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Birds’ eggshells are primarily composed of calcite, an abundant polymorph of calcium carbonate 

(CaCO3). However, the eggshells of some species are coated with spherules of vaterite, a rare 

and thermodynamically unstable polymorph of CaCO3, the function of which remains unknown. 

Here we experimentally test the mechanical and physiological effects of the vaterite coating on 

eggshells of the Greater Ani Crotophaga major, a tropical cuckoo. Vaterite removal did not 

affect vapour conductance rates across the eggshell, indicating that the vaterite coating does not 

influence gas exchange during embryonic development. By contrast, nanoindentation revealed 

that the hardness and elasticity of vaterite is similar to that of calcite, and white light 

interferometry showed that the vaterite layer increased the total thickness of the shell cuticle by 

up to 10%. Furthermore, calculations of contact mechanics found that when two eggs come into 

contact, the depth of the surface deformation caused by the contact is far less than the thickness 

of the vaterite coating. These results suggest the layer of vaterite spherules may act as a ‘shock 

absorber’ for the underlying calcite shell, protecting it from mechanical damage caused by 

collision with other eggs in the nest and reducing the risk of eggshell fracture during incubation.  
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 Calcium carbonate, the most abundant biomineral on Earth, is found in three anhydrous 

polymorphs: calcite, aragonite and vaterite, in order of decreasing thermodynamic stability. 

Calcite is the primary component of avian eggshells and the shells of many marine organisms, 

whereas aragonite is found in turtle eggshells, mollusc shells and corals. By contrast, vaterite is 

rare in nature, possibly due to its poor thermodynamic stability (Kabalah-Amitai et al. 2013). It 

is found in gallstones, renal calculi, and aberrant fish otoliths and mollusc shells (Tullett et al. 

1976). Almost forty years ago, Board and Perrott (1979) found that the eggshells of a few bird 

species are coated with a thin, chalky layer of vaterite which overlays the calcite shell. This 

layer, formed by nanometer-scale spherules of vaterite, is confirmed to occur in only two groups 

of birds: waterbirds (Pelecaniformes: pelicans; Suliformes: gannets and anhingas), and 

communally breeding cuckoos (Cuculiformes, including the genera Crotophaga and Guira).  

 Several hypotheses have been proposed to explain the adaptive function of vaterite in the 

eggshell cuticle of these species. Board and Perrott (1979) originally posited that the vaterite 

layer might form an inorganic barrier that protects the porous shell, preventing microbial 

colonisation of the egg. In support of this hypothesis, a recent experimental study found that 

cuticular nanospheres of calcium phosphate do indeed reduce the risk of microbial colonisation, 

suggesting that vaterite might have a similar effect (D’Alba et al. 2014). Alternatively, Board 

and Perrott (1979) proposed that vaterite could act as a “shock absorber” for the underlying 

calcite shell, protecting it from mechanical damage caused by collision with other eggs in the 

nest and reducing the risk of eggshell fracture during incubation. Finally, Board and Scott (1980) 

found that vaterite spherules often cover the system of pore canals that allow gas exchange 

across the eggshell during embryonic development, suggesting that vaterite could alter the rate of 

water loss during incubation (either decreasing it, by blocking vapour conductance through the 
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pore; or increasing it, by altering the humidity gradient across the shell boundary). Neither the 

mechanical properties of vaterite nor its effects on embryonic respiration have been 

experimentally tested, so the latter two hypotheses have never been investigated. 

 In this study, we used eggshells of the Greater Ani Crotophaga major, a communally 

breeding cuckoo, to investigate whether the vaterite coating affects the mechanical and/or 

physiological properties of the calcite shell. The social system of this species provides an ideal 

opportunity to test these hypotheses, since communal breeding imposes unique physical 

challenges to the embryo during development. Greater Ani breeding groups contain up to four 

females, who lay their eggs into a single nest and cooperatively provide care to the communal 

clutch (Riehl & Jara 2009). Communal clutch sizes are large (up to 15 eggs per nest) and eggs 

collide with substantial force as the adults turn them during incubation, suggesting that selection 

has favoured adaptations that reduce the risk of shell fracture during incubation (Vehrencamp 

1978, Riehl 2011). Furthermore, like most cuckoos, anis exhibit exceptionally rapid embryonic 

development (an eleven-day incubation period for a 30 g egg, Riehl & Jara 2009), suggesting 

high rates of water loss across the shell during incubation (Metcalfe et al. 1981, Portugal et al. 

2014). Finally, vaterite is known to play a role in visual signalling within ani nesting groups. 

Breeding adults use the appearance of the vaterite coating on the eggshell as a visual cue to judge 

the age of the egg: freshly laid eggs are coated with white vaterite, but this chalky coating is 

scratched during incubation to reveal the turquoise-blue calcite underneath (Riehl 2010a; Fig. 1).  

 In this study, we ask whether the vaterite coating of the ani eggshell also affects the 

properties of the eggshell itself, specifically whether it (1) alters the rate of gas exchange across 

the eggshell surface, influencing embryonic development by either increasing or decreasing the 
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rate of water loss during incubation; or (2) provides protection against physical damage to the 

calcite shell caused by contact between eggs, reducing the risk of fracture during incubation. 

 

METHODS 

Study species and eggshell samples 

In July 2015 we collected freshly laid, un-incubated eggs of Greater Anis from a nesting 

population in the Barro Colorado Nature Monument, Panama (9o 09’22.5” N, 79o 50’55.4” W). 

Field work was registered and approved through the Smithsonian Tropical Research Institute, 

which operates the field station on Barro Colorado Island. Eggs were emptied of their contents 

and stored in dry conditions at room temperature. X-ray diffraction was first used to confirm the 

two polymorphs of calcium carbonate present in the shell. Spectra were acquired using a D8 

Advance powder x-ray diffractometer (Bruker, UK) operating in reflection geometry mode. The 

diffractometer operates using a Cu x-ray source. Measurements were performed over the range 5o 

< 2θ < 100o using a 0.02o step size. The time taken per step was 0.7 s, with a total measurement 

time of approximately 1 h.  

 

Eggshell conductance: does vaterite alter rates of gas exchange? 

We used a matched-pairs design to compare the rate of water vapour conductance across 

fragments of ani eggshells with and without the vaterite coating. We collected 20 eggs from 

different females across the study area and cut two shell fragments of 1 cm x 1 cm from the 

equator of each egg. The vaterite coating was left intact on one fragment and removed from the 

second fragment by moistening the shell’s surface with a damp cotton swab (Fig. 1). This 

technique removes the vaterite spherules without occluding the shell pores: because vaterite is 
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more soluble and less thermodynamically stable than calcite, vaterite crystals dissolve upon 

prolonged contact with water whereas the insoluble calcite remains intact (Katsifaros & Spanos 

1990). We then measured water vapour conductance from the 40 shell fragments, providing 20 

matched pairs of samples from different eggs. One sample cracked during the measurement 

period and was excluded from analyses, so the final sample size was 19 matched pairs. 

 Water vapour conductance was measured using the protocols described in Portugal et al. 

(2010). Briefly, each conductance sampling unit consisted of a 0.5 mL individual PCR tube and a 

shell fragment. The units were prepared by removing the lids of the PCR tubes and filling each 

tube with 250 μL of distilled water. A thin layer of clear silicone was then applied around the rim 

of each tube, and one shell fragment was glued over the top of each tube (with the inside of the 

shell facing down). The PCR tubes with fragments were placed in a rack and left to dry at room 

temperature (24 oC) for 24 h. Cyanoacrylate glue was then applied around the seal (on the 

underside of the fragment) to ensure an airtight join. A rack containing all 40 conductance units 

was placed inside a polystyrene desiccator cabinet with 100 g of silica desiccant in a room at 

standard ambient temperature and pressure (25 oC and 760 torr). Desiccant was replaced daily. 

Each unit was weighed upon initial placement in the desiccator to the nearest 0.0001 g with a 

Mettler Toledo analytical balance. Measurements were highly repeatable (r = 0.99996, 

determined by weighing five randomly chosen samples five times each). Each unit was weighed 

every 24 h (± 1 h) thereafter for three days, for a total of four measurements per unit. Mass loss 

from day one to day two were not included in the analyses since mass loss in the first 24 h may 

be higher as the shell itself dries out in the desiccator (Portugal et al. 2010). Therefore, the mass 

loss for each fragment was determined for two 24 h periods (Day 2-3 and Day 3-4) and these 

values were averaged to give one measurement of the mass of water lost through the eggshell 
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over each 24 h period (i.e. the vapour conductance, in mg/day). We used a matched-pairs t-test to 

compare conductance rates of samples with and without vaterite, since data were normally 

distributed and the variances around the two sample means were equal (2.03 mg/day). 

Calculations were performed in Stata 14.1. 

 

Contact mechanics: does vaterite act as a shock absorber? 

We measured the hardness and Young’s modulus (elasticity) of calcite and vaterite present in the 

ani eggshell using a Nanoindenter XP (MTS, USA) employing a diamond-coated Berkovich 

indenter. For each of eight eggs, 64 indentations were performed on separate calcite- and 

vaterite-presenting regions over an area of dimensions 70 μm x 70 μm. Samples were indented at 

a strain rate of 0.05 s-1 to a maximum depth of 500 nm. Young’s moduli were calculated from 

analysis of the load-displacement data, fitting a second order polynomial to the unloading curve 

(Bufford et al. 2014). The Poisson’s ratio of the calcium carbonate was assumed to be 0.3. 

Finally, the Hertzian theory of contact mechanics (Johnson 2008) was used to calculate the 

contact pressure for two eggs in contact under a compressive load of 35 g, the upper bound for 

the mass of a Greater Ani egg (Riehl 2010b), using the Young’s modulus values measured by 

nanoindentation (details in Supplementary Methods). Data were analysed in Stata 14.1 and tested 

for normality with Shapiro-Wilk’s test.  

 

RESULTS 

X-ray diffraction confirmed that two mineral phases of calcium carbonate were present in the 

acquired spectra, calcite and vaterite (Fig. S1). Images captured via scanning electron 

microscopy also revealed the structure of the vaterite nanospheres (Fig. 2). We obtained images 
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of the topography of the vaterite/calcite interface using white light interferometry, showing the 

mean thickness of the vaterite coating to be 18.5 ± 8.5 μm (n = 5; range = 8.5 – 28.5 μm; Fig. 

S2). Mean thickness of the calcite shell, measured with callipers, was 300 ± SD = 30 μm (N = 

17; range = 250 – 340 μm).  

 We found no significant difference between rates of mass loss (mg-1/day-1/torr-1) for shell 

fragments with and without vaterite (mean ± SD = 0.21 ± 0.06 and 0.22 ± 0.06, respectively; 

matched-pairs t18 = -0.73, P = 0.47; Fig. 3). Nanoindentation of eggshells revealed that the 

hardness and elasticity of vaterite is comparable to that of calcite: the Young’s modulus (mean ± 

SE) of vaterite and calcite were Evaterite = 4.00 ± 0.44 GPa and Ecalcite = 3.52 ± 0.81 GPa, 

respectively (Fig. 4). This difference in elasticity was not statistically significant (Wilcoxon sign-

rank test; z = 0.56, P = 0.58). The hardness of vaterite was also similar to that of calcite (139.21 

± 25.28 MPa and 130.49 ± 38.16 MPa, respectively; z = 0.14, P = 0.88; Fig. 4).  

 Using the measured values of Young’s modulus (elasticity) for vaterite, the depth of the 

deformation caused by two eggs coming into contact was calculated to be approximately 1 μm, 

assuming a compressive load of 35 g. This suggests that the thickness of the vaterite coating on 

an ani egg (8-28 μm) is far in excess of the depth of surface deformation caused by the contact. 

 

DISCUSSION 

Our experimental tests found that the vaterite coating of the ani eggshell does not increase rates 

of gas exchange, and that the mean conductance value of ani eggshells is 0.21 ± 0.06 mg day-1 

torr-1. This value is, if anything, lower than expected, given that anis exhibit rapid embryonic 

development and that eggs are laid in cup-shaped stick nests. The confined nest microclimate of 

cup nests typically leads to increased humidity, so a higher conductance (GH2O) is necessary to 
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ensure a sufficient humidity gradient between the nest environment and the inside of the egg to 

allow optimal water loss during incubation (Portugal et al. 2014). In British birds, for example, 

the mean conductance value of species that build cup nests (0.28 ± 0.24 mg day-1 torr-1) was 

significantly higher than that of species that build shallow tree nests (0.22 ± 0.32 mg day-1 torr-1). 

The value that we obtained for ani eggshell conductance is remarkably similar to the latter figure, 

supporting recent findings that the eggs of cuckoos do not show higher rates of gas exchange 

despite exhibiting rapid embryonic development (Portugal et al. 2014).  

 In support of the hypothesis that the vaterite coating has evolved as an adaptation to 

cushion the egg from contact in large clutches, we found that the calcite layer of the ani eggshell 

is thicker than would be predicted by the mass of the egg. We obtained measurements of 250 –

340 μm for eggs of 27 – 32 g, whereas predicted thickness values for non-passerine eggshells of 

this mass fall between 240 and 255 μm (Ar et al. 1979). The layer of vaterite spherules further 

increases the thickness of the cuticle by up to 28 μm, consistent with earlier observations that ani 

eggshells seem unusually thick for their size (Vehrencamp 1978). Although the hardness and 

elasticity of calcite and vaterite-presenting regions of the shell were similar, there was substantial 

variation in both measurements for calcite and vaterite across individual eggs. This suggests that 

the composition of the vaterite and calcite layers may also vary across individual eggs, which 

could affect the risk of fracture during development. Egg mass is highly variable within and 

between females, suggesting that maternal body condition and maternal allocation of calcium to 

the shell structure may also be sources of variation (Riehl 2010b).  

 In the Pelecaniformes and Suliformes, the other lineages in which vaterite spherules have 

evolved, clutch sizes are not particularly large and it is not known whether the eggshells of these 

species are also under selection for increased thickness. Cooke (1979) noted that the vaterite 
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layer on the eggshells of Northern Gannets Morus bassanus tended to be much thinner when 

contaminated with the organochlorine DDE, and suggested that the vaterite layer was important 

in maintaining the overall strength and integrity of the eggshell. However, in Anhingas Anhinga 

anhinga, Colacino et al. (1985) found that the vaterite coating appeared to increase conductance 

across the shell boundary, supporting a physiological rather than mechanical function. It seems 

likely that vaterite serves more than one adaptive function across (and perhaps within) waterbird 

species, and more studies are needed in Pelecaniformes and Suliformes that simultaneously test 

these non-mutually exclusive hypotheses. 

 A final hypothesis which remains untested is that the vaterite nanospheres on the eggshell 

surface form a protective barrier against microbial infection (Board & Perrott 1979). Vaterite 

nanospheres appear to block the pore canals while still allowing respiratory gases to diffuse 

through the shell, potentially forming a mineralized barrier resistant to bacterial colonisation. In 

support of this hypothesis, D’Alba et al. (2014) found that cuticular nanospheres of 

hydroxyapatite (Ca10(PO4)6(OH)2) had a hydrophobic effect, reducing the likelihood of bacterial 

attachment on the eggshells of the Australian Brushturkey Alectura lathami. Furthermore, a 

subsequent study found that cuticular nanospheres occur most commonly on the eggs of species 

that nest in warm, humid environments, suggesting an antimicrobial function (D’Alba et al. 

2016). These nanospheres are most commonly formed of hydroxyapatite or other forms of 

calcium phosphate (D’Alba et al. 2016), but vaterite may play a similar role. 
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Figure 1. Eggs of the Greater Ani Crotophaga major showing (a) a recently laid egg with the 

white vaterite coating intact; (b) natural abrasion of the vaterite coating during incubation, 

revealing patches of the blue calcite shell underneath; and (c) artificial removal of the entire 

vaterite coating. 

 

 

Figure 2. Scanning electron microscope (SEM) images of Greater Ani eggshells, showing (a) a 

shell with vaterite coating intact, revealing the spherical structure of vaterite nanospheres; and 

(b) a calcite shell with vaterite removed. 
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Figure 3. Matched-pairs measurements of vapour conductance (mass of water lost in g/day) for 

fragments from 19 Greater Ani eggshells (laid by 19 females) with the vaterite coating intact 

(open bars) or with the vaterite coating removed (calcite only; filled bars). 
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Figure 4. Nanoindentation measurements from eight eggshells laid by eight different female 

Greater Anis, showing (a) Young’s modulus (GPa), and (b) hardness (MPa). Each bracket 

represents measurements from regions from the same egg presenting vaterite (open bars) or 

calcite (filled bars). 

 

 

 

 

 


