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Random Sampling Silhouettes Reconstructions 

Figure 1: Left: Our method generates multi-view depth maps and silhouettes, and uses a rendering function to obtain the 3D shapes. Right:

We can also extend our framework to reconstruct 3D shapes from single/multi-view depth maps or silhouettes.

Abstract

We study the problem of learning generative models of

3D shapes. Voxels or 3D parts have been widely used as

the underlying representations to build complex 3D shapes;

however, voxel-based representations suffer from high mem-

ory requirements, and parts-based models require a large

collection of cached or richly parametrized parts. We take

an alternative approach: learning a generative model over

multi-view depth maps or their corresponding silhouettes,

and using a deterministic rendering function to produce

3D shapes from these images. A multi-view representation

of shapes enables generation of 3D models with fine de-

tails, as 2D depth maps and silhouettes can be modeled at a

much higher resolution than 3D voxels. Moreover, our ap-

proach naturally brings the ability to recover the underlying

3D representation from depth maps of one or a few view-

points. Experiments show that our framework can generate

3D shapes with variations and details. We also demonstrate

that our model has out-of-sample generalization power for

real-world tasks with occluded objects.

1. Introduction

What makes a good generative model of 3D shapes? We

argue that the synthesized objects should be both realistic

and novel. The generator should be able to capture the

fine details of objects of different categories. It should also

characterize the possible variations that shapes may have,

generalizing beyond a fixed collection.

Traditional shape synthesis methods typically employ a

template-based model, where objects and parts are from a

large predefined repository. Shape synthesis is then essen-

tially to memorize and recombine these parts [10, 3]. The

template representation enables generating shapes of high-

fidelity; however, it constrains the possibility of obtaining

novel objects that are never observed before.

Recently, researchers explored sampling novel voxelized

3D shapes by modeling them via volumetric convolutional

networks [28, 27, 6, 18]. Shapes obtained this way are highly

varied; however, the use of voxel representation limits their

resolutions due to the curse of dimensionality.

Here we consider an alternative approach: we first use

deep generative networks to model and sample from the

space of 2D images, specifically multi-view depth maps or

silhouettes; we then employ a rendering function to synthe-
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size 3D shapes from the sampled multi-view images. Com-

pared to modeling 3D shapes via deep networks directly, our

model brings us the unique advantages of generating highly

varied shapes with much finer details, and simultaneously

reconstructing 3D shapes from one or multiple views.

This is made possible because, first, a multi-view 2D rep-

resentation still offers rich flexibility and allows generating

detailed 3D shapes [17, 14]. Second, it is much easier to

model the space of 2D images than the space of 3D shapes

directly. In a lower dimensionality, models can characterize

objects in higher resolution. In particular, we leverage the

recently proposed variational autoencoder [12] to generate

multi-view 2D image representations of resolution 224×224.

In comparison, current volumetric networks that model 3D

shapes directly currently only scale only up to 64×64× [27].

Employing a 2D viewpoint-based representation naturally

enables 3D reconstruction from one or a few depth maps or

silhouettes. We evaluate our model on the NYU-D dataset

as a real-world experiment, and validate that the model can

generalize to recognize 3D shapes from 2D maps well and

robustly. We also present analysis of the learned shape space

through tasks like shape interpolation, and demonstrate ap-

plications including shape classification.

Our contributions are three-fold: first, we consider gener-

ative modeling of 3D shapes via multi-view 2D depth maps

and silhouettes, and are able to generate highly varied shapes

with fine details; second, we explore the learned shape space

and its representation, and present results on both shape

recognition and interpolation; third, we demonstrate that it

is possible to extend our framework to real world silhouettes

or depth maps, where objects may be cropped or occluded.

2. Related Work

There has been renewed interest in building generative

models of 3D objects [27, 19, 8, 28]. Different approaches

for modeling 3D shapes fall into three key categories: parts-

based [8, 10, 1, 26], voxel-based [19, 27, 6, 28], and view

based methods [18, 23]. Our proposed approach falls into

the view based method category.

Modeling shapes via part-based models produces high

resolution meshes. But it usually requires labeled 3D objects

parts before training [10, 1], which are hard to obtain in many

scenarios. It also lacks the creation ability as it generates

shapes by retrieving and recombining database parts without

further modifications. Huang et al. [8] built a generative

model based on shapes structure and surfaces sample points

distribution, but it is computationally expensive due to the

need of dense point correspondence.

Deep generative models with voxel based representations

relax the labeling requirement [28, 6, 19, 27]. In particular,

Wu et al. [28] used deep Boltzmann machine to model and

synthesize 3D shapes, Girdhar et al. [6] learned a joint em-

bedding of 3D shapes and 2D images via autoencoders, and

Wu et al. [27] modeled 3D shapes in a generative-adversarial

manner. However, the higher dimension leads to a large

number of elements in shape representation. This is one of

the main limitations for scaling voxel based representations

to more complex objects and scenes.

View based representations have demonstrated strong po-

tential for both shape recognition and synthesis [23, 18, 5,

25, 16, 13, 29]. Tatarchenko et al. [25], Yan et al. [29],

Choy et al. [4], and Park et al. [16] explored reconstructing

3D shapes from single or multi-view images, but their ap-

proach are mostly for reconstruction, not 3D shape synthesis.

Kulkarni et al. [13] and Dosovitskiy et al. [5] explored gen-

erating shapes in multiple viewpoints, though they did not

look into 3D shape synthesis, either.

Using viewpoints and deep generative models, we show

in this paper that our approach is able to produce high resolu-

tion 3D shapes for tasks including generation, reconstruction,

interpolation and out-of-sample generalization on a hold-out

test set.

3. Approach

Our goal is to synthesize high-resolution, detailed 3D

shapes; we also want to reconstruct the 3D shape given

one or more view points but is also to sample new shapes

randomly. At the core of our model is a variational auto-

encoder, modeling the space of multi-view depth maps and

silhouettes. We then reconstruct the 3D shapes from them.

Model Our model is primarily based on a variational auto-

encoder [12]. Let us consider a dataset of depth or silhouette

images X = {xi}
N
i=1 drawn from an i.i.d distribution, where

each xi is a set containing depth or silhouette images from

single or multiple views (up to 20 in our case). Assume

that the data is drawn from some random process involving

an unobserved random variable Z for the underlying 3D

representation, and a class label C whenever specified.

The random variable Z is drawn from a prior distribu-

tion pθ∗(Z) and X is subsequently generated from some

conditional distribution pθ∗(X|Z). The true model param-

eters θ∗ are unknown. We assume that the prior and likeli-

hood are parametrized by differentiable functions pθ(Z) and

pθ(X|Z,C). Following a variational gradient based algo-

rithm proposed in [12], we are interested in estimating both

Z and θ given raw data and labels whenever specified.

From Depth Maps to 3D Shapes In the final step, all

depth maps are projected back to the 3D space to create the

final rendering. We reconstruct 3D shapes from multi-view

silhouettes and depth maps by first generating a 3D point

cloud from each depth image with its corresponding camera

setting. The union of these point clouds from all views can

be seen as an initial estimation of the shape. We then refine it
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Figure 2: Pipeline: the input for our network can be depth maps or silhouettes. They will be fed to the network, which learns the latent

variables P (Z|S). The reconstructed depth maps and silhouettes are fused together to produce the final 3D point cloud. In the conditional

network, we also fed in a one-hot vector.

by applying predicted silhouettes to filter out noise points. A

point will be kept only if all of its multi-view 2D projections

are valid in the silhouettes. Supervision on the camera angles

or distance from the 3D shape centroid is not explicitly

provided to the models. The only explicit supervision given

is the class labels when training conditional models.

3.1. Networks

We use three main networks to do our experiments. The

networks are called AllVPNet, DropoutNet, and SingleVPNet,

depending on the input they receive. AllVPNet and Dropout-

Net take in either 20 depth maps or 20 silhouettes, rendered

with fixed camera angles, as input. For DropoutNet we ran-

domly zero-out (drop) between 15 to 18 of the view points

of each sample before inputting them to the encoder of the

model. The input to the SingleVPNet is a single depth or sil-

houette image chosen randomly from the 20 available views.

For SingleVPNet, the identity of the views are unknown to

the model.

All networks produce 20 view depth maps and silhou-

ettes simultaneously in the output. For each network, we

use either depth maps or silhouettes as input, resulting in 6

networks for our experiments. Each of those networks can

be trained unsupervisedly or conditionally, resulting in 12

networks in total in all of our experiments. All networks are

expected to learn the 3D representations of objects P (Z|x)
given all, multiple, or single view inputs.

3.2. Architecture

For the encoder, we use the B-type (projection) residual

blocks [7] that project down the feature maps of the previ-

ous layer. Each residual block consists of 2 layers within

itself. We use dilated convolutional modules [30] for both

residual blocks and non-residual convolutional layers (for

downsampling only). The first layer of the encoder uses a

convolutional layer and the last layer regresses on the mean

and log-variances of the prior distribution with two(three for

conditional models) FC layers. For the conditional models,

the last layer also regresses on the class scores with another

FC layer.

The decoder uses the B-type residual blocks for the first 3

layers. However, instead of downsampling the feature maps,

it implements the transposed convolutional operation and

then switches to strided transposed convolutional layers [22]

for the last 3 layers.

All convolutional layers in both the decoder and the en-

coder use 4× 4 filters, except the modules within each resid-

ual block which use 3 × 3 as their filter size. The number

of parameters grows significantly as B-Type residual blocks

are used for most layers. Therefore, we use the factorized

convolutional filters proposed in [24] for all layers in the

encoder and decoder, except for the last 3 layers of the de-

coder. This way we can reduce the number of parameters by

a factor of about 1.6. The maximum number of feature maps

is not more than 74 × 8 for the layers in the middle. The

first and last layer of both encoder and decoder have 74× 4
channels. All layers except the fully connected layers use

batch-normalization [9].

For unconditional models, we aim to minimize the fol-

lowing loss functions during training,

L(xi, φ, θ) = −DKL(qφ(Z|xi)||pθ(Z))+

Eqφ(Z|xi)[log pθ(xi|Z)],
(1)

and the loss function for the conditional model is

L(X,φ, θ, C) = −DKL(qφ(Z|xi, c
(i))||pθ(Z))+

Eqφ(Z|xi)[log pθ(xi|Z, ci)]− c
target
i log(cpred

i ).

(2)

The first term computes the KullbackLeibler divergence

of the approximating distribution to the Normal prior distri-

bution. The second term denotes the reconstruction error,

and the third term in the conditional model refers to the clas-

sification loss. Note that the reconstruction loss function is
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Figure 3: Training data. Left: we render a 3D model from ShapeNet [2] with 20 viewpoints. First and third rows: depth maps; second and

fourth rows: silhouettes. First and second rows: Views 1 to 10; Third and fourth rows: Views 11 to 20

in fact composed of two loss functions: 1) The depth map

reconstruction error, and 2) the silhouettes reconstruction

error. For the KL divergence loss, we multiply its gradient

values for means and variances by 75 to push the approxima-

tion distribution towards the prior and balance the sampling

diversity.

3.3. Training

For the conditional models the Z vector is concatenated

with a hot-vector C, which has a length corresponding to the

number of categories in the data set. Then the Z+C-element

vector is fed to the decoder as shown in 2. During training,

we use the ground truth class labels, but during testing, we

feed the predicted class labels by the model to the decoder,

and do no use the ground-truth labels.

We use ADAM [11] for optimization. We use a learning

rate around 5× 10−6 with annealing. The reason for using

small learning rate is due to using the raw pixel-wise recon-

struction error values for both depth and silhouette images.

We use ℓ1 distance to compute the errors for the generated

depth and silhouette images. The training starts with a a

batch size of 4, increases by 2 every 20 epochs, but does

not go beyond 8. We empirically noticed that small batch

size and small initial learning rates help more in getting less

average-looking 3D shapes and help lower losses.

4. Experiments

In this section, we show the results of our experiments for

conditional and unconditional 3D shape generation, recon-

struction, classification, and out of sample generalization.

4.1. Setup

We train all of our models on the ShapeNet Core [2] data

set which consists of aligned 3D models. We use all data for

all categories in ShapeNet Core and divide them into train

(92.5%), validation (7.5%) each containing 37,892, 3,070

shapes (3D models) respectively.

For each 3D model in the data set, we setup multiple

viewpoints to get the depth images as shown in Figure 3.

The renderings are generated by placing 20 virtual cameras

at 20 vertices of a dodecahedron enclosing the shape. All

cameras point towards the centroid of the mesh. The centroid

is calculated as average of the mesh face centers, weighted

by the face areas. The silhouettes are obtained by binarizing

the depth images. For all our experiments, we use rendering

images of size 224×224. Training takes about two days.

We also test our SingleVPNet model, trained with silhou-

ettes, on the extracted chair examples of the NYU-D [21]

data set, and show that our model is capable of out-of-sample

generalization. From the pixel-level labels of the NYU-D

data set, we extract depth maps of chairs, and place them in

the middle of a canvas of size 224×224. Most samples are

occluded in addition to not having a fixed camera angle and

view point, introducing a challenge to our model.

4.2. 3D Shape Generation

After our models have been trained, we use them for

generating unconditional and conditional samples. Figure 4

highlights generated samples from our model. We also high-

light some conditional samples in Figure 5. Similar to [5]

and [19], the shape category prior is induced through a one-

hot vector with cardinality equal to the number of classes

when drawing samples.

4.3. Reconstruction

The model can reconstruct the 3D model when it is fed

all views. However, an interesting use case is when we may

not have access to all view points. In Figure 6, we show that

our model can reconstruct the full 3D model given limited

view points. To obtain these results we use DropoutNet for

which, while training and testing, 15 to 18 views of the input
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Figure 4: Unconditional Sampling: After training our model on training samples on all ShapeNet categories, we draw unconditional

samples from the prior P (Z), and feed them to the decoder to get the 3D models. The figure shows models produced by our AllVPNet,

DropoutNet, and SingleVPNet, trained with depth maps or silhouettes.

are randomly zeroed-out.

We also test the ability of our pipeline in obtaining the

underlying 3D representation and reconstructing the full 3D

model given a single view point. Note that the model has not

been fed any extra information about the underlying class or

the angle of the input view point. We also do not clamp the

hidden variables to ease the inference computation as in [28].

The input view point may not be very informative (e.g.,

looking at a sofa handle orthogonally), making it both harder

for the model to infer the underlying 3D representation and

more challenging to reconstruct the 3D object perfectly due

to ambiguities, quantitatively shown in Table 4. As presented

in Figure 6, our model is capable of reconstructing back the

underlying 3D model with acceptable quality given only one

view point.

To show the out-of-sample generalization of our model,

we show that it can recover the 3D models for the chairs in

the NYU-D data set [21], without fine-tuning. The NYU-D

AllVP Dropout SingleVP

Depth Sil. Depth Sil. Depth Sil.

Uncond. 84.0 83.6 78.5 77.4 70.7 66.8

Cond. 83.9 83.5 78.5 78.1 72.4 67.9

Table 1: We compute IoU of reconstructions in 3D voxels, on our

test set of ShapeNet [2], for our models trained on silhouettes and

depth maps conditionally and unconditionally

dataset introduces another challenge, as the camera position

is no longer pre-selected. Therefore, we can test how well

the model has learned about different angles implicitly. We

show the results in Figure 8.

For a quantitative evaluation, we compare our reconstruc-

tions results in intersection over union (IoU) in Table 1 using

323 voxels, and in mean ℓ1 reconstruction losses in Table 3.
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Figure 5: Conditional Sampling: we show random samples generated by drawing samples given a class label.

Reconstruction with DropoutNet

Reconstruction with SingleVPNet

Figure 6: 3D Reconstruction from limited views: our DropoutNet and SingleVPNet can reconstruct samples from either depth maps or

silhouettes of a few or one viewpoint(s). Top-half: from left to right, the two input to DropoutNet, the inferred 3D reconstructions shown in

different views, the ground truth model. Bottom-half: from left to right, the input to SingleVPNet, the inferred 3D reconstructions shown in

different views, the ground truth model.
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Figure 7: Interpolation: the learned model can also be used for interpolation. We use linear interpolation between two models’ latent

vectors, and feed them into the decoder network to synthesis new models views. In each row, the left most and the right most columns show

the original models. We choose different view point for each row. We can see the images smoothly transform from left to right.

Reference Models  Silhouettes  Reconstructions

Figure 8: 3D Reconstruction from real images: we show how

our SingleVP model can reconstruct 3D models from a single-view

silhouette of the NYU-D [21] data set. From left to right: raw

RGB images, input silhouettes, the inferred 3D reconstructions in

different views.

Models Representation Accuracy (%)

DeepPano [20] panorama 78%
3D ShapeNet [28] voxel 77%
VoxNet [15] voxel 83%
MVCNN [23] multi-view 90%

AllVPNet multi-view 82.1%± 0.1
DropoutNet multi-view 74.2%± 0.2
SingleVPNet single-view 65.3%± 0.3

Table 2: The classification accuracy on the test set of Model-

Net40 [28]. Trained on depth maps, our framework achieves

comparable results with other supervised learning methods like

VoxNet [15]. MVCNN [23] also employed a multi-view representa-

tion, but they used ImageNet-pretrained networks and RGB images,

and achieved better performance.

4.4. Classification

With the conditional models, we get class predictions

and may compute classification accuracies. Although our

goal is not to train a classifier, we evaluate our frameworks

Network
Training Set Test Set

Acc. (%)
Depth Sil. Depth Sil.

AllVP 0.014 0.016 0.016 0.019 89.1± 0.1
Dropout 0.022 0.026 0.023 0.028 85.5± 0.1
SingleVP 0.028 0.036 0.029 0.036 82.7± 0.1

AllVP 0.015 0.016 0.017 0.019 87.6± 0.1
Dropout 0.022 0.026 0.023 0.028 84.9± 0.1
SingleVP 0.032 0.039 0.033 0.030 80.0± 0.2

Table 3: Classification accuracy and mean reconstruction errors

in ℓ1 norm, averaged over all 3D shapes, all 20 views, and all

pixels for conditional models, on our test set of ShapeNet [2]. The

errors appear to be small due to large empty background. Networks

on the top were trained with depth and networks on bottom with

silhouettes

on shape classification, with depth maps or silhouettes as

input. In Table 3, we summarize the classification accuracy

results obtained after training our networks on all ShapeNet

categories [2].

We further evaluated our framework on the standard shape

classification benchmark ModelNet40 [28]. As shown in

Table 2, our framework, though with depth maps as in-

put, achieves comparable performance with other super-

vised learning methods [15, 28]. MVCNN [23] also em-

ployed a multi-view representation, but they used ImageNet-

pretrained networks and RGB images, and achieved better

performance.

4.5. Analysis

Interpolation To see how well our models have learned

the underlying manifold of the data, we do linear interpo-

lation in the latent space between two randomly-selected

samples from the same category, and reconstruct 3D models.

We show results obtained through the SingleVPNet model

in Figure 7. Our framework is able to interpolate between
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Viewpoint 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Depth Err. .031 .035 .036 .036 .038 .040 .040 .028 .029 .038 .038 .028 .029 .029 .029 .030 .029 .030 .030 .030

Sil. Err .038 .043 .046 .046 .047 .050 .049 .035 .035 .047 .047 .035 .035 .036 .037 .037 .036 .037 .037 .037

Accuracy 82 82 81 80 79 79 79 84 83 78 78 85 83 85 84 84 84 84 84 83

IoU 74.2 70.4 69.9 70.1 70.0 68.3 68.4 75.0 75.4 68.1 68.4 75.0 75.4 74.7 74.6 74.5 74.7 74.3 74.4 75.5

Table 4: ℓ1 reconstruction loss, classification accuracy (%), and IoU on our test set of ShapeNet [2], using SingleVPNet for each view. IoU

and classification numbers drop more for view points with more ambiguity, where most parts of the objects are not visible. Still, our model

is able to infer consistent representations for most views

DropoutNet

Depth

DropoutNet

Silhouettes

SingleVPNet

Depth

SingleVPNet

Silhouettes

Samples NNsSamples Samples NNsNNs Samples NNs

Figure 9: Nearest neighbor examples to generated 3D models: our model produces 3D models that are not identical to the closest training

set samples.

objects and obtain smooth transitions in the space of depth

maps.

Representation Consistency Our SingleVPNet takes a

single image as input. In Table 4, we show quantitative

evaluations when the inputs are from certain viewpoints, in

ℓ1 reconstructions, classfication accuracy, and intersection

over union (IoU). We see that our model is robust to different

views, and achieves consistent results.

Nearest Neighbors To verify whether the models are just

memorizing training data, we show nearest neighbor results

in Figure 9. We see that the generated shapes are different

from its nearest neighbor in the training set.

5. Conclusion

We have explored a new paradigm for 3D shape gen-

erative modeling. Instead of modeling voxelized 3D ob-

jects directly, we instead employ deep generative models for

multi-view depth maps and silhouettes and then rendering

3D objects from these 2D images. Our framework is able to

generate 3D shapes that are both novel and with details. We

have also demonstrated that it has applications in 3D shape

reconstruction and recognition.
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