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Abs t rac t .  An important requirement of programming languages for dis- 
tributed systems is to provide abstractions for coordination. A common type 
of coordination requires reactivity in response to arbitrary communication 
patterns. We have developed a communication model in which concurrent 
objects can be activated by sets of messages. Specifically, our model allows 
direct and abstract expression of common interaction patterns found in con- 
current systems. For example, the model captures multiple clients that collec- 
tively invoke shared servers as a single activation. Furthermore, it supports 
definition of individual clients that concurrently invoke multiple servers and 
wait for subsets of the returned reply messages. Message sets are dynamically 
defined using conjunctive and disjunctive combinators that may depend o n  

the patterns of messages. The model subsumes existing models for multi- 
RPC and multi-party synchronization within a single, uniform activation 
framework. 

1 I n t r o d u c t i o n  

Distributed objects are often reactive, i.e. they carry out their actions in response 
to received response. Tradit ional object-oriented languages require one to one corre- 
spondence between response and a receive message: i.e. each response is caused by 
exactly one message. However, many coordination schemes involve object behaviors 
whose logical cause is a set of messages rather than a single message. For example, 
consider a transaction manager in a distributed database system. In order to commit  
a distributed transaction, the manager must  coordinate the action taken at each site 
involved in the transaction. A two-phase commit protocol is a possible implementa-  
tion of this coordination pattern. In carrying out a two-phase commit  protocol, the 
manager first sends out a status inquiry to all the sites involved. In response to a 
status inquiry, each site sends a positive reply if it can commit  the transaction; a 
site sends back a negative reply if it cannot commit the transaction. After sending 
out inquiries, the manager becomes a reactive object waiting for sites to reply. The 
logical structure of the manager is to react to a set of replies rather than a single 
reply: if a positive reply is received from all sites, the manager decides to commit  
the transaction; if a negative reply is received from any site, the manager  must  abort 
the transaction. 

In tradit ional object-oriented languages, the programmer must  implement  a re- 
sponse to a set of messages in terms of sequences of responses to single messages. 

* The reported work was carried out while the first author was affiliated with the University 
of Illinois. The current emaJl addresses are f rolund@hpl .hp. corn and agha@cs.uiue, edu 
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Such an implementation complicates the construction of distributed systems: in or- 
der to defer a response until a number of messages have been received, objects must 
maintMn a number of temporary variables which reflect the contents and structure 
of messages received thus far. Hence, in the implementation of objects, programmers 
are forced to inter-mix two orthogonal design concerns: when to react and how to 
react. Separating these design concerns will enhance the modularity of programs and 
make it easier to reason about logically distinct design issues in isolation. 

In order to support activation by sets of messages, we propose an object-oriented 
communication model based on activators. An activator is a command that waits 
for certain sets of messages before triggering its continuation. The sets are described 
using arbitrary patterns of disjunctive and conjunctive combinators that depend on 
message contents. 

Activators wait for messages sent to special destinations called receptionists. A 
receptionist is a first class entity that can be created dynamically, communicated in 
messages, and stored in data structures. Receptionists provide a uniform activation 
model since they can be endpoints for replies as well as input messages. 

Sending a message to a receptionist is an asynchronous operation: a receptionist 
has a buffer in which messages are stored. Triggering an activator causes the trigger- 
ing messages to be removed from the buffers in which they are stored. In this way, 
a given message can only trigger a single activator. A receptionist can be shared 
between multiple objects, enabling multiple activators to wait on messages for the 
same receptionist. Consistency of the triggering scheme is ensured through atomic 
removal operations. 

The remainder of this paper is organized as follows. In Section 2, we introduce a 
simple base language, and in Section 3 we extend it with activators and receptionists. 
The resulting language provides a concrete setting and allows us to give a number of 
examples in Section 4 and Section 5. Section 6 discusses of related work. In Section 7, 
we give our concluding remarks. 

2 B a s e  L a n g u a g e  

Our aim is to provide general insights and not tie activators and receptionists to any 
specific language. However, we do need an example language in order to illustrate the 
expressive power of the suggested constructs. We integrate support for activators and 
receptionists in a simple "toy" concurrent object-oriented base language invented for 
the purpose. 

Our constructs require few assumptions about the "host" language in which they 
are integrated: we believe that  activators and receptionists can elegantly and effi- 
ciently supplement the interaction model in most existing object-oriented languages. 
The design of our base language is primarily dictated by pedagogical concerns. We 
have chosen an Algol-like syntax for commands and declarations. Furthermore, we 
have ignored many of the aspects that are normally considered essential to object- 
orientation such as inheritance, polymorphism, dynamic binding, dynamic object 
creation, etc. 

The computational foundation of our work is the Actor model [Agh86]. Con- 
sequently, our base language provides asynchronous message passing as the only 
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mechanism for objects  to interact.  For our purposes, an object  is an actor: the 
message-passing interface of an object consists of a set of methods  that  are executed 
in response to the reception of messages. It is immater ia l  whether or not objects 
are internal ly concurrent.  However, for simplici ty we assume tha t  there is only one 
thread per object .  Concurrent  execution is obtained through asynchronous message- 
passing where the sender and receiver may proceed concurrently. 

An object  may  have a local s tate tha t  can be manipu la ted  by the methods  of 
that  object.  Local s ta te  is described as a set of instance variables that  can be mu- 
ta ted using assignment.  Objects  are ins tant ia ted from classes as par t  of declarations. 
Methods can declare local variables. 

class account 
var  balance : real  := 0; 

m e t h o d  deposit(amount : real)  
balance := balance + amount; 

end  deposit 

m e t h o d  withdraw(amount : real)  
i f  ((balance - amount) > =  0) then  balance := balance - amount; 

end  withdraw 
end  account 

Fig.  1. The structure of a simple bank account class. 

The a c c o u n t  class in Figure 1 introduces our syntax for class definitions. The 
a c c o u n t  class can be used to instant ia te  bank account objects.  Bank account objects 
can be manipu la ted  through two exported methods:  d e p o s i t  and wi thdraw.  The 
declaration par t  of a c c o u n t  introduces an instance variable called b a l a n c e .  The 
name b a l a n c e  is bound to a r e a l  object  that  is init ialized with the value 0. 

Message-passing is described using t radi t ional  dot  (".")  nota t ion:  

myAccount,  depos  i t  (300) 

The above command will asynchronously invoke the d e p o s i t  method  on the ob- 
ject  bound to the name myAccount. It is impor tan t  to note tha t  message-passing 
described using the "." operator  is one-way and asynchronous which means tha t  
message-passing commands  are non-blocking. Moreover, objects  are autonomous - 
the model  does not  suppor t  class variables. 

3 A c t i v a t o r s  a n d  R e c e p t i o n i s t s  

In this section we integrate support  for act ivators and receptionists in our base 
language. Receptionists  are created as par t  of declarat ions in a manner  similar  to 
ordinary objects.  The following declaration binds the name i n t - z e c  to a receptionist  
tha t  can hold integer-valued messages: 
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v a t  i n t - r e c  : r e c e p ( i n t e g e r )  

Like ordinary objects, receptionists can be declared as instance variables or be 
local to methods. Receptionists which are declared as part  of a method are created 
dynamically when that  method is invoked. Receptionists are first class entities that 
can be communicated in messages. 

Depositing a message at a receptionist is accomplished using syntax that  is sim- 
ilar to the method invocation syntax introduced in Section 2. Assuming the above 
declaration of i n t - r e c ,  the following command deposits a message with contents 37 
at the receptionist bound to the name •  

i n t ' r e c  (37) 

Deposit operations are asynchronous and non-blocking. Each receptionist has a 
queue in which deposited messages are stored. 

activator ::= receptionist ? name 
I activator where expression 
I activators or . . .  or activatorn 
I activators and ...  and activator~ 

activated-command ::= activator --+ command 
I [ activated-command 0 . . .  [] activated-command ] 

Fig. 2. Abstract syntax for activators. 

An activator specifies a set of messages to be retrieved from a number of recep- 
tionists. Furthermore, an activator has an associated command which is triggered 
when the specified set of messages is retrieved. An activator along with its associated 
command is itself a command called and activated command  in our toy language. An 
abstract syntax for activators and activated commands is given in Figure 2. The syn- 
tax for activators and activated commands is inspired by input guard in CSP [ttoa78] 
and Dijkstra's guarded commands [Dij75]. 

An activator waits for a set of messages to be available at a number of reception- 
ists. When the needed messages are available, the activator is said to be enabled. 
The following rules define the sets of messages for which activators wait: 

[ receptionist  ? name  ] waits for a singleton set containing a message that  is 

available from recept ionis t .  The name name is bound to the contents of an 
enabling message. 

- [ac t ivator  w h e r e  expression] waits for a set of messages that  enables activator.  
i I 

The message set must also satisfy the w h e r e  clause: expression must evalu- 
ate to true in a context that  includes the names bound by ? in activator.  A s  
syntactic sugar, we use receptionist ? value as a shorthand for the activator 
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receptionist ? x w h e r e  x = value. This shor thand comes in handy when the 
contents of messages is compared to simple values such as integer and boolean. 

- I activator1 o r . . . o r  aetivatorn ] describes a non-determinist ic  choice: the acti- 

vator waits for any set of messages tha t  enables at least one of activatort ,  . . .  , 
aclivalorn . 

[ aclivatorl a n d . . . a n d  activator,~ ] waits for a set of messages tha t  can be 
L I 

part i t ioned into n disjoint subsets where each subset must  enable at  least one of 
the activators and all of the activators must  be enabled by at  least one subset. 
The a n d  combinator captures act ivat ion by mult iple  messages. 

An enabled activator may trigger its associated command,  thereby removing 
the enabling set of messages from their respective receptionists.  Because messages 
are removed, the same message can only trigger an act ivator  once. 3 A tr iggered 
command is executed in a context tha t  includes the names bound by the ? operator .  
In this way, the triggered command can depend on the values contained in messages 
triggering the command. 

The [ . . . ]  construct represents a disjunctive composit ion of act ivated commands.  
The semantics of executing a [ . . . ]  construct is to wait until at least one of the 
consti tuent activators is enabled. Then, one of the enabled act ivators  is chosen for 
triggering, and the associated command is executed. The choice of act ivator  is non- 
deterministic.  Notice that  both [] and o r  provide non-determinis t ic  choice. The [] 
operator  applies to activated commands  and the o r  operator  applies to act ivators.  

The act of triggering an act ivator  may involve a number of choices to be made 
by the underlying implementat ion.  For example,  two messages may each enable the 
same activator  and a choice must be made between the two messages. The notion of 
fairness arises in connection with these choices. In the following, we consider three 
impor tan t  kinds of choices and discuss the associated notion of fairness. 

The scenario in Figure 3 i l lustrates a s i tuat ion in which two messages at a re- 
ceptionist each enable the same activator.  A choice must be made between the two 
messages. The message which is ignored, i.e. chosen, may be subject  to a s imilar  
choice in the future. Wi th  this potent ia l  for repeated choice, it  is impor t an t  to en- 
sure that  the same message is not ignored forever. We can implement  this notion 
of fairness by considering the order in which messages arrive at a receptionist .  If 
a choice must  be made between two or more messages, we can s imply choose the 
"oldest" message. In this way, messages cannot be ignored forever: a message which 
is repeatedly ignored will eventually become the oldest. However, note tha t  the pat-  
tern of the messages that  is required to enable a par t icular  act ivator  which would 
consume a given message may never occur. 

The si tuat ion in Figure 4 i l lustrates two act ivators  in different objects  which are 
both  enabled by the same message. In this s i tuat ion only one of the act ivators  can 
be triggered by the message, and a choice must  be made between the two activators.  
Following the same principle as above, the ignored act ivator  may be subject  to a 

3 There is nothing in our framework that prevents the introduction of an operation sim- 
ilar to read  in Lind& [CGL86] that inquires about the availability of messages without 
removing them. 
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Fig. 3. Choice between two messages. 

similar choice in the future, and there is a potential for repeatedly ignoring the same 
activator. If an activator is ignored forever, the enclosing object will remain blocked. 
Hence, the choice between activators should be fair and it should not be possible for 
the implementation to ignore an activator forever. The are many possible ways of 
implementing this notion of fairness. In the following we briefly outline one possible 
implementation. 

roc  

~~ Object Message 

Fig. 4. Choice between two activators. 

Fairness in the choice between activators in different objects can be implemented 
using time-stamps. When an object starts to execute an activator, a time-stamp is 
generated to uniquely identify the logical time at which the execution was initiated. 
When choosing between two activators, the activator with the "oldest" time-stamp 
is chosen. As above, the linear order prevents starvation. Unique time-stamps can be 
created on a per-object basis with little overhead. Each object maintains a counter 
which is incremented each time an activator in that object is executed. Time-stamps 
are then constructed by pairing an object's identity with the value of this local 
counter. The notion of a t ime-stamp is a standard concept in distributed systems. 
For example, t ime-stamps are used for deadlock prevention in [DJRI78]. 
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The third kind of choice is the non-deterministic choice described by O and or. 
These operators describe a choice between activators and activated commands in 
the same object. We do not believe fairness should be provided for in this scenario. 
First, it is possible for programmers to describe activators that never give rise to 
this choice. For example, programmers can use boolean conditions to ensure that 
two activators composed by or are never enabled at the same time. Second, it would 
be expensive for the implementation to provide fairness in general for this kind of 
choice: it would be necessary to maintain representation of the choices made in the 
past. 

Having introduced activators and receptionists, the following two sections give 
a number of examples illustrating the use of these constructs. In the examples, we 
distinguish between input synchronization and reply synchronization. Input synchro- 
nization is concerned with producer-consumer style interaction where a number of 
consumers receive input from a number of producers. Activators and receptionists 
can be used to synchronize the arrival of input from multiple sources at consumers. 
Reply synchronization is concerned with client-server style interaction where a client 
sends a request to a number of servers and waits for the replies from the servers. 
Activators and receptionists can be used to synchronize the arrival of replies from 
multiple servers. In Section 4, we describe examples of input synchronization and in 
Section 5, we outline a number of examples involving reply synchronization. 

Both input and reply synchronization involve activation of objects by a set of 
messages where the elements of the set come from different sources. Unlike most 
traditional languages which address either input or reply synchronization, activa- 
tors and receptionist provide a common representation for describing both kinds of 
coordination. 

4 I n p u t  S y n c h r o n i z a t i o n  

In this section we outline a number of scenarios where objects synchronize the arrival 
of input from multiple sources. 

Example 1. Assume that two sensors are measuring the condition of a critical system. 
The observations made by the sensors must be processed by a monitor object in order 
for the operators of the critical system to determine its logical status. An example 
system could be a nuclear power plant where the sensors measure the temperature 
of the nuclear reaction at two points in the reactor. In order to determine whether or 
not the plant is in a safe state, some equation containing the measured temperatures 
must be solved. 

The logical structure of the sketched computer system involves a two-party invo- 
cation where the two sensors collectively invoke the monitor object. Since data may 
be produced faster than it can be processed, it is desirable to have multiple monitor 
objects that can concurrently process different data sets. It is necessary to de-couple 
the sensors and the monitors so that the sensors do not invoke a specific monitor 
object. 

The required interaction between sensors and monitors can be elegantly described 
using activators and receptionists. The sensors and monitors communicate via two 
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shared receptionists. Each sensor has an associated receptionist to which it sends 
messages that represent observations. A monitor object has an activator that waits 
for two messages: one from each receptionist. Since multiple monitor objects share 
the receptionists, it is crucial that the removal of messages is an atomic action. 

m e t h o d  survey(sens-l,sens-2 : recep(real);) 
vat rl,r2 : real; 
while true 
sens-1 ? rl and sens-2 ? r2 where non-safe(rl,r2) 

-y process-data(rl,r2); 
end survey 

Fig. 5. Survey method that is executed by monitor objects. 

The survey method in Figure 5 is a part of monitor objects. A monitor object 
is put into effect by invoking the survey method with two receptionists that receive 
observation messages sent by the two sensors. The activator in the survey method 
waits for one observation to be available from each sensor. For a pair of observations 
to trigger the activator, the observations must be outside a safety window determined 
by the function non-safe .  For simplicity we have ignored the issue of guaranteeing 
that two messages denote observations made at the "same" time. That issue can be 
addressed by using some kind of tagging, n 

The use of receptionists in Example 1 de-couples sensors and monitors. The de- 
coupling is scalable: more monitors can be added transparently to the configuration 
if the rate of observations increases. Because the sensors do not invoke any particular 
monitor, it is possible to dynamically vary the number of monitors without modifying 
the sensors. 

Achieving the same degree of de-coupling without receptionists would require 
introducing an "administrator" object that collects data produced by sensors and 
distributes the data among the monitors. The centralization caused by using an 
administrator creates a potential bottleneck in the system. Moreover, it makes the 
system architecture less fault-tolerant: if the administrator fails, the system fails. 
Receptionists provide a decentralized and open system structure without bottle- 
necks. Using receptionists, the system configuration is inherently fault-tolerant: it 
is possible to duplicate the sensors and have the monitors retrieve messages in a 
non-deterministic fashion from multiple sets of receptionists. 

Example 2. The following example is adopted from [Cha87]. A moving point in a 
three dimensional space is to be plotted on a graphics device. Each of the x, y and z 
coordinates are to be computed as a function of the previous coordinates in discrete 
time. The computation of coordinates are performed by three concurrent "worker" 
objects. 

The three worker objects collectively invoke the graphics device with a set of 
coordinates to be displayed - each worker object provides a dimension of the dis- 
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played point. The graphics device communicates the previous set of coordinates to 
the workers, thereby initiating computation of the next set of coordinates. 

class graphics-device 
vat  x-rec, y-rec, z-rec : recep( real); 
m e t h o d  plot() 

vat  x,y,z : real; 
x-rec? x a n d y - r e c ? y  a n d z - r e c ?  z 

-~ display(x,y,z); 

end plot 

end graphics-device 

Fig. 6. A graphics device displaying a point whose coordinates are concurrently computed 
by worker processes. 

Part  of the graphics device is sketched in Figure 6. We have left out the descrip- 
tion of the worker objects and the communication of the previous coordinates from 
the graphics device to the worker objects. The figure focuses on the synchroniza- 
tion of the "streams" of newly computed coordinates sent from the worker objects 
to the graphics device. Each stream is represented by a receptionist, and the syn- 
chronization is described by an activator which only triggers when an element can 
be extracted from all three streams. Such an element set denotes a point in three 
dimensional space. 

In Figure 6, the receptionists are called x - r ec ,  y - r e c  and z - r e c  respectively. A 
worker object knows one of these receptionists. For example, the worker object which 
computes coordinates on the x axis knows the x - r e c  receptionist. A worker object 
computes the next coordinate value and deposits that  value in the receptionist that  it 
knows about. The p l o t  method of the graphics device has an activator which awaits 
the deposit of a message at each of the receptionists. The logical interaction pattern 
is that  the three worker objects collectively and atomically invoke the graphics device 
when a new set of coordinates is ready. [::] 

Example 2 illustrates that  activators can be used as a flexible tool for describing 
barrier synchronization. 

5 Reply Synchronization 

In this section we model with client-server style interaction where client objects and 
server objects communicate using request-reply protocols. A client sends a request to 
a number of servers and waits for the servers to send back a reply in response to the 
request. We can use receptionists and activators to describe request-reply protocols 
where clients wait for certain subsets of the replies. 



116 

In describing request-reply protocols, receptionists are used as reply destinations: 
when sending a request, a client creates a receptionist to which the server should 
send the reply. The name of the receptionist is then passed to the server as part of 
the request. After sending the request, the client executes an activator which waits 
for the reply to be sent to the receptionist. 

Although it is possible to describe request-reply protocols by explicitly com- 
municating reply destinations, it is useful to provide syntactic sugar which makes 
reply destinations implicit rather than explicit arguments of a request. The following 
command introduces this kind of syntactic sugar: 

o . m ( . . . )  @ r e c ;  

This command sends a request to the object o for invocation of the method m. The 
receptionist t e e  is used as the reply destination for this request. The interpretation 
of the ~1 operator is "deliver at." The syntax for specifying reply destinations is 
inspired by ABCL/1 lYon90]. 

Since a reply destination is an implicit parameter of a request, we need a way 
for the receiver of the request to refer to this implicit argument. During method 
invocations, the name r e p l y  is bound to the receptionist which servers as reply 
destination for the invocation. 4 The receiver of a request can reply to the request 
using the already introduced syntax for receptionist manipulation. 

With our approach, reply destinations are first class objects, and it is possible 
to describe reply delegation and reply propagation without introducing additional 
language constructs. With reply delegation, the receiver of a request delegates the 
responsibility of responding to the request to another object. Reply delegation can 
be accomplished by communicating the receptionist bound to the name r ep ly  to 
another object. With reply propagation, the sender of a request re-directs the reply 
to other objects. In our language, reply propagation is possible since a client can 
communicate the reply destination to other objects which can then wait for the 
reply. 

The following examples illustrate situations which require pattern-based waiting 
on replies as well as the first class status of reply destinations. 

Example 3. Inspired by Cooper [Coo90] we use a two-phase commit protocol as an 
example of pattern-based waiting on replies. A coordinator process initiates a two- 
phase commit with three participant objects a, b and c. 

In Figure 7, the method two-phase-commit  concurrently sends a request to a, b 
and c. The replies are directed to three receptionists re-~-a, r e s - b  and r e s - c .  If all 
replies are positive a r message is broadcast. If  one of the replies is negative, 
an abo r t  message is broadcast. The pattern-based triggering implies that abor t  can 
be broadcast to the participants as soon as one negative reply has been received. 

Example 4. Consider a situation where some critical data is stored on a disk. Ac- 
cess to the data is only granted to clients who have certain capabilities, e.g. know 
a password. The interface to the data is a server that, given a password and an 

4 For simplicity, we do not consider the situation where a server sends a reply and no reply 
destination is specified by the client. 
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class coordinator 
va t  a, b, c : participant; 
m e t h o d  twoPhaseCommit 0 

va t  res-a,res-b,res-c : reeep(  boolean) ;  
a.ready 0 ~ res-a; b.ready 0 ~ res-b; c.ready 0 @ res-c; 
[ 
res-a ? true and  res-b ? true a n d  res-c ? true 

-4 a.commit0; b.commit(); c.commit0; 
[] 

res-a ? false or  res-b ? false or  res-c ? false 
-4 a.abort0; b.abort0; c.abort0; 

]; 
end  twoPhaseCommit 

end  coordinator 

Fig.  7. Coordinator for two phase commit. 

identification of some data,  returns the da ta  if the password is valid. In the follow- 
ing example we demonst ra te  how to realize this functionali ty by composing generic 
servers. 

We want to employ a generic disk server and a generic authent icat ion server. 
We do not  want to modify an existing disk server to incorporate authent icat ion.  
Fi rs t  of all, it is desirable to reuse existing components.  Secondly, the disk server 
may already be in operat ion and it may not be possible (or feasible) to hal t  the 
system and change the functionali ty of the disk server. In order to enforce proper  
access discipline on clients, the system is s t ructured as a hierarchy of servers. The 
highest level is an "interface" server tha t  delegates requests to the disk server and 
authent icat ion server. Requests are only delegated to the disk server if the client was 
correctly authenticated~ 

The code in Figure 8 sketches the structure of the interface server. Clients invoke 
the method called g e t - d a t a  in order to access the protected data.  A naive way of 
designing the interface server would be to first invoke the authent icat ion server and, 
if the authent icat ion is successful, invoke the disk server. This naive approach intro- 
duces unnecessary sequentiality. Instead, our interface server concurrently invoke the 
disk server and the authenticat ion server. Concurrent invocation is faci l i ta ted by our 
asynchronous reply-request  protocol. The requests executed in the body of g e t - d a t a  
are asynchronous: the ; combinator  of commands  does not block the requests. 

We do not want the interface object  to wait for the replies from the two servers: 
this would block the interface object  while wait ing for the replies and l imi t  the 
concurrency in the system. Instead, we introduce a continuation object  which waits 
for the replies. The servers send their replies to two receptionists called d a t a  and 
check.  These receptionists are communicated to the continuation object  so tha t  it  
can wait for the replies. Notice tha t  the propagat ion of replies from the interface 
to the continuat ion is t ransparent  to the servers. The resulting system s t ructure  is 
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class  interface 
m e t h o d  get-data(passwd,name-of-data : string) 

v a t  check : recep(boolean);  data : recep(da ta- type) ;  
cont : continuation; 

cont.action-part(check,data) @ rep ly ;  
authentication-server.authenticate(passwd) @ check; 
disk-server.read(name-ohdata) @ data; 

e n d  get-data 
e n d  interface 

c lass  continuation 
m e t h o d  action-part(check : recep(boolean);  data  : r eeep(da ta - type)  ) 

v a t  x : data-type; 
[ 

check ? true a n d  data ? x --+ r ep ly (x )  
[] 

check ? false -+ rep ly(h i l l . )  
] 

e n d  action-part 
e n d  continuation 

F ig .  8. Interface server that propagates replies from authentication server and disk server. 

sketched in Figure 9. In the figure, requests are represented by solid lines and replies 
are represented by dashed lines. 

Using activators, it is possible to wait for patterns of replies to be received: the 
continuation either waits for a negative reply from the authentication server or a 
positive reply combined with the returned data from the disk server. The thing to 
note is that the continuation does not wait for the disk if the access is illegal: the 
user is notified right away. 

The example illustrates reply delegation: the interface delegates the reply respon- 
sibility to the continuation. This reply delegation is accomplished by the command 

cont.action-part(check,data) ~ reply; 

The name reply refers to the reply destination of the interface. Because this reply 
destination is a receptionist, it can be used to specify the destination of another 
request giving rise to reply delegation. [] 

The structure in Example 4 illustrates how our constructs support interaction 
patterns in hierarchical systems while avoiding unnecessary bottlenecks. The exam- 
ple also demonstrates that flexible and uniform handling of reply messages promotes 
reuse since it is easier to inter-connect existing components in a transparent fashion. 

6 R e l a t e d  W o r k  

In general, existing languages address input synchronization and reply synchroniza- 
tion in fundamentally different ways. By contrast, our activation model supports 
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Fig. 9. Topology of the request-reply communication between the interface, continuation, 
authentication, and disk servers. 

both kinds of activation using the same abstractions namely, activators and recep- 
tionists. The resulting model is conceptually simpler and more flexible than existing 
models. Our model allows inter-mixing of reply messages and input messages. It is, 
for example, possible to describe an activator that waits for input messages as well 
as reply messages. 

Activators generalize the notion of input guard found in CSP [Hoa78]. Input 
guards cannot capture conjunctive waiting on multiple messages. Furthermore, it is 
not possible in CSP to describe activation conditions that depend on patterns over 
the values conveyed in messages. 

Receptionists subsume ports [ABG+92], mailboxes [AB83] and channels [Rep92, 
MSK86]. Receptionists are similar to mailboxes in that multiple objects can receive 
messages from a shared receptionist. Receptionists are more general since they can 
contain input messages as well as reply messages. Furthermore, activators are more 
powerful than the corresponding operations available for ports, mailboxes and chan- 
nels. 

The Tuple Space abstraction in Linda [CGL86] is in many ways similar to recep- 
tionists. Although retrieval in Linda is pattern-based, it is not possible to capture 
the functionality of activators since retrieval operations cannot operate on multiple 
tuples. In [MK88], Matsuoka developed tuple space as a communication facility for 
object-oriented languages. The proposed tuple space abstraction supports conjunc- 
tive and disjunctive composition of tuple operations. However, the communication 
model does not support set-based activation by reply messages. 

One way to make existing communication facilities more powerful is customiza- 
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tion through reflection. In [Jag91], Jagannathan introduces customizable tuple spaces. 
However, the customization policies do not support the definition of operations that 
remove multiple tuples. In some object-oriented reflective architectures it is possible 
to customize the behavior of message-reception [WY88, AFPS93]. This customiza- 
tion does not provide a general framework for describing reception of multiple mes- 
sages. For example, it is not possible to describe generic meta-level abstractions to 
support composable abstractions that operate on sets of messages. 

Guarded Horn clause languages (gHcl's) have an execution semantics that is 
analogous to that of actors [HA88]. Moreover, gHcl's support a form of input syn- 
chronization (for example, see Parlog [Gre87]). In such languages, patterns may be 
specified in guards which test conditions on asynchronous inputs; if a guard is sat- 
isfied, the relevant messages are removed atomically. However, gHcl's allow only 
conjunctive combinators for such patterns; thus their guards are more restrictive 
than in our model. Essentially, to mimic the behavior of a disjunctive pattern, dif- 
ferent rules have to be used and the specification of any actions that are common 
between them has to be repeated. Moreover, reply synchronization is not directly 
supported. Finally, gHcl's have extraneous sources of complexity in them, e.g., they 
use unification, and they do not provide the modeling support afforded by an object 
centered view. 

The concurrent constraint language Janus [KS90, SKL80] allows the description 
of agents that can wait conjunctively and disjunctively on input from bags of mes- 
sages. The notion of a bag bears some resemblance to our notion of receptionist. 
However, in Janus it is not possible to describe retrieval of messages based on their 
contents. The only way to simulate such pattern-based retrieval is to inspect the 
contents of a message after it has been retrieved. With simulation, failure to match 
a pattern leads to explicit put-back of messages which can result in starvation. An- 
other shortcoming of Janus is the inability to describe atomicity of conjunctive wait 
operations. With conjunctive waiting, an agent is blocked until it has retrieved a 
message from a number of bags. In Janus, there is no elegant way to ensure that 
none of the messages are retrieved until all messages can be retrieved. The lack of 
atomic retrieval can lead to deadlocks. 

Andreoli and Pareschi proposed the language LO to extend the AND-concurrency 
of gHcl's with OR-concurrency which can be used to model the internal distribution 
of tasks in composite objects [AP90]. Specifically, LO allows an object to be modeled 
as a composition of sub-objects which may be independently accessed: a disjunctive 
pattern may be represented by propagation and global matching inference rules. 
Although it is quite similar, the model does not appear to be as efficient as that of 
activators. 

The composition filter model provides a generic mechanism for abstracting object 
interactions [AWB+93]. The model may be used to define objects which model com- 
plex interactions such as those modeled by activators. However, one consequence is 
that this fixes the implementation by directly programming the interaction pattern 
whereas activators provide an abstract specification. 

Activation by sets of input messages is supported by the numerous constructs 
that  have been proposed for multi-party synchronization [ESFG88, FHT86, EFK89, 
JS91, AFL90, BKS88]. Multi-party synchronization involves a number of processes 
that synchronize by executing joint actions. In multi-party synchronization lan- 



121 

guages, processes refer directly to joint actions by name. In our model, we can 
describe joint actions as commands which are triggered by activators. Process ob- 
jects can then synchronize by collectively providing the messages that trigger the 
joint action. Receptionists provide a level of indirection, and process objects do not 
refer directly to the joint actions in which they participate. This gives a more mod- 
ular, flexible, and extensible structure because it is not necessary to modify existing 
process objects in order to synchronize them by new joint actions. Another difference 
is that our scheme supports collective activation without insisting on synchronizing 
the invoking objects. 

Multi-functions [BBP86] extend the traditional method concept so that a mes- 
sage can supply part of the actual values required to invoke a method. A caller 
specifies one or more formal parameters by keyword and supplies actual values for 
the specified parameters. When all formal parameters are bound to actual values, a 
method execution starts. The parameter list of a multi-function describes a message 
set which can activate the multi-function. However, since all the parameters must be 
bound, message sets can only be described using conjunction. Furthermore, message 
sets cannot be described in terms of the actual values conveyed in messages. 

A common notion of request-reply protocol is remote procedure call (RPC). Tra- 
ditional RPC communication blocks the initiator until a reply is returned. Blocking 
the sender implies that RPC requests cannot be issued concurrently. In contrast, 
our scheme allows requests to be sent out asynchronously, and activators allow us 
to describe selective waiting on subsets of replies. 

Futures [Hal90, YT86, YBS86], Multi-RPC [LS88, Coo90] and Join-Continuations 
[Agh90] all deal with reply synchronization. None of those constructs allow direct 
expression of reply synchronization that is based on the values conveyed in reply 
messages. In order to express such data-dependencies, the programmer must ex- 
plicitly manipulate temporary variables that hold the values of previously returned 
replies. 

7 C o n c l u d i n g  R e m a r k s  

We have proposed activators and receptionists as constructs for describing activation 
by message sets in concurrent object-oriented languages. Activators provide a power- 
ful synchronization and communication construct which operates on sets rather than 
single messages. A significant aspect of activators is that sets of messages are defined 
in a pattern-based manner that takes message contents into account. Receptionists 
give a unified approach to input messages and reply messages. In terms of reply 
handling, receptionists are first-class reply destinations supporting reply delegation 
and reply propagation. 

Our analysis suggests that our model can be implemented efficiently. The "ex- 
pensive" part of our constructs is the atomicity associated with removal of messages 
from receptionists. However, because our constructs abstract over everyday practice 
in the construction of concurrent systems, the involved consensus protocols will have 
the same complexity whether hand-coded explicitly or provided as part of a language 
implementation. 

A topic for future work is further integration of receptionists and methods. 
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Both are communication endpoints. It is desirable to make it transparent to clients 
whether they are invoking a method or sending a message to a receptionist. 
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