(Translated by https://www.hiragana.jp/)
A036284 - OEIS
login
A036284
Periodic vertical binary vectors of Fibonacci numbers.
19
6, 24, 1440, 5728448, 92568198012160, 26494530374406845814111659520, 2095920895719545919920115988669687683503034097906010941440, 13128614603426246034591796912897206548807135027496968025827278400248602613784037111736380004928525614173642247188480
OFFSET
0,1
COMMENTS
The sequence can be also computed with a recurrence that does not explicitly refer to Fibonacci numbers. See the given Maple and C programs.
Conjecture: For n>=1, each term a(n), when considered as a GF(2)[X]-polynomial, is divisible by GF(2)[X] -polynomial (x^3 + 1) ^ A000225(n-1). If this holds, then for n>=1, a(n) = A048720bi(A136380(n),A048723bi(9,A000225(n-1))). Conjecture 2: there is also one extra (x^1 + 1) factor present, see A136384.
FORMULA
a(n) = Sum_{k=0..A007283(n)-1} ([A000045(k)/(2^n)] mod 2) * 2^k, where [] stands for floor function, i.e. Sum (bit n of Fibonacci(k))*(2^k), k = 0 ... (3*(2^n))-1.
EXAMPLE
When Fibonacci numbers are written in binary (see A004685), under each other as:
0000000 (0)
0000001 (1)
0000001 (1)
0000010 (2)
0000011 (3)
0000101 (5)
0001000 (8)
0001101 (13)
0010101 (21)
0100010 (34)
0110111 (55)
1011001 (89)
it can be seen that the bits in the n-th column from right repeat after a period of A007283(n): 3, 6, 12, 24, ... (See also A001175). This sequence is formed from those bits: 011, reversed is 110, is binary for 6, thus a(0) = 6. 000110, reversed is 11000, is binary for 24, thus a(1) = 24, 000001011010, reversed is 10110100000, is binary for 1440, thus a(2) = 1440.
MAPLE
A036284:=proc(n) option remember; local a, b, c, i, j, k, l, s, x, y, z; if (0 = n) then (6) else a := 0; b := 0; s := 0; x := 0; y := 0; k := 3*(2^(n-1)); l := 3*(2^n); j := 0; for i from 0 to l do z := bit_i(A036284(n-1), (j)); c := (a + b + (`if`((x = y), x, (z+1))) mod 2); if(c <> 0) then s := s + (2^i); fi; a := b; b := c; x := y; y := z; j := j + 1; if(j = k) then j := 0; fi; od; RETURN(s); fi; end:
bit_i := (x, i) -> `mod`(floor(x/(2^i)), 2);
MATHEMATICA
a[n_] := Sum[Mod[Fibonacci[k]/2^n // Floor, 2]* 2^k, {k, 0, 3*2^n - 1}]; Table[a[n], {n, 0, 7}] (* Jean-François Alcover, Mar 04 2016 *)
CROSSREFS
Same sequence in octal base: A036285. Bits reversed: A036286. See also A136378, A136379, A136380, A136382, A136384, A037096, A037093, A000045.
Sequence in context: A052524 A267032 A234635 * A139235 A184388 A136606
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Nov 01 1998. Entry revised Dec 29 2007.
STATUS
approved