
Abstracting Interactions Based on Message Sets

Svend Frr 1 and Gul Agha 2.

1 Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, CA 94303
2 University of Illinois, 1304 W. Springfield Avenue, Urbana, IL 61801

Abs t rac t . An important requirement of programming languages for dis-
tributed systems is to provide abstractions for coordination. A common type
of coordination requires reactivity in response to arbitrary communication
patterns. We have developed a communication model in which concurrent
objects can be activated by sets of messages. Specifically, our model allows
direct and abstract expression of common interaction patterns found in con-
current systems. For example, the model captures multiple clients that collec-
tively invoke shared servers as a single activation. Furthermore, it supports
definition of individual clients that concurrently invoke multiple servers and
wait for subsets of the returned reply messages. Message sets are dynamically
defined using conjunctive and disjunctive combinators that may depend o n

the patterns of messages. The model subsumes existing models for multi-
RPC and multi-party synchronization within a single, uniform activation
framework.

1 I n t r o d u c t i o n

Distributed objects are often reactive, i.e. they carry out their actions in response
to received response. Tradit ional object-oriented languages require one to one corre-
spondence between response and a receive message: i.e. each response is caused by
exactly one message. However, many coordination schemes involve object behaviors
whose logical cause is a set of messages rather than a single message. For example,
consider a transaction manager in a distributed database system. In order to commit
a distributed transaction, the manager must coordinate the action taken at each site
involved in the transaction. A two-phase commit protocol is a possible implementa-
tion of this coordination pattern. In carrying out a two-phase commit protocol, the
manager first sends out a status inquiry to all the sites involved. In response to a
status inquiry, each site sends a positive reply if it can commit the transaction; a
site sends back a negative reply if it cannot commit the transaction. After sending
out inquiries, the manager becomes a reactive object waiting for sites to reply. The
logical structure of the manager is to react to a set of replies rather than a single
reply: if a positive reply is received from all sites, the manager decides to commit
the transaction; if a negative reply is received from any site, the manager must abort
the transaction.

In tradit ional object-oriented languages, the programmer must implement a re-
sponse to a set of messages in terms of sequences of responses to single messages.

* The reported work was carried out while the first author was affiliated with the University
of Illinois. The current emaJl addresses are f rolund@hpl .hp. corn and agha@cs.uiue, edu

108

Such an implementation complicates the construction of distributed systems: in or-
der to defer a response until a number of messages have been received, objects must
maintMn a number of temporary variables which reflect the contents and structure
of messages received thus far. Hence, in the implementation of objects, programmers
are forced to inter-mix two orthogonal design concerns: when to react and how to
react. Separating these design concerns will enhance the modularity of programs and
make it easier to reason about logically distinct design issues in isolation.

In order to support activation by sets of messages, we propose an object-oriented
communication model based on activators. An activator is a command that waits
for certain sets of messages before triggering its continuation. The sets are described
using arbitrary patterns of disjunctive and conjunctive combinators that depend on
message contents.

Activators wait for messages sent to special destinations called receptionists. A
receptionist is a first class entity that can be created dynamically, communicated in
messages, and stored in data structures. Receptionists provide a uniform activation
model since they can be endpoints for replies as well as input messages.

Sending a message to a receptionist is an asynchronous operation: a receptionist
has a buffer in which messages are stored. Triggering an activator causes the trigger-
ing messages to be removed from the buffers in which they are stored. In this way,
a given message can only trigger a single activator. A receptionist can be shared
between multiple objects, enabling multiple activators to wait on messages for the
same receptionist. Consistency of the triggering scheme is ensured through atomic
removal operations.

The remainder of this paper is organized as follows. In Section 2, we introduce a
simple base language, and in Section 3 we extend it with activators and receptionists.
The resulting language provides a concrete setting and allows us to give a number of
examples in Section 4 and Section 5. Section 6 discusses of related work. In Section 7,
we give our concluding remarks.

2 B a s e L a n g u a g e

Our aim is to provide general insights and not tie activators and receptionists to any
specific language. However, we do need an example language in order to illustrate the
expressive power of the suggested constructs. We integrate support for activators and
receptionists in a simple "toy" concurrent object-oriented base language invented for
the purpose.

Our constructs require few assumptions about the "host" language in which they
are integrated: we believe that activators and receptionists can elegantly and effi-
ciently supplement the interaction model in most existing object-oriented languages.
The design of our base language is primarily dictated by pedagogical concerns. We
have chosen an Algol-like syntax for commands and declarations. Furthermore, we
have ignored many of the aspects that are normally considered essential to object-
orientation such as inheritance, polymorphism, dynamic binding, dynamic object
creation, etc.

The computational foundation of our work is the Actor model [Agh86]. Con-
sequently, our base language provides asynchronous message passing as the only

109

mechanism for objects to interact. For our purposes, an object is an actor: the
message-passing interface of an object consists of a set of methods that are executed
in response to the reception of messages. It is immater ia l whether or not objects
are internal ly concurrent. However, for simplici ty we assume tha t there is only one
thread per object . Concurrent execution is obtained through asynchronous message-
passing where the sender and receiver may proceed concurrently.

An object may have a local s tate tha t can be manipu la ted by the methods of
that object. Local s ta te is described as a set of instance variables that can be mu-
ta ted using assignment. Objects are ins tant ia ted from classes as par t of declarations.
Methods can declare local variables.

class account
var balance : real := 0;

m e t h o d deposit(amount : real)
balance := balance + amount;

end deposit

m e t h o d withdraw(amount : real)
i f ((balance - amount) > = 0) then balance := balance - amount;

end withdraw
end account

Fig. 1. The structure of a simple bank account class.

The a c c o u n t class in Figure 1 introduces our syntax for class definitions. The
a c c o u n t class can be used to instant ia te bank account objects. Bank account objects
can be manipu la ted through two exported methods: d e p o s i t and wi thdraw. The
declaration par t of a c c o u n t introduces an instance variable called b a l a n c e . The
name b a l a n c e is bound to a r e a l object that is init ialized with the value 0.

Message-passing is described using t radi t ional dot (".") nota t ion:

myAccount, depos i t (300)

The above command will asynchronously invoke the d e p o s i t method on the ob-
ject bound to the name myAccount. It is impor tan t to note tha t message-passing
described using the "." operator is one-way and asynchronous which means tha t
message-passing commands are non-blocking. Moreover, objects are autonomous -
the model does not suppor t class variables.

3 A c t i v a t o r s a n d R e c e p t i o n i s t s

In this section we integrate support for act ivators and receptionists in our base
language. Receptionists are created as par t of declarat ions in a manner similar to
ordinary objects. The following declaration binds the name i n t - z e c to a receptionist
tha t can hold integer-valued messages:

110

v a t i n t - r e c : r e c e p (i n t e g e r)

Like ordinary objects, receptionists can be declared as instance variables or be
local to methods. Receptionists which are declared as part of a method are created
dynamically when that method is invoked. Receptionists are first class entities that
can be communicated in messages.

Depositing a message at a receptionist is accomplished using syntax that is sim-
ilar to the method invocation syntax introduced in Section 2. Assuming the above
declaration of i n t - r e c , the following command deposits a message with contents 37
at the receptionist bound to the name •

i n t ' r e c (37)

Deposit operations are asynchronous and non-blocking. Each receptionist has a
queue in which deposited messages are stored.

activator ::= receptionist ? name
I activator where expression
I activators or . . . or activatorn
I activators and ... and activator~

activated-command ::= activator --+ command
I [activated-command 0 . . . [] activated-command]

Fig. 2. Abstract syntax for activators.

An activator specifies a set of messages to be retrieved from a number of recep-
tionists. Furthermore, an activator has an associated command which is triggered
when the specified set of messages is retrieved. An activator along with its associated
command is itself a command called and activated command in our toy language. An
abstract syntax for activators and activated commands is given in Figure 2. The syn-
tax for activators and activated commands is inspired by input guard in CSP [ttoa78]
and Dijkstra's guarded commands [Dij75].

An activator waits for a set of messages to be available at a number of reception-
ists. When the needed messages are available, the activator is said to be enabled.
The following rules define the sets of messages for which activators wait:

[receptionist ? name] waits for a singleton set containing a message that is

available from recept ionis t . The name name is bound to the contents of an
enabling message.

- [ac t ivator w h e r e expression] waits for a set of messages that enables activator.
i I

The message set must also satisfy the w h e r e clause: expression must evalu-
ate to true in a context that includes the names bound by ? in activator. A s
syntactic sugar, we use receptionist ? value as a shorthand for the activator

111

receptionist ? x w h e r e x = value. This shor thand comes in handy when the
contents of messages is compared to simple values such as integer and boolean.

- I activator1 o r . . . o r aetivatorn] describes a non-determinist ic choice: the acti-

vator waits for any set of messages tha t enables at least one of activatort , . . . ,
aclivalorn .

[aclivatorl a n d . . . a n d activator,~] waits for a set of messages tha t can be
L I

part i t ioned into n disjoint subsets where each subset must enable at least one of
the activators and all of the activators must be enabled by at least one subset.
The a n d combinator captures act ivat ion by mult iple messages.

An enabled activator may trigger its associated command, thereby removing
the enabling set of messages from their respective receptionists. Because messages
are removed, the same message can only trigger an act ivator once. 3 A tr iggered
command is executed in a context tha t includes the names bound by the ? operator .
In this way, the triggered command can depend on the values contained in messages
triggering the command.

The [. . .] construct represents a disjunctive composit ion of act ivated commands.
The semantics of executing a [. . .] construct is to wait until at least one of the
consti tuent activators is enabled. Then, one of the enabled act ivators is chosen for
triggering, and the associated command is executed. The choice of act ivator is non-
deterministic. Notice that both [] and o r provide non-determinis t ic choice. The []
operator applies to activated commands and the o r operator applies to act ivators.

The act of triggering an act ivator may involve a number of choices to be made
by the underlying implementat ion. For example, two messages may each enable the
same activator and a choice must be made between the two messages. The notion of
fairness arises in connection with these choices. In the following, we consider three
impor tan t kinds of choices and discuss the associated notion of fairness.

The scenario in Figure 3 i l lustrates a s i tuat ion in which two messages at a re-
ceptionist each enable the same activator. A choice must be made between the two
messages. The message which is ignored, i.e. chosen, may be subject to a s imilar
choice in the future. Wi th this potent ia l for repeated choice, it is impor t an t to en-
sure that the same message is not ignored forever. We can implement this notion
of fairness by considering the order in which messages arrive at a receptionist . If
a choice must be made between two or more messages, we can s imply choose the
"oldest" message. In this way, messages cannot be ignored forever: a message which
is repeatedly ignored will eventually become the oldest. However, note tha t the pat-
tern of the messages that is required to enable a par t icular act ivator which would
consume a given message may never occur.

The si tuat ion in Figure 4 i l lustrates two act ivators in different objects which are
both enabled by the same message. In this s i tuat ion only one of the act ivators can
be triggered by the message, and a choice must be made between the two activators.
Following the same principle as above, the ignored act ivator may be subject to a

3 There is nothing in our framework that prevents the introduction of an operation sim-
ilar to read in Lind& [CGL86] that inquires about the availability of messages without
removing them.

112

Message(

rOC

~
Object

/

Fig. 3. Choice between two messages.

similar choice in the future, and there is a potential for repeatedly ignoring the same
activator. If an activator is ignored forever, the enclosing object will remain blocked.
Hence, the choice between activators should be fair and it should not be possible for
the implementation to ignore an activator forever. The are many possible ways of
implementing this notion of fairness. In the following we briefly outline one possible
implementation.

roc

~~ Object Message

Fig. 4. Choice between two activators.

Fairness in the choice between activators in different objects can be implemented
using time-stamps. When an object starts to execute an activator, a time-stamp is
generated to uniquely identify the logical time at which the execution was initiated.
When choosing between two activators, the activator with the "oldest" time-stamp
is chosen. As above, the linear order prevents starvation. Unique time-stamps can be
created on a per-object basis with little overhead. Each object maintains a counter
which is incremented each time an activator in that object is executed. Time-stamps
are then constructed by pairing an object's identity with the value of this local
counter. The notion of a t ime-stamp is a standard concept in distributed systems.
For example, t ime-stamps are used for deadlock prevention in [DJRI78].

113

The third kind of choice is the non-deterministic choice described by O and or.
These operators describe a choice between activators and activated commands in
the same object. We do not believe fairness should be provided for in this scenario.
First, it is possible for programmers to describe activators that never give rise to
this choice. For example, programmers can use boolean conditions to ensure that
two activators composed by or are never enabled at the same time. Second, it would
be expensive for the implementation to provide fairness in general for this kind of
choice: it would be necessary to maintain representation of the choices made in the
past.

Having introduced activators and receptionists, the following two sections give
a number of examples illustrating the use of these constructs. In the examples, we
distinguish between input synchronization and reply synchronization. Input synchro-
nization is concerned with producer-consumer style interaction where a number of
consumers receive input from a number of producers. Activators and receptionists
can be used to synchronize the arrival of input from multiple sources at consumers.
Reply synchronization is concerned with client-server style interaction where a client
sends a request to a number of servers and waits for the replies from the servers.
Activators and receptionists can be used to synchronize the arrival of replies from
multiple servers. In Section 4, we describe examples of input synchronization and in
Section 5, we outline a number of examples involving reply synchronization.

Both input and reply synchronization involve activation of objects by a set of
messages where the elements of the set come from different sources. Unlike most
traditional languages which address either input or reply synchronization, activa-
tors and receptionist provide a common representation for describing both kinds of
coordination.

4 I n p u t S y n c h r o n i z a t i o n

In this section we outline a number of scenarios where objects synchronize the arrival
of input from multiple sources.

Example 1. Assume that two sensors are measuring the condition of a critical system.
The observations made by the sensors must be processed by a monitor object in order
for the operators of the critical system to determine its logical status. An example
system could be a nuclear power plant where the sensors measure the temperature
of the nuclear reaction at two points in the reactor. In order to determine whether or
not the plant is in a safe state, some equation containing the measured temperatures
must be solved.

The logical structure of the sketched computer system involves a two-party invo-
cation where the two sensors collectively invoke the monitor object. Since data may
be produced faster than it can be processed, it is desirable to have multiple monitor
objects that can concurrently process different data sets. It is necessary to de-couple
the sensors and the monitors so that the sensors do not invoke a specific monitor
object.

The required interaction between sensors and monitors can be elegantly described
using activators and receptionists. The sensors and monitors communicate via two

114

shared receptionists. Each sensor has an associated receptionist to which it sends
messages that represent observations. A monitor object has an activator that waits
for two messages: one from each receptionist. Since multiple monitor objects share
the receptionists, it is crucial that the removal of messages is an atomic action.

m e t h o d survey(sens-l,sens-2 : recep(real);)
vat rl,r2 : real;
while true
sens-1 ? rl and sens-2 ? r2 where non-safe(rl,r2)

-y process-data(rl,r2);
end survey

Fig. 5. Survey method that is executed by monitor objects.

The survey method in Figure 5 is a part of monitor objects. A monitor object
is put into effect by invoking the survey method with two receptionists that receive
observation messages sent by the two sensors. The activator in the survey method
waits for one observation to be available from each sensor. For a pair of observations
to trigger the activator, the observations must be outside a safety window determined
by the function non-safe . For simplicity we have ignored the issue of guaranteeing
that two messages denote observations made at the "same" time. That issue can be
addressed by using some kind of tagging, n

The use of receptionists in Example 1 de-couples sensors and monitors. The de-
coupling is scalable: more monitors can be added transparently to the configuration
if the rate of observations increases. Because the sensors do not invoke any particular
monitor, it is possible to dynamically vary the number of monitors without modifying
the sensors.

Achieving the same degree of de-coupling without receptionists would require
introducing an "administrator" object that collects data produced by sensors and
distributes the data among the monitors. The centralization caused by using an
administrator creates a potential bottleneck in the system. Moreover, it makes the
system architecture less fault-tolerant: if the administrator fails, the system fails.
Receptionists provide a decentralized and open system structure without bottle-
necks. Using receptionists, the system configuration is inherently fault-tolerant: it
is possible to duplicate the sensors and have the monitors retrieve messages in a
non-deterministic fashion from multiple sets of receptionists.

Example 2. The following example is adopted from [Cha87]. A moving point in a
three dimensional space is to be plotted on a graphics device. Each of the x, y and z
coordinates are to be computed as a function of the previous coordinates in discrete
time. The computation of coordinates are performed by three concurrent "worker"
objects.

The three worker objects collectively invoke the graphics device with a set of
coordinates to be displayed - each worker object provides a dimension of the dis-

115

played point. The graphics device communicates the previous set of coordinates to
the workers, thereby initiating computation of the next set of coordinates.

class graphics-device
vat x-rec, y-rec, z-rec : recep(real);
m e t h o d plot()

vat x,y,z : real;
x-rec? x a n d y - r e c ? y a n d z - r e c ? z

-~ display(x,y,z);

end plot

end graphics-device

Fig. 6. A graphics device displaying a point whose coordinates are concurrently computed
by worker processes.

Part of the graphics device is sketched in Figure 6. We have left out the descrip-
tion of the worker objects and the communication of the previous coordinates from
the graphics device to the worker objects. The figure focuses on the synchroniza-
tion of the "streams" of newly computed coordinates sent from the worker objects
to the graphics device. Each stream is represented by a receptionist, and the syn-
chronization is described by an activator which only triggers when an element can
be extracted from all three streams. Such an element set denotes a point in three
dimensional space.

In Figure 6, the receptionists are called x - r ec , y - r e c and z - r e c respectively. A
worker object knows one of these receptionists. For example, the worker object which
computes coordinates on the x axis knows the x - r e c receptionist. A worker object
computes the next coordinate value and deposits that value in the receptionist that it
knows about. The p l o t method of the graphics device has an activator which awaits
the deposit of a message at each of the receptionists. The logical interaction pattern
is that the three worker objects collectively and atomically invoke the graphics device
when a new set of coordinates is ready. [::]

Example 2 illustrates that activators can be used as a flexible tool for describing
barrier synchronization.

5 Reply Synchronization

In this section we model with client-server style interaction where client objects and
server objects communicate using request-reply protocols. A client sends a request to
a number of servers and waits for the servers to send back a reply in response to the
request. We can use receptionists and activators to describe request-reply protocols
where clients wait for certain subsets of the replies.

116

In describing request-reply protocols, receptionists are used as reply destinations:
when sending a request, a client creates a receptionist to which the server should
send the reply. The name of the receptionist is then passed to the server as part of
the request. After sending the request, the client executes an activator which waits
for the reply to be sent to the receptionist.

Although it is possible to describe request-reply protocols by explicitly com-
municating reply destinations, it is useful to provide syntactic sugar which makes
reply destinations implicit rather than explicit arguments of a request. The following
command introduces this kind of syntactic sugar:

o . m (. . .) @ r e c ;

This command sends a request to the object o for invocation of the method m. The
receptionist t e e is used as the reply destination for this request. The interpretation
of the ~1 operator is "deliver at." The syntax for specifying reply destinations is
inspired by ABCL/1 lYon90].

Since a reply destination is an implicit parameter of a request, we need a way
for the receiver of the request to refer to this implicit argument. During method
invocations, the name r e p l y is bound to the receptionist which servers as reply
destination for the invocation. 4 The receiver of a request can reply to the request
using the already introduced syntax for receptionist manipulation.

With our approach, reply destinations are first class objects, and it is possible
to describe reply delegation and reply propagation without introducing additional
language constructs. With reply delegation, the receiver of a request delegates the
responsibility of responding to the request to another object. Reply delegation can
be accomplished by communicating the receptionist bound to the name r ep ly to
another object. With reply propagation, the sender of a request re-directs the reply
to other objects. In our language, reply propagation is possible since a client can
communicate the reply destination to other objects which can then wait for the
reply.

The following examples illustrate situations which require pattern-based waiting
on replies as well as the first class status of reply destinations.

Example 3. Inspired by Cooper [Coo90] we use a two-phase commit protocol as an
example of pattern-based waiting on replies. A coordinator process initiates a two-
phase commit with three participant objects a, b and c.

In Figure 7, the method two-phase-commit concurrently sends a request to a, b
and c. The replies are directed to three receptionists re-~-a, r e s - b and r e s - c . If all
replies are positive a r message is broadcast. If one of the replies is negative,
an abo r t message is broadcast. The pattern-based triggering implies that abor t can
be broadcast to the participants as soon as one negative reply has been received.

Example 4. Consider a situation where some critical data is stored on a disk. Ac-
cess to the data is only granted to clients who have certain capabilities, e.g. know
a password. The interface to the data is a server that, given a password and an

4 For simplicity, we do not consider the situation where a server sends a reply and no reply
destination is specified by the client.

117

class coordinator
va t a, b, c : participant;
m e t h o d twoPhaseCommit 0

va t res-a,res-b,res-c : reeep(boolean) ;
a.ready 0 ~ res-a; b.ready 0 ~ res-b; c.ready 0 @ res-c;
[
res-a ? true and res-b ? true a n d res-c ? true

-4 a.commit0; b.commit(); c.commit0;
[]

res-a ? false or res-b ? false or res-c ? false
-4 a.abort0; b.abort0; c.abort0;

];
end twoPhaseCommit

end coordinator

Fig. 7. Coordinator for two phase commit.

identification of some data, returns the da ta if the password is valid. In the follow-
ing example we demonst ra te how to realize this functionali ty by composing generic
servers.

We want to employ a generic disk server and a generic authent icat ion server.
We do not want to modify an existing disk server to incorporate authent icat ion.
Fi rs t of all, it is desirable to reuse existing components. Secondly, the disk server
may already be in operat ion and it may not be possible (or feasible) to hal t the
system and change the functionali ty of the disk server. In order to enforce proper
access discipline on clients, the system is s t ructured as a hierarchy of servers. The
highest level is an "interface" server tha t delegates requests to the disk server and
authent icat ion server. Requests are only delegated to the disk server if the client was
correctly authenticated~

The code in Figure 8 sketches the structure of the interface server. Clients invoke
the method called g e t - d a t a in order to access the protected data. A naive way of
designing the interface server would be to first invoke the authent icat ion server and,
if the authent icat ion is successful, invoke the disk server. This naive approach intro-
duces unnecessary sequentiality. Instead, our interface server concurrently invoke the
disk server and the authenticat ion server. Concurrent invocation is faci l i ta ted by our
asynchronous reply-request protocol. The requests executed in the body of g e t - d a t a
are asynchronous: the ; combinator of commands does not block the requests.

We do not want the interface object to wait for the replies from the two servers:
this would block the interface object while wait ing for the replies and l imi t the
concurrency in the system. Instead, we introduce a continuation object which waits
for the replies. The servers send their replies to two receptionists called d a t a and
check. These receptionists are communicated to the continuation object so tha t it
can wait for the replies. Notice tha t the propagat ion of replies from the interface
to the continuat ion is t ransparent to the servers. The resulting system s t ructure is

118

class interface
m e t h o d get-data(passwd,name-of-data : string)

v a t check : recep(boolean); data : recep(da ta- type) ;
cont : continuation;

cont.action-part(check,data) @ rep ly ;
authentication-server.authenticate(passwd) @ check;
disk-server.read(name-ohdata) @ data;

e n d get-data
e n d interface

c lass continuation
m e t h o d action-part(check : recep(boolean); data : r eeep(da ta - type))

v a t x : data-type;
[

check ? true a n d data ? x --+ r ep ly (x)
[]

check ? false -+ rep ly(h i l l .)
]

e n d action-part
e n d continuation

F ig . 8. Interface server that propagates replies from authentication server and disk server.

sketched in Figure 9. In the figure, requests are represented by solid lines and replies
are represented by dashed lines.

Using activators, it is possible to wait for patterns of replies to be received: the
continuation either waits for a negative reply from the authentication server or a
positive reply combined with the returned data from the disk server. The thing to
note is that the continuation does not wait for the disk if the access is illegal: the
user is notified right away.

The example illustrates reply delegation: the interface delegates the reply respon-
sibility to the continuation. This reply delegation is accomplished by the command

cont.action-part(check,data) ~ reply;

The name reply refers to the reply destination of the interface. Because this reply
destination is a receptionist, it can be used to specify the destination of another
request giving rise to reply delegation. []

The structure in Example 4 illustrates how our constructs support interaction
patterns in hierarchical systems while avoiding unnecessary bottlenecks. The exam-
ple also demonstrates that flexible and uniform handling of reply messages promotes
reuse since it is easier to inter-connect existing components in a transparent fashion.

6 R e l a t e d W o r k

In general, existing languages address input synchronization and reply synchroniza-
tion in fundamentally different ways. By contrast, our activation model supports

119

---.i,.- : Reply
Client

/ / / / / / ~ ~ : Request

/

Continuation Interface

Disk Authentication server server

Fig. 9. Topology of the request-reply communication between the interface, continuation,
authentication, and disk servers.

both kinds of activation using the same abstractions namely, activators and recep-
tionists. The resulting model is conceptually simpler and more flexible than existing
models. Our model allows inter-mixing of reply messages and input messages. It is,
for example, possible to describe an activator that waits for input messages as well
as reply messages.

Activators generalize the notion of input guard found in CSP [Hoa78]. Input
guards cannot capture conjunctive waiting on multiple messages. Furthermore, it is
not possible in CSP to describe activation conditions that depend on patterns over
the values conveyed in messages.

Receptionists subsume ports [ABG+92], mailboxes [AB83] and channels [Rep92,
MSK86]. Receptionists are similar to mailboxes in that multiple objects can receive
messages from a shared receptionist. Receptionists are more general since they can
contain input messages as well as reply messages. Furthermore, activators are more
powerful than the corresponding operations available for ports, mailboxes and chan-
nels.

The Tuple Space abstraction in Linda [CGL86] is in many ways similar to recep-
tionists. Although retrieval in Linda is pattern-based, it is not possible to capture
the functionality of activators since retrieval operations cannot operate on multiple
tuples. In [MK88], Matsuoka developed tuple space as a communication facility for
object-oriented languages. The proposed tuple space abstraction supports conjunc-
tive and disjunctive composition of tuple operations. However, the communication
model does not support set-based activation by reply messages.

One way to make existing communication facilities more powerful is customiza-

120

tion through reflection. In [Jag91], Jagannathan introduces customizable tuple spaces.
However, the customization policies do not support the definition of operations that
remove multiple tuples. In some object-oriented reflective architectures it is possible
to customize the behavior of message-reception [WY88, AFPS93]. This customiza-
tion does not provide a general framework for describing reception of multiple mes-
sages. For example, it is not possible to describe generic meta-level abstractions to
support composable abstractions that operate on sets of messages.

Guarded Horn clause languages (gHcl's) have an execution semantics that is
analogous to that of actors [HA88]. Moreover, gHcl's support a form of input syn-
chronization (for example, see Parlog [Gre87]). In such languages, patterns may be
specified in guards which test conditions on asynchronous inputs; if a guard is sat-
isfied, the relevant messages are removed atomically. However, gHcl's allow only
conjunctive combinators for such patterns; thus their guards are more restrictive
than in our model. Essentially, to mimic the behavior of a disjunctive pattern, dif-
ferent rules have to be used and the specification of any actions that are common
between them has to be repeated. Moreover, reply synchronization is not directly
supported. Finally, gHcl's have extraneous sources of complexity in them, e.g., they
use unification, and they do not provide the modeling support afforded by an object
centered view.

The concurrent constraint language Janus [KS90, SKL80] allows the description
of agents that can wait conjunctively and disjunctively on input from bags of mes-
sages. The notion of a bag bears some resemblance to our notion of receptionist.
However, in Janus it is not possible to describe retrieval of messages based on their
contents. The only way to simulate such pattern-based retrieval is to inspect the
contents of a message after it has been retrieved. With simulation, failure to match
a pattern leads to explicit put-back of messages which can result in starvation. An-
other shortcoming of Janus is the inability to describe atomicity of conjunctive wait
operations. With conjunctive waiting, an agent is blocked until it has retrieved a
message from a number of bags. In Janus, there is no elegant way to ensure that
none of the messages are retrieved until all messages can be retrieved. The lack of
atomic retrieval can lead to deadlocks.

Andreoli and Pareschi proposed the language LO to extend the AND-concurrency
of gHcl's with OR-concurrency which can be used to model the internal distribution
of tasks in composite objects [AP90]. Specifically, LO allows an object to be modeled
as a composition of sub-objects which may be independently accessed: a disjunctive
pattern may be represented by propagation and global matching inference rules.
Although it is quite similar, the model does not appear to be as efficient as that of
activators.

The composition filter model provides a generic mechanism for abstracting object
interactions [AWB+93]. The model may be used to define objects which model com-
plex interactions such as those modeled by activators. However, one consequence is
that this fixes the implementation by directly programming the interaction pattern
whereas activators provide an abstract specification.

Activation by sets of input messages is supported by the numerous constructs
that have been proposed for multi-party synchronization [ESFG88, FHT86, EFK89,
JS91, AFL90, BKS88]. Multi-party synchronization involves a number of processes
that synchronize by executing joint actions. In multi-party synchronization lan-

121

guages, processes refer directly to joint actions by name. In our model, we can
describe joint actions as commands which are triggered by activators. Process ob-
jects can then synchronize by collectively providing the messages that trigger the
joint action. Receptionists provide a level of indirection, and process objects do not
refer directly to the joint actions in which they participate. This gives a more mod-
ular, flexible, and extensible structure because it is not necessary to modify existing
process objects in order to synchronize them by new joint actions. Another difference
is that our scheme supports collective activation without insisting on synchronizing
the invoking objects.

Multi-functions [BBP86] extend the traditional method concept so that a mes-
sage can supply part of the actual values required to invoke a method. A caller
specifies one or more formal parameters by keyword and supplies actual values for
the specified parameters. When all formal parameters are bound to actual values, a
method execution starts. The parameter list of a multi-function describes a message
set which can activate the multi-function. However, since all the parameters must be
bound, message sets can only be described using conjunction. Furthermore, message
sets cannot be described in terms of the actual values conveyed in messages.

A common notion of request-reply protocol is remote procedure call (RPC). Tra-
ditional RPC communication blocks the initiator until a reply is returned. Blocking
the sender implies that RPC requests cannot be issued concurrently. In contrast,
our scheme allows requests to be sent out asynchronously, and activators allow us
to describe selective waiting on subsets of replies.

Futures [Hal90, YT86, YBS86], Multi-RPC [LS88, Coo90] and Join-Continuations
[Agh90] all deal with reply synchronization. None of those constructs allow direct
expression of reply synchronization that is based on the values conveyed in reply
messages. In order to express such data-dependencies, the programmer must ex-
plicitly manipulate temporary variables that hold the values of previously returned
replies.

7 C o n c l u d i n g R e m a r k s

We have proposed activators and receptionists as constructs for describing activation
by message sets in concurrent object-oriented languages. Activators provide a power-
ful synchronization and communication construct which operates on sets rather than
single messages. A significant aspect of activators is that sets of messages are defined
in a pattern-based manner that takes message contents into account. Receptionists
give a unified approach to input messages and reply messages. In terms of reply
handling, receptionists are first-class reply destinations supporting reply delegation
and reply propagation.

Our analysis suggests that our model can be implemented efficiently. The "ex-
pensive" part of our constructs is the atomicity associated with removal of messages
from receptionists. However, because our constructs abstract over everyday practice
in the construction of concurrent systems, the involved consensus protocols will have
the same complexity whether hand-coded explicitly or provided as part of a language
implementation.

A topic for future work is further integration of receptionists and methods.

122

Both are communication endpoints. It is desirable to make it transparent to clients
whether they are invoking a method or sending a message to a receptionist.

A c k n o w l e d g m e n t s

The first author was sponsored by a research fellowship from the Natural Science
Faculty of .&rhus University in Denmark and generous support from the Danish
Research Academy.

The research described in this paper was carried out at the University of Illinois
Open Systems Laboratory (OSL). The work at OSL has been supported by the
Office of Naval Research (ONR contract number N00014-90-J-1899 and N00014-93-
1-0273), Digital Equipment Corporation, NEC, Hitachi, and by joint support from
the Advanced Research Projects Agency and the National Science Foundation (NSF
CCR. 90-07195).

The authors wish to thank Carolyn Taleott, Nayeem Islam, Christian Callsen,
Shingo Fukui, Chris Houck, Daniel Sturman, Mark Astley and other current and
former members of OSL for numerous discussions as well as invaluable feedback on
manuscript versions of this paper.

R e f e r e n c e s

[AB83]

[ABG + 92]

[AFL90]

[AFPS93]

[Agh86]

lash90]

[AP90]

[AWB+93]

[BBP86]

S. Abramsky and R. Bornat. Pascal-M: A Language for Loosely Coupled Dis-
tributed Systems. In Y. Parker and J.-P. Verjus, editors, Distributed Computing
Systems, pages 163 - 189. Academic Press, 1983.
J. S. Auerbach, D. F. Bacon, A. P. Goldberg, G. S. Goldszmidt, A. S. Gopal,
M. T. Kennedy, A. R. Lowry, J. R. Russell, W. Silverman, R. E. Strom, D. M.
YeUJn, and S. A. Yemini. High-Level Language Support for Programming Dis-
tributed Systems. In In Proceedings of the 199s International Conference on
Computer Languages. IEEE, April 1992.
P. C. Attie, I. R. Forman, and E. Levy. On Fairness as an Abstraction for
the Design of Distributed Systems. In Tenth International Conference on Dis-
tributed Computing Systems. IEEE, 1990.
G. Agha, S. Frr R. Panwar, and D. Sturman. A Linguistic Framework for
Dynamic Composition of Dependability Protocols. In Dependable Computing
for Critical Applications IlL International Federation of Information Processing
Societies (IFIP), Elsevier Scienc Publisher, 1993.
G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, 1986.
G. Agha. Concurrent Object-Oriented Programming. Communications of the
ACM, 33(9):125-141, September 1990.
Jean-Marc Andreoli and Remo Pareschi. LO and Behold! Concurrent Structured
Processes. In Proceedings OOPSLA/ECOOP '90, pages 44-56, October 1990.
Published as ACM SIGPLAN Notices, volume 25, number 10.
M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and A. Yonezawa. Abstracting

Object Interactions Using Composition Filters. In ECOOP 1993, Lecture Notes
in Computer Science. Springer Verlag, 1993. LNCS 791.
J. P. Banatre, M. Banatre, and F. Ployette. The Concept of Multi-Function: A
General Structuring Tool for Distributed Operating Systems. In Sixth Interna-
tional Conference on Distributed Computing Systems. IEEE, 1986.

123

[BKS88]

[CGL86]

[Cha87]

[Coo90]

[Dij75]

[DJRI78]

[EFK89]

[~SFGS8]

[FHT86]

[Gre87]

[HAS8]

[Hal90]

[Hoa78]

[Jag91]

[JS9~]

[KSg0]

[LSS8]

[MK88]

R. J. R. Back and R. Kurki-Suonio. Distributed Cooperation with Action Sys-
tems. A CM Transactions on Programming Languages and Systems, 10(4), 1988.
N. Carriero, D. Gelernter, and J. Leichter. Distributed Data Structures in
Linda. In POPL '86 Proceedings. ACM, 1986.
A. Charlesworth. The Multiway Rendezvous. ACM Transactions on Program-
ming Languages and Systems, 9(2), July 1987.
E. Cooper. Programming Language Support for Multicast Communication in
Distributed Systems. In Proceedings of the Tenth International Conference on
Distributed Computing Systems. IEEE, 1990.
E. W. Dijkstra. Guarded Commands, Nondeterminacy and Formal Derivation
of Programs. Communications of the ACM, 18(8), August 1975.
R. E. Stearns D. J. Rosenkrantz and P. M. Lewis II. System Level Concurrency
Control for Distributed Database Systems. ACM Transactions on Database
Systems, 3(2):178-198, June 1978.
M. Evangelist, N. Francez, and S. Katz. Multiparty Interactions for Interpro-
cess Communication and Synchronization. 1FEE Transactions on Software En-
gineering, 15(11), 1989.
M. Evangelist, V. Y. Shen, I. R. Forman, and M. Graf. Using Raddle to Design
Distributed Systems. In Proceedings of the Tenth International Conference on
Software Engineering, Singapore. IEEE, 1988.
N. Francez, B. Hailpern, and G. Taubenfeld. Script: A Communication Ab-
straction Mechanism and its Verification. Science of Computer Programming,
6:35-88, 1986.
S. Gregory. Parallel Logic Programming in PARLOG. Addison-Wesley, first
edition, 1987.
C. Hewitt and G. Agha. Guarded Horn Clause Languages: Are they Deductive
and Logical. In Proceedings of Fifth Generation Computer Systems Conference,
Dec. 1988.
R. H. Halstead. New Ideas in Parallel Lisp: Language Design, Implementation,
and Programming Tools. In Parallel Lisp: Languages and Systems. Springer-
Verlag, 1990. LNCS 441.
C. A. R. Hoare. Communicating Sequential Processes. Communications of the
ACM, 21(8):666-677, August 1978.
S. Jagannathan. Customization of First-Class Tuple-Spaces in a Higher-Order
Language. In E. H. L. Aarts and J. van Leeuwen, editors, Proceedings of PARLE
'91 Parallel Architectures and Languages Europe. Springer Verlag, June 1991.
LNCS 506.
Y. Joung and S. A. Smolka. Coordinating First-Order Multiparty Interactions.
In POPL '91 Proceedings. ACM, 1991.
Kenneth M. Kahn and Vijay A. Saraswat. Actors as a Special Case of Con-
current Constraint Programming. In Proceedings OOPSLA/ECOOP '90, pages
57-65, October 1990. Published as ACM SIGPLAN Notices, volume 25, number
10.
B. Liskov and L. Shrira. Promises: Linguistic Support for Efficient Asyn-
chronous Procedure Calls in Distributed Systems. In Proceedings of the SIG-
PLAN '88 Conference on Programming Language Design and Implementation,
June 1988.
Satoshi Matsuoka and Satoru Kawai. Using Tuple Space Communication in
Distributed Object-Oriented Languages. In Proceedings OOPSLA '88, pages
276-284, November 1988. Published as ACM SIGPLAN Notices, volume 23,
number 11.

124

[MSK86]

[Rep92]

[SKL80]

[WY88]

[YBS86]

lyon90]

[YT86]

D. May, R. Shepherd, and C. Keane. Communicating Process Architecture:
Transputer and Occam. In P. Treleaven and M. Vanneschi, editors, Future Par-
allel Architecture, pages 35-81. Springer-Verlag, 1986. LNCS 272.
J. H. Reppy. Higher-Order Concurrency. PhD thesis, Cornell University, June
1992. Published as Technical Report 92-1285.
V. Saraswat, K. Kahn, and J. Levy. JANUS: A Step Towards Distributed Con-
straint Programming. Technical Report SSL-90-51, Xerox Pa]o Alto Reseach
Center (PARC), 1980.
Takuo Watanabe and Akinori Yonezawa. Reflection in an Object-Oriented Con-
current Language. In Proceedings OOPSLA '88, pages 306-315, November 1988.
Published as ACM SIGPLAN Notices, volume 23, number 11.
Akinori Yonezawa, Jean-Pierre Briot, and Etsuya Shibayama. Object-Oriented
Concurrent Programming in ABCL/1. In Proceedings OOPSLA '86, pages 258-
268, November 1986. Published as ACM SIGPLAN Notices, volume 21, number
11.
A. Yonezawa, editor. ABCL An Object-Oriented Concurrent System. MIT
Press, Cambridge, Mass., 1990.
Yasuhiko Yokote and Mario Tokoro. The Design and Implementation of Con-
currentSmaJltalk. In Proceedings OOPSLA '86, pages 331-340, November 1986.
Published as ACM SIGPLAN Notices, volume 21, number 11.

