Chapter 6

Dynamic scientific co-authorship networks

Franc Mali, Luka Kronegger, Patrick Doreian and Anuska Ferligoj

6.1 Introduction

Network studies of science greatly advance our understanding of both the
knowledge-creation process and the flow of knowledge in society. As noted
in the introductory chapter, science can be defined fruitfully as a social net-
work of scientists together with the cognitive network of knowledge items
(Boerner et al, 2010). The cognitive structure of science consists of relation-
ships between scientific ideas, and the social structure of science is mostly
manifested as relationships between scientists. Here, we confine our attention
to these relations. In particular, co-authorship networks among scientists are
a particularly important part of the collaborative social structure of science.
Modern science increasingly involves “collaborative research", and this is in-
tegral to the social structure of science. Ziman argues that the organizational
units of modern science are groups and not individuals (Zimanl [1994, pp.
227)E| Namely, co-authorship in science presents a more substantial indicator
than just scientific communication in one way or another. In continuation, we
focus on the dynamics of different kinds of co-authorship networks.

L Co-authorship in science is not the only form of scientific collaboration. [De Haan/ (1997)
suggests six operationalized indicators of collaboration between scientists: co-authorship;
shared editorship of publications; shared supervision of PhD projects; writing research
proposal together; participation in formal research programs; and shared organization of
scientific conferences. As this list suggests, there are many cases of scientific collaborations
that do not result in co-authored publications (Katz and Martinl 1997;|Melin and Persson)
1996; |Laudel, 12002)). [Laudel| (2002) reports that about half of scientific collaborations
are invisible in formal communication channels either because they do not result in co-
authored publications or in formal acknowledgments in scientific texts. In this chapter, we
will use the term collaboration primarily to designate research that results in co-authored
publications and other publicly available documents.
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Over the last fifty years, the study of the dynamics of co-authorship networks
has been conditioned by the development of quantitative methodological
approaches in various forms that include relatively simple descriptive statistics
presented in time-series form, deterministic approaches, and stochastic agent-
based modeling of network dynamics. We provide a brief overview of these
approaches in this chapter. Many studies of co-authorship networks are
typically described and understood in terms of very large networks involving
tens of thousands of nodes. Science can be understood as social phenomena
involving large numbers of scientists regularly performing specific actions that
are consciously coordinated into large schemes (Ziman) 2000, pp. 4). Different
disciplinary approaches allow the use of different statistical quantities to
explain the topology of scientific networks. Some of the statistical quantities
typically used to describe these networks are purely local. The other statistical
quantities correspond to global descriptions. For example, the local property
of a unit in the network is vertex degree, defined as the number of ties relating
this unit to other units in the network. Corresponding global descriptions of
the degree distribution, which is known to have a long tail for a wide range
of different networks, can be constructed (see, for example, Lambiotte and
Panzarasaj, [20091).

Although co-authorship networks may provide a window on patterns of col-
laboration within science, they have received far less attention than have
citation networks in bibliometrics (pp.5200 Newman, [2004)). There is a basic
difference between co-authorship networks and citation networks. Citation
networks are not personal social networks, even though they are, in part,
the product of social network phenomena involving scientists. They do not
capture the social interaction structure usually described in works on co-
authorship networks. These social interaction structures are best described
by co-authorship networks. The vertices of co-authorship networks represent
authors, and two authors are connected by a tie if they co-authored one or
more publications. These ties are necessarily symmetric. In citation networks,
the vertices represent scientific productioneﬂ and the links between them are
directed citation ties from one scientific document to other such documents.
In that sense, co-authorship networks contain much important information
about cooperation patterns among authors as well as the status and locations
of authors in the broader scientific community structures. The study of com-
munity structures through scientific co-authorship is particularly important
because scientific (sub)disciplines might often display local properties that
differ greatly from the properties of the scientific network as a whole.

This chapter is structured in the following way. Given that we treat co-
authorship networks as social networks, we continue this introduction with a
definition of a network. In the next section, we offer a brief historical overview
of social network analysis with a focus on the dynamics of social networks.

2 We include papers, monographs, short articles, conference presentations, databases and
patents within the term ‘scientific production,’
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Table 6.1: List of major questions and models presented in this section

Major issues addressed

Key answers/insights

]
(1999)

Ways of modeling cumulat-
ive advantage principle in
co-authorship networks.

Using the preferential attachment
model where a scale-free power-law
distribution of the number of co-
authors is a consequence of two gen-
eric mechanisms: (i) networks ex-
pand continuously by the addition
of new vertices, and (ii) new ver-
tices attach preferentially to sites
that are already well connected.

|Watts and Strogatzl

(1998

Ways of modeling the
clustered structure of co-
authorship networks at the
macro level.

Small-world model overcomes the
gap in clustering of real-world net-
works in comparrison to random
networks. Such constructed net-
works have small average shortest
paths and incorporate clusterings
(small dense parts of the network)
which emerge in social networks.

Lorrain hi
1971), [Doreian et al|
2005

Ways of clustering the
units in co-authorship net-
works regarding the struc-
ture of collaboration and
representing the obtained
clusters with their connec-
tions at the macro level

The procedural goal of blockmodel-
ing is to identify, in a given network,
clusters (classes) of units (actors)
that share structural characteristics
defined in terms of some relation.
Each such cluster forms a position.
The units within a cluster have the
same or similar connection patterns.

Snijders| (1996),
Snijders et al| (|2010|)

Ways of modeling the ef-
fects of actor character-
istics and network posi-
tions on network evolution.
Ways of modeling network
dynamics and testing res-
ults using the inferential
methods

Stochastic actor-based modeling for
network dynamics is based on lon-
gitudinally observed network data.
It is meant to represent and model
co-evolution of longitudinal network
data and actor attributes, and evalu-
ate the results within the framework
of statistical inference.

Section [6.3] contains an organizing typology of both the content and units
of analysis for the topics we consider. Section [6.4]is the core of the chapter
and provides an overview of known methodological approaches for studying
dynamic scientific co-authorship networks. In the final section, we outline
some benefits and limitations of each approach and finish with a statement of
some open problems.
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6.1.1 Networks as graphs

A network consists of observed units and the relationships among them. Units
can be represented as vertices and relationships (ties) as links. When using
this skeleton representation, each network is a graph.

But this is a simplification of a network. Units (vertices) in the network can
have properties. There can be multiple types of vertices in the network. An
example is a social network where the vertices represent people and the groups
to which they belong. Units also have many different properties (e.g. gender,
age, income).

The links in networks can also be of different relational types and, further,
strength of relationships can be indicated by adding weights. The vertices
and links of networks studied in time have additional properties when time
is considered. The timing of relational formations and dissolutions can be
recorded and modeled. Duration of relational ties becomes another important
property of relations when they are present.

The information of a graph can also be presented in a matrix form. The most
common presentation is with the adjacency matrix in which there is a row
and a column for each vertex. Non-zero entries in the matrix are present when
links between two corresponding vertices exist.

Adjacency matrices can be extended further if we want to present more
complex graphs. For example, if we want to present a graph with multiple
links between the vertices, we associate the entry of a single cell a;; in the
adjacency matrix with the number of links between the vertices i and j. For
the representation of valued graphs, which are graphs with values on the links,
the value of a single cell a;; in the adjacency matrix corresponds to the value
on the link between vertices i and j.

6.2 A brief history of social network analysis

Histories of most entities usually have starting dates. However, establishing a
starting date for an academic field is difficult because the contributing strands
of ideas and methods for a field begin in different times and different places.
Modern social network analysis (SNA) started when four distinct features
were explicitly brought together (Freeman) |2004)). These features are: i) a focus
on structural matters by looking at actors embedded within a set of social
relations and ties; ii) the extensive use of systematic empirical data; iii) heavy
use of graphical imagery; and iv) having foundations in formal, mathematical,
and computational models. Recognizing the combination of these elements as
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defining social network analysis renders the establishment of a precise date of
origin less than important. But, based on Freeman’s narrative, a start date in
the 1930s for what was to become SNA seems reasonable. What matters far
more for the field are the operational ways in which the four core components
are combined to help us understand network structures and processes.

Academic fields also require some social organization to support them in order
to provide an accepted arena for the exchange of ideas and the development
of an identity that nurtures a discipline. These were created for SNA within a
span of four years. Barry Wellman established the International Network of
Social Networks Analysts (INSNA) in 1976. He founded Connections a year
later as a newsletter to distribute news, ideas, and information to members
of the field. Lin Freeman established the flagship journal, Social Networks,
in 1978. Finally, Russ Bernard and Alvin Wolfe started the annual Sunbelt
Social Network Conference in 1980. All four entities have grown in size and
influence since they were established. The European Network Conference was
started in 1989, and in 1995 the two conferences were combined to form the
Annual Sunbelt International Social Network Conference.

If we allow that SNA is what social network analysts do, it does not follow
automatically that the field is coherent. [Hummon and Carley| (1993]) examined
all of the papers in the first 12 volumes of Social Networks to assess the state of
the field and established that SNA was an integrated scientific community with
a shared paradigm. They used ‘main-path analysis,” a technique pioneered by
Hummon and Doreian| (1989, 1990) that helps study the citation patterns of
a field. Hummon and Carley (1993)) identified six main paths in the literature:
i) Role analysis and blockmodeling; ii) Methods for network analysis; iii)
Concern with network data; iv) Biased networks; v) Attention to structure;
and vi) Analyses of personal networks. Of course, these paths for the movement
of SNA intellectual ideas through the literature are linked. Hummon and
Carley (1993) noted other features of the field. One was the heavy use of
formal, mathematical, and quantitative methods. Another was the creation
of substantive network ideas, and a third was the presence of prominent
collaborative groups of social network analysts. All are consistent with the
practice of ‘normal science’ in the sense of [Kuhn| (1996).

On looking at that list of main paths as intellectual foci for SNA, one feature
leaps out by its absence: There is little about temporal issuesﬂ even though
main path analysis is an explicitly temporal approach. Up until the beginning
of the 1990s, SNA appeared to have have had a profoundly static bias. The
field’s concern was centered primarily—but not exclusively—on social structure
and patterns of social structures. Given this, four event streams that can be
dated as starting in the 1990s have changed the field dramatically.

3 This is consistent with the observations of [Powell et al| (2005).
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The first was a series of three special issues of the Journal of Mathematical
Sociology (JMS) that appeared in 1996, 2001, and 2003. All three issues, edited
by Frans Stokman and Patrick Doreian, were devoted to "network evolution.
Based on the intuition that “network processes are series of events that create,
sustain and dissolve social structures” (Doreian and Stokmanl 1997, pp 3), the
three special issues had a series of papers that looked at network dynamics
and network evolution using a variety of different formal models, simulation
methods and statistical models [

)

The second event was the take-off of exponential random graph models (ergms)
for the study of change in social networks. The origins of these models date
from an earlier time, including the work of [Holland and Leinhardt| (1981)
and [Frank and Strauss| (1986). One strand of this line work is founded on
Wasserman and Pattison| (1996]) and Pattison and Wasserman, (1999) and
takes the form of p*-models. This forms the core of the software called Pnet
(Wang et al, 2006)), used for estimating ergms. Another strand features the
work of [Snijders| and takes the form of SIENA (Snijders et al, [2010)),
also used for estimating ergms for studying the co-evolution of social actors
and social networks. Yet another strand of related work is present in Statnet
(Handcock et al, 2003)) that includes the estimation of ergms. There has been a
lively debate and an extensive cross-fertilization and collaboration between the
groups centered at the University of Melbourne, the University of Groningen,
Oxford University, and the University of Washington regarding ergms.

The third event is the movement of physicists into the realm of social networks,
which also started in the 1990s. |Bonacich labeled this as “the invasion
of the physicists“ in his review of |Watts| (2003) and [Barabési| (2002). To
the extent that the physicists are inattentive to the substantive content of
the SNA and reinvent old - and/or even square - wheels, this is an invasion.
However, they also bring with them a variety of new modeling strategies and
additional conceptualizations of network phenomena that include ‘small-world’
networks and ‘preferential attachment,” two terms that have made fruitful
entrances into SNA. The physicists have focused attention primarily on large
networks with a view to delineating and understanding network topologies
and dynamics.

The final event started in the early 1990s and resulted in the establishment of
generalized blockmodeling (Doreian et al, [2005) as both a generalization and
an extension of traditional blockmodeling, the main path in the SNA literature
through 1992 identified by [Hummon and Carley| (1993). Thus far, this approach
has been deterministic and not that attuned to network dynamics. Designed
to delineate network structures through the use of an expanding collection of

4 Volume 30(1) of Social Networks (2010) was a special issue devoted to network dynamics
that noted the importance of the three JMS special issues with papers building upon
some of the earlier work.
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block types and types of blockmodels, it has the potential to contribute to
the temporal delineation of fundamental network structures.

At face value, the four ‘events’ and the lines of active research that have
followed them are different and could even be viewed as potential rivals.
However, it will be unfortunate if they are seen in this fashion. Some of the
ideas of physicists can be used to conceptualize mechanisms that can be
incorporated into ergms to test these ideas with social network data. It is
clear that the efforts of physicists to identify communities in networks have
the same intent as blockmodeling. The work of Handcock et al (2007) on
discerning network structure through model-based clustering is also related,
in intent, to blockmodeling, and it seems reasonable to couple, in some way,
ergms and blockmodels. All of these four strands of research for understanding
networks have been mobilized extensively since their first appearance. They
have all emerged since Hummon and Carley’s (1993) assessment and have the
potential to be combined fruitfully in future research. While these streams
of research are changing SNA to focus on network dynamics and network
evolution, they do so while embodying all of the four defining features of SNA
identified by [Freeman| (2004]).

6.3 Levels of analysis of scientific collaboration

6.3.1 Introduction

Understanding science as a social system implies considering science as funda-
mentally relational, and as a community-based social activity. "The collegian
circles around a scientist refer to those local and distant peers or professional
colleagues” (Schott, (1993 pp. 201). These collegian circles have several prop-
erties that vary from one scientist to another. Within social studies of science,
there has been a strong interest in the spatial range of the collegian circle
with attention given to local, national, or transnational scientific communities.
These professional collegian circles in science have several other characteristics
that are analytically distinct but, in reality, may be intertwined. Co-authorship
networks in science have a “modular structure" (Lambiotte and Panzarasa,,
2009} pp. 181). Understanding this modular structure of scientific networks
is especially important because it helps account for the progress of science
and the organization of scientific production within disciplinary frameworks.
In reality, science never operates as a single community with hundreds of
thousands of individual scientists. It is organized by many different networks
that cut across the formal boundaries dividing science with regard to discip-
linary, sectoral, and geographical levels. Of course, the membership of various
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networks overlaps considerably. These research networks are also in continuous
processes of growth, decline, and dissolution (see, for example, 2000
pp. 46 or Mulkay, (1975} pp. 519).

Classification of co-authorship networks can be done in several ways.
suggested a typology based on three features: (1) according to
the units of the analysis, including individuals, teams of researchers, and
R&D organizations; (2) according to the type of information used to develop
the links between units—these might be based on interactions or information
sharing or they could be based on positions of people in the social hierarchy;
and (3) according to the institutionalized domains to which the authors
belong, with an emphasis on intra-organizational or inter-organizational links
between them. [Sonnenwald| (2007)) suggested a more general classification
to categorize various types of co-authorship networks: between researchers
in university and industry sectors, between researchers in various scientific
disciplines, and between researchers of various countries. In this section, we
prefer to use another categorization, one adapting a suggestion by
who focused on three dimensions of co-authorship networks
with their associated sub-dimensions of intra- and inter- dimensional co-
authorship collaboration. The suggested dimensions are: disciplinary with sub-
dimensions of interdisciplinary and intradisciplinary, sector with intersector

Table 6.2: Classification of levels of analysis of scientific collaboration

Dimension of the study
Main
dimension

Examples of studies

Sub-dimension

Interaction links between Australian research net-

works (Rigby} [2005)),(see also: [Wrayl, [2002; [Glinzel
and Schubert] 2004, [Laband and Tollison) [2000}

Hornbostell,

Interdisciplinary research analysis in French laborat-
ories (Sigogneau et al, [2005))(see also |Gibbons et al
1994}, |[Etzkowitz and Leydesdorff] 2001} |Qin et al
1997; Braun and Schubert} 2003))

Cross- Disciplinarity

Disciplinary

Inter-
disciplinarity

Cross-Sectoral

Intramural

Extramural

Academic research networks analysis (Lowrie and
McKnight, 2004; Wray, [2002)

R&D cooperation models between industry and uni-
versities in Belgium (Veugelers and Cassiman} 2005)

Cross-
National

National

International

The interaction between immunology research insti-
tutes in Germany, due to their geographical location
(Havemann et al, 2006)

Comparative analysis of several countries of their
international /national collaborated publications
(Glanzel and Schubert} |2005)
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and intrasector, and geographic with international and intranational sub-
dimensions. These are presented in Table [6.2}

6.3.2 The Cross-disciplinary level

For the cross-disciplinary level, given the presence of disciplinarity, there is a
basic distinction between collaboration inside discipline (intra-disciplinarity)
and collaboration between disciplines (inter-disciplinarity).

Disciplinarity

As stated in the introductory chapter of this book (see page [xi| et sqq.),
“an academic discipline, or field of study, is a branch of knowledge which
is taught and researched at the college or university level. Disciplines are
defined (in part) and recognized by the academic journals in which research
is published, and the learned societies and academic departments or faculties
to which their practitioners [researchers] belong" (Boerner et al, 2010). Many
theorists of science have noted that all scientific disciplines are intellectually
(cognitive) and socially structured (Fuchs, [1992; Whitley, [1984]). Scientific
disciplines represent institutional and organizational frameworks within which
their intellectual products and cognitive styles are connected to the social
structures, mode, and organization of the production of that knowledge. One
of the basic characteristics of modern academic scientific communities is that
they are still sharply differentiated and structured in terms of disciplines.
Individual scientific disciplines can thus be seen as distinct intellectual and
social organizational contexts.

Although co-authorship publishing is more common in the natural sciences
than in the social sciences, it is continuously increasing in all main scientific
areas (Wrayl 2002} |Glianzel and Schubert] 2004; Laband and Tollison, [2000;
Hornbostel, [1997)). Collaboration, operationalized through co-authorship, is
now normative behavior and ubiquitous for practically all scientific disciplines
(e.g., over 95% of articles in major periodicals in physics, biochemistry, biology
and chemistry are co-authored (Braun-Munzinger; 2009))).
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Interdisciplinarity

In the last two decades, interdisciplinary collaboration has increased dra-
matically (see, for example, |Gibbons et all [1994} Etzkowitz and Leydesdorff,
2001)). This phenomenon is broadly discussed in Chapter [1| with attention
focused on a tendency of modern science to form heterogeneous (interdis-
ciplinary) teams of researchers solving pressing social problems and with
higher accountability requirements (Boerner et al, 2010). These attempts
have been made to bridge narrow disciplinarities in science. An important
feature stimulating interdisciplinary collaboration in modern science is the
demand for innovations resulting from the juxtaposition of ideas, tools, and
scholars from different scientific domains. Today, there is an overall agreement
that inter-disciplinary links are vital for scientific progress because they have
the potential to bring unprecedented intellectual and technical power. For
example, the converging technologies of the NBIC fields (i.e. nanotechnology,
biotechnology, information sciences, and cognitive sciences) are an example
of new interdisciplinary research from fields that previously showed limited
interdisciplinary connections (see, for example, Buter et al, [2010)).

We know that different organizational and cognitive problems make the
development of interdisciplinary research particularly challenging. Interdiscip-
linarity requires extensive networks of scientists and concepts, considerable
time investments, and a need for researcher mobility between disciplines. As
noted by Bordons and her collaborators, while collaboration among scientists
from different disciplines is widespread, measuring it is not easy (Bordons
et al, 2004} pp. 441). Using bibliometrics, measurement of interdisciplinarity
in publications can be approached from different perspectives that include co-
authored publications among scientists from different disciplines, co-occurrence
of several classification codes in publications, the interdisciplinary nature of
journals, and the presence of cross-disciplinary references or citations. The
most often used bibliometric indicator of such collaboration is the percentage
of co-authored interdisciplinary publications. Yet, computing this percentage is
affected by many factors, including the nature of the organization of scientific
communities, R&D policy orientations, and the chosen operationalization of
concepts (e.g., the classification scheme of disciplines that is used (Qin et al,
1997; |Braun and Schubert}, 2003)).

6.3.3 The Cross-sectoral level

There is a basic difference between collaborations inside the academic scientific
community (intramural cooperation) and collaborations between academic
science, industry, and governmental bodies (extramural collaboration). In-
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tramural networks in science are usually defined by collaboration within
one department, research group, or institute. Extramural collaborations, on
the other hand, consider also cooperation between different sectors (see, for
example, |Glanzel and Schubert| 2004]).

Intramural collaborations (intra-sectoral collaboration)

In modern science, the establishment of intra-mural networks is the result of the
increased processes of professionalization of recent scientific activity. This has
led to a large change in the organizational structure of science, and it’s worth
repeating Ziman’s insight: “ the organizational units of modern science are
not individuals but groups"(Ziman| 1994, pp. 227). The organization of R&D
activity in academic scientific institutions has created typical team structures—
for example, modern research groups consist of principal investigators, co-
principal investigators, junior researchers, post-docs, and doctoral students.
Price suggested that research collaboration is, in part, a response to the
shortage of scientists, which allows them to become “fractional" scientists
(Price and Beaver], |1966).

Extramural collaborations (cross-sectoral collaboration)

Cooperation between different sectors—academic science, industry and government—
is now understood as the most important type of extra-mural collaboration.
The concepts of ‘Mode 2’ and the ‘Triple Helix’ have extended the idea of
research networking within and across sectoral borders. Both concepts were
developed in the theory of science and R&D policy discussions after 1990. It
seems that the concept of Mode 2 knowledge production presented in The New
Production of Knowledge (Gibbons et all [1994) became, in the mid-90s, the
symbolic banner of new viewpoints regarding scientific collaborations across
sectors. The authors of the new (Mode 2) production of knowledge linked
the classical concept of transdisciplinarity, defined by common axioms that
transcend the narrow scope of disciplinary worldviews through an overarching
synthesis, with two additional factors: problem-driven research and research in
applied contexts. Similarly, the concept of the Triple Helix has been developed
as a neoinstitutional and neoevolutionary model for studying the networks
across academic science, industry science, industry, and government sectors. In
these networks, more important than the presence of the agents is the quality
of their relationships in a given configuration (Etzkowitz and Leydesdorff,
2001)). Although there exists already an extensive expert literature on this type
of cross-sectoral networks, there is still a lack of bibliometric studies dealing
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with co-authorship publications between academic and business-enterprise
sectors (Lowrie and McKnight, (2004, pp. 436).

6.3.4 Cross-national level

Networks of international collaboration have undergone dramatic structural
changes in the last few decades. This is in contrast to intranational net-
works, where the intensity of collaborations have decreased (see, for example,
Hoekman et al, 2010; |Glanzel and Schubert|, [2004; [Katz, [1994]).

National collaborations

National collaboration, while visible in domestic contexts, is often regarded
as less visible and treated as less important than international collaborations.
Often, the observed (relative) high visibility and high citation attractiveness
of internationally co-authored publications result in a kind of operational rule:
international co-publications appear in high-impact journals and receive more
citations than national papers (Glanzel and Schubert|, [2004)). However, the
overall visibility and international relevance sometimes does not necessarily re-
flect the impact of specific papers in solving specific problems at the local level.
The results of national collaborations are often incorporated into publications
dealing with trans-institutional and international co-authorship, (e.g. Munshi
and Pant| |2004]), and are focused directly on collaboration within a specific
country (Gossart and Ozman, 2009; Mali et al, |2010). Another important
aspect of national collaboration results from the international orientation of
bibliographic databases like the Web of Science or Scopus. Often, the results of
national co-authorship and the resulting citation patterns, especially for smal-
ler national scientific systems, are less visible in international bibliographic
databases. This can be linked to inter-sectoral collaboration within nations.
National collaborations across sectors have an additional complexity because
they include the involvement of different administrative units. As a result,
such research projects are complex and involve a wide range of different out-
puts of scientific production. Such complex information can only be reported
qualitatively or measured through local information systems and electronic
bibliographic systems; the Slovenian COBISS and SICRISS databases or the
Turkish ULAKBIM database.
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International collaborations

In thinking about the spatial range of collaboration, there is an important
difference between geographic distance and crossing international boundaries.
While geographical distances between collaborative units in large nations can
be long, the geographical distances between collaborating units in different
countries can be short. Of the two, crossing international boundaries is more
consequential than geographical distance with regard to scientific collaboration.
While international scientific collaborations are important generally, they are
especially important for small scientific communities such as, for example, the
Slovenian scientific community. Isolated and parochial scientific communities
are no longer a suitable environment for recognized scientific excellence. Indeed,
it can be argued that they never were important in the history of science. Even
in the early days of science, different forms of cooperation between scientists
of different nations became important elements in the internationalization
of science. Even so, because of the new forms of the globalized connections
of science, “the traditional cosmopolitan individualism of science is rapidly
being transformed in what might be described as transnational collectivism'
(Ziman) 1994, pp. 218).

This trend of increasing international scientific collaboration through co-
authorship is especially strong in recent decades. The number of internationally
co-authored articles has risen at a faster rate than traditional ‘nationally
co-authored’ articles (Wagner, |2005). As noted in the expanding bibliometric
literature, the level of international co-authorship is determined by many
factors: the size of the country, ‘proximity’ between countries, either physical
(geographical) proximity or immaterial proximity stemming from cultural
affinity in a broad (historical, linguistic) sense, socioeconomic factors, changes
in electronic forms of communication, and last but not least, the dynamics
created by the self-interest of individual scientists pursuing their own careers.

6.4 Methodological perspectives

6.4.1 Introduction

The development of methodological approaches for analyzing and modeling
temporal scientific co-authorship networks has been founded on developments
in graph theory and in SNA. To enable the discussion on temporal analysis of
network properties, we describe some of the most relevant basic definitions
of network properties that we need for understanding the content of coming
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sections (extensive explanations of SNA terminology and concepts can be
found in [Wasserman and Faust| (1994))):

e Degree The degree of a vertex is defined as the number of ties linking this
vertex to other vertices in the network. In lay terms, the degree represents
the number of co-authors for each researcher. As a global measure of
the whole network, both the average degree or centralization can be
considered.

o Network density is the proportion of ties in a network relative to the total
number possible (sparse versus dense networks).

e Path A path is a sequence of vertices and lines from initial vertex to the
terminal vertex where all vertices different.

e Path length This is the number of ties it contains.

e A shortest path or a geodesic distance between two vertices u and v,
denoted as [y, is the shortest path length between these two vertices. In
co-authorship networks, the distance between two authors who collaborate
is 1. As a global network characteristic, the average shortest path is usually
considered.

e The global clustering coefficient can be viewed as the average probability
of a tie between co-authors of a selected author. Technically, it measures
the density of triangles in the network and therefore measures the extent
of densely connected subgroups of vertices in the network.

Another important factor in the development of the field has been access to
data sources on scientific collaboration. Before the development of electronic
bibliographic databases and, especially, before the implementation of the
scientific citation indexes initiated by Garfield (1955) this was a very difficult
and time-consuming task. Some of the most visible electronic databases with
academic content are the Web of Science, SCOPUS and Google Scholar. A
broader discussion on databases and citation indexes can be found in chapter
7 of this book.

The study of temporal networks, both with regard to network dynamics and
network evolution, gained increasing attention since 1996. As noted in Section
2, special issues of the Journal of Mathematical Sociology (1996, 2001, 2003)
were of value. We distinguish three basic approaches for studying dynamic
scientific co-authorship networks: (i) basic analysis of network properties
using temporal data (usually in the form of a time-series of snapshots, (ii)
deterministic approaches to the analysis of scientific co-authorship networks,
and (iii) statistical modeling of network dynamics.
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6.4.2 Basic analyses of network properties

One of the first analyses of temporal co-publication was presented by |Zuck{
erman (1967)) who studied the patterns of productivity, collaboration and
co-authorship among Nobel Laureates. While her analysis was quite narrow,
in the sense of focusing on a small elite among scientists, this was due to
the limitations of the data available at the time. More than 20 years later,
(Bayer and Smart| [1991)) focused on publication patterns of US PhD recipients
in chemistry in 1960-62. They used a longitudinal data set spanning from
1962 to 1985 to follow the careers of these researchers through time. Be-
sides single-authored and multi-authored publications, they also distinguished
dual-authorship and proposed a typology of publication patterns of scientists,
including six categories which are highly correlated with co-authorship pat-
terns. Researchers were categorized into groups of: Low producers, Burnouts,
Singletons, Team Leaders, Team Players, Doubletons, and Rank-and-File
types. With the development of electronic bibliographic databases, simple lon-
gitudinal analysis of network characteristics (including average vertex degrees,
clustering coefficients, and density) became a common part of most studies
of temporal co-authorship networks (see Babchuk et al, [1999; |Glianzel et al,
1999; |Kronegger et al, [2011a)).

6.4.3 Deterministic analysis of dynamic co-authorship
networks

Although the time dimension is often included in the analysis of co-authorship
networks, it has been mostly restricted to simple temporal time-series descrip-
tions of some network characteristics and actor attributes. Such basic analyses
can be found in a wide range of publications since results of practically every
method for social network analysis can be represented in time as a series of
snapshots. The most common goal of these methods is delineating structures
within co-authorship networks and accounting for network properties by using
some external parameters. Efforts of researchers to push the methodology
further from simple description of differences between time snapshots are
therefore rare and hard to find.

A fruitful way of delineating structures within co-authorship networks is to
use blockmodeling procedures: Let U be a finite set of units and let the
units be related by a binary relation R C U x U that determines a network
N = (U,R). One of the main procedural goals of social network analysis
is to identify, in a given network, clusters of units that share structural
characteristics defined in terms of the relation R. The units within a cluster
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have the same or similar connection patterns to the units of other clusters.
Result of clustering C = {C1,C2,...C} is a partition of units U and relations
R into blocks R(C;,C;) = RNC;x C;. Each block is defined in terms of units
belonging to clusters C; and C; and consists of all arcs from units in cluster
C; to units in cluster Cj. If i = j, the block R(C;,C;) is called a diagonal
block.

A blockmodel consists of structures obtained by shrinking all units from the
same cluster of the clustering C. For an exact definition of a blockmodel, we
must be precise about which blocks produce an arc in the reduced graph and
which do not. The reduced graph can be presented also by a relational matrix,
called an image matriz.

The partition is constructed by using structural information contained in R
only, and units in the same cluster are equivalent to each other in terms of R
alone. These units share a common structural position within the network.

Blockmodeling, as a set of empirical procedures, is based on the idea that
units in a network can be grouped according to the extent to which they are
equivalent, in terms of some meaningful definition of equivalence. In general,
different definitions of equivalence usually lead to distinct partitions.

Lorrain and White| (1971) provided a definition of structural equivalence: Units
are equivalent if they are connected to the rest of the network in identical
ways. From this definition it follows that only four possible ideal blocks can
appear (Batagelj et al, [1992b; [Doreian et al, 2005))

Type 0. bl‘]‘ =0 Type 2. bl‘j = 1_51‘]‘
Type 1. b;jj = 5ij Type 3. bjj =1

where §;; is the Kronecker delta function and ¢,j € C. The blocks of types 0
and 1 are called the null blocks and the blocks of types 2 and 3 the complete
blocks. For the nondiagonal blocks R(C,,C,),u # v, only blocks of type 0
and type 3 are admissible.

Attempts to generalize the structural equivalence date back at least to [Sailer
(1978) and have taken various forms. Integral to all formulations is the idea
that units are equivalent if they link in equivalent ways to other units that are
also equivalent. Regular equivalence, as defined by [White and Reitz (1983)), is
one such generalization.

As was the case with structural equivalence, regular equivalence implies
the existence of ideal blocks. The nature of these ideal blocks follows from
the following theorem [Batagelj et al| (1992a)): Let C = {C;} be a partition
corresponding to a regular equivalence =~ on the network N = (U, R). Then
each block R(Cy,C,) is either null or it has the property that there is at least
one 1 in each of its rows and in each of its columns. Conversely, if for a given
clustering C, each block has this property, then the corresponding equivalence
relation is a regular equivalence.
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Until now, a definition of equivalence was assumed for the entire network and
the network was analyzed in terms of the permitted ideal blocks. [Doreian:
et al (2005) generalized the idea of a blockmodel to one where the blocks can
conform to more types beyond the three mentioned above, and one where
there is no single a priori definition of ‘equivalence’ for the entire network.

The problem of establishing a partition of units in a network, in terms of
a considered equivalence, is a special case of the clustering problem — such
that the criterion function reflects the considered equivalence. Such criterion
functions can be constructed to reflect the considered equivalence. They
measure the fit of a clustering to an ideal one with perfect relations within
each cluster and between clusters, according to the selected type of equivalence.

For the direct clustering approach, where an appropriate criterion function
that captures the selected equivalence is constructed, a relocation approach
can be used to solve the given blockmodeling problem (Doreian et all |2005]).

Inductive approaches for establishing blockmodels for a set of social relations
defined over a set of units were discussed above. Some form of equivalence
is specified, and clusterings are sought that are consistent with a specified
equivalence. Another view of blockmodeling is deductive in the sense of
starting with a blockmodel that is specified in terms of substance prior to an
analysis. In this case, given a network, a set of types of ideal blocks, and a
family of reduced models, a clustering can be determined which minimizes
the criterion function. (For details see: Batagelj et al, 1998} [Doreian et al,
2005). Some prespecified blockmodels are designed as hierarchical models
with the positions on paths linked by directed ties in a consistent direction.
A core-periphery model is such a model where there is one (or several) core
position that is strongly connected internally. Peripheral positions are all
connected to core positions but not connected to each other, and they are not
internally cohesive. There are variations of the core-periphery model; e.g., in
which the periphery is not even connected to the core positions. All described
blockmodeling approaches are implemented in the program Pajek (Batagelj
and Mrvar, 2010]).

An example of the multi—core-semi—periphery—periphery structure is presented
in Figure[6.1] This specific structure, found in co-authorship networks, consists
of: (i) simple cores comprised of scientists co-authoring with all, or most,
colleagues in their core (units R3 to R5 and R13 to R16); (ii) bridging cores
composed of researchers who connect two or more other simple cores (units
R1 and R2); (iii) a semi-periphery made up of authors who co-author with
proportionately fewer others in their position and have no systematic patterns
of ties to scientists in other postitions, and periphery of authors who do not
co-author with other researchers from the network.

Several applications of blockmodeling of co-authorship networks have been
published in recent years. For example, Said et al (2008) distinguished several
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styles of co-authorship, including solo models (no co-authors), mentor models,
entrepreneurial models, and team models. They conjectured that certain
styles of co-authorship lead to the possibility of group-thinking, reduced
creativity, and the possibility of less rigorous reviewing processes.
examined co-authorship networks in three Iranian academic
research centers in order to find an association between scientific productivity
and impact indicators with network features. The collaboration networks
within centers shared many structural features, including a “star-like" pattern
of relations. Centers with more successful scientific profiles showed denser and
more cooperative networks. Kronegger et al (2011a)) distinguished different
co-authoring cultures in four scientific disciplines and delineated typical
structures of scientific collaboration. They also extended blockmodeling by
tracking locations, and hence positions, of authors across different time points.

Another effort to combine a static analysis of complexity at separate time
moments with a dynamic analysis was presented by [Erten et al| (2004) and by
Gansner et al (2004). They introduced a dynamic extension of multidimen-
sional scaling (Richardson |1938} |Torgerson, |1952)). Multidimensional scaling
(MDS) is a set of data analysis techniques designed to display the structure of
data in a geometrical picture. The algorithm of dynamic MDS is driven by the
minimization of stress measured both within each analyzed year and over con-
secutive years by optimizing the resulting stress for a three dimensional array.
This algorithm was recently implemented in Visone (Leydesdorff and Schank]
and used by [Leydesdorff] (2010)) to study co-authorship networks, with
additional information on co-word appearance and journal citation indexes.
In this paper, he analysed the complete bibliography of Eugene Garfield for
the years 1950-2010, graphically presenting its collaboration structure and
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citation dynamics around Garfields’ work mainly dealing with the Science
Citation Index.

6.4.4 Modeling dynamic scientific co-authorship
networks

Here, we present only an overview of modeling temporal co-authorship net-
works. Static models of macro-level network properties, which are based on
stochastic rules of network generation, are discussed first. These have been
mainly developed from graph theory by mathematicians and physicists who,
with the development of the Internet in 1990, were interested in modeling ac-
cessible large real-world networks. The developments led from purely random
graphs, built according to the |[Erdos and Rényi| (1959) model, to small-world
networks (Watts and Strogatzl [1998)), and to a range of models based on the
concept of preferential attachment (Barabasi et all [2002; [Newman) [2000).

The idea of finding the rules fostering the growth and development of social
networks, or as it was stated, modeling the real world graphs, was widely
captured (mostly) by physicists. The basics for any kind of modeling of social
networks were proveided by the Erdos-Rényi random graph model, which
is determined by a number of vertices (n) and the probability (p) that a
link exists between two arbitrary vertices. Therefore, each random graph has
approximately p-n(n —1)/2 undirected links. A single vertex is linked to a
binomially distributed number of neighbors. The limiting degree probabilities
are Poisson distributed. [l

The first generalization of the Erd6s-Rényi random graph took the form of
a configuration model where specific degrees are assigned (usually from a
pre-specified distribution) to all the vertices which are then randomly linked
according to their degree. The construction of the model was proposed by
Molloy and Reed| (1995)) and studied by many authors (see the overview
provided in [Newman) 2003)). This solved the problem of degree distribution
in real-world graphs usually not having a Poisson distribution, as in the
Erdos-Rényis random graph, but not the inability to model the clustered
nature of empirical networks.

We consider also a very different approach to modeling social network dynam-
ics, one which returned to and is founded upon ideas within social science.
The approach of the physicists has been intent on reproducing the topological
form of real-world networks, and it proposes some generic processes of growth
and change while ignoring an extensive tradition of sociological and psycholo-

5 Mathematical notations of models in this section are based on those used by [Kejzar
(2007).
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gical knowledge regarding the behavior of individuals. This alternative (more
sociological) approach focuses on single actors and their involvement in the
smallest possible social unit of analysis, the dyad. This type of modeling is
labeled ‘stochastic actor-based modeling’ (Snijders, (1996). Its purpose is to
represent network dynamics on the basis of observed longitudinal data in
the form of explicit models and to evaluate them (or a family of models)
within the paradigm of statistical inference. This implies that the models are
able to represent network change as the result of dynamics being driven by
many different tendencies, especially structurally based micro-mechanisms.
These mechanisms can be theoretically derived and/or based on empirically
established properties in earlier research. Of great importance is that these
mechanisms may well operate simultaneously (Snijders et al, |2010). One lim-
itation of these models is that they are restricted to a smaller predetermined
number of actors and do not directly consider more global mechanisms of
network growth.

6.4.4.1 Modeling “real-world" networks

Social studies of science have long had an interest in linking scientific pro-
duction to the network structures of scientific communities. Different models
have been proposed as representations of processes driving co-authorship (as
collaboration) in science that help account for the form of large-scale scientific
networks and predict scientific production. One contains an argument that if
scientists from particular scientific disciplines (specialties) collaborate with
others inside their disciplines, then we would expect to find distinct clusters
in the knowledge-production network - exactly the clustering noted in many
empirical networks - and this would correspond to small-world network struc-
ture (as described below). Alternatively, if the network was generated by
preferential attachment (see below) as a mechanism—where young scientists
publish with well-established scientific stars—then we would expect to find a
scale-free network structure whose degree distribution satisfies a power-law.
If the network is based on a cross-topic collaboration, then we would not
expect to find strong fissures in the network, but instead find a structur-
ally cohesive network (Moody) [2004). All of the above-mentioned network
structural processes lead to specific dynamics for scientific networks that, in
turn, generate distinctive network structures or topologies. These models for
generating the structures of large-scale and complex networks can be expected
to hold also for co-authorship networks in science. Large-scale co-authorship
networks can have local (such as clustering) structural properties as well as
global (such as average distance between nodes) structural features. Local
and global characteristics of networks help to define network topologies such
as ”scale-free networks” and “small-world networks.” These network topolo-
gies are the result of network-generating processes and can lead to further
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dynamics of these networks in different ways. For example, the principle of
preferential attachment to vertices of higher degree leads to a dynamic where
“the-rich-get-richer.“ In the case of science, this implies that those scientists
who experience early success gain higher shares of subsequent rewards. We
next consider scale-free and small-world science network structures in more
detail.

The small-world model

The small-world network structure of scientific co-authorship implies network
forms where the level of local clustering (one’s collaborators are also collaborat-
ors with each other) is high, but the average number of steps between clusters
is small. In these small-world networks, internal ties to clusters tend to form
more cohesive clusters within boundaries, as compared to the more extensive
and less cohesive overall networks that include their external ties. According
to various social network analysts, the small-world model was inspired by the
work of [de Sola Pool and Kochen| (1978)) who partially formalized the much
more famous application of [Travers and Milgram| (1969). It expresses the
simple idea that any two individuals, selected randomly from almost anywhere
on the planet, are ‘connected’ via a path of no more than a small number
of intermediate acquaintances. The (limited) empirical evidence suggested
that this small number is about 6. This notion became a popular idea in the
Broadway play named Siz Degrees of Separation. The first practical evidence
for the existence of a small-world phenomenon was first provided by the
psychologist Milgram (Berg), 2004, pp. 46). Milgram’s experimental result was
regarded as a good starting point for analyzing the underlying structure of
scientific co-authorship.

Later, [Watts and Strogatz| (1998) formally defined the small-world model in
order to construct networks with the following properties that mirror some
observed social networks: i) having short paths between any two vertices (and
hence, smaller average lengths for the shortest paths) and ii) also incorporates
clustering (small dense parts of the network). Knowing that geographical
proximity of vertices plays a role in the formation of links (especially for
humans), they considered a ring-lattice with n vertices. Each vertex had
Mgy edges to its neighbors. Then they rewired each edge with a probability
psw by relinking the second end of the edge to a randomly chosen vertex.
The probability ps, enables this network to vary from an ordered, finite
dimensional lattice to a completely disordered network. The ring-lattice does
not show a small-world effect since the average shortest path grows faster than
a logarithmic rate of increase with the number of vertices, but it has strong
local clustering. When the edges are rewired, Watts and Strogatz noticed
that replacing a few long-distance connections hugely reduced the network’s
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average shortest path and, as a result, a small-world effect appears. When
psw = 1, the network becomes completely disordered where local clustering is
no longer present and the average shortest path is small. Watts and Strogatz
showed, by numerical simulation, that there is a relatively large ps,, interval
in between the two extremes, for which the model exhibits both low path
lengths and clustering.

Regular graph Small-world graph Random graph
with psw=0 with psw=1

Fig. 6.2: Small-world structure simulation with different levels of randomness

Newman| (2001, 2004) provides an excellent overview of the analysis on
the topology of small-world network structures, highlighting key organizing
principles that guide ties among the nodes in the network. According to
Moody| (2004)), an archetypal small-world network will have many distinct
clusters, connected to each other by a small number of ties. An analysis
dealing with the dynamics of co-authorship publication networks in Slovenian
sociology (Mali et al, |2010|) showed that, to some extent, they conform to the
small-world network structure: there are groups of sociologists that are very
connected inside small groups but connected with others in non-systematic
ways. Further results, obtained by using the blockmodeling approach, pointed
to a publication strategy of those sociologists in Slovenia who are included
in these small-world structures and are more oriented to parochial scientific
reports or publications in Slovene. Consistent with this, they publish less
in the international peer-reviewed journals than the sociologists outside this
small-world structure. The results of these empirical analyses of Slovenian
sociologists suggest that the presence of a too ‘closed’ and dense co-authorship
network in science can have negative effects on the international orientations
of scientists in a small scientific community. This implies that, for scientific
performance and scientific excellence, it is much more important to have
‘open’ networks that have many structural holes (gaps between actors that
create opportunities for brokerage). This is especially important for linking
micro-level interactions (cooperation inside internal scientific organizations) to
macro-level patterns (cooperation in the international scientific community).
Burt provided evidence suggesting that new ideas in society emerge from
selection and synthesis processes that operate across structural holes between
groups. Positive performance evaluations and good ideas are disproportionately
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in the hands of people whose networks span structural holes. The ‘between-
group brokers’ are more likely to have ideas viewed as valuable (Burt), |2004])
within the community.

The preferential attachment model

The scale-free network structure, in one version or another, corresponds fairly
closely to the sociological model of cumulative advantage in science. The
first systematic representation of this model was provided by Merton, (1973]).
Following Merton, there was a research stream in the literature that invoked
the idea of cumulative advantage as a central explanatory principle for the
social stratification of science. Merton’s studies were concerned with both
organizational and functional aspects of science as an institution capable of
self-regulation. This approach found its most significant (or at least most
famous) expression in the description of the normative structure of science.
Merton focused his attention on four institutional imperatives: universalism,
communism, disinterestedness, and organized skepticism. Merton and other
scholars working within institutional approaches (including Barber, Zucker-
man, and Hagstrom) analyzed how norms regulate scientific activity. They
studied the ways in which resources and rewards (including scientific prestige
and opportunities to publish) are assigned and distributed within the scientific
community (see, for example, [Matthew, [2005; Bucchi, [2004)).

The idea of cumulative advantages comes from the passage in Matthew’s
Gospel: “For unto every one that hath shall be given, and he shall have
abundance: but from him that hath not shall be taken away even that which
he hath." (Hence the term “the Matthew effect.”) Translating the idea of
cumulative advantage in science implies that those scientists who already
occupy a position of excellence are rewarded far more than others in their
field. Scientists who are rich in recognition find it easier to obtain additional
recognition. In contrast, scientists who receive little recognition for their
research efforts have reduced chances for future recognition. Merton argued
that cumulative advantage is a primary mechanism in modern science for the
creation of scientific stars[f]

A more quantitative and bibliometric basis for assessing the phenomenon of
unequal distribution of publications (in connection with the unequal distri-

6 Merton and his sociological followers (see |Allison et al, |1982; |Cole and Cole, [1973) have
analyzed several other similar mechanisms with regard to science networks, collaboration
structures, and recognition in science:
1. The “halo effect” in science denotes the advantage of scientists in more favorable
institutional locations;

2. The “Matilda effect” points to the discrimination against the participation of women
in scientific activity;
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bution of awards) in modern science has been provided also by Price (1976;
1963)) in the form of his measure of scientific productivity. According to Price’s
law of scientific productivity, “..half of the scientific papers published in a
given sector are signed by the square root of the total number of scientific
authors in that field” (Price} [1963, pp. 67). This means that a relatively small
number of highly productive researchers are responsible for most scientific
publications. Price’s law is founded on the same probabilistic basis as the
earlier established Lotka Lawm the Bradford LaWEI and Pareto and Zipﬂ
distributions.

Both Price’s law and the Matthew effect depict the scientific community
as a structure characterized by marked inequality and a heavily pyramidal
distribution of scientific rewards and publications. They are linked by the
principle of preferential attachment which contains, for the case of scientific
co-authorship networks, two generic aspects: (1) the continuous addition of
new vertices into the network system and (2) preferential connectivity of
new vertices. It means that a common feature of the models of scientific
co-authorship networks, based on the rationale of preferential attachment,
continuously expands by the addition of new vertices that are connected to
the vertices already present in the networks. Additionally, in these models
a new actor is, at best, most likely to be cast in a supporting role with
more established and better-known actors. Further, no scientific field expands
with an endless growth of new vertices but is constrained by the operation
of feedback eﬁ’ectsm It follows that there exist nodes, called “hubs” or

3. The “gatekeeper” labels those scientists who can influence the distribution of resources
such as research funds, teaching positions, or publishing opportunities because they
occupy key decision-making positions within scientific institutions;

4. The idea of an “invisible college” was introduced on the basis of a seventeenth
century expression denoting informal communities of researchers that cluster around
specific projects or a research theme and that often turn out to be more influential
in terms of knowledge production than formal communities (departments, research
centers, scientific committees).

7 Lotka’s law states: The number of authors making n contributions is about 1/na of
those making one contribution, where a is often about 2.

8 Bradford’s law states: Journals in a field can be divided into three parts: 1) a core of a
few journals, 2) a second zone, with more journals, and 3) a third zone, with the bulk of
journals. The number of journals in these three parts is 1:n :n2.

9 Zipf’s law states: The probability of occurrence of words or other items starts high
and tapers off. Thus, a few occur very often while many others occur rarely. The formal
definition is: P, ~ 1/n®, where P, is the frequency of occurrence of the n*? ranked item
and a is close to 1.

10 Berg (Berg, [2004} pp. 54) points out that “the effect of the positive feed-backs, namely,
the advantages of old nodes against new ones as well as the attractiveness of the already
networked nodes for newly added ones are leading to the growth of networks based
on the preferential attachment”, (“...doch in einem bestimmten Bereich sind positiven
Rueckkopplungen feststellbar. Beide Effekte zusammen, der Vorteil, den alte Knoten
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“Angelpunkten oder Naben” (Berg, 2004, pp. 53), that acquire more links
than another nodes. In such types of networks, preferential attachment and
the system feedback dynamics play very important roles.

Crane, (1972) provided an analysis of (global) scientific networks where informal
members of scientific elites (in Moody’s terminology, scientific stars) through
whom the communication of scientific information both within scientific
disciplines and across scientific disciplines is directed have the position of
“hubs”. Namely, they are central scientists in the network from where the
information is transferred to all other scientists in the network. They also
communicate intensively with each other. The idea of scientific networks with
hubs can be used as a starting point to relate micro-level interactions (for
example, in a local/national scientific community) to macro-level patterns (for
example, the global scientific community). Through the informal groups of
scientific elites, the small-scale interactions become translated into large-scale
patterns. These large-scale patterns (international science) also have feedback
effects on small groups (parochial/national science). The production and
diffusion of the most creative and excellent scientific ideas in the world arise
from the brokered networks (Granovetter} 1973, pp.1360).

Albert and Barabdsi| (2001]) provide examples of many real-world networks
whose degree distributions are far from a Poisson distribution. They showed
that distributions can be approximated with a power-law function. They
proposed a new evolving network model - PA or preferential attachment
model (Barabési and Albert| [1999). The model was presented as one that
“shifts from modeling network topology to modeling the network assembly
and evolution" (Albert and Barabési, 2001). The idea behind the model was
to capture the construction (development) of a network that could possibly
explain the large number of observed power-law degree distributions in real
networks. Before, there existed mostly network models with a fixed number
of vertices among which links were added according to a particular procedure
(process). Since real networks typically grow with the addition of new links
and vertices that are not added randomly, Albert and Barabasi included the
following ideas in their model:

The algorithmic statement of their model, given a set of vertices in a network,
consists of the following two processes in a sequence of steps:

e At every time step, a new vertex v is added to the network.

e myp, edges are created from the new vertex v to the vertices that are
already in the network. These vertices are chosen with a probability
proportional to their current degree. The probability of choosing vertex u

gegenueber neuen haben sowie die Attraktivitaet besonders vernetzter Knoten fuer neu
hinzukommende, fuehren dazu, dass das Wachstum des Netzes einer bevorzugehenden
Verbindungswahl folgt.")
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can be written by ku/);k; (where ky represents the current degree of
vertex u).

After ¢ time steps, there are t 4 mg vertices in the network (where mg denotes
the number of vertices at the beginning of the process) and tmy, edges. It was
first shown with simulations that the degree distribution of the whole network
resulting from the operation of this model follows a power-law distribution
with an exponent v = 3.

Such scale-free networks as these generated through the principle of preferential
attachment, in addition to not having a Poisson distribution of links around
nodes, also have the interesting property of being very resistant to random
attack. Almost 80% of the links can be cut before a scale-free network is
destroyed, while the corresponding percentage for an exponential network is
less than 20%.

Many generalizations about preferential attachment models have been made
(Albert and Barabasi, [2001; |Newman, [2003). Systematic divergence from
the power-law distribution at small degrees can be seen in many real-world
networks. Therefore, Pennock et al (2002) proposed incorporating a mixture
(weighted addition) of preferential attachment and random attachment in the
model. A further refinement of this model, where a directed version of the
model was taken into account, is implemented in Pajek (Batagelj and Mrvar,
2010)). There, at each step of the growth a new vertex is selected according to
its weighted in-/outdegree and some uniform attachment.

Another generalization about both small-world and preferential attachment,
developed for two-mode networks, comes from |Latapy et al (2008) who present
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a nice overview of method developments for two-mode networks. |Opsahl
(2010) provides another attempt to overcome the issues of higher clustering
coefficients in projections of two-mode to one-mode networks by redefining
both the global and local clustering coeflicients so that they can be calculated
directly for two-mode structures.

Applications featuring co-authorship networks

Newman| (2001) showed that collaboration networks form small-worlds in
which randomly chosen pairs of scientists are typically separated by only a
short path of intermediate acquaintances. He further provided information on
the distribution of the number of collaborators, demonstrated the presence of
clustering in the networks, and highlighted the number of apparent differences
in the patterns of collaboration between fields. Also, Newman| (2004)) used data
from three bibliographic databases for biology, physics, and mathematics to
construct networks in which the nodes were scientists. He used these networks
to answer a broad variety of questions about collaboration patterns, how
many papers did authors write and with how many people, what is the typical
distance between scientists through the network, and how do patterns of
collaboration vary between subjects and over time.

Barabasi et al (2002) analyzed co-authorship data from electronic databases
containing all relevant journals in mathematics and neuroscience for the period
between 1991 and 1998. They found that network evolution is governed by
preferential attachment. However, contrary to their predictions, the average
degree in the networks they analyzed increased, and the node separation
decreased in time. They also proposed a model that captured the network’s
time evolution.

Moody| (2004) made an important contribution by identifying several types
of individual scientific collaboration behavior that leads to the development
of co-authorship networks that resemble networks generated according to
the principles of small-world and preferential attachment. Recently, several
articles that test the principles of small-world and preferential attachment
have been published. Some are based on local databases like the Slovenian
COBISS (Mali et al, |2010), while others use general databases like Web of
Science (Perc, |2010; \Wagner and Leydesdorfl, [2005; [ Tomassini and Luthi,
2007).
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6.4.4.2 Developments of Models for Longitudinal Network Data

After the pioneering work of Erdos and Rényi on random graphs, and after
the first applications of graph theory appeared in the sociological community
(de Sola Pool and Kochenl [1978]), one group within the scientific community
moved away from the idea of merely reproducing some global properties of
“real-world" network properties. Instead, they focused on an approach designed
to include micro-mechanisms that generate local changes in networks that
also help account for the macro-structure of networks. Moreover, these efforts
were designed to treat the micro-mechanisms as hypotheses that could be
evaluated through statistical inference. The basics for these models of network
change are (as already mentioned in the previous section) random graphs
and random graph processes which incorporate the probalistic uncertainty
into the models. Uncertainty is present because there are many potential
generators for observed graph structures, including co-authorship. From a
methodological perspective, modeling the dynamics in social networks led to
several obstacles. Probably the most persistent one was the interdependencies
of the units comprising the networks. This problem remained untouched for
almost 20 years. Indepth overview of approaches and methods to modeling
network changes in time can be found in |Frank| (1991)), |Snijders (1996)), and
Snijders et al (2010).

There are two distinct approaches to modeling network changes in time: models
that implement change in discrete time steps, and more advanced models
where time is modeled by continuous flows. Success in modeling change in
social networks began in [1959| when Katz and Proctor showed that change in
preferences for making ties in the network could be represented by a stationary,
discrete-time Markov model. Of course, they assumed the independence of
dyads within which all the modeling took place. In|1981] Holland and Leinhardt
published a very influential article on log-linear models of network change
which initiated a vigorous research stream devoted to the development of a
broad class of models. One basic model, called p;, was developed by [Fienberg
and Wasserman| (1981)) and [Wasserman and Weaver| (1985). Authors also
provided efficient algorithms to find the maximum-likelihood estimators of
parameters defining appropriate probability functions. Fienberg et al| (1985)
showed how to handle social network data with the Holland-Leinhardt model
and its extensions in contingency tables by using basic log-linear models. The
longitudinal dimension to the log-linear approach was added by |[Wasserman
(1987) and Wasserman and Iacobucci| (1988]).

Conditionally uniform models (Holland and Leinhardt, [1975]) are ogten used
for modeling directed graphs where the probability distribution for forming
new ties is uniform, conditional upon a certain set of attributes. In these
models, the conditional statistics are defined by attribute variables and contain
the most relevant effects of the studied phenomena, while the rest is explained



6 Dynamic scientific co-authorship networks 241

by random factors. Conditionally uniform models become very complicated
when more informative conditioning on attribute variables is included into
the model. Such models for longitudinal binary network data at 2 time points—
conditional upon the entire network at the first time point, and upon the
numbers of newly formed and dissolved ties for each actor—were developed
by [Snijders| (1990]). The idea of conditioning the changes in the network on
the first measured network resolves most of the unexplained factors that
determined the development of network before its first measurement.

Modeling changes in continuous time with Markov chains was adapted by
Coleman| (1964) to tackle some classical sociological problems. [Holland and
Leinhardt| (1977) extended this idea to model networks of interpersonal affect
between actors. They developed a valued Markov chain approach to model
the process by which social structure based on affect influenced individual
behavior.

The basic assumptions underlying the use of the continuous time Markov
chain model are:

1. Between the observation moments, time runs continuously. Changes can
be made (but are likely to be unobserved) at any moment, t;

2. The network X(t) is the outcome of a Markov process; and

3. At each single moment, only one relational tie or variable attribute may
change.

Wasserman| (1978, [1980blfal) continued this approach and provided estimators
for parameters of various models. He started with a simple model of reciprocity
in directed graphs, but without complicated dependencies between ties such
as those generated by transitive closure.

The breakthrough in modeling the dynamics in social networks was the
relaxation of the assumption of conditional independence between dyads
(Mayer, 1984). This was an important step since most sociological theories
assume at least some kind of dependence structure between dyads. Another
important step came in the form of dropping the stationarity assumption
(Leenders, [1995). Leenders also developed a mechanism to allow changing rates
for all dyads to be dependent on arbitrary covariates, with the assumption
that these remain constant between the observations.

In recent years, these models became known as stochastic actor-oriented
models which have been developed to consider a variety of micro-mechanisms
for generating network structure. These models are based on an assumption
that each actor has his/her own goals which he/she tries to advance in
accordance with his/her constraints and possibilities. [Snijders| (1995) referred
to this approach as ‘methodological individualism’ where the driving force
behind the network dynamics comes in the form of actions by actors.
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Each attempt to model specific sociological problems or theories produced
a new mathematical model that filled the gaps along the way to obtaining
a better representation of reality. Yet an important feature still had to be
addresed because most of these models lacked an explicit estimation theory.

The first models addresed some basic questions. A baseline of development
can be followed through the work of several authors. |[Jackson and Wolinsky
(1996)) presented a model where the benefits and costs of ties affected the
evolutionary trajectories of networks and the form of equilibrium structures.
Hummon| (2000) constructed actor-oriented simulation models of ‘Jackson and
Wolinsky actors’ to study temporal network dynamics. He specified choices
under four combinations of tie formation and deletion rules: unilateral and
mutual tie formation, and unilateral and mutual tie deletion. This process
generated eight types of networks: Null, near-Null, Star, near-Star, Shared,
near-Shared, Complete and near-Complete as equilibrium structures. |[Doreian
(2006)) provided a formal proof via exhaustive examinations of the structures
identified by Hummon (but only for tiny networks), and this line of work was
extended by Xie and Cui| (2008ayb). In another line of development, Marsili
et al (2004) presented a simple model using the creation of links to friends of
friends, a mechanism that was introduced by [Vazquez| (2003) in the context
of growing networks. This model is similar to the one proposed by [Davidsen
et al (2002) which explained the emergence of the small-world property in
some social networks.

In the model of [Skyrms and Pemantle| (2000), individual agents begin to
interact at random, with the interactions modeled as games. The game payoffs
determine which interactions are reinforced, and network structures emerge
as a consequence of the dynamics of the agents’ learning behavior.

More complex network dynamic models with larger but still quite restricted
numbers of tendencies were presented by |Jin et al (2001). They propose
some simple models for the growth of social networks based on three general
principles: i) meetings take place between pairs of individuals at a rate
that is high if a pair has one or more mutual friends and low otherwise; ii)
acquaintances between pairs of individuals who rarely meet decay over time;
iii) there is an upper limit on the number of friendships an individual can
maintain. Their models incorporate all of these principles and reproduce many
of the features of real social networks, including high levels of clustering or
network transitivity and strong community structure in which individuals have
more links to others within their community than they have to individuals
from other communities. The important feature of their models is the inclusion
of a time scale on which people make and break social connections.
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Simulation Investigation for Empirical Network Analysis - STIENA

The problem of inference in modeling dynamics of social networks on the
basis of the observed longitudinal data was addressed by |Snijders| (1996]) and
extended further by |Snijders et all (2010). These models are based on longitud-
inal data and include representations of network dynamics as being driven by
many different tendencies. These include micro-mechanisms, which have been
theoretically derived and/or empirically established in earlier research, and
which may well operate simultaneously. One of the most important character-
istics of these models is the evaluation of their results within the paradigm of
statistical inference, which makes them suitable for testing hypotheses and
estimating tendencies that drive tie formation and dissolution at the level of
individual units using reciprocity, transitivity, homophily, etc.

The model assumptions are:

e The model is basically defined for directed relations. In the case of un-
directed networks (e.g., co-authorship networks) the tie formation is
additionally modeled using different mechanisms (e.g., a unilateral forcing
model, unilateral initiative, and reciprocal confirmation, etc.)

e The network is observed in 2 or more discrete timepoints. But the under-
lying time parameter in the model is continuous.

e Changes in the network are outcomes of a Markov process, which means
that the change in the network from one state in time point ¢; to new
state in time point ¢;41 is conditioned only to the state of the network in
time point ¢;. The process does not take into account any other historical
events.

e The actors control their ties, which means that changes in ties are made
by actors who send the tie on the basis of their and others’ attributes,
their position in the network, and their perceptions about the rest of the
network. Regarding the last, it is assumed that actors have full information
about the network and the other actors.

e At any given moment, only one probabilistically selected actor may get
the oportunity to change only one tie.

The actor-based process is decomposed into two stochastic sub-processes:

1. The change-opportunity process models the frequency of the tie changes
by actors. The opportunity to change the tie depends on the network
locations of the actor (e.g., his or her centrality) and on actor covariates
(e.g., gender or age).

2. The change-determination process models the change of the tie when
an actor gets an opportunity to make a change. The change of the tie
can be made with equal probabilities or with probabilities depending on
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attributes or network positions. Percieved attributes and position (the
environment) of the actor is included into the actor’s objective function,
which expresses how likely it is for the actor to change his or her network
environment in specific way (i.e., initiate, withdraw tie, or keep the present
situation).

To use this model with observed data means that parameters have to be
estimated by some statistical procedure. Since the model is too complicated
for clasical estimation methods such as maximum likelihood, Snijders (Snijders,
1996/, |2001)) proposed a procedure using the method of moments implemented
by a computer simulation of the network change process. The procedure he
proposed uses the first observation of the network as the (unmodeled) starting
point of the simulations. This implies the estimation procedure is conditioned
on the first observed network of a series of observations of that network.

The limitation of such models is that they are limited to a predetermined and
rather small number of actors (between 100 and 200 actors) and do not directly
consider the mechanisms of network growth. The methods and algorithms
developed by |Snijders et al (2008) are implemented in the computer package
SIENA.

Stochastic actor-based modeling of network dynamics was initially developed
for modeling the change in directed networks. The undirected networks such
as co-authorship networks are a special case where reciprocity cannot be
used as a mechanism of network change. Although several articles have
been published using SIENA models, to our knowledge, only [Kronegger
et all (2011b) dealt with undirected networks to study the dynamics of co-
authorship networks of Slovenian researchers working in physics, mathematics,
biotechnology, and sociology in the time period from 1991 to 2005. In their
study, they operationalized the modeling of global network parameters used
in the preferential attachment and the small-world models with stochastic
actor-oriented modeling.

6.5 Summary

Access to bibliographic databases and the availability of powerful quantitative
social network approaches increased the number of studies of co-authorship
networks in different scientific fields. There are several classification schemes
for analytical approaches to analyzing the dynamics of co-authorship networks.
We decided to classify them according to the types of models. The first type of
model provides the basic analysis of whole co-authorship network properties.
Such network characteristics are degrees, clustering coefficients, and density.
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The usual statistical approach used in these models is time-series analysis of
listed properties.

Deterministic models (the second type) and stochastic models (the third
type) are usually used to analyze actor-based co-authorship networks and
attribute characteristics. To study the structure within the co-authorship
networks, blockmodeling approaches are recommended. To model dynamic
co-authorship networks, several approaches can be used according to the
chosen level of analysis. Models on the macro level (whole network level)
were mostly developed by mathematicians and physicists. These are models
of "real-world” networks, small-world models, and preferential attachment
models. The alternative stochastic actor-based model (implemented in STENA)
was developed by social scientists and statisticians. This model focuses on
single units and on dyads. This powerful model studies network change in
time as the result of micro-mechanisms for generating the network structure.

There are several indicators that show a huge development of analytical
approaches to studying social networks through time. The powerful stochastic
actor-based networking model has one disadvantage in that it can only be
used to analyze a few hundred units in the network. Therefore, there is a need
for similar models to analyze large networks.

Take away box

Modeling of co-authorship networks can be approached interms of the
different perspectives and goals that have been outlined in this chapter.
As a partial summary, the following items are important:

1. Level of the analysis: the macro level (whole network) or the micro
level (unit). Which one is used depends on the goal(s) of the study.
There are the following three variants:

a. Describing the topology of the macro structure;
b. Understanding the micro-level changes at the actor level; and

c. Coupling the micro-level processes to the generation of the net-
work’s macro structure.

2. Size of the network: some models can process only a limited number of
units (e.g. stochastic actor-based modeling and direct blockmodeling),
while others can handle large networks (e.g., preferential attachment,
the small-world model, and indirect blockmodeling).

3. Discrete-time models (e.g., blockmodeling) or continuous-time models
(e.g., stochastic actor based modeling).

4. The analysis of he evolution of co-authorship networks only (e.g.,
small-world model, preferential attachment, blockmodel) or includ-
ing external characteristic of network (e.g., scientific field) and/or
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actor attributes (e.g., age or gender of researcher) using modeling
appraoches (e.g., stochastic actor based modeling).

5. Needs of graphical representation of co-authorship network evolu-
tion (e.g., preferential attachment, blockmodeling, multidimensional
scaling).
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