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Summary

Planctomycetes are ubiquitous and environmentally
important Gram-negative aquatic bacteria with
key roles in global carbon and nitrogen cycles.
Many planctomycetal species have a pink or orange
colour and have been suggested to produce caroten-
oids. Potential applications as food colorants or anti-
oxidants have been proposed. Hitherto, the
planctomycetal metabolism is largely unexplored and
the strain pigmentation has not been explored. For
a holistic view of the complex planctomycetal
physiology, we analysed carotenoid profiles of the
pink-pigmented strain Rhodopirellula rubra LF2T and
of the orange strain Rubinisphaera brasiliensis Gr7.
During LC–MS/MS analysis of culture extracts,
we could identify three saproxanthin-type caroten-
oids including a rare C45 carotenoid. These com-
pounds, saproxanthin, dehydroflexixanthin and 20-
isopentenyldehydrosaproxanthin, derive from the
common carotenoid precursor lycopene and are
characterized by related end groups, namely a
3-hydroxylated β-carotene-like cyclohexene ring as

one end group and simple hydration on the other
end of the molecule. Based on the observed mole-
cule structure we present putative pathways for
their biosynthesis. Results support Planctomycetes
as a promising, yet mostly untapped source of
carotenoids.

Introduction

Plants, bacteria, fungi and algae produce an impressive
diversity of nearly 1200 carotenoids currently listed in the
Carotenoids Database (Yabuzaki, 2017). Due to their
anti-oxidative properties, they play a key role in the pro-
tection of the photosynthesis machinery in plants, algae
and photosynthetic bacteria, including cyanobacteria and
green sulphur bacteria. Furthermore, they can fine-tune
the absorption properties of the photosynthesis appara-
tus, partly as a niche adaptation strategy towards differ-
ent light conditions (Lichtenthaler, 1987). In this sense,
carotenoids are considered as a borderline between pri-
mary and secondary metabolism. Interestingly, 311 of the
1182 carotenoids listed in the Carotenoids Database are
produced by heterotrophic bacteria, supporting a more
general role in the protection against oxidative stress,
beyond photosynthesis (Gammone et al., 2015). Due to
their natural anti-oxidative properties, carotenoids are
also valuable compounds for commercial applications.
Several carotenoids are approved by the European
Union as food supplements with major application as
colourants or anti-oxidants (Rao and Rao, 2007;
Kallscheuer, 2018), while there is also substantial evi-
dence for health-promoting effects of carotenoids as
parts of the human diet (Concepcion et al., 2018). Sev-
eral studies demonstrated that pigments derived from
Planctomycetes are incorporated by Daphnia magna, a
higher trophic level organism (Marinho et al., 2019) and
evidenced the potential application of this bacterium to
be used as single-cell-pigment for colour enhancement
(Lage and Antunes, 2018).

Carotenoids belong to the large class of isoprenoids
(or terpenoids) and their synthesis follows a concerted
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principle for carbon chain assembly, employing isoprene
units as building blocks. A total of 1100 of the 1182 natu-
ral carotenoids are tetraterpenoids (C40 compounds),
formed from eight isoprene monomers. The active form
of these monomers, isopentenyl pyrophosphate, is
produced by two known metabolic routes: the
mevalonate pathway (starting from acetyl-CoA) and the
non-mevalonate pathway (starting from pyruvate and
glyceraldehyde 3-phosphate), of which the latter is also
known as MEP/DOXP pathway (2-C-methyl-D-erythritol
4-phosphate/1-deoxy-D-xylulose 5-phosphate pathway)
(Goldstein and Brown, 1990; Lichtenthaler, 2000).
While nearly all plants produce carotenoids, the capa-

bility for carotenoid production in bacteria appears to be
more restricted to free-living species naturally dwelling in
environments with frequently changing conditions such
as soil or seawater. Many such species fall within the
phylum Planctomycetes. Planctomycetes are a group of
Gram-negative–like aquatic bacteria that are ubiquitous,
often found associated with phototrophs such as macro-
and micro-algae and that play environmentally important
roles in global carbon- and nitrogen cycles (Wiegand
et al., 2018). Several planctomycetal species have a red,
pink or orange colour; however, the pigmentation of
species in this phylum has not yet been investigated in
detail. In this study, we thus analysed the major caroten-
oids of two planctomycetal strains: the pink species
Rhodopirellula rubra LF2T and the orange Rubinisphaera
brasiliensis Gr7 (Lage and Bondoso, 2011; Bondoso
et al., 2014). We further analysed the genomes of these
organisms aiming at genes coding for enzymes putatively
involved in the related biosynthetic pathways, which is
the basis for further investigating the ecological and phys-
iological relevance of these natural products in
Planctomycetes.

Results and discussion

To examine the carotenoid profiles of Planctomycetes,
we extracted and analysed carotenoids from the strains
R. rubra LF2T (pink) and R. brasiliensis Gr7 (orange)
(Fig. 1), which were isolated in northern Portugal from
macroalgae surfaces at the coasts of Foz, Porto and
Aveiro respectively (Bondoso et al., 2014; Lage and Bon-
doso, 2011). Cells were harvested in the exponential
growth phase and solvent extracts of cell pellets were
subjected to LC–MS/MS analysis.
During spectrometrical analysis, extracts from both

strains yielded a peak at a retention time of 17.1 min with
a typical carotenoid UV/Vis spectrum (Fig. 2A), for which
the MS/MS spectrum led to no clear identification in the
European MassBank (NORMAN MassBank). Manual
analysis of the full mass spectrum (Fig. 2B) revealed a
sodiated molecule [M + Na]+ at m/z 590, and a molecular

ion at m/z 568, corresponding to the molecular formula
C40H56O2. This is also further supported by the observed
signal for [M + Na-H2O]+• of 572. Obtained fragments in
an in silico fragmentation approach (Table S1) yielded
saproxanthin as the most probable candidate molecule
(Fig. 2C). Saproxanthin is a tetraterpene (C40) character-
ized by a carotenoid β-cycle additionally hydroxylated
at C3 as one end group and simple hydration of the
most distant double bond at the other end of the mole-
cule. Saproxanthin was already identified in the 1960s
as the major pigment in the marine flexibacterium
Saprospira grandis (Aasen and Liaaen-Jensen, 1966)
and is also present in marine species of the family
Flavobacteriaceae (Hameed et al., 2014). For further
supporting our putative identification of this carotenoid in
Planctomycetes, we searched for additional data
obtained for saproxanthin in the literature. A UV/Vis spec-
trum indistinguishable from the one obtained in our study
was published for Flavobacteriaceae bacterium 04OKA-
13-27 (Shindo et al., 2007). During the comparison of the
spectra, we not only focused on the major peaks in the
UV/Vis spectrum but also took characteristic peak ‘shoul-
ders’ into consideration. The published spectrum was ulti-
mately shown to belong to saproxanthin, thereby also
substantially consolidating identification in our study.
Saproxanthin shows potent antioxidative properties ren-
dering it also interesting for commercial applications
(Shindo et al., 2007).

An ion at 16.4 min with [M + H]+ of 581 in the R. rubra
LF2T extract indicated the presence of a second com-
pound in this strain. The observed mass differs from that
of saproxanthin by 12 Da. According to our in silico frag-
mentation approach (Fig. 3A, Table S2) presence of an
additional keto group at position 4 of the cyclohexene
β-cycle of saproxanthin and presence of an additional
double bond in the ring is likely. Taken together, this
information suggests dehydroflexixanthin to be the com-
pound in question (C40H52O3, 580.4 Da, Fig. 3B). It was
already shown earlier that dehydroflexixanthin is formed
from the naturally produced carotenoid flexixanthin by
auto-oxidation, leading to the introduction of the double
bond between C2 and C3 in the cyclohexene ring
(Coman and Weedon, 1975). Flexixanthin (C40H54O3,
582.4 Da) was identified in the 1960s in Flexibacter spe-
cies and represents the major carotenoid in these micro-
organisms (Nakagawa, 2015). Taking the published
information on spontaneous oxidation of flexixanthin into
account it is likely that flexixanthin is the actual caroten-
oid also produced in R. rubra LF2T.

A third peak from the extract of R. rubra LF2T eluted at
20.9 min and gave a UV/Vis spectrum similar to
saproxanthin, but an [M + H]+ signal of 635 (Fig. 4A and
B). The difference of 66 Da indicates the presence of an
additional isoprene unit in this compound. Ligation of
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isoprene (C5H8) to saproxanthin (C40H56O2) would yield
a compound with the sum formula C45H64O2 and an
[M + H]+ signal of 637, which differs in 2 Da from the
observed signal at 635. In silico fragmentation (Table S3)
provides evidence that this peak corresponds to 20-iso-
pentenyldehydrosaproxanthin, a derivative of the auto-
oxidation product of saproxanthin (explaining the 2 Da
difference in mass) additionally harbouring an isopentenyl
residue at the C20-position (Fig. 4C). Presence of 20-
isopentenylsaproxanthin was reported earlier in the
marine flavobacterium Jejuia pallidilutea, which was iso-
lated in Japan and South Korea (Lee et al., 2009;

Takatani et al., 2014). Taking the observed auto-
oxidation into account, it is likely that 20-
Isopentenylsaproxanthin is also the actual compound
produced by R. rubra LF2T. This compound is a rare C45

carotenoid, of which only 12 compounds are listed in the
Carotenoids Database. In the few known examples of
C45 saproxanthin-type carotenoids, isopentenylation took
place at C20, which is in accordance with the observed
fragment ions obtained in our study.

Next, we aimed at identifying the underlying biosyn-
thetic pathway for the three identified carotenoids from
the common carotenoid precursor lycopene. To this end,

Fig. 1. Colours of the two investigated strains. The photographs show liquid cultures and cells streaked on agar plates of pink-pigmented R. rubra
LF2T and orange-pigmented R. brasiliensis Gr7.

Fig. 2. Collected data leading to the identification of saproxanthin. The UV/Vis spectrum (A), full mass spectrum (B) and structural formula (C) of
saproxanthin are depicted.
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we analysed genome data also taking previously
described pathways in Flexibacteria and Flavobacteria
into account. Our analysis focused on the published
genomes of R. brasiliensis DSM 5305T and of R. rubra

SWK7 (Klindworth et al., 2014; Scheuner et al., 2014). It
is reasonable to argue that 10-hydroxytorulene
(myxocoxanthin) could be an intermediate of the
planctomycetal pathway as this compound harbours the

Fig. 3. Collected data leading to the identification of dehydroflexixanthin. The MS/MS spectrum of m/z 581 (A) and structural formula (B) of
dehydroflexixanthin are depicted.

Fig. 4. Collected data leading to the identification of 20-isopentenyldehydrosaproxanthin. The UV/Vis spectrum (A), MS/MS spectrum of m/z
635 (B) and structural formula (C) of 20-isopentenyldehydrosaproxanthin are depicted.
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modified end groups and serves as a common precursor
for production of the three identified compounds (Fig. 5).
Production of 10-hydroxytorulene from lycopene requires
the activity of a carotenoid 1,2-hydratase, a carotenoid
3,4-desaturase and a carotenoid β-cyclase. These reac-
tions were already proposed for the flexixanthin biosyn-
thetic pathway in the marine bacterium Algoriphagus
sp. (Tao et al., 2006). Further conversion of 10-
hydroxytorulene to flexixanthin via deoxyflexixanthin is
also in accordance with the pathway proposed in
Algoriphagus sp., which involves a carotenoid ketolase
and a carotenoid 3-hydroxylase (Fig. 5).

Conversion of 10-hydroxytorulene to saproxanthin
requires a carotenoid 3-hydroxylase activity for
the introduction of the hydroxy group at C3.
Subsequent isopentenylation of saproxanthin leading to

20-isopentenylsaproxanthin is catalysed by an elongase
(isopentenyltransferase) (Fig. 5). The responsible
enzyme might be a homologue of the lycopene elongase
LyeJ, which was identified in the bacterioruberin pathway
of the archaeon Haloarcula japonica (Yang et al., 2015).
As the natural substrate of LyeJ is lycopene, the exact
order in which elongase, hydratase and cyclase catalyze
modification reactions at the end group for ultimately
yielding 20-isopentenylsaproxanthin remains to be
elucidated.

For getting a first insight into how the carotenoid bio-
synthetic pathway in Planctomycetes could be encoded,
we performed sequence analyses based on local align-
ments and Hidden Markov Models with various enzymes
known to synthesize the identified compounds in other
microorganisms. For enzymes in the proposed pathway

Fig. 5. Postulated pathway for production of the carotenoids identified in R. rubra LF2T and R. brasiliensis Gr7. The postulated metabolic route
leading to saproxanthin, 20-isopentenyl(dehydro)saproxanthin and (dehydro)flexixanthin from the common carotenoid precursor lycopene is
shown. The precursor geranylgeranyl pyrophosphate (geranylgeranyl-PP) is produced from isopentenyl-PP obtained from the MEP/DOXP path-
way in planctomycetal strains. Three arrows indicate multiple reaction steps that are not depicted in detail.
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starting from lycopene, produced from the MEP/DOXP
pathways in both species, our analysis yielded no hits in
R. brasiliensis DSM 5305T and R. rubra SWK7 (Table 1).
In R. brasiliensis DSM 5305T, we could not even identify
an enzyme candidate for phytoene desaturase, which is
responsible for biosynthesis of the common carotenoid
precursor lycopene and which is present in R. rubra
SWK7 (Table 1). Taken together, we could not find candi-
date enzymes of the carotenoid biosynthesis pathway in
the two investigated Planctomycetes so far, although the
presence of identified compounds implies that enzymes
for such a pathway must be present. Structural organisa-
tion and domain architecture of involved enzymes might
be different from canonical ones, thereby providing a pos-
sible explanation of why these enzymes escaped our
analysis. Planctomycetes are amongst the bacterial phyla
with the most predicted genes of unknown function
(40%–50%) and at the current stage, despite using state-
of-the-art bioinformatic tools, the carotenoid biosynthesis
pathway in Planctomycetes remains undiscovered. We
must, therefore, stress that the shown pathway (Fig. 5)
was postulated based on information from microorgan-
isms known to produce these compounds. However, as
the required reactions are basically given based on the
end groups of the final compounds, we assume that they
might be similar in the here investigated species
(although the order of reactions may differ).
The probable lack of phytoene desaturase activity in R.

brasiliensis DSM 5305T is particularly interesting as it
might be part of the explanation for differences in colony

colours (pink or orange). This, however, will have to be
addressed in follow-up studies. Remarkably, our observa-
tions remain astonishing when taking into account that
genes coding for enzymes of the MEP/DOXP pathway
responsible for the formation of the acyclic carotenoid
precursor phytoene were easily identified with high signif-
icance parameters (Table 1).

Based on the UV/Vis spectra and information from the
literature saproxanthin, 20-isopentenylsaproxanthin and
flexixanthin have yellow to orange colour and it is thus
likely that the orange colour of R. brasiliensis Gr7 results
from the presence of mixtures of these compounds. At
this stage, it remains to be elucidated which compounds
are responsible for the pink colour. There are in principle
three theories for explaining this observation: (i) the pink
to red colour is caused by a pathway intermediate of the
postulated pathway (e.g. lycopene), (ii) pink strains form
additional—yet to identify—carotenoids, or (iii) the com-
pound causing the pink colour is not a carotenoid or
escaped the analysis due to the formation of complexes,
e.g. with proteins (Lakshman and Okoh, 1993). In
Flexibacter ruber, it was observed that colonies have a
red colour, although the yellow to orange flexixanthin was
identified as the major carotenoid (Whitman, 2010). A
similar situation might also explain the colony colour in
the investigated planctomycetal strain LF2T. Spectro-
scopic properties are typically also influenced by addi-
tional parameters, such as pH or components of the used
cultivation medium. Either way, the observed differences
in the carotenoid composition or even their absence

Table 1. Genes relevant for the production of the three identified carotenoids from precursors of the primary carbon metabolism.

Gene Annotation

Accession number

R. brasiliensis DSM 5305T R. rubra SWK7

Non-mevalonate pathway
dxs 1-deoxy-D-xylulose-5-phosphate synthase ADY60203.1 EMI45825.1
dxr 1-deoxy-D-xylulose 5-phosphate reductoisomerase ADY62041.1 EMI47130.1
ispD 2-C-methyl-D-erythritol 4-phosphate

cytidylyltransferase
ADY58900.1 EMI41460.1

ispE 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase ADY59769.1 EMI43255.1
ispF 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase ADY62145.1 EMI41605.1
ispG, gcpE 4-hydroxy-3-methylbut-2-en-1-yl diphosphate

synthase
ADY59897.1 EMI45477.1

ispH 4-hydroxy-3-methylbut-2-en-1-yl diphosphate
reductase

ADY61028.1 EMI41209.1

Carotenoid biosynthesis
crtE Geranylgeranyl pyrophosphate synthase ADY60202.1 EMI45824.1
crtB Phytoene synthase ADY58198.1 EMI41211.1
crtI Phytoene desaturase Not found EMI45088.1
crtC Acyclic carotenoid 1,2-hydratase Not found Not found
crtD Carotenoid 3,4-desaturase Not found Not found
crtY Lycopene β-cyclase Not found Not found
crtW β-Carotene ketolase Not found Not found
crtZ β-Carotene hydroxylase Not found Not found
lyeJ Lycopene elongase/lycopene 1,2-hydratase Not found Not found

The GenBank accession numbers are given for genes identified in the genomes of R. brasiliensis DSM 5305T and R. rubra SWK7.
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among many white colony-forming planctomycetal stains
is particularly interesting from both an ecological and
physiological perspective.

In this study, we were able to identify three carotenoids
present in two pigmented planctomycetal strains, thus
contributing to improved characterization of bioactive
molecules with potential biotechnological relevance in
this phylum of aquatic bacteria (Graca et al., 2016; Jeske
et al., 2016).
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