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a b s t r a c t

Structural balance theory has proven useful for delineating the blockmodel structure of signed social
networks. Even so, most of the observed signed networks are not perfectly balanced. One possibility for
this is that in examining the dynamics underlying the generation of signed social networks, insufficient
attention has been given to other processes and features of signed networks. These include: actors who
have positive ties to pairs of actors linked by a negative relation or who belong to two mutually hostile
subgroups; some actors that are viewed positively across the network despite the presence of negative
ties and subsets of actors with negative ties towards each other. We suggest that instead viewing these
situations as violations of structural balance, they can be seen as belonging to other relevant processes
we call mediation, differential popularity and internal subgroup hostility. Formalizing these ideas leads to

the relaxed structural balance blockmodel as a proper generalization of structural balance blockmodels.
Some formal properties concerning the relation between these two models are presented along with the
properties of the fitting method proposed for the new blockmodel type. The new method is applied to
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. Introduction

Some social relations are signed in the sense of having ties
etween actors that can be positive or negative. Examples include

ike/dislike and respect/disrespect for people. Analyses of the
etwork structure of signed relations have to accommodate the
dditional information contained in the negative part of the signed
ies. Structural balance theory, one variant of ‘consistency’ theo-
ies, has its origins in the work of Heider (1946). Cartwright and
arary (1956) then formalized Heider’s formulation and provided

he foundation for discerning the overall structure of a network of
igned ties. This structure for a ‘balanced’ network is given by the
rst structure theorem described below. A generalization proposed
y Davis (1967) leads to the second structure theorem. However, for
ost observed signed structures for social groups, exact structural

alance does not hold. Even so, it is still necessary to delineate the

tructure of these groups at points in time. Based on the structure
heorems, Doreian and Mrvar (1996) proposed an empirical method
or establishing the partition structure(s) of a signed relation for
roups that is (are) as close to exact balance as is possible. Their
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improved fits with more nuanced interpretations are obtained.
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ethod was subsumed within the rubric of generalized blockmod-
ling (Doreian et al., 2005). Even though these methods have been
seful, the blockmodel structure discerned may not be appropri-
te for all signed networks for groups. We provide some illustrative
xamples and then broaden the types of blockmodel that can be
pecified and identified for signed networks within the generalized
lockmodeling framework. We then apply this new blockmodel
ype to four real data sets and provide commentary on the new
esults.

. Structural balance theory and partitions

In Cartwright and Harary’s (1956) generalization of Heider’s
1946) formulation, the difference between sentiment (social) rela-
ions and unit formation relations was ignored with attention
onfined, in effect, to signed social relations. Following Doreian
t al. (2005), a binary signed network is an ordered pair, (G, �),
here:

1) G = (U,A) is a digraph, without loops, having a set of units (ver-

tices), U, and a set of arcs, A ⊆ U × U; and

2) � : A → {p, n} is a sign function. The arcs with the sign p are
positive while the arcs with the sign n are negative. Equiv-
alently, consistent with most diagrams of signed networks,
� : A → {+1, −1}.

http://www.sciencedirect.com/science/journal/03788733
http://www.elsevier.com/locate/socnet
mailto:pitpat+@pitt.edu
dx.doi.org/10.1016/j.socnet.2008.08.001
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Table 1
Partitioned signed network matrix for balanced network
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2.3. A third artificial network

Pushing the ‘mediation’ example further, suppose that the medi-
ators see themselves as competitors for performing mediation and
Fig. 1. A balanced signed network with two plus-sets.

For directed valued signed networks, � is defined so that it maps
lements in A to valued positive and negative numbers.

A semiwalk is defined for a signed directed network in the same
ay as they are unsigned graphs. For xi ∈U and aij ∈A, with aij

igned, a semiwalk from x1 to xn is an alternating sequence of units
nd arcs: x1, (a12 or a21), x2, (a23 or a32), . . . , xn−1, (an−1n or ann−1),
n. Units and arcs can be repeated and if all of the arcs point in
he same direction, the semiwalk is a walk. In addition, the sign
f a semiwalk is defined as the product of the signs of the arcs it
ontains. A semiwalk of a signed directed network is positive iff it
ontains an even number of negative arcs and is negative other-
ise. A signed network (G, �) is defined as balanced if every closed

emiwalk is positive.
The first structure theorem is due to Cartwright and Harary:

heorem 1. For a balanced signed network, (G, �), the set of units,
, can be partitioned into two subsets (clusters) so that every positive
rc joins units of the same subset and every negative arc joins units of
ifferent subsets.

Davis (1967) observed that human groups often split into more
han two mutually hostile subgroups and provided a generalization
f Theorem 1. In his re-formulation, a signed network is balanced
clusterable in his terminology) if it contains no closed semiwalk
ith exactly one negative arc. The second structure theorem, due

o Davis, is:

heorem 2. For a balanced signed network (in the sense of Davis),
G, �), the set of units, U, can be partitioned into two or more subsets
clusters) so that every positive arc joins units of the same subset and
very negative arc joins units of different subsets.

Following Davis, we use the term ‘plus-set’ for the clusters of the
tructure theorems and let k denote the number of them. For the
rst structure theorem, k = 2 and for the second theorem k ≥ 2. In
eneral, we refer to the k-balance of a signed network and consider
signed network to be k-balanced if it has a partition structure

onsistent with either structure theorem.
.1. An artificial signed network

Consider the directed signed network shown in Fig. 1 that is con-
istent exactly with the first structure theorem. For clarity, pairs of

i
d

eciprocated arcs are shown as edges with the unreciprocated arcs
eeping their arrow heads showing their direction. The partition of
he vertices is {a–f} and {g–j} with all of the positive arcs contained
ithin the plus-sets and all of the negative arcs linking vertices in
istinct plus-sets. In setting up a blockmodel for a directed signed
etwork, there are two block types. A positive block has only positive
r null ties and a negative block has only negative or null ties. The
lockmodel, based on structural balance theory, specifies positive
locks on the main diagonal and negative blocks off the main diag-
nal. When the Doreian and Mrvar partitioning method, described
elow and implemented in Pajek (Batagelj and Mrvar, 1998)1, is
pplied to the network of Fig. 1 the exact partition is returned and
s shown in Table 1. The block structure of Table 1 is

ositive negative
egative positive

consistent with structural balance. The ellipses and squares of
ig. 1 represent units in their plus-sets.

.2. A second artificial network

One of the empirical predictions of structural balance theory is
hat signed social networks tend towards balance and that balanced
etworks are stable. We leave to one side, for the moment, the issue
hat many empirical networks are not balanced as well as the obser-
ation (Doreian and Krackhardt, 2001) that the simple statement
egarding the tendency towards balance need not hold. While the
dea of a polarized group, such as the one shown in Fig. 1 has some
ppeal regarding balance, there is little or no scope for mediation –
n the sense of having intermediaries positively linked to members
f mutually hostile subgroups – in exactly balanced groups. Sup-
ose that the network of Fig. 1 were modified so that there were
ther actors positively connected to some members in each of the
olarized subgroups. This is shown in Fig. 2 with three additional
roup members, {k, l, m}, that are viewed as potential mediators.
hese additional units are represented by diamonds. Table 2 shows
his partition structure. This network is a signed network and it
s natural to ask how a partitioning approach based on structural
alance alone fares.
1 Note that Pajek is updated regularly and many additional features have been
mplemented since 1998. Also, an introduction to using this program is provided in
e Nooy et al. (2005).
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Fig. 2. A balanced signed network plus mediators.

Table 2
Block structure of a signed network with mediators
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P(C ). The intuition for this is clear. If all of the vertices of
ave only negative ties between them because of this rivalry. The
esulting network is shown in Fig. 3 where (km) and (kl) are nega-
ive edges and (ml) is a negative arc. The matrix of ties is the same
s in Table 2 except all of the ties in the bottom right block are
egative. Again. we can ask how well the usual structural balance
artitioning works with this network. Before examining the issues
aised by the second and third artificial networks, we consider fur-
her the nature of structural balance blockmodels of signed social
etworks.

. Blockmodels of signed social networks

The generalized blockmodeling approach is a direct method
hat analyzes the network data rather than some transformation of
hem. It requires a criterion function that is optimized by a reloca-
ion algorithm. See Doreian et al. (2005) for details of this approach

o delineating network structure. The criterion function for signed
etworks is designed in terms of the structure theorems via a count
f elements that are not consistent with an ideal k-balance parti-
ion. These inconsistencies take the form of negative ties within

t
i
p
e

Fig. 3. A balanced signed network plus mutually hostile mediators.

lus-sets and positive ties between plus-sets. In essence, they form
line index of imbalance Harary et al. (1965). Let N be the total
umber of negative ties within plus-sets and letP be the total num-
er of positive ties between plus-sets. A straightforward criterion
unction is defined as

(C) = N + P

ere, the two types of inconsistencies are treated equally: the cri-
erion function simply counts of all inconsistencies regardless of
heir type. This is the line index of imbalance proposed by Harary
t al. (1965). A slightly more general criterion function is

(C) = ˛N + (1 − ˛)P

here 0 ≤ ˛ ≤ 1. With ˛ = 0.5, the two inconsistencies are equally
eighted. For 0 ≤ ˛ < 0.5, positive inconsistencies are more

mportant and for 0.5 < ˛ ≤ 1, the negative inconsistencies are
onsidered as more consequential than positive ones.

The clustering problem is as follows:

etermine the clustering C* for which
(C∗) = min

C ∈ ˚
P(C)

here C is a clustering of a given set of units U, ˚ is the set of all possible
clusterings and P : ˚ → R is the criterion function.

Finally the relocation method, as a local optimization procedure,
s specified as

etermine the initial clustering C;
epeat:

if in the neighborhood of the current clustering C there exists a clustering C ′

such that P(C ′) < P(C)
then move to clustering C ′

The neighborhood is determined by two transformations: mov-
ng a unit from one cluster to another cluster; and interchanging
wo units between different clusters. This procedure, with ˛ = 0.5,
dentified the unique partition shown in Table 1.

When the value of the criterion function is plotted against k,
he curve has a concave up shape with a unique minimum value,

min
he network are in a single plus-set, all the negative ties will be
nconsistencies. Similarly, if every vertex is a singleton (in its own
lus-set) all the positive ties will be inconsistencies. Between these
xtremes, some combination of the positive and negative ties will
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Table 3
Best structural balance partition with mediators
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Table 4
Best structural balance partition with mutually hostile mediators
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e inconsistencies which will be fewer than for either extreme.
ore formally, Let k be the number of plus-sets in a partition with
≤ k ≤ n. Partitions with k and k + 1 plus-sets are said to be adja-

ent. Doreian et al. (2005) established the following result.

heorem 3. For any signed network, (G, �), there will be a unique
owest value, denoted by P(Cmin), of the criterion function that occurs
or partitions with a single number, k, of plus-sets or for adjacent
artitions.

This implies that a unique minimized value of the criterion func-
ion can be obtained by searching partitions in terms of k and that
t is not necessary to examine partitions for every value of k. This
oes not imply that there is a unique partition with the minimized
alue of P(Cmin).

. Relaxing the structural balance blockmodel

When the signed network shown in Fig. 2 is partitioned accord-
ng to structural balance P(Cmin) = 2.5 for k = 2. With ˛ = 0.5 this
mplies five ties are inconsistent with structural balance. (For k = 3
here are six optimal partitions, each with 4.5 as the value of the
riterion function. From Theorem 3, the unique partition for k = 2
s the best possible partition under structural balance.) The parti-
ion structure is given in Table 3 where the five inconsistent ties
re bolded and italicized. The partition in Table 3 is problematic
ecause it does not reflect the known structure shown in Table 2.
wo of the potential mediators {k, m} have been pulled into one
f the two initial plus-sets while the remaining mediator {l} has
een pulled into the other initial plus-set. This means that, for k
nd m, all of their positive ties to and from vertices of the second
lus-set are now inconsistencies while all of the positive ties from
to members of the other plus-set are inconsistencies relative to
tructural balance2. The partitioning task becomes one of seeking
blockmodel specification that retrieves the known structure of

ig. 2 where the block structure is clear:
ositive negative positive
egative positive positive
ositive positive positive

2 If the potential mediators had been tied to a greater extent to one plus-set or
he other, they would be pulled to that plus-set.

t
t
s
i
n
s
p

This shows why a partition based on structural balance cannot
eturn the known structure of the network because delineating the
tructure of Table 2 requires the presence of positive blocks off the
ain diagonal. Similarly, when the structural balance partitioning

s used for Fig. 3, it does not delineate the known partition. The
est partition is for k = 2 with P(C)= 3.5 for k = 2. With ˛ = 0.5 this

mplies seven inconsistencies with structural balance. This parti-
ion shown in Table 4 is the same but the inconsistencies with
tructural balance differ. The inconsistencies are bolded and ital-
cized and the known block structure

ositive negative positive
egative positive positive
ositive positive negative

is not identified. The departures from structural balance
ncludes the negative diagonal block as well as positive off-diagonal
locks.

There is another structural feature that can be part of a relaxed
alance blockmodel: actors who are viewed positively regardless
f the presence of ‘balance’ effects. If there are three clusters of
ctors, say C1, C2 and C3, with the ties between C1 and C3 mutually
egative, it is possible that the actors in C2 are viewed positively by
ctors in C1 and C3. Such occurrences would appear as a positive
ff-diagonal block.

Our proposal for relaxing the specification of the structural bal-
nce is simple:

Keep the presence of positive and negative blocks in the block-
model;
Remove the specification of positive blocks on the main diagonal
and negative blocks off the main diagonal;
Allow both block types to appear anywhere in the block structure;
and
Continue using the same criterion function, P(C), as for structural
balance partitioning.

We call this the relaxed structural balance blockmodel and apply
he same relocation algorithm to delineate structures as close to
his (new) ideal blockmodel type. If there is an exact partition of a

igned network into positive and negative blocks, where the pos-
tive and negative blocks can be anywhere in the blockmodel, the
etwork is defined as a relaxed balanced network. The networks
hown in Figs. 2 and 3 have relaxed balanced structures. Using this
rocedure with the new type of blockmodel allows us to delin-
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fied incorrectly then the block specific contribution to the criterion
function will include values due to the presence of positive and/or
negative ties in the block. Such blocks will not be labeled as null
blocks.4
P. Doreian, A. Mrvar / So

ate it exactly (without inconsistencies) using Pajek (Batagelj and
rvar, 1998). All analyses reported here were done using Pajek
ersion 1.23.

Unfortunately, using a relaxed balance blockmodel and fitting
t with the same relocation algorithm comes at a price: Theorem 3
o longer holds. Instead of the pattern described by Theorem 3, the
alues of P(C) in relation to k behaves like that the P(C) for structural
quivalence. More formally, let P(Ck) denote the optimal value of
(C) for partitions of the vertices into k clusters.

heorem 4. For establishing optimal partitions of a signed network
hen using the relaxed structural balance blockmodel, the values of
(Ck) decline monotonically as k increases.

roof. Consider an optimal partition with k clusters with P(Ck) =
k. Consider next, an optimal partition with k + 1 clusters that has
een obtained from the k-cluster partition by splitting a cluster of
hat partition. This split induces splits in the blocks for the split
luster. Denote the new criterion function by P(Ck+1) = ck+1. Con-
ider an off-diagonal block split into two sub-blocks. If this was a
egative block split into two negative sub-blocks the same +1’s will
emain inconsistencies and ck+1 = ck. However, if a sub-block of a
egative block is now a positive block then there must be more
1’s than −1’s and the criterion function will drop below ck. Hence
(Ck+1) < P(Ck). Taking both types of change following the split
f a cluster, P(Ck+1) = ck+1 ≤ P(Ck) = ck. A similar argument holds
or a positive block split into two sub-blocks with the role of +1’s
nd −1’s reversed. For the diagonal blocks there will be a split into
our sub-blocks and a similar argument holds for them as for the
ff-diagonal blocks. Suppose that there is an optimal partition into
+ 1 clusters that is not nested inside an optimal partition into
clusters and that, for this partition, P(Ck+1) = dk+1. By the above

rgument, an optimal partition with k clusters can be split to create
partition where P(Ck+1) = ck+1. If dk+1 > ck+1 then the partition

s not optimal. It follows that dk+1 ≤ ck+1. �

.1. Signed dual networks

The dual of signed network (G, �) is defined as a signed network
G, �

′
), on the same set of arcs as (G, �), where the signs of all arcs

ave been reversed. Let aij ∈A. Whenever aij is mapped to +1 under
in (G, �) it is mapped to −1 in (G, �

′
) and whenever aij is mapped

o −1 under � in (G, �) it is mapped to +1 in (G, �
′
).

heorem 5.

1) The signed dual network, (G, �
′
), of a relaxed balanced network,

(G, �), is also a relaxed signed network.
2) If (G, �) is balanced then its signed dual network, (G, �

′
) is not

balanced with the same partition.
3) If (G, �) is relaxed balanced with negative blocks on the diago-

nal and positive blocks off the diagonal, its signed dual, (G, �
′
) is

balanced.

The proof is trivial.

1) In a relaxed balanced (G, �), every block in the blockmodel is
a positive block, a negative block or a null block with the clus-
ters remaining the same. Under the sign reversal each positive

block becomes a negative block, each negative block becomes
a positive block and null blocks are unchanged implying (G, �

′
)

is a relaxed balanced network.
2) With (G, �) balanced, the positive blocks are on the diagonal

and the negative blocks are off the diagonal. Its dual, (G, �
′
),

reverses these locations of block types and cannot be balanced.

i

ˇ
f
c
t
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3) The reversal of signs for (G, �) places the positive blocks on the
diagonal and the negative blocks off the diagonal making (G, �

′
)

a balanced signed network.

One implication of Theorem 5 is that the term ‘plus-set’ does not
pply for relaxed balanced networks. Even so, a balanced network
n the traditional sense will be identified under a relaxed balanced
pecification for a blockmodel and use of the relocation method. In
his sense, relaxed balance is a proper generalization of structural
alance with balanced networks a special case of relaxed balanced
etworks.

.2. Pre-specifying blockmodels for signed networks

Our proposal for relaxing structural balance blockmodels was
ade in the spirit of inductive uses of blockmodeling. Doreian et

l. (2005, pp. 233–235) point out that network analysts often know
ore about the social processes generating structural data and the

lock structures for these data. This leads to a distinction between
nductive and deductive blockmodels. As a result, it is possible to
re-specify blockmodels in terms of the locations of some or all of
he block types in them. Blockmodels for signed networks within
he traditional structural balance approach do have a pre-specified
orm with positive blocks on the main diagonal and negative blocks
ff the main diagonal of a blockmodel. Our proposal to relax struc-
ural balance, as stated, undid this. Pre-specification, together with
eductive use of generalized blockmodeling, can be reinserted into
elaxed balance blockmodels by specifying the locations of some,
r all, the block types. An additional subtlety can be introduced in
he form of null blocks.

In the relaxed balance approach, we can specify the number of
ull blocks as well as their locations on or off the main diagonal. We
an also specify them by their exact location in a blockmodel. It is
till necessary to specify how the criterion function is computed for
ull blocks given that they have neither positive nor negative ties

n them. The contribution of the (i, j) block of a blockmodel to the
alue of the criterion function can be written as min[(1 − ˛)P, ˛N]
or both structural balance and relaxed balance.3 The contribution
or null blocks is defined as (1 − ˛)P + ˛N + ˇ(1 − cicj/n2) where ci

s the number of rows in the null block, cj is the number of columns
f the null block and n is the number of vertices for the whole net-
ork. The size of the null block is included and the ˇ parameter
eights the contribution of the null block inconsistency. If we want

o have null blocks in a blockmodel, it makes sense to pre-specify
heir presence by location. If the block-specific contribution to the
riterion function comes only from ˇ(1 − cicj/n2), then there are
o ties in the block. If this holds over a range of values of ˇ we can
e confident that the null block is genuinely null. We argue than
ull blocks must be completely null as the requirement for includ-

ng a null block in an established blockmodel. Using (1 − cicj/n2)
nsures that, other things equal, larger null blocks will be selected
ather than smaller null blocks. If the empirical null block is speci-
3 Strictly, for structural balance ˛N is calculated for diagonal blocks and (1 − ˛)P
s calculated for off-diagonal blocks.

4 There is a subtle difference with the introduction of null blocks and the term
(1 − cicj/n2). If the null block is genuinely null, there will be a non-zero contribution

or this cell but there will be no contributions to P nor N. The true inconsistency
ount for the cell is 0 for there are no ties in a genuinely null block. For cases like
his we report the true error count and the proof of Theorem 4 is not affected.
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ig. 4. The best balanced partition, k = 4: Newcomb last week data. (For interpreta-
ion of the references to color in the citation of this figure, the reader is referred to
he web version of the article.)

. Applications

.1. The newcomb data (last week)

The Newcomb data (see Nordlie, 1958; Newcomb, 1961) are
ell known and have been analyzed many times. Originally, the
ata were reported with rankings made by 17 men of each other
hile they lived in a pseudo-dormatory at a university. Previously
nknown to each other, these men provided sociometric data that
ere used to study the evolution of network ties over time. Doreian

t al. (2005) report the shift over time in the overall structure lead-
ng to a blockmodel of the signed relation at the last time point

ith one large cluster, one dyad and two singletons. We reconsider
he Newcomb data with the top three ranks converted to positive
hoices and the bottom three ranks converted to negative choices.5

he best partition under structural balance still occurs for k = 4, with
(C) = 8, and is shown in Fig. 4 where the positive ties are shown as
black) squares and the negative ties are shown in (red) diamonds.
ull ties are (white) blank in the display. This representation is a
raphic version of the matrix of relations. The actual partition is
dentical to the one reported by Doreian et al. (2005) even though
here is a change in the coding of negative ties.

The structure of this partition has some obvious features that
nclude: (i) C, J, O and P all pick up most of the negative ties, (ii)
hese four actors have dislike ties among themselves, (iii) there is
vidence of a null diagonal block and (iv) in the rows for C, J, O and
there are negative ties that are alone in columns. This inspection

uggest a blockmodel with the following block pattern
ositive positive positive negative
ositive null positive negative
ositive positive negative negative
ositive negative negative negative

5 This differs from the Doreian et al. (2005) coding where the bottom two choices
ere coded as negative.

T
t
p
w
a
b
b
i

Fig. 5. The best relaxed balanced partition, k= 4: Newcomb last week data.

Using this specification, with a wide range of values for ˇ leads
o the unique partition shown in Fig. 5.

The block structure, as a description of the structure, has appeal-
ng features. The cluster {A, D, F, G, I, L, Q} is made up of actors

hose ties with each other are positive (with one exception) and
end positive ties to actors in two other clusters, {B, M, N} and {E,
, K}. They also receive only positive ties from members of all of

he remaining three clusters. The cluster made up of {C, J, O, P}
eceives only negative ties from members of all of the other clus-
ers, a feature consistent with the partition in Fig. 4. So one feature
dentified in this blockmodel has one cluster of actors receiving only
ositive ties from actors in other clusters. This is shown by three
ff-diagonal blocks in the first column and reflect differential pop-
larity. Another feature is the cluster receiving only negative ties
rom actors not in that cluster. These off-diagonal negative blocks
re consistent with structural balance but the corresponding off-
iagonal positive blocks are not. The members of {C, J, O, P}, with
ne exception, send only negative ties to each other and this neg-
tive diagonal block is a real feature of the block structure. The
embers of {B, M, N} form a null diagonal block. The pattern of

nconsistencies expressed in terms of ties being present where they
hould not be present under a relaxed balance model is, by block,
s follows:

1 1 0
0 1 0
0 0 0
0 0 1

There are only five inconsistencies with the specified model.
heir contributions to the criterion function with ˛= 0.5 amounts
o 2.5, considerably less than the criterion function (8) for the best
artition under traditional structural balance. The diagonal block

ith a single negative tie does satisfy the requirements for a neg-

tive block but it seems it is better described as a weak negative
lock. Apart from this, the relaxed balance blockmodel is much
etter than the blockmodel reached under structural balance and

s readily interpreted.
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Table 5
Nested relaxed balance partitions at T4
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The use of the relaxed balanced partitioning has allowed some
discrimination among members within Young Turks (YT1 and YT2
in Table 6) and within the Loyal Opposition (LO1 and LO2 in Table 6).
For the Loyal Opposition, all of the internal refined blocks are
.2. Reconsidering the Sampson network data

The Sampson (1968) data are among the most studied signed
etwork data sets (see, for example, Breiger et al., 1975; White et
l., 1976; Faust, 1988; Doreian and Mrvar, 1996). Sampson collected
ata on four signed relations – affect, esteem, influence and sanc-
ion – at a first time point (T1) before some members departed
aving finished their studies. Some of the T1 members remained

n the monastery for three subsequent time points (T2, T3, and T4).
hey were joined by a new group of trainee monks prior to T2, the
ime of the second round of sociometric data collection. The consen-
ual view of these data, for T2 through T4, is that the trainee monks
n this monastery formed three broad groups: the Young Turks (who
anted to see liberalizing changes take place in the monastery),

he Outcasts and the Loyal Opposition (who opposed the Young
urks in doctrinal and organizational matters). We have taken the
4 data and summed the affect, esteem and respect relations to
reate a valued signed network6. There is some doubt concerning
he sanctioning relational data due to some monks not sanctioning
ther monks—or not reporting doing so. When these signed data,
hown in Table 5, are partitioned using both the structural balance
odel or the relaxed balance model with k = 3, the same partition

nto three subgroups results. Table 5 is formatted to show the three
roups between the double lines. The Young Turks (YT) are made up
f John Bosco, Mark, Gregory, Winfrid, Hugh, Boniface and Albert.
asil, Amand, Elias and Simplicius make up the Outcasts.7 Finally,
eter, Berthold, Victor, Romuald, Louis, Bonaventure and Ambrose
ake up the Loyal Opposition (LO).
There is one interesting difference between the analyses using
he balance and relaxed balance procedures even though the clus-
ers returned are identical. For structural balance, P(C3) = 31 while
or relaxed structural balance, P(C3) = 27, a better fit. At face value,
his may seem odd given the identical partitions. The ambiguity is

6 Doreian (2008) presents evidence supporting such a multiple indicator approach
or signed networks.

7 See White et al. (1976); Doreian and Mrvar (1996) and Sampson’s ethnographic
escriptions for solid reasons for including Amand among the Outcasts.

T
N

esolved by looking closely at the ties from the Outcasts to mem-
ers of the Young Turks. The sum of the negative ties is 15 while
he sum of the positive ties is 23. Under relaxed balance, this block
s a positive block making the total of 15 contribute to P(C3), while,
or structural balance it must be a negative block so that the sum
f 23 contributes to P(C3). The difference in these counts is 8 and
ith ˛ = 0.5, this accounts for the difference in the values of the

riterion function. If the ties were binarized, then both the count of
he negative ties and positive ties would be 4. Such mixed blocks
re problematic.

Using structural balance, this partition into three plus-sets is
he best that is possible with a criterion function value of 31. From
heorem 4, using the relaxed balance partitioning will create finer
rained partitions with a monotonically declining criterion func-
ion. For k= 4, P(Cmin)= 18, for a unique partition with John Bosco
nd Mark separated from the remaining Young Turks. The rest of
he partitioning unchanged. When k is increased to 5, Bonaventure
nd Ambrose are separated from the others in the Loyal Opposition,
gain with the remaining partitioning unchanged. For five clusters,
(Cmin) = 12.5. The block structure for the nested partitioning of
he data in Table 5 is given in Table 6 where these nested partitions
re shown by using single bars. (The meaning of the parentheses is
iven below.)
able 6
ested relaxed balance partition structure for T4
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Fig. 6. A relaxed balance partitions for the Bales Group.

Table 7
Relaxed balance partition structure for the Bales Group

Positive Null (Positive) Negative Null Positive
Positive Positive (Negative) Negative Positive Positive
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null is not confirmed with a null block in the fitted blockmodel.8 So
three of null blocks were established inductively while the fourth
was established deductively. If there is a series of signed networks
in time, a null block having a sign appear in it from one time point
P. Doreian, A. Mrvar / So

ositive suggesting considerable and consistent internal positive
entiment among all members. While most of the ties within the YT
lock are positive, there are some negative ties, all of which involve
ohn Bosco. Both refined blocks from the Loyal Opposition and the
oung Turks to the Outcasts (Table 6) are negative. Bonaventure and
mbrose differ from the other LO members only by having some
ositive ties with members of the Young Turks. This can be viewed
s an element of mediation as far as the finer grained clusters are
oncerned. Bonaventure and Ambrose send positive ties to some
embers of the YT and to members of the LO. They also receive

nly positive ties from both the YT and the LO, also consistent
ith mediation. Inside the Young Turks, however, there is a neg-

tive refined block on the main diagonal stemming from the strong
egative tie from John Bosco to Mark. In the main, the Young Turks

oined the monastery after T1 while most of the Loyal Opposition
ere holdovers from T1. Mark, present before T1, ranked very low

t T1 and switched allegiance to the new group of trainee monks
ut was not received positively by John Bosco, one of the leaders
f the Young Turks. Allowing negative blocks on the diagonal per-
itted the detection of this internal difference (although this data

et is small enough that this can be done visually in Table 5). Struc-
urally, members of the Outcasts could have played a mediating role
ecause positive ties are sent to YT1 and LO2 but, given their Out-
ast status as described by Sampson and reconfirmed here, their
hances of successful mediation were near zero.

There are some blocks in Table 6 that have a single tie. It would
eem that these blocks are close to being null blocks. As such, they
an be seen as quite ‘fragile’ as blocks with a sign. We did check
his with some supplementary analyses by specifying, in turn, each
f these blocks as null while keeping the rest of the blockmodel.
n each case, the null specification was not confirmed. Recogniz-
ng the single ties in these blocks leads us to enclose the labels in
arentheses in Table 6.

Trainee monks within clusters are not identical in sending ties
ut while further discrimination within blocks is possible the
esulting clusters will be small and the resulting refined blockmodel
ould be too fine grained given this is a small network.

.3. Another binary signed network

Doreian et al. (2005, Chapter 10) report some results for parti-
ions of a signed network obtained by Bales (1970) and re-analyzed
y Schwartz and Sprinzen (1984). After 13 weeks of interaction,
he group members provided data on three social relations, two
f which were positive affect (liking), negative affect (disliking).
hese data are provided in permuted form in Fig. 6. The primary
ntent of Doreian et al. (2005) was a comparison of partitions made
n terms of structural balance and structural equivalence, but they
id report an optimal partition based on structural balance for k = 4
ith P(C4) = 7.0 with ˛ = 0.5. This had one huge plus-set, {A, B, C,

, G, H, I, J, K, L, N, O, P, Q, S, T}, two individuals in plus-set,{D,
}, and two singletons in their own plus-sets, {M} and {F}. This
artition seems unsatisfactory for two reasons. First, the descrip-
ion of the network delineates limited structure. Second, the large
lus-set contains most of the inconsistencies with balance in the
orm of negative ties within the plus-set. Using the relaxed bal-
nced approach for the Sampson data suggests that it could provide
ome finer grain description of the overall structure of this binary
etwork. For k = 6 there exists a unique partition, with null blocks
pecified, with P(C6) = 0.5 (with ˛ = 0.5). It is reported in Fig. 6.
Even though this is another sparse network there is some inter-
sting structural features that were obscured by the traditional
alance partition. Members of the cluster {J, S, T} receive only pos-

tive ties and these ties come from individuals in all of the other
lusters. Being viewed in such a positive fashion is captured by the

s
b

Negative) Positive Positive Null Null Positive
ositive Negative Positive Negative Negative Positive
Positive) (Negative) (Positive) Positive Negative (Positive)

ff-diagonal blocks of received ties. Members of the cluster {A, K,
} receive mainly positive ties from each other and members of

he second and fifth clusters in Fig. 6. Their mutual positive ties
as the further implication that the positive ties they receive from
embers of both {B, C, E, G, N} and {I, M, Q} are not reciprocated

eading to two null blocks in the top panel of Fig. 6. The cluster {F,
, R} receives primarily negative ties (in three negative blocks) and
eceives only positive ties from {J, S, T} for another off-diagonal
ositive block. Also, {F, L, R} has a genuine diagonal null block with
o ties among themselves. The block from {F, L, R} to {I, M, O} is the

ourth genuine null block. For k = 7 there are 14 equally well fitting
artitions that fit with zero inconsistencies that are not considered
urther given their high number.

Fig. 6 shows a lot more discrimination in terms of structure than
id the original partition based on structural balance. The block
tructure is given in Table 7 where the parentheses are used to
ndicate blocks containing just one tie of the specified sign. These
eem perilously close to being null blocks suggesting one potential
odification to include null blocks if their presence is anticipated.
owever they are not null blocks because pre-specifying them as
8 In earlier analyses, a blockmodel was obtained where the (1, 2) block had a
ingle tie. On specifying that block as null, the specification was confirmed and the
lockmodel of Fig. 6 was established.
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Table 8
Relaxed balance partition for the Supreme Court, 2006–2007
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Table 9
Structural balance partition for the Supreme Court, 2006–2007
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o another could be an indication of change starting in the over-
ll block structure. One feature of the partition structure of this
ales group is that positive blocks appear off the main diagonal
nd two negative blocks appear on the main diagonal. Their pres-
nce implies that structural balance is unlikely to detect them, given
heir location in the blockmodel, but the relaxed balance partition-
ng can identify them when they are present.

.4. The U.S. supreme court justices: 2006–2007 term

Our final example is taken from the voting behavior of the nine
ustices on the U.S. Supreme Court for the 2006–2007 term. In dis-
ussions about the splits in the Supreme Court, the unanimous
9–0) decisions are often ignored yet there were 28 of them in the
006–2007 term.9 This tells there are numerous cases where laws
nd lower court decisions, in relation to the U.S. Constitution, where
he legal issues appear clear. When justices disagree it is reason-
ble to ask if there are any systematic patterns in their differences.
ccordingly, we focus on the remaining 46 non-unanimous deci-
ions. The elements in the main diagonal of this data matrix give
he number of votes made by the justices in these decisions. As
oted, justices recuse themselves from particular cases so not all
lements in the diagonal are 46. The off diagonal elements are net
ounts of the number of times justices votes together (if positive)
r the number of times they vote against each other (if negative).
hese count data are shown in Table 8 where the partition shown
omes from the relaxed balance procedure. The value of P(C3) is 7,
nd with ˛ = 0.5, consists of the net seven times Justices Kennedy
nd Stevens voted against each other. This partition is the oft-noted
ivide of the court into a liberal wing and a conservative wing with

ustice Kennedy aligned between them.
When these data are partitioned using structural balance, the

nique optimal partition occurs for k = 2 with P(C3) = 18. (The
elaxed balance partition performs in exactly the same fashion.)

hen k = 3 the optimal value of P(C3) is 85 for traditional struc-
ural balance indicating an extremely poor fit where Justice Stevens
singleton and Justice Kennedy is clustered with the conservative
ing. From Theorem 3, using the relaxed balance method with

= 3 provides the best partition of the joint voting data for the
on-unanimous decisions. The partition into two clusters is shown

n Table 9. With ˛= 0.5, this count represents the times Justice
ennedy votes with members of the liberal wing of the Supreme
ourt. This partition, even though it is consistent with an argument

hat Justice Kennedy belongs to the conservative wing of the court,
s an inferior partition to the one obtained via the relaxed balance
artitioning procedure. It does not take into account the one time
e voted with Justice Ginsberg, the seven time he voted with Justice

9 Some were 8–0 or 7–0 when justices recuse themselves on specific decisions.

b
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outer and the 10 times he voted with Justice Breyer (all in cases
hat were not decided on a unanimous basis).

. Discussion

Partitioning based on structural balance has proven useful for
elineating the structure of signed social networks. While most
bserved signed social networks have not been balanced, in the
ense of having a line index of balance that is non-zero, the
elineated structures have been interpretable. For the few signed
etworks where data have been available over time, a tendency
owards balance has been observed, notably in the Sampson (1968)
ata (Doreian and Mrvar, 1996) where the measure of imbalance
eclined over time. When balance has not been observed, implic-

tly, the assumption has been made that these structures are not
alanced due to a process towards balance not being complete.
oreian and Krackhardt (2001) by considering the Newcomb (1961)
ata over time examined a set of pre-transitive triples, at one time
oint, to see if they were completed at the next time point in a way
hat was consistent with balance. While some did get completed in
his way others did not. Even more puzzling was the presence of
alanced types of triples that decreased in frequency over time and
ome imbalanced types of triples that increased in frequency—all in
he context of an overall movement towards balance in these data.
hey speculated that ‘the structural balance process’ is actually a
et of processes that may compete with each other.

In this paper we have suggested that the balance process –
r a set of such processes – may have more rival processes. They
nclude mediation between mutually hostile plus-sets, differential
opularity and subgroups with internal mutual hostility. These are
ll inconsistent with traditional structural balance. This led us to
ormulate a relaxed structural balance model as a proper gener-
lization of the structural balance model. The reformulation kept
he presence of positive and negative blocks but allowed them to
ppear anywhere in the blockmodel. This amounts to relaxing the
estriction that only positive blocks appear on the main diagonal
nd negative blocks are only off the main diagonal of the block-
odel. This was modified further by allowing prespecification,

specially for null blocks. The same relocation fitting algorithm and
riterion function as for structural balance were retained. Four real
ata sets were then re-analyzed using this new type of blockmodel.

Interesting structure was found in the Newcomb data consid-
red here that could not be identified with traditional structural
alance. There was a cluster of actors who received most of the
egative ties. The negative off-diagonal blocks are consistent with
alance but the diagonal negative block is not. For other actors

here are two columns of positive blocks as these individuals are
iewed positively by the other actors with very few exceptions.
hese columns of off-diagonal positive blocks are a real part of the
igned structure but inconsistent with traditional balance. There is
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lso a genuine diagonal null block, something that is not considered
nder structural balance. For the Sampson data, the well known
artition into the Young Turks, the Loyal Opposition and the Out-
asts was obtained, consistent with structural balance. However,
he relaxed balance model permitted an interpretable refined par-
ition that was nested within the structural balance partition. The
wo rival subgroups are not monolithic and contain subtle varia-
ions regarding the ties between the members of the rival groups.
ome of these take the form of positive blocks off the main diag-
nal and can be interpreted in terms of mediation. There are no
ull blocks in the Sampson data. Viewing the Bales data in terms of
tructural balance led to an unsatisfactory partition with all but four
ctors in a single large plus-set. However, this plus-set has a num-
er of negative ties within it that are inconsistencies with structural
alance. Using the relaxed balance type of blockmodel permitted a
uch finer grained partition that focused on positive ties and neg-

tive ties appearing in separate blocks. Finally, the Supreme Court
ata, for the non-unanimous decisions of the 2006–2007 term were
xamined using both the structural balance blockmodel and the
elaxed structural balance blockmodel. The latter provided a bet-
er partition of these data. In all four empirical examples that were
onsidered here, the relaxed structural balance model had the bet-
er fits compared to the structural balance model.10 The pattern
f the locations of the positive and negative blocks showed why
he former model performed better than the latter. Of course, if
here are empirical data conforming solely with structural balance,
oth models would perform in the same fashion. One is simply a
eneralization of the other and is more flexible as a result. If an ana-
yst has reason to believe that structural balance alone is operative,
hen the structural balance blockmodel assumes a pre-specified
orm (Doreian et al., 2005, Chapter 12) compared to the relaxed
alance blockmodel and is preferred. The traditional structural bal-
nce model can always be pre-specified within the relaxed balance
odel.
There are other approaches to clustering signed network data.

wo (Yang et al., 2004; Bansal et al., 2004) seem of particular rele-
ance. Yang et al. (2004) use a block diagonalization approach with
random walk based heuristic while Bansal et al. (2004) sought

ommunities in signed networks. While the origins of their data
tructures have nothing to do with structural balance as a theo-
etical idea, the partitions that they seek are fully consistent with
tructural balance. However, our generalization of structural bal-
nce has created different possible block configurations of which
he block structure consistent with structural balance is a special
ase. The presence of off-diagonal positive blocks and on-diagonal
egative blocks are not compatible with these other approaches.
or do they consider null blocks. Further, Yang et al. (2004) spec-

fy and require dense positive diagonal blocks11 while we do not.
he data structures considered in these alternative approaches are
uch more dense than the signed data considered here. A final dis-

inction is that the other approaches are designed to be atheoretic
nd are (deliberately) based on ignorance about the data and the pro-

esses generating them.12 As we note here, social network analysts
ften know more about data than ignorance would suggest. Further,
hey often have substantive reasons for analyzing network data and
t seems odd to suspend that knowledge and understanding. One

10 For both models, the same criterion function was used so differences in perfor-
ance are not due to a changes in the criterion function.

11 It is of some interest that when they consider the data sets considered by Doreian
nd Mrvar (1996) they reach the same partitions.
12 Bansal et al. (2004) make this explicit: “Suppose that you are given a set of n
ocuments to cluster into topics. Unfortunately, you have no idea what the ‘topic’

s.”
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irtue claimed for the Yang et al. (2004) approach is that it works
or very large networks where appeals to ignorance have utility
n terms of computational efficiency. However, for most social sci-
nce signed data in social networks the data sets are small. Finally,
ith the relaxed balance model, specific hypotheses about the block

tructure can be tested through use of the criterion function that
e use.

Having the relaxed structural balance blockmodel as a gen-
ralization of the structural balance model provides a way of
elineating the structure of signed social networks that permits
etter fits to the data when there is evidence of polarization,
ediation, differential popularity and subgroup internal hostility

rocesses. Having such better fits also provides some commentary
n the majority of observed cases when structural balance does not
old: there are another processes that can be accommodated with
framework based on a consistency theory for the distribution of

igned social relations. Differential popularity can be represented
y off-diagonal positive blocks and is the outcome of a different
rocess, as can clusters of actors with mutually negative ties. Some
roblems remain. The number of clusters (k) has to be specified or
etermined and it would be useful to have a better way of deter-
ining k. In the context of structural equivalence, null blocks are

mportant (see Arabie et al., 1978 and White et al., 1976 regarding
ull blocks and ‘lean fit’). In a similar fashion, the presence of null
locks in two of the empirical examples considered here suggests
hat formally pre-specifying them in this new type of blockmodel

erits further attention in studying the structure and dynamics of
igned networks.

. Conclusion

We have proposed a generalization of structural balance where
he notion of positive and negative blocks has been retained but
ith the modification that they can appear anywhere in the block-
odel of a signed network. Assuming that structural processes

eave traces found in the network structure, as delineated by blocks,
t is now possible to identify structural features additional to those
mplied by the operation of structural balance processes. Differ-
ntial popularity, differential receipt of negative ties, mediation
locks and actors with mutual negative ties can all be identified.
ecause the measure of imbalance remains the same, as does the

ocal optimization fitting process, the richer identified structure is
ue to the more general conception of the permitted blockmodels.
owever, if a signed network is close to that implied by structural
alance, it will be identified as such. The relaxed structural balance
odel is a genuine generalization of structural balance permitting

he identification of more complex structures.
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