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In the ordinary set-theoretic foundations of mathematics, functions are
defined to be sets of ordered pairs in which no two distinct pairs have the
same first element. Then if x is in the domain of a function f , f(x) is defined
to be the second element of the ordered pair whose first element is x. Thus,
for example, the squaring function on the real numbers would be defined as

f = {(x, x2) : x is a real number},

and f(3) = 32 = 9.
However, there is another way to think of functions: as rules of corre-

spondence. Thinking of the squaring function on the real numbers this way,
we might represent it using the notation

x 7→ x2,

and the evaluation of the function at x = 3 would be written

(x 7→ x2)(3) = 32 = 9.

In fact, this idea occurred in the late 1920s to Alonzo Church, although
instead of x 7→ x2 he wrote

λx . x2,
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and for the evaluation of the function at x = 3 he wrote

(λx . x2)3 = 32 = 9.1

This approach to functions is the basis of the work of both Alonzo Church
(1903-1995) and Haskell Brooks Curry (1900-1982). Both of them set out
to base logic and mathematics on functions instead of on set theory, and
although neither of them achieved the kind of success he first sought, both
of them wound up making major contributions to the foundations of logic
and mathematics. Furthermore, the results of their work have come to be
extremely important in theoretical computer science. The system introduced
by Church is λ-calculus , the system of Curry is combinatory logic.2

For the convenience of readers, a complete description of lambda-calculus
and combinatory logic is given in the Appendix of this article.

A history of both lambda-calculus and combinatory logic appears in this
volume [Cardone and Hindley, 2006]. To avoid unnecessary duplication, I will
follow a systematic rather than a historical order. Although combinatory
logic began earlier than λ-calculus, it is easier to understand combinatory
logic if one already knows λ-calculus. Therefore, I will begin with the latter.

I would like to thank Roger Hindley and Martin Bunder for their helpful
comments and suggestions.

1 Lambda-calculus

1.1 Background of Alonzo Church

Alonzo3 Church was born on June 14, 1903 in Washington D. C. He received
his A.B. at Princeton University in 1924. In later life, he reported that he

1This was not his original notation; his original notation was {λx[x2]}(3) = 32 = 9;
see [Church, 1932]. But the notation given in the text had become standard by
1941 [Church, 1941]. By the way, Church did not write “=” here, but wrote “conv”
for conversion. In this paper, I will write =∗ for an unspecified conversion relation.

2Curry came to use the name “combinatory logic” to refer to both his system, which
he called synthetic combinatory logic, and λ-calculus, but most people now use the name
only for a variant of Curry’s system.

3The material in this section comes from [Enderton, 1995] and from the transcript
of an interview of Church by William Aspray on 17 May 1985, available on the web at
http://libweb.princeton.edu/libraries/firestone/rbsc/finding aids/mathoral/
pmc05.htm.
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was drawn to things of a fundamental nature, and while he was an under-
graduate he published a minor paper about the Lorentz transformation, the
foundation of the special theory of relativity [Church, 1924]. He also caught
the eye of Oswald Veblen, who made important contributions to projective
and differential geometry and topology, and who was interested in founda-
tional issues in the sense of postulate systems for geometry. After Church
graduated, the Department of Mathematics at Princeton gave him a fellow-
ship to go to graduate school. While he was a graduate student, he published
another paper related to foundational matters, [Church, 1925]. He completed
his Ph.D. in 1927 with a dissertation on systems in which the axiom of choice
might be false [Church, 1927].

After finishing his Ph.D., Church spent two years on a National Research
Fellowship, one year at Harvard and another year at Göttingen and Amster-
dam. Then, in 1929, he returned to Princeton to take up a faculty position in
the Department of Mathematics. During this period, he published [Church,
1928], which was related to foundational matters, though not to those which
later led him to introduce lambda-calculus.

1.2 Origins of Lambda-Calculus

Until he completed his Ph.D., Church’s approach to foundational matters
in the above mentioned papers been informal, but while he held his Na-
tional Research Fellowship, in 1928–29, Church began to develop a system of
formal logic that he hoped would be adequate for the foundations of mathe-
matics. He wanted to build a type-free system in which all variables occurred
only bound, and he hoped to avoid contradiction by restricting the law of
excluded middle.4 He included in this system notations for function appli-
cation and abstraction, which had previously appeared in the work of Peano
and Frege [Cardone and Hindley, 2006, §2], but apparently Church was not
then familiar with these works [Cardone and Hindley, 2006, §4.1]. However,

4The idea was that without the law of excluded middle, the existence of the Russell
class R would not imply a contradiction, since it would not be true that R is the sort of
thing which can be an element of R, and without the law of excluded middle it would
be impossible to prove R ∈ R ∨ R 6∈ R. In Church’s system, as in Curry’s, this paradox
would be represented not in terms of classes, but in terms of predicates, so that instead of
the Russell class R, there would be a Russell predicate R, such that RR is equivalent to
∼ (RR). Then, if R is not automatically in the domain of R, one would need RR ∨ ∼ (RR)
to derive the paradox.
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unlike Peano and Frege, Church gave formal rules for them and began to
analyze their consequences in depth. This system was published in [Church,
1932]. His atomic constants were all logical operators, Π for a relative univer-
sality,5 Σ for existence, & for conjunction, ∼ for negation, ι for the definite
article, and A for a kind of abstraction operator. Well-formed formulas were
formed from these atomic constants and variables by means of application
and λ-abstraction, where in the latter, λx . M was well-formed whether or
not x occurred free in M . In addition to his axioms and rules for the log-
ical constants, he had three rules of procedure for abstraction, application,
and substitution: (1) change of bound variables (α-conversion, using mod-
ern terminology); (2) β-contraction, where, in the redex (λx . M)N , x must
occur free in M ; (3) the reverse of 2. There were also two rules for logical
operators:6 (4) for well formed M and N ,

MN ` ΣM,

and 5) For well formed M , N , and P ,

ΠMN, MP ` NP.

The remaining postulates were all axioms. The paper concluded with proofs
of a combination of the deduction and generalization theorems for Π:

1. Let x be a variable occurring free in M , and let ` Σ(λx . M), and let
M ` N . Then if x occurs free in N , then ` Π(λx . M)(λx . N). If x
does not occur free in N , then ` N .

2. If ` ΣM and x does not occur free in N and Mx ` Nx, then ` ΠMN .

3. If ` ΣM and x does not occur free in N and Mx ` N , then ` N .

Church did not have in this paper a general notion of deduction from premises,
only deduction from one premise.

Very soon after writing [Church, 1932], Church discovered that his list of
axioms was contradictory, so in [Church, 1933] he modified it to avoid that

5ΠMN is to be distinguished from (∀x)(Mx ⊃ Nx). The latter requires that MP and
NP be defined for all possible values of P , whereas the former only requires that NP be
defined and true whenever MP is true, so that NP may be undefined if MP is defined
and not true.

6Stated here in modern notation.
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contradiction, discussed the possibility of a consistency proof, derived a large
number of results in the system, discussed the term that represents the Rus-
sell paradox, and ended with his proposal, now well-known, for representing
the natural numbers, here given in modern notation: see Remarks 5 and 6
in Appendix A. In terms of these definitions, Church defined

N ≡ λx . (∀P )(P1 ∧ (∀u)(Pu ⊃ P (σu)) ⊃ Px).

Church noted that the first two Peano axioms and the induction axiom follow
immediately from these definitions.

By this time, Church had two graduate students who later became two of
the leaders of mathematical logic, Steven Cole Kleene (1909–1994) and John
Barkley Rosser (1907–1989). Church set Kleene the problem of studying his
system, especially the theory of natural numbers. Both worked on matters
connected with Church’s formal logic: Kleene, who started first, worked on
the system itself, while Rosser worked on its connection to Curry’s combina-
tory logic.

The first result of these studies was [Kleene, 1934], which showed that
arguments using the intuitive rule of proof by cases could be carried out in
that system. This made possible definition by cases, which Kleene needed for
his dissertation. Kleene modified Church’s system in relatively minor ways,
the most important being that λx . M was to be well-formed only when x
occured free in M . This modification was retained in all later publications
having to do with untyped λ-calculus by Church, Kleene, and Rosser. In this
paper Kleene also published for the first time a definition of combination by
defining I to be λx . x and, following Rosser, J to be λuxyz . ux(uzy) and
then taking combinations to be terms formed from I and J by applications.
Kleene then reproduced a result from Rosser’s as yet unpublished dissertation
that for any term a combination could be found to which the term converts.
He needed this result to show that definitions by cases and proofs by cases
could be carried out in Church’s system. This was the first published result
relating λ-calculus and combinatory logic. (Rosser’s dissertation was later
published as [Rosser, 1935a; Rosser, 1935b]; see § 2.3 below.)

Next came Kleene’s dissertation [Kleene, 1935], which was based on
Church’s definition of natural numbers. Kleene showed that Church’s system
was adequate for the elementary theory of natural numbers by proving the
third and fourth Peano axioms. In the course of doing this, he showed that
a number of (recursive) functions could be represented as λ-terms, including
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functions that Church had not thought could be represented that way. Rosser
had also found some such representations in work that was never published,
and by the fall of 1933, Church began to speculate that every function of
positive integers that can be effectively calculated can be represented as a
λ-term. By early the following year, Church was convinced of what is now
known as “Church’s Thesis.” See [Rosser, 1984, p. 334].

But meanwhile, in late 1934, Kleene and Rosser succeeded in proving that
Church’s system of logic was inconsistent by showing that Richard’s paradox
could be derived in it. [Kleene and Rosser, 1935]. Their proof also applied
to the system of combinatory logic then being developed by Curry (see §2.3
below).

Church, Kleene, and Rosser responded to this inconsistency by extracting
from Church’s system of logic what is now called the pure λ-calculus: the part
of the system involving the formation of λ-terms and the rules for reduction
and conversion. In Church’s Thesis they already had an indication of the
importance of pure λ-calculus, and in the years following the discovery of
the inconsistency, they obtained a number of major results, results which
fully justified treating the pure λ-calculus as a system on its own.

1.3 First Important Results using Pure λ-Calculus

The first result needed to justify the pure λ-calculus was a consistency proof,
and one was published as [Church, 1935]. This result was actually proved
for an extension of the pure λ-calculus which included an axiom, 2 (here
taken as the truth value for “true”), and a new operator δ with axioms to
ensure that δMN = 2 if M and N are in normal form and they differ only
by changes of bound variables and δMN = 1 (here taken as the truth value
for “false”) if M and N are in normal form and are not the same except for
changes of bound variables. Church’s intention was to incorporate logic by
using 2 and 1 as the truth values, and he defined the logical connectives for
negation and conjunction simply as functions on natural numbers and then
defined the logical quantifiers in such a way that when a quantifier formula
is true it converts to 2 but otherwise has no normal form. The consistency
result depended on some results that Church obtained with Rosser and which
were published soon after in [Church and Rosser, 1936]. This latter paper
proved what is now known as the “Church-Rosser Theorem” or “confluence
theorem,” which is now considered basic in term rewriting. It says that if
M �P and M �Q, then there is a term N such that P �N and Q�N . See
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Theorem 5 in Appendix A below.
This was followed by a result of Kleene showing that the functions that

can be represented as λ-terms are precisely those which are recursive in
the Herbrand-Gödel sense [Kleene, 1936b]. This gave important support
to Church’s Thesis, which received additional support a couple of years later
by work of Alan Turing [1936–1937; 1937a; 1937b].

But the most important result derived at this time from pure λ-calculus,
the result for which Church is most famous, is his proof that there are unsolv-
able problems [Church, 1936c]. In this paper, Church proved that there is no
effectively computable procedure (in the form of a recursive function) which
will decide whether or not two given terms convert to each other, and he also
proved that there is no effectively computable procedure that will determine
whether or not a term has a normal form. A Gödel numbering converts these
problems into problems of elementary number theory, and Church ended his
paper by pointing out that his result implies that any formal system which in-
cludes elementary arithmetic and is ω-consistent is undecidable. In [Church,
1936b; Church, 1936a], Church extended this result to the undecidability
of first-order logic. Rosser, in his [1936], showed that the assumption of
ω-consistency is unnecessary, both for Gödel’s incompleteness theorem and
Church’s undecidability result.

There was one more use of λ-calculus made in the 1930s by Church and
Kleene, who showed in their [1936] how to represent some ordinal numbers as
λ-terms. Church discussed this representation and its relation to construc-
tivity in his [1938].

A summary of all results on λ-calculus up to this point appears in [Church,
1941].

After these results were obtained, Church, Kleene, and Rosser gave up on
basing a system of logic on λ-calculus. Kleene moved on to recursive function
theory, starting with [Kleene, 1936a]. When he wrote further on ordinal
notations, he did not deal with representations in λ-calculus [Kleene, 1938;
Kleene, 1944; Kleene, 1955].7 Rosser’s work on combinatory logic will be
taken up in §2.3 below. And Church himself gave up on trying to construct
a type-free logic based on λ-calculus.

7Kleene says in his [1981] that he stopped using λ-calculus as a basis for his work
because of the negative reactions of audiences to his early papers which did use λ-calculus.
The only later paper he wrote that was based in λ-calculus is [Kleene, 1962].
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1.4 Church’s Type Theory

Although he had given up on basing type-free logic on λ-calculus, he did use
λ-calculus as a basis for a system of simple type theory [Church, 1940]. In
this system, the types were defined as in Definition 4 of Appendix B, where
the atomic types were o for propositions and ι for individuals.8 Terms were
allowed in the system only if they could be assigned types by the typing rules
of TAChλ of Definition 5 of Appendix B. The atomic terms included terms
for the boolean logical operators negation and disjunction and also a univer-
sal quantifier for every type and, in addition, a definite descriptions operator
ια(oα) of type (α→ o)→ α for every type α. The axioms and rules were
sufficient to give higher-order classical logic with equality and descriptions,
and there was an axiom which asserted the existence of two distinct indi-
viduals. In the paper, Church proved the Peano postulates using the typed
version of his representation of the natural numbers, and he also proved that
the definition of functions by primitive recursion could be carried out in the
system.

A few years later, Church [1951] used this type theory in formulating a
logic of sense and denotation. And still later, he applied this type theory in
a number of papers including his [1973; 1974; 1989; 1993].

Otherwise, he published nothing further involving λ-calculus.
Leon Henkin [1950] proved Church’s type theory complete. In his [1963],

he gave a formulation in which the only primitive constants are the identity
relations over each type. Peter B. Andrews extended it to include transfinite
types in his [1965], and more recently he has included it in an introductory
textbook, his [1986].

This kind of system has been extended in ways important for theorem
provers and proof development systems. The first such extensions were due
to Per Martin-Löf [1975; 1984] and Jean-Yves Girard [1971; 1972]. Martin-
Löf’s type theory was used by Robert Constable and his team as the basis
for the Nuprl proof development system [Constable and others, 1986], while
the systems of Girard were extended by Coquand and Huet to the calculus
of constructions [Coquand and Huet, 1988], which formed the basis for the
Coq proof assistant.9

For a general overview of typed systems see [Kamareddine et al., 2004].

8But Church wrote ‘(βα)’ for α→ β.
9See http://coq.inria.fr/.
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2 Combinatory Logic

2.1 Background of Haskell Brooks Curry

Haskell10 Brooks Curry was born on September 12, 1900 at Millis, Mas-
sachusetts. His parents ran the School for Expression, now known as Curry
College. Curry entered Harvard University as an undergraduate in 1916,
and originally intended to study medicine. However, when the United States
entered World War I, he changed his major to mathematics. His original mo-
tivation was patriotic: he thought knowing mathematics would enable him
to serve his country in an artillery unit. After his eighteenth birthday, he
joined the Student Army Training Corps, but before he saw any action, the
war ended.

Curry graduated from Harvard with the degree of A.B. in 1920 and began
his graduate work in a program in electrical engineering at the Massachusetts
Institute of Technology that involved working half-time at the General Elec-
tric Company. However, he became dissatisfied with the engineers because
they did not share his interest in why results were true, so after two years
he returned to Harvard University as a student of physics. For the first year
he was in that program, 1922–23, he was a half-time research assistant to
P. W. Bridgeman. He received his M.A. in physics in 1924. He then went
back to mathematics, where he entered a Ph.D. program and was eventually
assigned by George D. Birkhoff a dissertation topic on differential equations.
However, he was becoming increasingly interested in logic, and this led him
eventually to combinatory logic.

2.2 Origins of combinatory logic

Curry’s first look at a work on logic came in May of 1922, when he first
studied [Whitehead and Russell, 1910–1913]. He immediately noticed that
of the two rules of inference in Chapter 1 of that work, the rule of substitu-
tion is substantially more complicated than the rule of modus ponens.11 He

10Much of the information in this section and those which follow comes from my personal
association with Curry. I was his research assistant at the Pennsylvania State University
from 1964–1966, helped him train new assistants at the University of Amsterdam in 1966–
67, finished my doctorate under his direction in 1968, and then became a co-author. I
remained in touch with him for the rest of his life.

11The notes Curry made at the time can be seen on http://www.sadl.uleth.ca under
the title “Works of Haskell Curry.” Search by date for the item of 20 May 1922.
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gradually began to feel a desire to break down the rule of substitution into
simpler rules, and during 1926–1927 this brought him to the combinators I,
B, C, and W12 and the application operation. At that time it was standard
to make underlying assumptions about substitution as part of what Curry
called the “prelogic” of a system, not stated explicitly. Curry felt that it was
important to write these assumptions out formally, so that they could be
analyzed. At this point, he decided that he wanted to work in logic, and so
he abandoned his work in differential equations. However, there was nobody
at Harvard who could supervise a dissertation on this topic.

As a result, for the year 1927–1928, Curry took an instructorship at
Princeton University.13 During that year, he discovered in a library search
that his work had been anticipated by Moses Schönfinkel [1924]. Schönfinkel
had shown that all the combinators could be defined in terms of K and S, and
Curry immediately saw the point of K and incorporated it in his system along
with I, B, C, and W. However, for some years, Curry did not see the point of
replacing I, B, C, and W by S. Curry also noticed that Schönfinkel had taken
equality (conversion) informally, without giving any axioms or rules for it.
Nevertheless, Curry realized that despite Schönfinkel’s work, there was scope
for a dissertation on this subject.

For this purpose, Curry sought the advice of Oswald Veblen. Veblen and
Curry then sought information about Schönfinkel from the topologist Paul
Alexandroff, who was visiting Princeton that year. Alexandroff informed
them that Schönfinkel had returned to the USSR and was in a mental in-
stution, so there was no chance that Curry could work with him. However,
Schönfinkel’s paper was based on a talk he had given to the Göttingen Math-
ematical Society in December of 1920, and there were people there who knew
about this subject: Heinrich Behmann and Paul Bernays.

So Curry decided to go to Göttingen to get his doctorate. He wrote
his first paper, [Curry, 1929], as part of an application for a grant to make
that trip. In this paper, Curry followed Schönfinkel in taking K and S as
basic combinators, application as the operation that formed terms, and =∗
(which Curry then wrote as ‘=’ and thought of as equality) as the only other
primitive, but unlike Schönfinkel he gave formal axioms and rules for his

12See Appendix C for the definitions. Curry’s original notation for these combinators
was I,B, C, and W . Curry first used the sans-serif notation for combinators and other
constants in [Curry and Feys, 1958].

13He just missed Alonzo Church, who had completed his Ph.D. and left to study else-
where for two years. See § 1.1 above.
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system. He called attention to the fact that the reason for the interest in this
system is its combinatory completeness , which says that if X is any term in
which some of the variables x1, x2, . . . , xn occur, then there is a term A, in
which none of these variables occur, such that

Ax1x2 . . . xn =∗ X.

Curry wanted this A to be uniquely determined by X and the variables
x1, x2, . . . , xn, so one of his rules was a generalization of rule (ζ)14: if

Xx1x2 . . . xn =∗ Y x1x2 . . . xn

for variables x1, x2, . . . , xn which do not occur in X or Y , then

X =∗ Y.

However, this rule was too complicated from the point of view of analyzing
the logical rule of substitution into simpler rules, so Curry wanted to find
a set of postulates which would imply this rule. In [Curry, 1929], he gave
axioms that imply this rule in a special case, which he predicted would be
important for the analysis of substitution.

Curry spent the year 1928–1929 in Göttingen completing his disserta-
tion [Curry, 1930]. His official supervisor was David Hilbert, but he actually
worked with Bernays. Church was in Göttingen for half of that year, and
in his later years Curry remembered seeing a manuscript of Church’s with
many occurrences of the symbol ‘λ’, but at the time he had no idea that this
manuscript had any connection with what he was doing. He did not realize
there was a connection until he saw [Church, 1932] a few years later.

The system of [Curry, 1930] is based on the combinators B, C, W, and
K, and had addional atomic terms Q (for logical identity, which here meant
conversion), Π (for the universal quantifier), P (for implication), and Λ (for
conjunction). The term forming operation was application, and formulas
were of the form ‘` X’ for ‘X is provable.’ The axioms included

` Π(W(CQ)),

from which the reflexive law of Q can be proved (using the rules given below)
and axioms from which the generalization of rule (ζ) follows. For example,
the axiom giving the conversion rule for K is

` Q(KXY )X.

14See Appendix A, Remark 1.
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The rules included rules from which it can be proved that Q has all the
properties of equality and weak conversion, and the following logical rules:

Rule Π. ΠX ` XY ,

Rule P. PXY,X ` Y ,

Rule Λ. X, Y ` ΛXY .

For this system, Curry proved combinatory completeness by giving an
algorithm for what he later called bracket abstraction, although at this time
he did not use that notation, and he described his algorithm as defining, for
a combination X in which some of the variables x1, x2, . . . , xn occur, a term
A in which none of those variables occur such that

Ax1x2 . . . xn =∗ X.

The first step is to remove the variables from x1, x2, . . . , xn which do not
occur in X using K and B. The second step is to repeat variables as often as
they occur in X using W and B. Third, the variables must be arranged in
the order in which they occur in X using C and B. And finally, parentheses
that occur in X are inserted using B and I.

Curry also gave a consistency proof for the system he had defined. How-
ever, no logical axioms for Π, P, or Λ were given, and the development of the
logical part of the system was left for the future.

2.3 Early Development of Combinatory Logic

After finishing his dissertation, Curry joined the faculty of the Pennsylvania
State College in September 1929. At first, he was not happy there; he had
been at Harvard and Princeton, and Penn State did not then support re-
search,15 he felt that Penn State was an institution of much lower standing.
However, his choice of logic as a field had cut down his opportunities, and
the Great Depression began that fall, so finding a job elsewhere was out of
the question.

Since Penn State had heavy teaching loads, Curry did not have much
time for research there for the next three years. There was also no support
for graduate students at that time. In fact, Curry’s first graduate student,

15It is very different now.
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Edward Cogan, did not start working with him until 1950. So, unlike Church,
Curry had to continue his development of combinatory logic on his own.

However, he did manage to do some research during his first years. During
the very first year of teaching at Penn State, he published [Curry, 1931], in
which he added postulates for the universal quantifier and proved some of its
properties. But his further research had to wait until he was able to take a
year off from teaching as the result of a National Research Fellowship, which
he started in 1931. The fellowship was originally supposed to be for two
years, from 1931 to 1933. However, after one year, his fellowship for the
second year was cancelled because he had a job to go back to, and many
others did not. Nevertheless, this one year, which he spent at the University
of Chicago, was fruitful for him. He published [Curry, 1932; Curry, 1933;
Curry, 1934a; Curry, 1934b; Curry, 1936] and the abstract [Curry, 1935], all
of which were written or partly written during this year.

Of these, [Curry, 1932] contained a few technical modifications of [Curry,
1930], [Curry, 1933] introduced the notation of bracket abstraction, which
allowed statements using bound variables to occur as abbreviations, and
[Curry, 1934b] extended the logic by introducing axioms for equality and
implication; it included a proof of the Deduction Theorem (equivalent to im-
plication introduction in natural deduction) and the following generalization
of it [Curry, 1934b, Theorem 14]:16 if

A1, A2, . . . , Am ` X,

then there is a proof in which the variables x1, x2, . . . , xn do not occur of

` (∀x1)(∀x2) . . . (∀xn)(A1 ⊃ (A2 ⊃ (. . . (Am ⊃ X) . . .))).

The paper [Curry, 1934a] is an extended abstract of [Curry, 1936], which
Curry had some trouble getting accepted. In these papers, Curry proposed
a theory of predication or functionality, which would now be called a theory
of categories or types.17 These types are predicates, so what is now usually
written as X : α was written by Curry as αX, so that the type, α is the pred-
icate and the term, X is the subject. This is the source of the name of the

16Stated here using modern abbreviations.
17However, the theory of functionality was originally much less restrictive than type

theory. It mentioned types, but it did not use them to define what it meant for a formula
to be “well-formed,” so that Curry originally anticipated allowing untyped terms in the
system. This made it much less restrictive than Church’s simple theory of types [Church,
1940].
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Subject-Reduction Theorem. The main operator of this theory is F, which
is characterized by the rule FαβX, αY ` β(XY ), so FαβX is essentially
equivalent to X : α→ β.18 This means that Fαβ is the type of functions
which map arguments of type α into values in type β. (This does not nec-
essarily mean that α is the domain of such functions, only that this domain
includes α.) Furthermore, subjects and predicates were not completely sepa-
rated in the original theory. In [Curry and Feys, 1958, §10A3], Curry derives
KX(WWW) for an arbitrary term X, and then applies a reduction step to
deduce X, thus proving the full free system of [Curry and Feys, 1958, §10A3]

inconsistent.
Curry had the original idea for functionality in December 1928.19 In-

terestingly, his first notation for Fαβ was Fαβ, but he found this awkward,
and so tried the current notation, [α→ β], before rejecting that and settling
on Fαβ.20 Among the categories Curry wanted in his system is H (origi-
nally called Pr), standing for proposition. Curry intended to use the theory
of functionality to restrict logical postulates to some appropriately defined
(by logical postulates) category of propositions as a means of avoiding any
paradoxes.21

Meanwhile, Rosser published his dissertation [Rosser, 1935a; Rosser,
1935b], in which he presented a system of combinatory logic based on the
combinators I and J. Rosser’s rules for combinator conversion were as follows:

IX ⇔ X,

W (IX) ⇔ WX,

W (JXY ZU) ⇔ W (XY (XUZ)),

where W is an arbitrary term.
One of Rosser’s aims was to eliminate any primitive rules whose conclu-

sions are not uniquely determined by the premises. One such rule is Curry’s
rule for Π, which is ΠX ` XY , since the choice of Y is arbitrary here.

18For Curry, this was roughly equivalent to (∀x)(αx ⊃ β(Xx)), but differed from that
the way Church’s ΠXY differed from (∀x)(Xx ⊃ Y x).

19See T281213A, the first item for December 13, 1928, under Works of Haskell Curry at
http://www.sadl.uleth.ca.

20This became Fαβ in [Curry and Feys, 1958]. See also [Seldin, 2003].
21Curry observed in these papers that there is a term, [x](¬(xx)), which represents

Russell’s paradox (stated in terms of predicates in stead of sets), and he proposed to find
postulates from which it could not be proved that the application of this term to itself is
a proposition. However, it was important for Curry that this term exist in his system.
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Rosser avoided this problem by using Church’s Π, which is characterized by
the rule

ΠXY,XZ ` Y Z.

To get the effect of a universal quantifier, he followed Church in using ΠE,
where E is Church’s E, which is defined by

E ≡ λx . (∃X)(Xx).

2.4 The Paradox of Kleene and Rosser and Curry’s
New Program for Combinatory Logic

Curry’s papers up to this time continued the development of combinatory
logic along the lines he had previously set out, and the abstract [Curry,
1935] had taken him up to the representation of set theory in combinatory
logic. He seemed on the point of showing that combinatory logic could serve
as a foundation for logic and mathematics.

However, Kleene and Rosser proved that Curry’s system of [Curry,
1934b], like that of Church, was inconsistent. Their result appeared in print
in [Kleene and Rosser, 1935], but Curry knew about it before that. He had
been in correspondence with Rosser, who had informed him in December,
193322 that he thought he could prove Church’s system inconsistent. Curry
mentioned in a reply dated December 18, 1933 that he would like to see the
proof of the contradiction Rosser mentioned as soon as possible. In a letter
to Curry postmarked March 2, 1934, Rosser said that he and Kleene had
finished the first draft of a proof that Church’s system is inconsistent. Then
in a joint letter dated November 15, 1934, Kleene and Rosser sent Curry a
manuscript of [Kleene and Rosser, 1935]. The text of their letter began

We are sorry to say that we have a proof of the inconsistency of
your system of formal logic. We are also sorry that we did not
obtain our results in definite form in time to let you know sooner.

Curry’s reply to both of them, dated November 19, 1934, began

Your letter of November 15th enclosing reprint and manuscript
has just been received. You begin by saying that you are sorry

22Rosser did not date the letter, so I am relying on a postmark which is smudged. I
think the date is about December 10, but it might be a few days later.

15



that you have done this dreadful thing. I am afraid that I can not
share your grief. In the first place I do not believe a word of it;–
you are not sorry but you are full of that profound satisfaction
which comes from doing something worth while. In the second
place I have no occasion to feel sorry for myself; for I feel that
whatever advances or deepens our knowledge of the subject to
which I have devoted so much attention advances my interest as
well. Consequently I am not inclined to feel sorry but just the
opposite, and I hasten to congratulate you both.

A little later, he said

. . . you seem to imply that you have refuted my position by show-
ing that my system as you call it is inconsistent. On the contrary
your results are in general agreement with my position and are
in a sense a continuation of my work. You allude for example to
my paper [reference to [Curry, 1934b]]. I proved in that paper
(Theorem 14) that any logical system of a certain type, which
I called an L system had a certain property, say T. As I under-
stand it you have essentially proved that any system having the
property T is “inconsistent”. Very well, that simply means that
any L system is inconsistent, which is a very much stronger result
that (sic) which I had proved. Whether or not you needed my
result in order to establish the stronger one I do not know; but
in any case your result does not contradict mine. The conclusion
is that a consistent system of logic, if any, must be weaker than
an L system which is a positive result of some value.

Curry then went on to point out that the contradiction requires some of the
postulates of his [1934b], and that the systems of his earlier papers, which
did not include these assumptions, might well be consistent.

Thus, whereas Church, Kleene, and Rosser reacted to the inconsistency
by abandoning the attempt to find a type-free formal logic that could serve
as a basis for mathematics, Curry did not. He had already developed a
strategy for dealing with contradictions, namely using a predicate to stand
for “proposition” together with his theory of functionality to restrict the
postulates for the logical operators. The contradiction of Kleene and Rosser
only meant for him that he was required to face this problem earlier than he
had anticipated in the development of the subject.
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The first decision Curry made on learning of the paradox was that he
needed to study it in detail “so as to lay bare its central nerve.”23 The direct
result of this study was [Curry, 1941b], which shows how to derive Richard’s
paradox in a very general setting. Meanwhile, he also published [Curry,
1941c], in which he revised the fundamental postulates of combinatory logic
taking into account some of the ideas of Rosser’s thesis [Rosser, 1935a; Rosser,
1935b]. This was closely followed by [Curry, 1941a], in which he proved the
consistency of a system stronger than that of [Curry, 1930]. Finally, he found
a much simpler contradiction that could be derived under the assumptions
of the Kleene-Rosser paradox in [Curry, 1942b]. This simpler contradiction,
known as Curry’s paradox , can be stated easily as follows: Suppose the
system has an operator P for implication, so that X ⊃ Y is an abbreviation
for PXY . Suppose that the following rules hold, either as primitive rules or
as derived rules:

(Eq) X X =∗ Y
Y,

(⊃E) X ⊃ Y X
Y.

Suppose also that

(PW) (X ⊃ (X ⊃ Y )) ⊃ (X ⊃ Y )24

is provable for arbitrary terms X and Y . Then any term can be proved in
the system. To see this, let Y be any term, and let X ≡ Y(λy.X ⊃ (X ⊃ y)),
where Y is a fixed-point combinator,25 so that X =∗ (X ⊃ (X ⊃ Y )). Then
we can prove Y as follows:

1. (X ⊃ (X ⊃ Y )) ⊃ (X ⊃ Y ) By hypothesis
2. X ⊃ (X ⊃ Y ) By 1 and Rule (Eq)
3. X By 2 and Rule (Eq)
4. X ⊃ Y By 2, 3, and Rule (⊃E)
5. Y By 3, 4, and Rule (⊃E)

23[Curry and Feys, 1958, §8S1].
24This will be provable if, in addition to the above rules, the natural deduction rule (⊃I)

for introducing implication (also known as the Dedution Theorem) is either a primitive
rule or a derived rule.

25See Appendix A.
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Before he discovered this paradox, Curry had assumed that the contradiction
was caused by his postulates for the universal quantifier, but this paradox
made it clear that the problem was the postulates for implication alone.26

Curry’s next step was to set out a program to find type-free systems based
on combinatory logic or λ-calculus that would be consistent. His idea was to
define a restricted class of terms that could represent propositions.

For this purpose, he noted that there are different possible sets of logical
operators that could be taken as primitive.

First, he could use P and Π, as he had done in his early papers. In order
to meet Rosser’s criterion that the conclusion of every primitive rule should
be uniquely determined by the premises, he added a new atomic constant E
with the property that EX is provable for every X. Then he characterized P
and Π by the rules

Rule P. PXY,X ` Y ,

Rule Π. ΠX, EY ` XY .

A second possible set consisted of Church’s Π, which Curry renamed Ξ. Its
characteristic rule is

Rule Ξ. ΞXY,XU ` Y U .

In terms of Ξ, both P and Π can be defined as follows:

P ≡ λxy . Ξ(Kx)(Ky),

Π ≡ ΞE.

(Because Curry accepted the combinator K, he did not need a separate atomic
term for implication the way Church did.) Conversely, Ξ can be defined in
terms of P and Π by

Ξ ≡ λxy . Π(λu . P(xu)(yu)),

or, in a more commonly recognized notation,

Ξ ≡ λxy . (∀u)(xu ⊃ yu).

26For further confirmation of this, see [Seldin, 2000].
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A third set of primitives consisted of just F, which is characterized by the
following rule:

Rule F. FαβX, αU ` β(XU).

Of course, F can be defined in terms of P and Π by

F ≡ λxyz . Π(λu . P(xu)(y(zu))).

or, in the more commonly recognized notation,

F ≡ λxyz . (∀u)(xu ⊃ y(zu)).

Using essentially the same definition, F can be defined in terms of Ξ:

F ≡ λxyz . Ξx(λu . y(zu)).

But Ξ can also be defined in terms of F. In fact, it can be done in two ways.

Ξ ≡ λxy . FxyI,

and
Ξ ≡ λxy . FxIy.

Curry then proposed to study three different classes of systems:

1. F1: systems of functionality , based on the logical operator F and Rule
F,

2. F2: systems of restricted generality based on Ξ and Rule Ξ, and

3. F3: systems of universal generality based on P and Π and Rules P and
Π.

For each kind of system, Curry proposed to find restricted forms of intro-
duction rule(s) corresponding to the characteristic rules read as elimination
rules, in the sense which is standard in natural deduction. Thus, for sys-
tems F1, he wanted to find a class of terms called canonical27 for which he
could prove the following theorem, where lower case Greek letters represent
canonical terms.

27Curry actually called them canonical obs or canobs. This is because he was using the
word ‘ob’ to refer to terms. See Definition 1 of Section §3 below.
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Theorem 1 (Stratification Theorem) If Γ is any set of assumptions,
and Γ, αx ` βX, where the variable x does not occur free in Γ, α, or β,
then Γ ` Fαβ(λx . X).

For systems F2, Curry wanted to define a class of canonical terms from
which he could prove:

Theorem 2 (Deduction Theorem for Ξ) If Γ is any set of assumptions
and Γ, αx ` β, where x does not occur free in Γ or α, then Γ ` Ξα(λx . β).

Similarly, for systems F3, he wanted to define a class of canonical terms
from which he could prove the following two theorems:

Theorem 3 (Deduction Theorem for P) If Γ is any set of assumptions,
and Γ, α ` β, then Γ ` Pαβ.

Theorem 4 (Universal Generalization) If Γ is any set of assumptions,
and Γ ` α, where x does not occur free in Γ, then Γ ` Π(λx . α).

Of course, Curry wanted consistency proofs for all these systems. To
obtain them, he proposed to use systems like those of Gentzen and prove
results corresponding to the Cut Elimination Theorem [Gentzen, 1934].28

In his earlier versions of the above systems, the axioms of each system
were presented as axiom schemes. But Curry was also interested in replac-
ing these schemes by single axioms. This meant incorporating the definition
of canonical terms into the logic using a new atomic constant H to indi-
cate canonicalness. For each kind of system Fi, Curry wanted to define a
corresponding finitely axiomatized system F∗

i .
Then the United States entered World War II. For a combination of pa-

triotic and financial reasons, Curry took a leave of absence from Penn State
starting in June, 1942, in order to do applied mathematics for the U. S. gov-
ernment. Before going, he wrote up his current research results and published
them as [Curry, 1942a; Curry, 1942c].

Just before his leave of absence began, he finally came to understand
the role of the combinator S after reading [Rosser, 1942]. Rosser had based
his postulates on his favorite combinators, I and J. But most important for
Curry’s understanding of S, Rosser had defined abstraction by induction on

28See Section §3 below.
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the structure of the term. When Curry translated Rosser’s postulates into
the more usual combinators, he finally saw that S could be used in a very
elegant definition of bracket abstraction (see Appendix C). Because Curry
was about to leave Penn State for his war effort, he was unable to write this
up as a paper, so he sent his notes to Rosser.

Actually, the idea of defining abstraction by a direct induction was not
really due to Rosser. The definition in [Rosser, 1942] had originally been
given by Church for combinations in λ-calculus in [Church, 1935, §3] and
in [Church, 1941, Chapter IV]. But it was [Rosser, 1942] that stimulated
Curry to see how to use S.

2.5 Curry’s War Work and Combinatory Logic

Most of the work Curry did during World War II was unrelated to combina-
tory logic. The greater part of it was on the fire control problem, which is
the mathematics of aiming a projectile at a moving target, and he also did
some work with I. J. Schoenberg on splines [Curry and Schoenberg, 1947;
Curry and Schoenberg, 1966]. However, at the end of the war and imme-
diately after it, in late 1945 and early 1946, Curry was involved with the
ENIAC29 computer project. This eventually led to the idea of using combi-
nators to combine computer programs [Curry, 1954].

Curry’s experience with the ENIAC project also had an after-effect on
his return to Penn State in September 1946. He tried to pursuade the ad-
ministration to get some computing equipment and start what is now called
a computer science program. He had no success in this, but persisted until
a colleague pointed out to him that if he did succeed, he would be made di-
rector of the program without any increase in salary. He then gave up trying
to start such a computer science program at Penn State, and went back to
logic.

29The ENIAC was one of the first electronic computers, built during World War II
for the purpose of calculating the trajectories of projectiles. See [Goldstine, 1946], now
available at http://ftp.arl.mil/ mike/comphist/46eniac-report/index.html.
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2.6 Curry’s Work on Combinatory Logic in the Early
Postwar Years

The first thing Curry did about combinatory logic after returning to Penn
State was to write to Rosser about the notes he had sent him on basing
combinatory logic on K and S and defining abstraction by induction on the
structure of the term. He wanted to know whether Rosser wanted to write a
joint paper about this. But Rosser had moved on to other things, so Curry
then wrote his own paper [Curry, 1949].

About the same time, Curry became aware of [Newman, 1942], and
thought that he could use th ideas in it to give a new proof of the Church-
Rosser Theorem in an abstract setting. In a sense he succeeded in [Curry,
1952c], since he did give a proof of an abstract version of the theorem, but
after the paper appeared it was discovered that λ-calculus does not satisfy
one of the hypotheses he assumed. (And Newman’s proof failed for a similar
reason.)

Meanwhile, Curry attended the Tenth International Congress of Philos-
ophy in Amsterdam in the summer of 1948. During that congress, he was
approached by one of the editors of the new North-Holland Publishing Com-
pany and asked to write a short monograph of at most 100 pages on combina-
tory logic for their series ”Studies in Logic”. Curry sent them a philosophical
manuscript he had ready, [Curry, 1951]. But, for combinatory logic, he re-
alised that so much unpublished research had accumulated that an adequate
treatment would need to be much longer than the editors envisaged.

Nevertheless, the idea of writing a book on this subject appealed to him.
He knew that he was not a good expository writer, and this would be a
drawback in writing a book of this kind. So he approached Robert Feys,
who was on the faculty of the University of Louvain in Belgium and had
an interest in combinatory logic, to become a co-author. Feys accepted,
and Curry applied for and received a Fulbright fellowship to spend the year
1950–1951 at Louvain. There, work began on [Curry and Feys, 1958].

From the beginning, the plan was for a two volume work, with the first
volume dealing with properties of conversion, called pure combinatory logic,
and the second volume dealing with systems of logic in the ordinary sense
based on combinatory logic or λ-calculus, called illative combinatory logic.
However, as the writing proceeded, it became clear that this plan needed to
be modified: in particular, since Curry was continuing to do new research,
some of his newer results on the theory of functionality came to be included
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in the first volume.
Thus, [Curry and Feys, 1958] started with introductory material on for-

mal systems (Chapter 1) and metatheory30 (Chapter 2), and then had a
chapter (Chapter 3) on λ-calculus. Although the λ-calculus was basically
due to Church, it was Curry who fixed some notations that became standard
in subsequent works on λ-calculus, for example the names for alpha-reduction
and beta-reduction. He used the lower-case Greek alphabet for names of bi-
nary relations, and (α) and (β) became his designations for Church’s Rules
I and II from [Church, 1932]. The chapter on λ-calculus was followed by a
chapter (Chapter 4) on the Church-Rosser Theorem.31 This was followed by
three chapters on pure combinatory logic: Chapter 5 was on various com-
monly used composite combinators and the relations between them, Chapter
6 was on what is called the “synthetic” theory of combinators (formal defini-
tion of the system, definition of abstraction, and the relation to λ-calculus),
and Chapter 7 was on what was called “logistic foundations,” which means
formulations in terms of provability. Chapter 8 was a general introduction
to illative combinatory logic, and Chapters 9–10 were on the theory of func-
tionality.

The new research included in [Curry and Feys, 1958]32 grew out of work on
the theory of functionality, that is, systems of type F1. Curry had originally
hoped that a theory of functionality in which all terms were canonical would
be consistent, and beginning in April 1954, he spent a considerable amount
of time trying to prove this. His approach was to show first that all inferences
by Rule Eq could be postponed to the end of any deduction and then to show
that any deduction in which the only rule was Rule F could be transformed
into a standard form. Deductions in which the only rule is Rule F are called
F-deductions . During the summer of 1954, he noticed if ξX could be deduced
by an F-deduction from a set of assumptions, then X must be irreducible
and perhaps in some kind of normal form. At that time, the only kind of
normal form he had for combinators was weak normal form, which means a
combinatory term with no redexes of the form KXY or SXY Z. Thus, when
he first wrote down the Normal Form Theorem in his notes, it took the form
“If ξX can be deduced from a [set of assumptions] B, then Xλ has a normal

30There called “epitheory” for reasons which will be discussed in § 4 below.
31The proof presented in this chapter has since been superceded by a simpler proof;

see [Hindley and Seldin, 1986, Appendix 1].
32A careful study of Curry’s notes from the period and also of the manuscript that he

had received from Feys shows that this work was all done by Curry with no input by Feys.
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form.”33 It took Curry some time to prove the theorem, and the problem he
had stating the theorem for combinatory terms motivated him to introduce
a new kind of reduction for combinators,34 but once he concluded that it was
true, he realized that the system whose consistency he was trying to prove
was, in fact, inconsistent, and he soon discovered a contradiction in it [Curry,
1955]. He then investigated some more restricted systems, and found some
that he could prove consistent [Curry, 1956]. This material appeared in
[Curry and Feys, 1958, Chapters 9–10]. Chapter 9 was devoted to the basic
theory of functionality , in which the types are those definable from a set of
atomic types by means of the operation of forming Fαβ from α and β. Thus,
types in the basic theory of functionality are the types defined in Definition 4
in Appendix B below. The axioms were given by two axiom schemes:

(FK) Fα(Fβα)K,

(FS) F(Fα(Fβγ))(F(Fαβ)(Fαγ))S.

For Curry, the types were just a special kind of terms, but since the atomic
types were all assumed to be like F in being constants that do not head re-
dexes, there was no point in considering conversions between types. Thus,
Curry restricted the conversion rule, Rule Eq, to conversions between sub-
jects only, and he called this Rule Eq′:

(Eq′) αX X =∗ Y
αY

For F-deductions, Curry proved the Subject-Construction Theorem (i.e. that
deductions always follow the construction of the subjects),35 the Subject-
Reduction Theorem (see Theorem 6 in Appendix B below), and the Stratifi-
cation Theorem (see Theorem 1 in Section 2.3 above). He also proved that in
a deduction with Rule (Eq′), all inferences by Rule (Eq′) can be postponed

33The normal form theorem for typed λ-calculus had been stated earlier by Alan Turing
in an unpublished manuscript (see [Gandy, 1980]), but, of course, Curry did not know of
this.

34See Strong Reduction below.
35This theorem is based on the way he worked out examples in his attempt to prove

the consistency of the “full free” theory of functionality. He later formally defined this as
what is now known as a “typing algorithm.”
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until the end and combined into one. In addition, he defined a version of
basic functionality for λ-calculus, in which the axiom schemes (FK) and (FS)
are replaced by a rule which he called an axiom scheme:

(Fλ) [α1x1, α2x2, . . . , αmxm]
βX

Fα1(. . . (Fαmβ) . . .)(λx1 . . . xm . X)

Condition: X is a
combination of the
variables x1, x2, . . . ,
xm only, and these
variables do not occur
free in any undis-
charged assumption.

Finally, he noted that if the subjects are removed from all steps of a deduction
and if each occurrence of F is changed to an occurrence of P, the result is
a valid deduction in the implication fragment of intuitionistic propositional
calculus.36 He concluded the chapter with natural deduction and Gentzen-
style L-formulations, and he used the latter to give the first published proof
of the Normal Form Theorem; see Theorem 7 of Appendix B below).

In [Curry and Feys, 1958, Chapter 10], Curry presented the results of
both [Curry, 1955] and [Curry, 1956]. As mentioned before, these included a
proof of consistency for a restricted system.

The problem that Curry originally had stating the Normal Form Theorem
let him to introduce another innovation in [Curry and Feys, 1958]: strong
reduction in Chapter 6. In pure combinatory logic, the natural reduction,
weak reduction, lacks a property that both λβ- and λβη-reduction satisfy,
namely the property

(ξ) X � Y → [x]X � [x]Y.

Curry studied the relation >− defined by adding (ξ) to the definition of
weak reduction and inserting into the definition of bracket abstraction (see
Appendix C) the clause

(c) if x does not occur free in U , then [x](Ux) ≡ U .

36This observation, in extended form, is now well known as the formulas-as-types or
propositions-as-types or Curry-Howard isomorphism. See [Howard, 1980].
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He called this relation strong reduction. He showed that it corresponded
to λβη- reduction, provided the combinator I was assumed to be an atom
instead of being defined as SKK.37

Six years after Curry and Feys began their work, the writing was finished,
and [Curry and Feys, 1958] appeared two years later.

Meanwhile, Curry had his first graduate student, Edward J. Cogan. Co-
gan wrote a dissertation on set theory within illative combinatory logic, [Co-
gan, 1955]. The idea was to use the ideas about set theory of [Gödel, 1940;
von Neumann, 1925; von Neumann, 1928] within the framework developed
by Curry.38 Cogan chose to represent the set theory of [Gödel, 1940] in a
system of type F∗

2 based on Ξ, with F defined in terms of Ξ. Unfortunately,
his system turned out to be inconsistent [Titgemeyer, 1961]. The problem
came from an axiom that Curry had suggested to Cogan.

2.7 Curry’s Later Work on Combinatory Logic

After the publication of [Curry and Feys, 1958], Curry himself, in preparation
for writing the second volume of [Curry and Feys, 1958] turned his attention
to systems of type F2, systems of restricted generality. In his [1960], Curry
proved a version of the Deduction Theorem for Ξ, namely: if ξ1, ξ2, . . . , ξm, η
are all canonical, and if

Γ, ξ1x1, ξ2x1x2, . . . ξmx1x2 . . . xm ` η,

where the variables x1, x2 . . . , xm do not occur free in Γ, then

Γ ` Ξξ1(λx1 . Ξ(ξ2x1)(. . . (λxm−1 . Ξ(ξmx1x2 . . . xm−1)(λxm . η)) . . .)).

Canonical terms were defined in a such a way that the system was not really
stronger than first order logic. Curry was unable to obtain this result by
iterating Theorem 2 above because he had failed to assume an axiom gen-
erating rule. This problem arises in ordinary predicate calculus, where one
needs in addition to modus ponens either a rule of universal generalization
or else a specification that the universal closure of any axiom is an axiom. In

37The definition of a relation corresponding to λβ-reduction was not attempted. This
involved some technical complications and was not done until [Mezghiche, 1984; Mezghiche,
1989; Mezghiche, 1997].

38In a sense this set-theory already contained a combinator concept in some of its axioms,
[Curry and Feys, 1958, p. 10], [Cardone and Hindley, 2006].)
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his original work, Curry left out this specification (which I called above the
axiom generating rule), although in the paper he assumed it in the multiple
form.

In his [1961], Curry gave a proof of a sort of cut-elimination theorem for a
system related to a system of type F2 the way a Gentzen L-system is related
to a natural deduction system.

Meanwhile, Curry had three more Ph.D. students. Kenneth Loewen [1962]

wrote on the Church-Rosser Theorem and the Standardization Theorem39 for
strong reduction, and Bruce Lercher [1963] wrote on the relationship between
strong reduction and the representation of recursive functions and function-
als of higher type. Meanwhile, Luis E. Sanchis [1963] formulated Church’s
type theory within combinatory logic using the theory of functionality for
the types, and proved the consistency of that system.

On April 16, 1964, Robert Feys died. This left Curry alone to work on
the second volume of [Curry and Feys, 1958]. He realized that he needed
collaborators and also realized that he needed to make a further study of the
foundations of logic, and in particular, of Gentzen-style40 proof theory before
writing the second volume. The result of this study was [Curry, 1963]. Thus,
he did not get back to work on the second volume until 1964. That Septem-
ber, J. Roger Hindley arrived at Penn State to do postdoctoral work with
Curry. Hindley had just completed his dissertation [1964] on the Church-
Rosser Theorem, and in 1965 Curry invited him to join the project. Also
in September, 1964, I began my graduate studies with Curry. When Curry
retired from Penn State in 1966 and took up a position at the University
of Amsterdam, I accompanied him. After I finished my dissertation [1968],
Curry invited me to join the project as well, and this is how the second
volume became [Curry et al., 1972], and some of the material of [Curry et
al., 1972, Chapters 14–16] came from [Seldin, 1968, Chapters 3–5]. When
Curry arrived in Amsterdam, another graduate student, Martin W. Bunder
began studying with him. Curry ran a seminar at which Martin Bunder and
I presented our results, and although Martin did not become a co-author
of [Curry et al., 1972], his work did contribute to some of the later chapters.

The first chapter of [Curry et al., 1972], Chapter 11,41 is devoted to up-
dates to the material on pure combinatory logic in the first volume. Curry’s

39The Standardization Theorem says roughly speaking that any reduction can be carried
out by reducing redexes from left to right.

40See § 3 below.
41The chapter numbering continues from [Curry and Feys, 1958].
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original intention was to begin with a chapter on philosophical questions,
but that proved too difficult to write, and so only two subsections of the first
section of the chapter are devoted to that. In addition to the updates to the
material on pure combinatory logic, the chapter contains a proposal due to
Curry for a kind of system, which he called a C-system, which would treat
combinatory logic and λ-calculus simultaneously. The idea was that since the
various illative systems can be defined in both λ-calculus and combinatory
logic, there should be a kind of system which could be instantiated to either.
This idea was applied throughout the book, althoughin several later places
it was still necessary to treat combinatory logic and λ-calculus separately.

Chapter 12 is an introduction to illative systems. Originally, illative com-
binatory logic meant combinatory logic with operators for the logical con-
nectives and quantifiers, but by the mid-1960s, Curry had decided that any
applied combinatory logic or λ-calculus should be considered an illative sys-
tem.

Chapter 13 is entirely on the representation of natural numbers and re-
cursive functions in combinatory logic. To allow for the various known ways
of coding numerals as combinatory or lambda terms, Curry introduced two
new atoms 0 and σ, and postuated what he called an iterator Z with the
property that

Z (σ(σ(. . . (σ︸ ︷︷ ︸
n

0) . . .)) � λxy . x(x(. . . (x︸ ︷︷ ︸
n

y) . . .)).

This system could be instantiated to any of the numerical codings by substi-
tuting appropriate terms for 0, σ, and and constructing an appropriate pure
combinator to serve as Z. For the coding used by Church, 0 and σ would be
replaced by Church’s definitions of those terms and Z would be replaced by I.
The chapter included a proof that all recursive functions can be represented.
It also discussed the use of terms with types, or functional characters, and
ended with a discussion of Gödel’s functionals of finite type. Included in the
chapter was an undecidability result of Curry’s for λK-calculus and equiv-
alent combinatory systems, a result that was stronger than Church’s result
of his [1936c]. Curry [1969b] proved that the only conversion-invariant42

recursive sets of terms were the empty set and the set of all terms. Since
the set of terms which convert to a given term and the set of terms with

42A set of terms is conversion invariant if, whenever X is in the set and X =∗ Y , then
Y is in the set. Curry called these sets equation-invariant .
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a normal form were conversion-invariant, this implied Church’s two results,
but Curry’s proof required the combinator K.43

Chapter 14 is devoted to the theory of functionality. Curry had, by this
time, split Rule (Eq) into separate rules for subject and predicate:

(Eqs) αX X =∗ Y
αY

(Eqp) αX α =∗ β

βX

Here, (Eqs) was the rule (Eq′) of [Curry and Feys, 1958, Chapter 9], which
is the only one appropriate for basic functionality, but for stronger systems
of functionality (Eqp) would also be appropriate. Curry called a system
using these rules a separated system, and it is with separated systems that
functionality finally became what is now recognized as a type theory, in which
Curry’s type assignment statements αX could be rewritten X : α. Chapter
14 also included a number of technical improvements to the systems of [Curry
and Feys, 1958, Chapters 9–10]. One of the improvements is the proof that
every term with a type has a principal type scheme or principal functional
character . This result was proved by two different methods in [Curry, 1969a]

and [Hindley, 1969].
Chapter 15 is devoted to systems of restricted generality, that is systems

of type F2, based on Ξ. In it, a form of the Deduction Theorem for Ξ like
Theorem 2 above that could be iterated was proved, and with this and a cut
elimination theorem for a Gentzen-style L-system, the consistency was proved
of a system whose rules for canonicalness are essentially of the strength of
first-order logic. This settled the theory of F2 systems. However, the F∗

2

systems were definitely not settled. Recall that the F∗
2 systems are those in

which canonicalness is defined using the theory of functionality (which can
be embedded in these systems) in conjunction with a term H representing
the predicate of being a proposition. A system of this kind, called F∗

21,
was proposed in [Seldin, 1968, Chapter 4], using an idea of Martin Bunder to
restrict the deduction theorem by placing a restriction only on the antecedent:

43A very similar undecidability theorem had been proved by D. Scott in lecture notes in
1963, which Curry did not see until his own proof was substantially written. See [Curry,
1969b, p.10] or [Curry et al., 1972, p.251, footnote 7].
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i.e., to take for the deduction theorem

Γ, Xx ` Y x ⇒ Γ, LX ` ΞXY,

where x does not occur free in Γ, X, or Y , and L is FEH, the category of
one-place predicates.44 In [Curry et al., 1972, §15C1] a different system also
called F∗

21 is defined. Both of these systems were defined to avoid some
contradictions found by Martin Bunder in his [1969]. However, as indicated
below, neither turned out to be consistent.

Chapter 16 of [Curry et al., 1972] was on systems of universal generality,
that is systems of type F3, based on Π and P. The basic conclusion of this
chapter is that systems of universal generality are essentially equivalent to
systems of restricted generality as long as E is present in the latter. This
contradicts Curry’s original idea that F3 systems might be stronger than F2

systems. Curry also originally assumed that both F2 and F3 systems were
stronger than F1 systems, but if F1 systems are taken without the separated
equality rules and Ξ is defined in terms of F in either of the ways indicated
above, the result is equivalent to the corresponding F2 system. Thus, there
are equivalent versions of all three kinds of systems.

Chapter 17 was on type theory based on combinatory logic and the theory
of functionality. The chapter extended some of the results of [Sanchis, 1963;
Sanchis, 1964]. One of the extensions was to a type theory with transfinite
types, as in [Andrews, 1965].

The writing of [Curry et al., 1972] was finished in May of 1970, and after
that Curry retired from the University of Amsterdam and returned to State
College, Pennsylvania. Except for the year 1971–1972, he spent the rest of
his life there. But before he left Amsterdam, his last Ph.D. student, Martin
Bunder, finished his dissertation [Bunder, 1969]. Bunder’s thesis showed how
to interpret both ZF and NBG set theories in a system of restricted generality.
His system was similar to the two systems F∗

21 of Seldin and Curry, but he
defined L to be FAH, where A is a category of individuals and it is not the
case that ` AX for every term X.

In his [1969, Chapter 2], Bunder gave a number of contradictions that
could be derived in various illative systems as a motivation for the limita-
tions of his own system (for which there was no consistency proof). Bunder
later proved Seldin’s system F∗

21 inconsistent in his [1974]. This proof of

44All previous proposals for this kind of system had restricted the deduction theorem
by means of restrictions on both the antecedent and the consequent.
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inconsistency does not apply to the system F∗
21 of [Curry et al., 1972], but in

his [Bunder, 1976] Bunder proved this system inconsistent as well. Finally,
in their [1978], Bunder and Meyer proved inconsistent any system of illative
combinatory logic which includes the following:

1. Rule (Eq),

2. Modus ponens: PXY,X ` Y ,

3. A deduction theorem as follows: Γ, X ` Y ⇒ Γ, HX, HY ` PXY .

4. HX, HY ` H(PXY ),

5. X ` HX, and

6. ` H(H(. . . (H︸ ︷︷ ︸
n

X) . . .)) for a fixed n and every X.

The case n = 2 of item 6, namely ` H(HX) for every X, was of interest
because it is equivalent to ` LH, which is necessary to derive any reasonable
set of axioms from the deduction theorem. Finding a set of axioms equivalent
to the deduction theorem had been one of Curry’s major aims ever since
he formulated his new program in the 1930s, and this result proved that
impossible.

But even before Bunder published his contradictions, Curry became sus-
picious of ` H(HX) for every X. His reason was that if ` H(HX) holds
for every term X, then it must hold for X ≡ YH, where Y is a fixed point
combinator, and from this follows ` YH, which he thought was counterintu-
itive. For this reason, Curry gave up on trying to find a system with axioms
equivalent to the deduction theorem, and, in his [1973], defined a system he
called F22, which was the system F∗

21 of [Curry et al., 1972, §15C] without the
postulate ` H(HX), and proved it consistent in the weak sense that every
theorem is canonical. Seldin obtained stronger consistency results for this
system in his [1975b; 1977] by proving cut elimination, thus showing that
there are canonical terms which are not provable. This system is defined as
follows:

Definition 1 The system F22 is based on an applied λβη-calculus or equiva-
lent combinatory logic with atomic constants (that do not head redexes) Ξ, E,
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H, and perhaps additional canonical atoms (i.e., atomic predicate functions)
of degree (number of arguments) n. The term F is defined by

F ≡ λxyz . Ξx(λu . y(zu)).

The axioms are EX for all terms X and also FEHE. The rules are as follows:

(Eq) X X =∗ Y
Y

(ΞE) ΞXY XU
Y U

(ΞI) [Xx]
Y x FEHX

ΞXY

Condition: x does not
occur free in X, Y ,
or in any undischarged
assumption.

(H) X
HX

(Hθ) EX1 EX2 . . . EXn

H(θX1X2 . . . Xn)
Condition: θ is a
canonical atom of de-
gree n.

(HΞ) FEHX FEHY
H(ΞXY )

This was the last illative system about which Curry published any results.
However, he did publish several more papers on pure combinatory logic.
In his [1975b], Curry proved for a generalized reduction of the kind used
in [Curry et al., 1972, §13A] that if a term has a normal form, then it reduces
to that normal form.45 In his [1975a], he showed how to represent Markov
algorithms in combinatory logic. His [1979] is on the representation of terms
in normal form in the λβ-calculus. And his [1980], Curry’s last published

45The generalized reduction was supposed to be that for what Curry called a C-system,
which was supposed to be a general kind of system which could be either a system of
λ-calculus or else a system of combinatory logic.
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paper, is a brief survey of combinatory logic followed by some responses to
some philosophical criticisms of it.

Martin Bunder has done more than anybody else to carry on Curry’s
tradition of illative combinatory logic. His most recent results are joint work
with Wil Dekkers and Henk Barendregt [Barendregt et al., 1993; Dekkers
et al., 1998a; Dekkers et al., 1998b], and include the consistency proof of a
stronger system than any system previously proved consistent.

3 Curry’s Work on Proof Theory

When Curry first read [Gentzen, 1934], he immediately realized its impor-
tance. When he formulated his new program after learning of the paradox
of [Kleene and Rosser, 1935], he realized that Gentzen’s techniques might be
useful in obtaining the consistency proofs that his new program called for.

As a result, he started writing a paper, of which [Curry, 1937] is the
abstract, on the subject. However, this paper was never finished,46 and all
he published on this subject before World War II was [Curry, 1939a].

After the war, Curry was invited to give a series of lectures at Notre Dame
University April 12–15, 1948, and he chose as his subject an exposition of
Gentzen’s work. Instead of revising his earlier paper, he started over, and
the result was ultimately published as [Curry, 1950].

In this work, Curry started from the point of view of what we might call a
Curry semantics . Since Curry has a reputation for not having paid attention
to semantical considerations, some may find this notion surprising, but Curry
did, in fact, have definite ideas about the meaning of the logical connectives
and quantifiers, and if they have been misunderstood it is because they are
not based as model theory is on set theory. Curry’s idea behind his exposi-
tion was that he was formalizing a part of the metatheory of an elementary
formal system, and he justified the properties of the logical connectives and
quantifiers on that basis.

Curry defined a formal system as follows:

Definition 2 A formal system47 is a set48 E of statements, called elementary

46Only the first few sections were ever typed; the rest exists only as handwritten notes.
47This is a late form of Curry’s definition, taken from [Curry, 1963]. However, the ideas

behind this definition date from the beginning of his career. For an exposition of Curry’s
notion of formal system, see [Seldin, 1975a].

48Here the word “set” is taken to mean a conceptual class, and its use does not presup-
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statements, together with a subset T ⊆ E of theorems , where the two sets
satisfy the following conditions:

1. The set T is inductive, that is, it is generated by a definite49 set of ax-
ioms by a set of rules in such a way that there is an effective procedure
which can decide, given a sequence of elementary statements, whether
or not that sequence constitutes a valid proof.

2. The set E is formed from a definite set O of formal objects and a definite
set of elementary predicates , each with a fixed number of arguments. A
statement is in E if and only if it asserts that an elementary predicate
of n arguments applies to an n-tuple of formal objects.

Formal systems are classified according to the way the set O of formal
objects is formed.

1. If the formal objects are defined from primitive objects, called atoms ,
and primitive operations in such a way that each formal object has a
unique construction, then the system is called an ob-system, and the
formal objects are called obs .50

2. If the formal objects are words (strings of characters) on some alpha-
bet,51 then the system is called a syntactical system.52

An elementary formal system is a formal system in which all the rules have
the form

E1 E2 . . . En

E0,

pose any formal theory of sets.
49Curry called a set definite if there is an effective procedure for deciding whether or

not a given object of a suitable universe is a member of the set.
50This is a word that Curry coined for this purpose about 1950. In his earliest papers,

he called them entities, but when a philosopher told him that the word “entity” implied a
meaning that he did not intend, he switched to the word term. However, the word “term”
has another use in connection with a system of logic with quantifiers, and Curry felt in
need of another word. In this paper, I have used the word “term” rather than “ob” in
discussing λ-calculus and combinatory logic because the former is more common.

51In general, such words do not have unique constructions. For example, the word ‘abc’
can be constructed by adding ‘a’ to the front of ‘bc’ or by adding ‘c’ to the end of ‘ab’.

52Originally, Curry considered only ob systems as formal systems. However, starting in
his [1963], Curry included syntactical systems as formal systems.
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where E0, E1, E2, . . . , En are schemes for elementary statements; i.e., are ex-
pressions that become elementary formal systems when formal objects are
substituted for (meta-)variables.

Ordinary formal logical calculi, such as propositional calculus and first-
order predicate calculus, are both syntactical systems and ob systems, since
the formal objects are defined to be words on an alphabet, but they are also
well-formed formulas , and well-formed formulas defined in the usual way
each have a unique construction from the atomic formulas by means of the
connectives and quantifiers.

For Curry, the elementary statements of logical calculi are defined by
applying the predicate ‘is provable’ to well-formed formulas. Curry indicated
this by writing the sign ‘`’ in front of each well-formed formula. Thus,
whereas it is usual in logic to take a proof as a sequence of well-formed
formulas A1, A2, . . . , An, Curry took a proof as a sequence of elementary
statements of the form ` A1,` A2, . . . ` An, and he wrote

P1, P2, . . . , Pm ` Q

as an abbreviation for the statement: if ` P1,` P2, . . . ,` Pm are added to
the system as new axioms, then ` Q is provable.53

Among logical calculi, formal systems of what is usually called a Hilbert-
style formulation, in which the only rules are modus ponens and universal
generalization or modus ponens alone, are elementary formal systems. Natu-
ral deduction systems, in which there are rules which discharge assumptions,
are not elementary formal systems.

Now Curry had originally defined combinatory logic in his [1929] as an
ob system in which the combinatory terms are the obs and the elementary
predicate is a predicate of two arguments which he denoted by ‘=’, so that
the elementary statements all had the form X = Y ,54 where X and Y are
combinatory terms. However, starting in his [1930], Curry defined combi-
natory logic to be what he later called an assertional system, a system in
which there is only one predicate, namely `. Thus, the elementary state-
ments all asserted the provability of combinatory terms, and X = Y became
an abbreviation for QXY .

53If m = 0, so that there are no new axioms added, this just asserts that ` Q is provable
in the existing system.

54There, X = Y had the meaning now denoted by X =∗ Y .
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Curry considered the logical calculi he introduced in his [1950] to be
formalizations of a part of the metatheory55 of an elementary formal system.
He thus defined the following metatheoretic connectives:

& : E1&E2 means that there is a proof of E1 and a proof of E2,

or: E1 or E2 means that there is a proof of E1 or a proof of E2 and there
is an effectively computable process for deciding which,

→ : E1 → E2 means that there is an effective process for converting any
proof of E1 into a proof of E2, and is regarded as vacuously true if it
can be constructively proved that there is no proof of E1,

�: E1 � E2 means (E1 → E2) & (E2 → E1),

⇒: E1 ⇒ E2 means that if E1 is adjoined to the system as an axiom, then
E2 is a theorem, and

⇔: E1 ⇔ E2 means (E1 ⇒ E2) & (E2 ⇒ E1).

(Clearly, these connectives can connect all statements formed by starting
with elementary statements and using these connectives. And it is in terms
of their meaning that Curry justified the rules of the connectives ∧, ∨, and
⊃.)56

Thus, his [1950] began with a chapter on formal systems, and through-
out the rest of the book the logical systems were designed to formalize the
metatheory of an elementary formal system S. In the second chapter, he
treated the propositional calculus without negation, so the connectives were
∧, ∨, and ⊃. The first logical systems introduced were the Gentzen-style
L-systems, LA(S) and LC(S). The first, LA(S), was a singular system, one
with only one formula on the right:

Γ 
 A,

55Kleene, in a review of [Curry, 1941d] published in the Journal of Symbolic Logic,
6:10–102, 1941, objected to Curry’s use of the prefix “meta-”, claiming that this prefix
should only be used in connection with a distinction of levels of language. In 1951, Curry
responded to this criticism by deciding to use the prefix “meta-” only in the sense Kleene
had suggested and to use the prefix “epi-” instead. See the preface of [Curry, 1951]. I
think that most logicians now use the prefix “meta-” in the sense in which Curry had used
it prior to 1951, and so I will continue to use that prefix instead of “epi-” in this article.

56This reading of the connectives is close to the Brouwer-Heyting-Kolmogorov interpre-
tation of them. See [Troelstra and van Dalen, 1988, p. 31].
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where Γ is a sequence of formulas and A is a formula. The second, LC(S),
allowed sequences with more than one formula on the right:

Γ 
 ∆,

where Γ and ∆ are sequences of formulas. Both kinds of systems had the
usual axiom A 
 A, and both also had as axioms 
 E, where E was an
axiom of S. Both had the usual structural rules of permutation, weakening,
and thinning, although LA had them only on the left while LC had them on
the right as well, and both had the usual rules for ∧, ∨, and ⊃ on both the
left and right. Both also had the following rule:

` ∗ Γ 
 E1, Θ Γ 
 E2, Θ . . . Γ 
 En, Θ

Γ 
 E0, Θ
Condition:
E1, E2, . . . , En ` E0

in S.

(In LA(S), Θ was the void sequence.57) Curry did not postulate the rule Cut
as part of either system, but proved as a metatheorem that if the premises
of Cut were derivable, then so was the conclusion. He called this result the
Elimination Theorem.

Curry then turned to natural deduction formulations. Since he wanted to
reserve the letter ‘N’ for negation, he used the second consonant of the word
”natural” and called the systems TA(S) and TC(S). The only axioms in
either system were the axioms of S. The rules of TA(S) were the standard
introduction and elimination rules for ∧, ∨, and ⊃. TC(S) was obtained
from TA(S) by adjoining one rule:

⊃K [A ⊃ B]
A
A.

Curry also considered Hilbert-style formulations of both systems, HA and
HC. These were formulations in which the only rule was modus ponens, or
⊃ E, and the other rules of TA and TC were replaced by axiom schemes.

57If n = 0, this means that if ` E0 is an axiom of S, then 
 E0 is an axiom of the
L-system.
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In the next chapter, Curry considered adding first-order quantification
to obtain LA*(S) and LC*(S). The L-rules on the left and right for the
quantifiers were standard. The T-rules and H-axioms were also standard.

In the next chapter, Curry took up negation. He defined two kinds of
negation:

1. Absurdity. An elementary statement is absurd if, when it is adjoined to
the system as an axiom, all elementary statements become provable.

2. Refutability. An elementary statement is refutable if, when it is adjoined
to the system as an axiom, any one of a given set of counteraxioms
becomes provable.

These two kinds of negation led to different systems:

1. Minimal Logic, LM, which was LA plus refutability.

2. Intuitionistic Logic, which was LA plus absurdity.

3. Strict Refutability , LD, which was LA plus excluded middle.

4. Classical Logic, LK, which was LC plus absurdity, or alternatively LJ
plus excluded middle.

These were the systems of propositional logic; there were corresponding sys-
tems with quantifiers.

For technical reasons, Curry was unable to use the definition

¬A ≡ A ⊃ ⊥,

where ⊥58 stands for a fixed false proposition, in the L-formulation, so in this
formulation, he took ¬ as a primitive connective. The L-rules for negation
on the left and right, ∗¬ and ¬∗, were the traditional ones. For refutability,
he also postulated

⊥∗ Γ 
 ⊥i, Θ

Γ 
 Θ
Condition:
⊥i is a counteraxiom.

58Curry wrote ‘F ’ instead of ‘⊥’.
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For absurdity, he postulated instead59

⊥J Γ 
 Θ
Γ 
 A, Θ.

To get the law of the excluded middle, he postulated

¬X Γ,¬A 
 A, Θ

Γ 
 A, Θ.

In these rules, Θ was void in a singular system. Note that this meant that in
systems with negation, it was possible in either singular or multiple systems
to have a void right-hand side.

Then he defined the following propositional systems:

LM = LA + ∗¬ + ¬∗ + ⊥∗,

LJ = LM + ⊥J,60

LD = LM + ¬X, and

LK = LC + ∗¬ + ¬∗.

Note that LM, LJ, and LD were all singular. Curry was dealing with quan-
tified versions of all these sytems, and he proved the Elimination Theorem
for all of them.

For the natural deduction systems, he used the definition ¬A ≡ A ⊃ ⊥,
where ⊥ is a new atomic formula added to the system.61 The standard
introduction and elimination rules for ¬, ¬I and ¬E, then follow from the
definition of ¬A. The other T-rules used in connection with negation were

59There were no counteraxioms in any system in which ⊥J was postulated, so rule ⊥∗
was never postulated in such systems.

60But see the preceding footnote.
61In some systems, ⊥ can be identified with a formula that is already in the system.
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the following:

⊥I ⊥i

⊥
Condition:
⊥i is a counteraxiom.

¬J ⊥
A.

¬D [¬A]
A
A.

¬K ¬¬A
A.

Note that the rule ¬K is equivalent to

[¬A]
⊥
A,

which is the form used by Prawitz in his [1965]. The T-systems for negation
are then defined as follows:

TM = TA + ¬E + ¬I + ⊥I,

TJ = TM + ¬J,62

TD = TM + ¬D, and

TK = TM + ¬J + ¬D = TM + ¬K.

Curry also dealt with Hilbert-style systems.
The last chapter was devoted to modal logic, with operators for necessity

and possibility. Curry was unable to prove the Elimination Theorem for the
modal systems.

In the preface, Curry discussed the algebraic approach to logic, saying
that although he thought it was important, he had to leave it out of the
lectures on which [Curry, 1950] was based, for lack of space. In fact, the

62There are no counteraxioms for TJ or for any system in which ¬J is postulated, so ⊥I
is vacuous for TJ and TK.
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book did not include answers to some questions left open in the lectures
which he had settled after he delivered the lectures, since he wanted the
book to represent the lectures themselves. But he did write up this work for
publication:

1. In his [1952f], Curry proved some results about LD. He also suggested
a singular version of LC and LK, namely LC1 and LK1. The former
was to be defined by adding to LA the rule

⊃C Γ, A ⊃ B 
 A

Γ 
 A.

For LK1, the rules ⊥J and ¬X were postulated.

2. In his [1952d], Curry showed how to use the definition ¬A ≡ A ⊃ ⊥
with the L-systems. When this was done there were no void right-hand
sides, and rules ⊥∗, ⊥J, and ¬X were replaced by, respectively,

⊥∗ Γ 
 ⊥i, Θ

Γ 
 ⊥, Θ
Condition:
⊥i is a counteraxiom.

⊥J Γ 
 ⊥, Θ

Γ 
 A, Θ.

⊥X Γ, A ⊃ ⊥ 
 A

Γ 
 A.

where, as usual, Θ was void in a singular system.

3. In his [1952e], Curry showed that under certain conditions, the order
in which rules are applied can be reversed in classical L-systems.

4. In his [1952a], Curry proved the Elimination Theorem for systems with
a necessity operator.

In his review of the first two of the above papers, Bernays [1953] suggested
adding ⊃C to LM without adding ⊥J. This would be a system of classical
refutability, which Curry later called LE. Some properties of this system were
studied based on its H-formulation in [Kanger, 1955], and an extensive study
starting from the L-formulation was made in [Kripke, 1958]. Although Curry
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was busy writing [Curry and Feys, 1958] during most of this period and was
therefore unable to pursue his work on general proof theory, he kept up with
these results.

Once [Curry and Feys, 1958] was finished, Curry decided that since he
expected to make extensive use of Gentzen techniques to obtain consistency
proofs in the projected second volume, he should put his work on those
techniques in better order than it was. This work led to [Curry, 1963]. In
this work, after a short introductory chapter, there were chapters on formal
systems (Chapter 2) and epitheory (his word for metatheory, Chapter 3),
which were largely rewritten from [Curry and Feys, 1958]. Then, in Chapter
4, he included the material on algebraic logic that he had lacked room for in
his [1950]; he had been able to give a course on this subject during his year
at Louvain, and the course notes had been published as [Curry, 1952b], and
[Curry, 1963, Chapter 4] was expanded from this.

The real work on logical calculi begins in Chapter 5. Unlike [Curry,
1950], Curry started here with Hilbert-style and natural deduction systems.
Chapter 5 was on propositional logic without negation, and included LA and
LC. But it also included LC1, and, to this, Curry added a multiple version of
LA, LAm, which was like LC except that the rule for implication on the right
must be singular. The chapter closed with a system for tableaux, inspired
by Beth’s proof tableaux.

Chapter 6 is on negation, and here Curry added the E-systems, HE, TE,
and LE to the systems he had previously. TE was defined by adding the
introduction and elimination rules for ¬ to TC, and this meant that TK
could be obtained by adding ¬J to TE. LE was defined from LC the way LM
was defined from LA, by adding the rules for negation on the left and right
and also adding ⊥∗. For LD, Curry replaced rule ¬X by a new one:

Γ,¬A 
 ∆ Γ, A 
 ∆

Γ 
 ∆.

He also had both singular and multiple formulations for all systems. Another
innovation was three formulations of negation: 1) the F-formulation, where
⊥ was postulated and ¬A was defined to be A ⊃ ⊥, 2) the N-formulation, in
which ⊥ was not postulated and ¬ was primitive, and the FN-formulation,
in which both ⊥ and ¬ were primitive and the equivalence of ¬A and A ⊃ ⊥
was a consequence of the logical rules.

Chapter 7 was on quantification, and while not much was new here, the
chapter was quite complete. The tableau system of Chapter 5 was extended
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to all quantified systems.
Chapter 8 was on modal systems.
In his [1965], Curry gave an algorithm for converting the linear form

of natural deduction rules as used in [Jaśkowski, 1934; Fitch, 1952] to the
form based on trees used by Gentzen and Curry himself, discussed some
improvements to his semantic justification of the L-rules, and introduced a
form of dialogue or game logic based on the ideas of [Lorenz, 1961; Lorenzen,
1961; Stegmüller, 1964]63 equivalent to LJ∗.

In his [1968a], he showed how to associate formulas with sequents in such
a way that for an L-system satisfying certain conditions, if one sequent can
be derived from some others by the rules of the system, then a sequent can
be proved in which the right-hand side is the formula corresponding to the
concluding sequent and the formulas on the left are those corresponding to
the premise sequents.

This was Curry’s last paper on proof theory proper. However, since his
work on proof theory was based in many ways on his idea of formal system,
it is worth mentioning that in his [1968b], he proved that his notion of formal
system was essentially equivalent to that of Smullyan [1961].

4 Curry’s Philosophy of Mathematics

As part of his earliest work on combinatory logic, Curry developed a philoso-
phy of mathematics that he was to call formalism. Although he had already
formulated this philosophy in a preliminary way by 192964 the first exposi-
tion of it came with his [1939b], and it is best known from his [1951], most
of which was written in 1939. To this day, this is all many philosophers of
mathematics know of Curry’s philosophy, even though both of these works
date from 1939, early in his career.65

For Curry, the basic idea of formalism was that mathematics does not
have a subject matter that is independent of our knowledge and comes from
outside the subject. This is different from the views of both platonists and
intuitionists, who believe that mathematics does have a subject matter exter-
nal to the subject: platonists believe that there are such things as numbers,
points, lines, etc. which exist independently of our knowledge of them, and

63The first two of these works were later reprinted in [Lorenzen and Lorenz, 1978].
64See my paper [1980, page 11].
65See, for example, [Shapiro, 2000, pages 168–170].
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intuitionists believe that the subject matter of mathematics consists of men-
tal constructions which are based on a special kind of primordial intuition.66

For Curry, mathematics is like language, in the sense that it is the result of
human activity, and in the terms used by Karl Popper [1968]67 it is part of
the “third world.” Thus, for Curry, no mathematical objects existed before
human beings started doing mathematics.

In 1939, Curry proposed to define mathematics as the science of formal
systems.68 Many logicians think in terms of formal systems whose formal
objects represent propositions. But other kinds of formal systems are pos-
sible. For example, consider the system N :69 there is one atom, 0, and one
primitive operation, denoted by adding | on the right, so obs are represented
by adding strings of the symbol | to the right of 0. Thus, the obs all have
the form

0 || . . . |︸ ︷︷ ︸
n

,

which represents the natural number n. There is one elementary predicate,
which takes two arguments, so an elementary statement is written

X = Y

There is one axiom, namely
0 = 0,

and there is one rule:
X = Y ⇒ X| = Y |.

It is easy to see that all the obs represent natural numbers, and all the
theorems have the form

X = X.

All of arithmetic and analysis can be constructed as part of the metatheory
of this formal system N , and by using the techniques of analytic geometry,

66See [Curry, 1963, page 9].
67This paper was delivered under the title “Epistemology and Scientific Knowledge” at

a session of the Third International Congress for Logic, Methodology and Philosophy of
Science in Amsterdam on Friday, August 25, 1967 at a session with Curry in the chair and
at which I was present. After Popper finished speaking, Curry told me privately that he
thought Popper had made a big deal out of something that was trivially true.

68See Definition 2 above.
69This is the system N1 of [Seldin, 1975a, page 456], which is the same as the system

of [Curry, 1963, page 256].
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it is also possible to make geometry part of this metatheory. This method of
reconstructing mathematics in terms of formal systems seems different from
the way most logicians and philosophers of mathematics think of using formal
systems.

The definition of mathematics as the science of formal systems led to the
criticism that he could not account for the existence of mathematics before
formal systems first appeared at the end of the nineteenth century.70 By the
early 1960s, Curry proposed defining mathematics as the science of formal
methods.71 That this definition is broader than the earlier one can be seen
by the fact that in elementary arithmetic, the operation of recognizing what
a pile of five apples has in common with a pile of five oranges is a matter of
abstracting from the kind of fruit one has in the pile and noting that what
they have in common is their cardinality. Doing this is, in a sense, ignoring
the content of the piles and noting only their form, which is a kind of formal
activity.

To further clarify this idea, consider what Curry has to say in his [1963,
page12] about natural numbers:

A formalist would not speak of “the natural numbers” but of a set
or system of natural numbers. Any system of objects, no matter
what, which is generated from a certain initial object by a certain
unary operation in such a way that each newly generated object
is distinct from all those previously formed and that the process
can be continued indefinitely, will do as a set of natural numbers.
He may, and usually does, objectify this process by representing
the numbers in terms of symbols; he chooses some symbol, let
us say a vertical stroke ‘|’, for the initial object, and regards the
operation as the affixing of another ‘|’ to the right of the given
expression. But he realizes there are other interpretations; in
particular, if one accepts the platonist or intuitionist metaphysics,
their systems will do perfectly well.

Note that this “system of objects” need not be given by a formal system. A
natural number is any object of a system of this kind.

In my opinion, this means that Curry’s formalism, at least the formalism
of his mature years, is a form of structuralism. To see this, note what Stewart
Shapiro says in his [2000, page 258]:

70See, for example, [Shapiro, 2000, page 170], but this criticism was made much earlier.
71See [Curry, 1963, page 14].
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The structuralist vigorously rejects any sort of ontological inde-
pendence among the natural numbers. The essence of a natural
number is its relations to other natural numbers. The subject-
matter of arithmetic is a single abstract structure, the pattern
common to any infinite collection of objects that has a succes-
sor relation, a unique initial object, and satisfies the induction
principle. The number 2 is no more and no less than the second
position in the natural number structure; and 6 is the sixth posi-
tion. Neither of them has any independence from the structure in
which they are positions, and as positions in this structure, nei-
ther number is independent of the other. (Emphasis in original.)

What Curry would have said about this is that extracting the pattern to
which Shapiro refers is a matter of abstracting the form from the structure
and disregarding the content. And if a structuralist does not assume that
these structures exists independently of our knowledge of them, Curry would
have regarded that structuralist as his kind of formalist.
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Appendix

A Pure λ-Calculus

In our discussion of functions at the beginning of this article, we mentioned
two operations:

1. The application of a function to its argument, as in f(3).

2. The abstraction operation that defines a function from an expression
for its values, as in λx . x2.

These two operations are the basis of the λ-calculus , which is a formal system
for functions interpreted as rules of calculation. The λ-calculus is the legacy
of Alonzo Church.

The λ-calculus differs from ordinary mathematical practice in two essen-
tial ways:

1. Application is taken as a binary operation. At first glance, this may
appear to leave out functions of more than one argument. But this is
not so. There is a way to reduce functions of more than one argument
to functions of one argument, a way called currying after Haskell B.
Curry. Consider the function f(x, y) = x − y of two arguments. If
we replace x by some constant, say 4, we get g(y) = f(4, y) = 4 − y,
a function of one argument. This function can be taken as the value
of a function f ∗ related to f , so that f ∗(4) = g(y) = 4 − y, and then
f ∗(4)(y) = 4− y, and f ∗(4)(3) = 4− 3 = 1. This function f ∗ is called
the curried version of f , or curry f . Thus, (curry f) 4 3 = f(4, 3), and
(curryf) x y = f(x, y).

2. In ordinary mathematical discourse, each function has a domain, and
a function can only be applied to arguments from that domain. In
pure λ-calculus, every term is considered to be in the domain of every
other term, and every term is a function whose domain includes every
other term. At first glance, this may seem counter-intuitive, and it does
make models of λ-calculus very complicated. But it does correspond, in
a sense, to what goes on in a computer, where the program instructions
are stored in memory as is the data to which the program is applied,
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and all items stored in memory are simply strings of 0s and 1s.72 In
principle, there is no reason why a computer could not be told to take
any such string as the program and any other such string as the data;
if the first string is not in fact an executable set of instructions, the
computer will not do anything useful, but only the human user will
know that. The pure λ-calculus is simpler for not trying to define a
domain for each function, and so the applicability of any term to any
other term is not considered a problem.73

This has to do with the formation of terms. But any formal system for
functions as rules must deal with the computations involved in calculating
the values of functions. In the discussion of the squaring function at the
beginning of this article, we noted that to evaluate the function at an argu-
ment, we always start by substituting the argument for the variable in the
expression for the function. Thus, we had that

(λx . x2)3 = 32.

In general, we would have

(β) (λx . M)N = [N/x]M ,

where [N/x]M represents the result of substituting N for x in M . This is,
in fact, the only means the λ-calculus has for carrying out calculations. It is
perhaps surprising that it is enough to carry out all recursive operations.

Now the substitution mentioned in the last paragraph is not simple re-
placement, for we are dealing with bound variables . A bound variable is one
for which no substitution is possible, and it serves only as a place-holder.
Furthermore, along with computation rule (β), there is a rule which asserts
that bound variables can always be changed:

(α) (λx . M) = (λy . [y/x]M), if y does not occur free in M .

Finally, let us note an additional rule of computation that is often pos-
tulated. Note that if x does not occur free in M , and if N is any term,
then

(λx . Mx)N = MN.

72Or, more precisely, pulses of high voltage and low voltage which are usually interpreted
as 0s and 1s.

73Domains of λ-terms can be specified by using types. This is discussed in Appendix B.
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This means that (λx . Mx) has the same effect on an argument N as M . So
some systems of λ-calculus include the rule

(η) (λx . Mx) = M , if x does not occur free in M .

Without this last rule, the system is called the λβ-calculus; with it, the
calculus is called the λβη-calculus or the λη-calculus.

So far, the rules of calculation have been stated as equations. But in
many actual calculation these rules are all read one way, from left to right.
One calculation step that proceeds this way is called a contraction, and a
sequence of such steps is called a reduction.

With these ideas, the pure λ-calculus is defined as follows:

Definition 3 The formal system Λ of λ-calculus is defined as follows:

1. The terms are defined by:

(a) Variables . There are assumed to be countably many, and it is
assumed that they come in an enumerated sequence. Here, vari-
ables will be denoted by lower-case Italic letters from the end of
the alphabet, x, y, z, x1, etc.

(b) Constants . There may not be any, or there may be several, de-
pending on the variant of system.

(c) Applications . If M and N are terms, then so is (MN). Parenthe-
ses are omitted by association to the left, so that MN1N2 . . . Nn

is (. . . ((MN1)N2) . . . Nn).

(d) Abstractions . If x is a variable and M is a term, then so is
(λx . M). Repeated abstraction (λx1 . (λx2 . . . . (λxn . M) . . .))
will be written (λx1x2 . . . xn . M).

2. An occurrence of a variable x in a term M is said to be bound if it
occurs in a subterm of M of the form (λx . N). An occurrence of a
variable which is not bound is said to be free. That a variable x has a
free occurrence in a term M is written x ∈ FV(M).

3. The substitution of a term N for a variable x in a term M , denoted by
[N/x]M , is defined by induction on the structure of M as follows:

(a) [N/x]x is N .
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(b) If a is any variable different from x or is a constant, then [N/x]a
is a.

(c) [N/x](M1M2) is ([N/x]M1[N/x]M2).

(d) [N/x](λx . M) is (λx . M).

(e) If y is different from x, and if either y 6∈ FV(N) or else x 6∈ FV(M),
then [N/x](λy . M) is (λy . [N/x]M).

(f) If y ∈ FV(N) and x ∈ FV(M), then [N/x](λy . M) is defined to
be (λz . [z/y][N/x]M), where z is the first variable in the given
sequence of variables which is not in FV(MN).

(There are many other notations for [N/x]M , including M [N/x] and
M [x := N ].)

4. There are two kinds of reduction. That M reduces to N will be written
M � N .

(a) The first kind, known as β-reduction, is defined by the following
axioms and rules:

(α) (λx . M) � (λy . [y/x]M), where y 6∈ FV(M).

(β) ((λx . M)N) � [N/x]M .

(ρ) M � M .

(µ) If M � N , then PM � PN .

(ν) If M � N , then MP � NP .

(ξ) If M � N , then (λx . M) � (λx . N).

(τ) If M � N and N � P , then M � P .

This is equivalent to defining β-reductions as involving two kinds
of replacements:

(α) If y 6∈ FV(M), a replacement of (λx . M) by (λy . [y/x]M).

(β) ((λx . M)N) by [N/x]M . Here ((λx . M)N) is called a β-
redex , and [N/x]M is called its contractum.

Each of these kinds of replacements is called a contraction.

The notation M �β N will mean that M β-reduces to N .

(b) The second kind of reduction, βη-reduction, is defined by adding
to the definition of β-reduction the axiom
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(η) If x 6∈ FV(M), then (λx . Mx) � M .

This is equivalent to adding the replacement

(η) (λx . Mx) by M , provided that x 6∈ FV(M). Here (λx . Mx)
is called an η-redex and M is its contractum.

This kind of replacement is called an η-contraction.

The notation M �βη N means that M βη-reduces to N .

5. Conversion. The relation M =∗ N (M converts to N), is defined by
changing � to =∗ in the definition of reduction and adding the rule

(σ) If M =∗ N then N =∗ M .

Conversion can also be defined as a sequence of contractions and reverse
contractions. There are two kinds of conversion: β-conversion, =β ,
and βη-conversion, =βη .

Remark 1 For =βη , we have the following derived rule:

(ζ) If Mx =βη Nx and if x 6∈ FV(MN), then M =βη N .

This rule is also called (Ext), (for extensionality).

Remark 2 Terms which cannot be reduced (i.e., terms in which there are
no occurrences of redexes), are said to be in normal form.

Remark 3 In general, the symbol ≡ will be used to indicate identical terms.
In λ-calculus, however, it will mean terms that are (α)-equivalent (i.e., that
differ only in their bound variables). This is because it is common in λ-
calculus to identify terms that differ only in their bound variables, since they
mean the same thing.74

Remark 4 There is a fixed-point operator Y, which, when applied to any
term, calculates a fixed-point of that term. In fact, there is more than one.
One example is

Y ≡ (λxz . x(zzx))(λxz . x(zzx)).

It is easy to show that Yx � x(Yx).

74But sometimes ignoring the difference between distinct (α)-convertible terms can lead
to technical difficulties.
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Remark 5 Natural numbers and numerical functions can be coded in Λ, by
a method originally due to Alonzo Church, as follows:

• 0 is defined to be λxy . x

• 1 is defined to be λxy . xy.

• 2 is defined to be λxy . x(xy).

• ...

• n is defined to be λxy . x(. . . (x(x︸ ︷︷ ︸
n

y)) . . .).

Numerical functions can be represented as terms of Λ. A numerical function
can be represented as a term in Λ if and only if it is recursive.

Remark 6 Church did not define 0 in his system but started with 1 because
he wanted λx . M to be well-formed only if there is a free occurrence of x
in M , and so in his system 0 is not well-formed. This form of λ-calculus is
called λI-calculus. See § 1.2 above. The system Λ defined here is often called
λK-calculus when it needs to be distinguished from the λI-calculus.

Since reduction represents the process of calculation, it is important to
have confidence that the order in which calculation steps are performed does
not make a difference. That it does not is a result of the Church-Rosser
Theorem:

Theorem 5 (Church-Rosser Theorem) If M �P and M �Q, then there
is a term N such that P � N and Q � N .

The theorem holds for both β-reduction and βη-reduction.

Corollary 1 If M =∗ N , then there is a term P such that M�P and N�P .

Here, if =∗ is =β , then � is �β, whereas if =∗ is =βη , then � is �βη.
For more details, see [Hindley and Seldin, 1986] and the references given

there.
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B Lambda-Calculus with Types

In pure λ-calculus, every term is in the domain of every other term. If it is
necessary to distinguish domains of function, we use types . There are now
many versions of type assignment to λ-terms, but the original and most basic
one, which is the one we consider here, uses the simplest definition of types.

Definition 4 Types are defined from atomic types θ1, θ2, . . . , θn, . . . (possibly
infinitely many) by induction:

1. Every atomic type is a type.

2. If α and β are types, then so is (α→ β).

Remark 7 Other notations have been used in the past for the type (α→ β),
including (αβ), (βα), and Curry’s notation Fαβ. The notation (α→ β) is
now standard. The outermost parentheses are often omitted. Also, paren-
theses are omitted by association to the right, so that

α1 → α2 → . . . → αn → β

is the type
(α1 → (α2 → (. . . (αn → β) . . .))).

The type (α→ β) is intended to represent the type of functions which take
arguments of type α and have values in β.

There are two approaches to the assignment of types to λ-terms, one due
to Church and the other due to Curry.

In the Church style, every variable is assigned a unique type, and this
type is indicated in λ-abstracts, so that if x has type α, the abstraction of
M with respect to x is denoted λx : α . M . (An older notation, used by
Church, is λxα . Mβ, where β is the type of M .) In Church-style typing,
λx : α . x (or, in Church’s original notation λxα . xα) is an identity function
whose domain and range are the type α, and each type has its own identity
function.

That a type α is assigned to a term M is denoted M : α. If there are any
atomic constants, types are assigned to them by axioms, but there may not
be any atomic constants. The type assignment system, TAChλ, is defined as
follows:
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Definition 5 The system TAChλ is defined as follows:

1. Types are defined as in Definition 4.

2. Terms are like the terms of Λ, except that clause 1d of Definition 3 is
replaced by the following: if x is a variable, α is a type, and M is a
term, then λx : α . M is a term.

3. Typing judgements are all of the form M : α, where M is a term and
α is a type.

4. If c is an atomic (term) constant with a type γ, then

c : γ

is an axiom. (That this is an axiom is often written

c : γ,

to indicate a step of a deduction with no premises.)

5. Types are assigned to compound terms by the following two rules:

(→ E) M : α→ β N : α

MN : β

(→ ICh) [x : α]
M : β

λx : α . M : α→ β

Condition: x
does not oc-
cur free in any
undischarged
assumption.

In Curry-style typing, the types of the variables are not fixed, but can
be any types for which the rules allow a term to be assigned a type. The
terms are simply the terms of Λ. In Curry-style typing, λx . x is an identity
function on any type, so λx . x : α→ α for every type α.

The formal definition is as follows
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Definition 6 The system TACuλ is defined as in Definition 5 with the fol-
lowing changes:

1. In Clause 2 of that definition, the terms are the terms of Λ.

2. In Clause 5 of that definition, rule (→ Ich) is replaced by

(→ ICu) [x : α]
M : β

λx . M : α→ β

Condition: x
does not oc-
cur free in any
undischarged
assumption.

Note that in both styles of typing, the deduction of a type assignment
follows the construction of the term.

These rules are for deductions from assumptions. Assumptions are usually
assumed in the form of contexts , which assign variables to types, assigning
distinct variables to distinct types. Thus, a context would have the form

x1 : α1, x2 : α2, . . . , xn : αn.

Here, the variables x1, x2, . . . , xn are all required to be distinct (but the types
α1, α2, . . . , αn need not be distinct).

Some important results about this system are the following:

Theorem 6 (Subject-Reduction Theorem) If M � N and Γ ` M : α
for any context Γ and any type α, then Γ ` N : α.

Theorem 7 (Normal Form Theorem) If Γ ` M : α for any context Γ
and any type α, then M has a normal form.

C Pure Combinatory Logic

The λ-calculus has two primitive operations for constructing terms: abstrac-
tion and application. In combinatory logic, there is only one such opera-
tion, application. Instead of abstraction, combinatory logic has some special
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constants, called basic combinators , and from these basic combinators ab-
straction can be defined. Since the only primitive term-forming operation
is application, there are no bound variables to worry about, and variables
will simply be atomic terms that we decide to call variables and for which
we are prepared to make substitutions.75 Furthermore, the substitution of a
term Y for a variable x in another term X is simply the replacement of all
occurrences of x by Y .

In standard combinatory logic, the basic combinators are K and S. These
two constants have reduction rules defined as follows:

(K) KXY � X,

(S) SXY Z � XZ(Y Z).

(Weak) reduction, or �w is defined as replacements using these two rules, and
the two kinds of redexes are of the form KXY and SXY Z. Its corresponding
conversion is =w . It is easy to see that if X � Y , then for any term Z,
[Z/x]X � [Z/x]Y .

Other important functions can be defined in terms of these two, for ex-
ample the identity function I is defined to be SKK, since

SKKX � KX(KX) � X.

Other definitions are for the composition operator B, which is defined to be
S(KS)K and has the property that BXY Z�X(Y Z), the commutator C, which
has the property that CXY Z � XZY and is defined to be S(BBS)(KK), and
the duplicator W, which satisfies WXY � XY Y and is defined to be SS(KI).

It turns out that the combinator S can be defined in terms of B, C, and
W as B(B(BW)C)(BB); see [Curry and Feys, 1958, §5B1].

In his dissertation [1935a; 1935b], Rosser discovered that all the other
combinators can be defined in terms of I and a combinator J with the re-
duction rule

JUXY Z � UX(UZY ).

Now, for a variable x, an abstraction term [x]X can be defined by induc-
tion on the structure of X as follows:

75This is essentially the same procedure used in computer languages, where variables
are simply identifiers for which we are prepared to make substitutions and constants are
simply identifiers for which we are not prepared to make substitutions.
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• If a is an atomic term, then [x]a is

– I if a is x,

– Ka if a is not x.

• If X is Y Z, then assuming that [x]Y and [x]Z are already defined,
[x]XY is S([x]Y )([x]Z).

Then it follows that [x]X is a term in which the variable x does not
occur. Furthermore, it can easily be proved by induction on the structure of
the term X that

([x]X)Y � [Y/x]X.

However, this is not the only way to define abstraction, and this definition re-
sults in longer terms than some others. For example, the following definition
is often preferred:

(a) If x 6∈ FV(U), then [x]U is KU ,

(b) [x]x is I, and

(f) If X is Y Z, x ∈ FV(X), and [x]Y and [x]Z are already defined, then
[x]X is S([x]Y )([x]Z).76

Still other definitions are possible, and some are significantly more effi-
cient than this one.

Remark 8 The notation [x]X is Curry’s original notation, and it is still in
use by many computer scientists. The abstraction operator in combinatory
logic is often called “bracket abstraction.” Another notation, proposed by
Barendregt [Barendregt, 1984] and used in [Hindley and Seldin, 1986] is
λ∗x . X, but this notation seems currently less common.

We can now formally define combinatory logic:

Definition 7 The formal system H of combinatory logic is defined as follows:

1. Terms are defined as follows:

76On the names of these clauses, see [Curry and Feys, 1958, §6A3, page 190] and [Curry
et al., 1972, §11C1, page 43].
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(a) Variables . There is given an infinite sequence of variables, x, y,
z, x1, etc.

(b) Constants . There are two special constants: K and S. There may
be more constants.

(c) Applications . If X and Y are terms, so is (XY ).

2. All occurrences of variables in terms are free. That x occurs in X will
be denoted x ∈ FV(X).

3. The substitution of a term Y for a variable x in another term X,
[Y/x]X, is defined as in Definition 3, Clause 3, subclauses (a)-(c).

4. Abstraction is defined by the second definition given above just before
Remark 8.

5. (Weak) reduction, �w, is defined by the following axioms and rules:

(K) KXY � X.

(S) SXY Z � XZ(Y Z).

(ρ) X � X.

(µ) If X � Y , then ZX � ZY .

(ν) If X � Y , then XZ � Y Z.

(τ) If X � Y and Y � Z, then X � Z.

This is equivalent to defining weak reductions as replacements of re-
dexes by contracta, where there are two kinds of redexes: 1) K redexes
(KXY ), whose contractum is X, and 2) S redexes (SXY Z), whose
contractum is XZ(Y Z).

6. (Weak) conversion, =w , is defined by changing � to =w in the defi-
nition of weak reduction and adding the rule

(σ) If X =w Y , then Y =w X.

Weak reduction can also be defined as a sequence of contractions and
reverse contractions.

Remark 9 Weak reduction and conversion satisfy the Church-Rosser The-
orem, i.e., Theorem 5 and Corollary 1.
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Combinatory terms can be translated to λ-terms by the following trans-
lation:

Definition 8 The translation −L from terms in H to terms in Λ is defined
as follows:

1. If a is any atomic term except K or S, then aL ≡ a.

2. KL ≡ λxy . x.

3. SL ≡ λxyz . xz(yz).

4. (XY )L ≡ (XLYL).

With this definition, it is easy to prove the following:

Theorem 8 If X �w Y in H, then XL �β YL in Λ. If X =w Y in H, then
XL =β YL.

The converse translation depends on the abstraction algorithm used in
H:

Definition 9 The translation −H from Λ to H is defined as follows:

1. If a is an atomic term, then aH ≡ a.

2. (MN)H ≡ (MHNH).

3. (λx . M)H ≡ ([x]MH).

Remark 10 Note that for any abstraction algorithm, if y 6∈ FV(M), then
([x]M)H ≡ ([y][y/x]MH). Thus, rule (α) is mapped to an identity be-
tween terms by the mapping −H . This is another reason for identifying
α-convertible terms in λ-calculus.

Remark 11 There is no theorem for the translation −H corresponding to
Theorem 8. The reason for this is that rule (ξ) does not hold for �w. This
can be seen from the following example: Ix �w x, but

[x](Ix) ≡ S(KI)I 6�w I ≡ [x]x.

A form of �w and =w can be defined for λ-terms: drop rule (ξ) or,
which is equivalent, forbid replacements within the scope of a λ-abstract.
For this reduction, we do have that if M �w N (respectively M =w N), then
MH �w NH (respectively MH =w NH).
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D Combinators with Types

To have a Church-style typing, we would need a combinator Kαβ of type
α→ β → α for each pair of types α and β, and similarly for S, so that there
would be a combinator Iα of type α→ α for each type α. This would lead to
an infinite number of atomic combinators, and so is not usually considered.
Instead, type assignment for combinators is usually taken in the Curry style.

In assigning types to terms of combinatory logic, deductions that terms
have types will follow the construction of the terms. For this reason, the
definition of the system is as follows:

Definition 10 The system TACu is defined as follows:

1. The types are those defined in Definition 4 above.

2. The terms are the terms of the system H of Definition 7 above.

3. Typing judgements are of the form X : α, where X is a term and α is
a type.

4. If c is an atomic constant different from K and S, and if c is assigned
type γ, then c : γ is an axiom. There are two additional axiom schemes:

(FK) For all types α and β, K : (α→ β → α).

(FS) For all types α, β, and γ, S : (α→ β → γ)→ (α→ β)→ (α→ γ).

5. The rule of the system is the rule (→ E) of Definition 5, clause 5.

The Subject-Reduction Theorem, Theorem 6 above, and the Normal
Form Theorem, Theorem 7 above, both hold for system TACu.
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[Church, 1989] A. Church. Intensionality and the paradox of the name re-
lation. In J. Almog, J. Perry, and H. Wettstein, editors, Themes from
Kaplan, pages 151–165. Oxford University Press, New York, 1989.

[Church, 1993] A. Church. A revised formulation of the logic of sense and
denotation. alternative (1). Noûs, 27(2):141–157, June 1993.
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and Nauwelaerts, Paris and Louvain, 1952.

65



[Curry, 1952c] H. B. Curry. A new proof of the Church-Rosser Theorem.
Indagationes Mathematicae, 14:16–23, 1952.

[Curry, 1952d] H. B. Curry. On the definition of negation by a fixed proposi-
tion in inferential calculus. Journal of Symbolic Logic, 17(2):98–104, June
1952.

[Curry, 1952e] H. B. Curry. The permutability of rules in the classical in-
ferential calculus. Journal of Symbolic Logic, 17(4):245–248, December
1952.

[Curry, 1952f] H. B. Curry. The system LD. Journal of Symbolic Logic,
17(1):35–42, March 1952.

[Curry, 1954] H. B. Curry. The logic of program composition. In Appli-
cations Scientifiques de la Lagique Mathématique, Actes du 2e Colloque
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