 37)59 1)65 98)76 2)34

(" !2)5 24)20 61)79 0)62 99)38 38)97
' 2)5 38)21 100)00 0)62 100)00 61)53

* Test results are re-arranged according to LRs
s Cumulative percentage
t Likelihood ratio

Figure 2. The ROC curve of the example in Table III

As another example with disparate ROC curve and Lorenz curve, Table IV presents the
post-dexamethasone plasma cortisol concentrations observed in 215 melancholia patients and
152 patients of other diagnoses (the dexamethasone suppression test), taken from Figure 3 of
Reference 19. It has been noted that the distribution of the melancholia patients follows a bimodal
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Figure 3. The Lorenz curve of the example in Table III

Table IV. Results of dexamethasone suppression test of 215 melancholia patients and
152 patients of other diagnoses

Plasma cortisol Melancholia patients Other diagnoses LRt

concentrations*
Numbers % Cum.%s Numbers % Cum.%s

("0)8 28 13)02 13)02 38 25)00 25)00 0)52
0)8—1)5 46 21)40 34)42 45 29)61 54)61 0)72
1)5—3)0 38 17)67 52)09 56 36)84 91)45 0)48
3)0—6)0 29 13)49 65)58 10 6)58 98)03 2)05
'6)0 74 34)42 100)00 3 1)97 100)00 17)44

Total 215 100)00 152 100)00

* Post-dexamethasone plasma cortisol concentrations
s Cumulative percentage
t Likelihood ratio

pattern while the non-melancholia subjects are unimodal.19 This results in LRs that are not
monotonically increasing or decreasing (see Table IV) and thus the ROC curve and the Lorenz
curve for this example will differ in shape (we omit the figures). As we have previously shown, the
Lorenz curve maintains the desirable interpretation properties as compared to the conventional
ROC curve analysis. For the above examples of the binormal test and the dexamethasone
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suppression test, one should turn to the Lorenz curve-based Pietra and Gini indices for
characterizing the test performance, rather than rely on the ROC curve-based MVD or AUC
indices.

ESTIMATION OF THE PARAMETERS OF THE LORENZ CURVE

In actual practice, however, interpretability is not the only issue to be taken into account. Both
the ROC and the Lorenz curves are estimated by the data and are subject to random errors.
Furthermore, a direct use of the sample Lorenz curve will lead to biased estimation of the Pietra
and Gini indices. This is because the same set of data is used twice — first to create a maximally
bowed Lorenz curve and then to calculate this degree of bowedness. The situation is akin to the
scenario when we use the same set of data to construct a model and to evaluate its prediction
error. To demonstrate the bias incurred by summarizing a sample Lorenz curve, we perform
a small simulation study on the above-mentioned binormal diagnostic test in Table III (the test
has theoretical values of the Pietra and Gini indices of 0)6495 and 0)7442, respectively, when
categorized into 12 levels). A series of 1000 computer simulations was performed, each with 100
diseased and 100 non-diseased subjects. The test results of these subjects are computer generated
according to a 12-category multinomial distribution (probabilities taken from Table III). In each
cycle of simulation, a Lorenz curve is constructed and the Pietra and Gini indices are calculated
(using the same set of simulated data). The results for the Pietra and Gini indices are
(mean$standard error): 0)6693$0)0014, 0)7828$0)0014. Clearly, we see that this is an over-
estimation of the true values.

To correct the bias from a sample Lorenz curve, we can use the bootstrap technique.20 The idea
is simple — avoid using the same of data in creating the Lorenz curve and calculating its summary
indices. Here, we let the ‘bootstrap sample’ do the trick. To be precise, we re-select equal number
of subjects from the original data set to be our bootstrap sample — randomly and with
replacement. Then we let the bootstrap sample create the Lorenz curve (determine the reordering
sequence and find the vertex of the largest inscribed triangle) but let the original data evaluate its
bowedness (calculate the Pietra and Gini indices). The re-sampling can be done hundreds or
thousands of times and the arithmetic means of the re-sampling results produce the ‘bias-
corrected’ Pietra and Gini indices (denoted as Pietra# and Gini# ). For an illustration, we turn
back to the example of the dexamethasone suppression test in Table IV. The uncorrected Pietra
and Gini for this example are 0)3935 and 0)4588, respectively. To obtain the bias-corrected
estimates, we perform 10,000 bootstrap re-sampling. In each cycle of simulation, a new set of ‘case’
subjects which also contains 215 melancholia patients is drawn by random sampling (with
replacement) from the original melancholia patient population. Similarly, a new set of ‘non-case’
subjects containing 152 patients of other diagnoses is drawn from the original other-diagnosis
population. These new set of case and non-case subjects are used to create a Lorenz curve, but its
bowedness (Pietra and Gini indices) is evaluated using the original data (the data in Table IV).
The sample means from these 10,000 bootstrap simulations produce the bias-corrected estimates:
Pietra#"0)3895 and Gini#"0)4467. The need to perform a bootstrapping for bias correction
may seem a disadvantage for the Lorenz curve analysis. However, with easy access to fast
computation nowadays, we believe this is trivial even for practical concerns.

Besides the issue of biasedness, a sample Lorenz curve may be considerably less stable than
a sample ROC curve. This is because the reordering procedure adds some extra-randomness into
the estimation — the procedure is based on imprecise LRs (estimated from the data) and may
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Table V. The results of bootstrap simulation for the example in
Table IV

Indicess Bootstrapped Bootstrapped
means* standard errors*

Pietra# 0)3893 0)0455
Gini# 0)4463 0)0547
MVD# 0)3927 0)0417
2AUC!1 0)3984 0)0523

* based on 100,000 bootstrap simulations
s Pietra#: bias-corrected Pietra index of the Lorenz curve
Gini#: bias-corrected Gini index of the Lorenz curve
MVD#: bias-corrected maximum vertical distance between the ROC curve
and the diagonal line
2AUC!1: two times the area under the ROC curve minus one

inadvertently rearrange adjacent categories of a graded test where it should not. The Pietra and
the Gini indices (after correcting their biases) may thus be less precise compared to the ROC-
curve-based MVD and AUC. To gauge the effect, one can resort to the bootstrap technique
again. We also use the example of dexamethasone suppression test this time. A total of 100,000
bootstrapping simulations are performed, but for each simulation, two sets of bootstrap samples
(instead of one) are drawn this time, one for creating the Lorenz curve and the other for evaluating
its bowedness. The sample means and the sample standard deviations of the results of these
100,000 simulations are calculated (the bootstrapped means and the bootstrapped standard
errors of the Pietra and Gini indices) and are presented in Table V. Note that the purposes of the
above bootstrapping are twofold: the correcting of biases and the gauging of the stability of the
estimates. For comparison, we also present the bootstrapped standard errors of the MVD#

(bias-corrected MVD) and the 2AUC!1 of the ROC curve. Note that unless corrected, the
MVD of the ROC curve is also biased (the same set of data is used first to find the point in the
ROC curve with maximum vertical distance from the diagonal line and then to measure the
length of this maximum distance). As expected, we find that the standard errors of the Lorenz-
curve-based indices are larger than those of the ROC-curve-based indices. To improve stability,
one may consider smoothing the sample LRs using either parametric or non-parametric tech-
niques.21 The reordering procedure can then be based on these smoothed (and hence more stable)
LRs.

DISCUSSION

In this paper, we see that a Lorenz curve has very much in common with an ROC curve. The
distinction lies solely in whether we choose to reorder test categories or choose not to. This may
become a difficult decision, however, since non-monotonicity in the observed LRs may be real
and thus reordering is advised, or else it may be due purely to random error and thus reordering
is against. This problem is not entirely a statistical one. Rather, we should turn to our a priori
knowledge about the test. We believe that the assumption of monotonicity is a reasonable in the
majority of practical diagnostic test situations (so, do not bother to do the reordering!). However,
in some special situations, the reordering procedure should be taken into serious consideration.
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Here are three examples:

(i) Diagnostic tests with similar means but very different variances in the diseased and non-
diseased groups (such as the example in Table III). Although such tests may seem
‘eccentric’, tests of this kind are not uncommon. Somoza18 reported that of the 28
diagnostic tests found in recent literatures, three were found to be of this characteristic.

(ii) Diagnostic tests with bimodal distribution in either the diseased or the non-diseased
group. The dexamethasone suppression test in Table IV is an example.

(iii) Diagnostic tests with the non-diseased subjects distributed symmetrically but with the
diseased subjects distributed askew. An example can be found in Figure 2 of reference 6.

In all situations, the monotonicity assumption fails to capture the inherent characteristic of the
test, and it is for tests of this special type that the Lorenz curve analysis will demonstrate added
values over the traditional ROC curve analysis.

In the presentation above, we are looking at the impact of the diagnostic test on the posterior
probability of being diseased. However, exactly the same principle applies when we are interested
in the probability of not being diseased — we simply re-arrange the data by decreasing LR and plot
the cumulative percentage of the non-diseased against that of the diseased. The result is a mirror
image of the original Lorenz curve and the values of the Pietra and Gini remain the same. This is
reasonable since the probabilities of being diseased and of not being diseased are complementary
and their expected (absolute) changes shall naturally be the same. Thus one need not worry about
whether performance rating of a test will change when we are looking at not being diseased
instead.

Geometrically, it is clear that Gini*Pietra. This relation can also be inferred from the
single-subject and paired-subjects scenarios. In the former setting, we can perform at most one
measurement, while in the latter, we are entitled to perform twice (one measurement for each
subject). Thus it is not too unexpected that the correct probability of the latter is no less than that
of the former. However, this does not imply that the Gini is superior to the Pietra as a perfor-
mance index. It is possible that the global performance of a particular diagnostic test may be rated
superior to another test by the Pietra index, while at the same time rated inferior by the Gini.
Actually, the indices of Pietra and Gini characterize the global performance of a diagnostic test
from different perspectives — the Pietra quantifies the expected change in the disease probabilities
as the consequences of testing, while the Gini reflects the degree of subject-to-subject variability in
the post-test disease probabilities. Thus, for a subject waiting to be tested, his/her attending
physician may wish to select a test with higher Pietra index so that the expectation of having
a disease differs most before and after the testing. On the other hand, if separating as much as
possible a group of subjects with equal pre-test disease probability is the desired end, a diagnostic
test with higher Gini index may be preferable.

Lorenz-curve-based indices of Pietra and Gini have a close tie with real-world medical
diagnosis — the connection with the expected gain in certainty and the prognostic information etc
— and it is the purpose of this paper to demonstrate these simple and elegant relationships. In
doing so, we have kept our presentation as simple and concise as possible. However, for practical
applications, the statistical properties of the new indices should be investigated further. There are
other issues worthy of study as well. First, the Pietra and Gini as shown are global measures of
diagnostic performances. However, there are situations where interests centre on selecting an
operating point to maximize utility22,23 or on studying just a portion of the curve.24,25 It is
possible that the Lorenz curve analysis would provide added insights to these problems as well.
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Second, the ROC curve analysis is limited to evaluating one diagnostic test a time. In actual
practice however, a battery of tests are often administered simultaneously.26 The question then is
how to characterize the overall (not one-by-one) performance of these tests. The Lorenz curve
analysis may hold the answer, since it reorders the data before plotting and after reordering (if can
be properly done), it really does not matter whether the data come from a single test (uni-
dimensional data) or multiple tests (multi-dimensional data). Finally, the performances of diag-
nostic tests in this paper are characterized using the language of probability—we are looking at
the ability of a test in moving prior probability. However, a test can also be measured by its ability
in reducing ‘uncertainty’ (entropy).27,28 It seems worthwhile to explore the role of Lorenz curve
analysis under this alternative criterion.

APPENDIX

Assume that the diagnostic test has K levels which have been rearranged according to their LRs
(from the lowest to the highest) and are indexed by i(i"1, 2,2, K). We let x
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The ‘average absolute difference in post-test probabilities of two randomly selected subjects’
(*P*) is
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