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I.
Introduction and Summary of Results

1. The number d(N) of divisors of N varies with extreme irregularity as N tends to infinity,
tending itself to infinity or remaining small according to the form of N. In this paper I
prove a large number of results which add a good deal to our knowledge of the behaviour
of d(N).

It was proved by Dirichlet * that

d(1) +d(2) + d(3) + -+ d(N)
N

1
=logN+2y—140(—) T
N+ 2 (EN)

where v is the Eulerian C(;nstant. Voronéi * ancl Landau $ have shewn that the error term
may be replaced by O(N~3%€), or indeed O(N 35 log N). It seems not unlikely that the real

value of the error is of the form O(N _%“), but this is as yet unproved. Mr. Hardy has,
however, shewn recently ¥ that the equation

d(1) +d(2) +d(3)+---d(N)
N

—log N +2y—1+0(N"1)
is certainly false. He has also proved that

d(1) +d(2)) + - +d(N —1) + 3d(N)) — Nlog N — (2y —1)N — %
—VF S D ary ) - Vil N
1

where Y, is the ordinary second solution of Bessel’s equation, and

o
2 we T dw

“r) Vo

and that the series on the right-hand side is the sum of the series

Hl(l‘)

Ni X d(n
7T\/§ZI: i )005{477\/(71]\7)—%77},

3
1

and an absolutely and uniformly convergent series.

* Werke, Vol.2, p.49.

Tf = O(¢) means that a constant exists such that |f| < K¢ : f = o(¢) means that f/é — 0.
¥Crelle’s Journal, Vol. 126. p. 241.

$ Qottinger Nachrichten, 1912.

T Comptes Rendus May 10, 1915.
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The “average” order of d(NNV)) is thus known with considerable accuracy. In this paper I
consider, not the average order of d(N)), but its maximum order. This problem has been
much less studied. It is obvious that

d(N) < 2VN.

It was shewn by Wigert* that
log N (1_,’_5) X
d(N) < Qloglog N (1)

for all positive values of € and all sufficiently large values of IV, and that

log N
d(N) > 2logigN(1_E) (11)
for an infinity of values of N. From (i) it follows in particular that
d(N) < N°

for all positive values of § and all sufficiently large values of N.
Wigert proves (i) by purely elementary reasoning, but uses the “Prime Number Theo-
rem” fto prove (ii). This is, however, unnecessary, the inequality (ii) being also capable of
elementary proof. In § 5 I shew, by elementary reasoning, that

log N log N

d(N) < 2loglogN+ (loglog N)2

for all values of N, and
log N log N

d(N) > 2781068 T log10g )2

for an infinity of values of V. I also shew later on that, if we assume all known results
concerning the distribution of primes, then

d(N) < 2Li(log N)+Ol[log Ne*“\/m}

for all values of N, and

d(N) > 2Li(log N)+O[log Ne~aV (loglog N}

for an infinity of values of N, where a is a positive constant.
I then adopt a different point of view, I define a highly composite number as a number
whose number of divisors exceeds that of all its predecessors. Writing such a number in the
form

N =202.3% .55 ... 5%

* Arkiv for Matematik, Vol. 3, No.18
fThe theorem that m(x) ~ foe5 > (%) being the number of primes not exceeding .
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I prove that

and that

for all highly composite values of N except 4 and 36.
I then go on to prove that the indices near the beginning form a decreasing sequence in the
stricter sense, i.e., that

ag > az > as > - > Ay,

where A is a certain function of p.
Near the end groups of equal indices may occur, and I prove that there are actually groups
of indices equal to

1,2,3,4,...,u,

where p again is a certain function of p. I also prove that if A is fairly small in comparison
with p, then

and that the later indices can be assigned with an error of at most unity.

I prove also that two successive highly composite numbers are asymptotically equivalent,
i.e., that the ratio of two consecutive such numbers tends to unity. These are the most
striking results. More precise ones will be found in the body of the paper. These results
give us a fairly accurate idea of the structure of a highly composite number.

I then select from the general aggregate of highly composite numbers a special set which 1
call “superior highly composite numbers”. I determine completely the general form of all
such numbers, and I shew how a combination of the idea of a superior highly composite
number with the assumption of the truth of the Riemann hypothesis concerning the roots
of the (-function leads to even more precise results concerning the maximum order of d(V).
These results naturally differ from all which precede in that they depend on the truth of a
hitherto unproved hypothesis.

IT.
FElementary Results concerning the Order of d(N).
2. Let d(N) denote the number of divisors of N, and let
N =py'p’pst - oy (1)
where p1, p2,ps3, ..., pn are a given set of n primes. Then

AdN) =14+ a1)(1+a2)(1+a3) - (1+ap). (2)
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From (1) we see that

(1/n)log(pipaps - - - pudV)
= (1/n){(1 +a1)logp; + (1 +az)logps + -+ (1 + ay,)logp,}
> {(1+a1)(1+a2)(1+as) - (1+ay)logplogps - -logp, }'/™.

Hence we have

) {(1/n)log(pipaps - - puN)}"

d(N) < , 3
( log p1 log p2 log p3 - - - log py, ®)

for all values of N.
We shall now consider how near to this limit it is possible to make d(N) by choice of the
indices a1, a9, as,...,a,. Let us suppose that

log pn,

l+a,=v
log pim,

+en(m=1,2,3,...,n), (4)

where v is a large integer and —% <em < % Then, from (4), it is evident that
€, = 0. (5)

Hence, by a well-known theorem due to Dirichlet®, it is possible to choose values of v as
large as we please and such that

le1] < €, lea] <€, les| <€, ..., |en—1] <, (6)
where € < v~ =) Now let
t= 'Ulngm Om = €m 1ngm- (7)

Then from (1), (4) and (7), we have
log(pip2ps - pnN) = nt + Z Om,.- (8)
1

Similarly, from (2), (4) and (7) we see that

(t+ 1)t +d2) - (t+ dp)
log p1 log p2 log p3 - - - log py,

oy { i S8 X, -

d(N) =

t 2t2 3t3
log p1 log p2 log p3 - - - log pn,
* Werke, Vol. 1, p. 635.
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R

B (t N > (5m>" P 2nt? 3n2¢3
n log p1 log p2 log p3 - - - log py,

{(1/n)log(pipaps - - - pnN)}"
log p1 logps - - - log pp,

[ 1(log N)~ { 2N 62— (Z‘Smf}*} (9)

in virtue of (8)). From (6), (7) and (9) it follows that it is possible to choose the indices
ai,as,...,a, so that

_ {(1/n)log(pipaps - -~ puN)}" - o 2n/(n—1)
dN) = log p1 log py - - logpn {1~ Odlog V)~ ) (10)

where the symbol O has its ordinary meaning.
The following examples shew how close an approximation to d(N) may be given by the
right-hand side of (3). If

N = 272 . 725

then, according to (3), we have
d(N) < 1898.00000685 ... . ; (11)
and as a matter of fact d(N) = 1898. Similarly, taking
N = 2568 . 3338
we have, by (3),
d(N)) < 204271.000000372.... . ; (12)
while the actual value of d(IN) is 204271. In a similar manner, when
N — 904,390 527
we have, by (3),
d(N) < 74620.00412. . . ; (13)
while actually

d(N) = 74620.

3. Now let us suppose that, while the number n of different prime factors of N remains
fixed, the primes p,, as well as the indices a,, are allowed to vary. It is evident that d(N),



Highly composite numbers

considered as a function of N, is greatest when the primes p, are the first n primes, say

2,3,5,...,p, where p is the nth prime. It therefore follows from (3) that

{(1/n)log(2-3-5---p- N)}"

d(N
(N) < log2log 3logh---logp

)

and from (10) that it is possible to choose the indices so that

{(1/n)log(2-3-5---p- N)}"

d(N) = {1 — O(log N)=2/(n=1y,

log2log3logh---logp

(14)

(15)

4. Before we proceed to consider the most general case, in which nothing is known about
N, we must prove certain preliminary results. Let m(z) denote the number of primes not

exceeding x, and let
Y(x) =log2+log3+logh+ -+ logp,

and
w(z) =log2-log3-logh---logp,

where p is the largest prime not greater than z; also let ¢(t) be a function of ¢ such that

¢ (t) is continuous between 2 and x. Then

xT

3 5 7

(t)¢ (t)dt = & t)dt+2 | ¢'(t)dt +3 | ¢/(t)dt

/ [ ] s ]
11 x

—1—4/¢’(t)dt+-~+7r(x)/¢’(t)dt

7

{6(3) —0(2)} +2{0(5) — ¢

—~

As an example let us suppose that ¢(t) = logt. Then we have

T

m(x)logx —V(z) = /

2

t

t.

Again let us suppose that ¢(t) = loglogt. Then we see that

xT

m(x)loglogx — log w(x) = /
2

™) g

tlogt

3)} +3{e(7) — 0(5)}
+4{¢o(11) = ¢(7N)} + - + m(z){d(x) — ¢(p)}
= 7w(z))o(x) —{d(2) +¢(3) + ¢(5) + -+ é(p)}-

(16)

(18)
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But

[ m(t) m(t) m(t)
dt = dt dt | du.
/tlogt logm/ +/ (u (log u)? / t ) “

2 2

[\

Hence we have

() log {%} — log w(x)

X

= i) log {ﬂ(f)(i))gaz} * 10;:1: 2/ ngt) dt +/ (u(loi u)? 2/ ngt)dt) du. (19)

~—

3

~—

But
V() B 7(x)logx — 9(x)
7T(m)lOg{7T(ac)logac} N ﬂ(x)log{l— 7(x)log x }
_ ﬂ(x)log{l w($)110g$/w(tt)dt}
2
1 xﬂ'(t)
< _long/Tdt
and so
ﬂ(x)log{ (19)(1”0)“} 102;95 / Wgt)dt<0 (20)
Again
e @) N () lor s d()
oo g | = o {14+ TR
2 2
and so
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It follows from (19), (20) and (21) that

i(u(lo;u)2/uwit) dt) du > W(:ﬂ)log{i(—g}—logwtv)
2 2

and so
!@dt -0 <IOZ$>
Hence
2/ <u<lo;u>2 / W(tt)dt) u :2/ {aoglu)s} B {ao;x)s}’
and

. 2
19(:E)110gx { / Wgst)dt} = ﬁ(x)llog:EO { (1021)2} =0 { (10;)3}'

Hence we see that

{0(x)/m(x)}™) (Ole/(logx)?]

22
() (22)
5. We proceed to consider the case in which nothing is known about N. Let
N/ =9m . 302 5a3 . -pn.
Then it is evident that d(N) = d(N'), and that
J(p) < log N' <log N. (23)

*See Landau, Handbuch, pp. 71 et seq.
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It follows from (3) that
1 (9(p) +log N’ }”(p)
d(N) = d(N') < {
R A0
{140eX }“@’) W)/~(0)}"
B d(p) @(p)
m(p) m(p)+0[p/(logp)?]
_ {1 N k’gN} " Olp/0gp)?) _ {1 N M} TR
d(p) d(p)
in virtue of (22) and (23). But from (17) we know that
— P_\.
7(p)logp —¥(p) = O <logp> ;
and so
O(p) = m(p){logp + O(1)} = m(p){log ¥(p) + O(1)}.
Hence
0 =90 50+ O (29
7(p) = .
P Nogip) " {log V)12
It follows from (24) and (25) that
p) o 9P
log N } Tog 9(p) T [log 9 (»)]2
d(N) <1+ —— :
< {1+ 585
Writing ¢ instead of ¥(p), we have
%—l—o ott
d(N)§<1+10gN>lg (log t) ; (26)
and from (23) we have
t <log N. (27)

Now, if N is a function of ¢, the order of the right-hand side of (26), considered as a
function of NV, is increased when N is decreased in comparison with ¢, and decreased when
N is increased in comparison with ¢. Thus the most unfavourable hypothesis is that NV,
considered as a function of ¢, is as small as is compatible with the relation (27). We may
therefore write log N for ¢ in (26). Hence

log N log N

d(N) < 2 loglog N + (log log N)2 , (28)
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for all values of N*
The inequality (28) has been proved by purely elementary reasoning. We have not assumed,
for example, the prime number theorem, expressed by the relation

m(x)

T

~ logz *

We can also, without assuming this theorem, shew that the right-hand side of (28) is
actually the order of d(NN) for an infinity of values of N. Let us suppose that

N=2.-3-5-7---p.

Then , ,
d(N) = 27®) = g®et "0 Tegn?
in virtue of (25). Since log N = ¥(p) = t, we see that

log N log N

d(N) = QloglogN+O (loglog N)?

for an infinity of values of N. Hence the maximum order of d(NN) is

log N log N
2 loglog N (loglog N)2

I11.
The Structure of Highly Composite Numbers.

6. A number N may be said to be a highly composite number, if d(N’) < d(N) for all
values of N’ less than N. It is easy to see from the definition that, if N is highly composite
and d(N') > d(N), then there is at least one highly composite number M, such that

N<M<N' (29)

* If we assume nothing about (), we can shew that

log N + log N log loglog N
d(N) < Qloglog N (log log N )2

If we assume the prime number theorem, and nothing more, we can shew that

log N
HIHOW TN

log N
d(N) < 9Toglog N

T T

If we assume that 7T(1}) = @ + W7

we can shew that o
og

d(N) < 210g log N

log N o og N
+ (log log N)?2 + (log log N)3

f¢(z) ~ () means that ¢(z)/¥(z) — 1 as z — oo.
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if N and N’ are consecutive highly composite numbers, then d(M) < d(N) for all values of
M between N and N’. It is obvious that

d(N) < d(2N) (30)

for all values of N. It follows from (29) and (30) that, if N is highly composite, then there
is at least one highly composite number M such that N < M < 2N. That is to say, there
is at least one highly composite number NV, such that

xr < N <2z, (31)
if x> 1.

7. T do not know of any method for determining consecutive highly composite numbers
except by trial. The following table gives the consecutive highly composite values of N,
and the corresponding values of d(N) and dd(N), up to d(N) = 10080.

The numbers marked with the asterisk in the table are called superior highly composite
numbers. Their definition and properties will be found in §§ 32, 33.

dd(N) d(N) N
2 2 = 3 = 2

2 3=3 4 = 22

3 4 =22 *6 = 2.3

4 6=2-3 12 = 22.3

4 8 =23 24 = 23.3

3 9 =32 36 = 22.32

4 10=2-5 48 = 2*.3

6 12=22.3 *60 = 22.3.5

5 16 = 24 *120 = 23.3.5

6 18 =232 180 = 22.32.5
6 20=12%.5 240 = 2*.3.5

8 24=2%.3 %360 = 2%.32.5
8 30=2-3-5 720 = 2%.3%2.5
6 32 =25 840 = 23.3.5.7
9 36 = 22 . 32 1260 = 22.32.5.7
8 40=23%.5 1680 = 2*.3.5.7
10 |48=2*.3 %2520 = 23.32.5.7
12 | 60=22-3-5| %5040 = 2*.32.5.7
7 64 = 26 7560 = 23.3%.5.7
12 72=2%.32 10080 = 2°-32.5.7
10 |80 =2*-5 15120 = 2%.3%.5.7
12 |84 =22.3.7]20160 = 26.32.5.7
12 | 90=2-32-5|25200 = 2*.32.52.7
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dd(N) d(N) N
12 [96=2°-3 27720 = 23.32.5.7-11
9 100 = 22 - 52 45360 = 2%.3%.5.7
12 108 =22.33 50400 = 2°.32.52.7
16 |120=2%-3-5 *55440 = 2%4.32.5.7-11
8 128 = 27 83160 = 23.3%.5.7-11
15 144 = 2% .32 110880 = 2°.32.5.7-11
12 160 =2°-5 166320 = 2%.33.5.7-11
16 168 =2%-3-7 221760 = 26.32.5.7-11
18 | 180=2%2-32.5 277200 = 2*.32.52.7.11
14 |192=26.3 332640 = 2°.3%3.5.7-11
12 | 200 = 23 . 52 498960 = 2*.3*.5.7-11
16 | 216=2%.33 554400 = 2°.32.52.7.11
12 | 224=2%.7 665280 = 206.3%3.5.7.11
20 |240=2*.3-5 x720720 = 2*.32.5.7-11-13
9 256 = 28 1081080 = 23.3%.5.7.11-13
18 | 288 =2°.32 %1441440 = 2°.3%2.5.7-.11-13
14 |320=25.5 2162160 = 2*.3%.5.7-11-13
20 [336=2%-3.-7 2882880 = 26.32.5.7.11-13
24 | 360=2%-32.5 3603600 = 2*.32.52.7.11-13
16 | 384=27.3 *4324320 = 2°.3%.5.7.11-13
15 | 400 =2*.52 6486480 = 2*.3*.5.7-11-13
20 | 432=2%.33 7207200 = 2°-32.52.7.11-13
14 | 448 =26.7 8648640 = 26.3%3.5.7-11-13
24 | 480=2°-3-5 10810800 = 2*.3%.52.7.11-13
24 504 =23.32.7 14414400 = 26.32.52.7.11-13
10 | 512=2° 17297280 = 27.3%.5.7-11-13
21 576 = 26. 32 %21621600 = 2°.33.52.7.11-13
24 | 600=23-3-52 32432400 = 2%.3%*.52.7.11-13
16 |640=27-5 36756720 = 2*.3%.5.7.11-13-17
24 | 672=2°-3-7 43243200 = 26.3%3.5%2.7.11-13
30 | 720=2%-32.5 61261200 = 2%.3%2.52.7.11-13-17
18 | 768 =2%.3 73513440 = 2°.3%3.5.7-11-13-17
18 | 800 = 2° - 52 110270160 = 2*.3%*.5.7-11-13-17
24 | 864 =2°.33 122522400 = 2°.32.52.7.11-13-17
16 | 896 =27.7 147026880 = 26.33.5.7-11-13-17
28 | 960=26-3.5 183783600 = 2*.33.52.7.11-13-17
30 | 1008 =2%-3%2.7 | 245044800 = 26.3%2.5%2.7.11-13-17
11 1024 = 210 294053760 = 27-3%.5.7-11-13-17
24 | 1152 =27 .32 *367567200 = 2°.33.52.7.11-13-17
30 | 1200=2%*-3-52| 551350800 = 2%.3*.52.7.11-13-17
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dd(N) d(N) N

18 1280 =2% .5 698377680 = 2%.3%.5.7.11-13-17-19
28 | 1344=26.3.7 735134400 = 26.3%3.52.7.11.13-17
36 1440 =25 .32 .5 1102701600 = 2°.3*.52.7.11-13-17
20 | 1536 =29-3 1396755360 = 2°.33.5.7.11-13-17-19
21 1600 = 26 - 52 2095133040 = 2*.3%*.5.7-11-13-17-19
40 1680 =2*-3.5.7 2205403200 = 26.3%*.52.7.11-13-17
28 | 1728 =26.33 2327925600 = 2°-.32.52.7-11-13-17-19
18 1792 =28 .7 2793510720 = 26.33.5.7.11-13-17-19
32 1920 =27-3-5 3491888400 = 2%.33.52.7.11-13-17-19
36 | 2016 =2°-32.7 4655851200 = 26.32.52.7.11-13-17-19
12 | 2048 = 2! 5587021440 = 27.33.5.7.11-13-17-19
27 | 2304 =28 . 32 *6983776800 = 2°.33.52.7.11-13-17-19
36 | 2400 =2°-3-52 10475665200 = 2*.3%.52.7.11-13-17-19
32 12688 =27-3.7 %13967553600 = 26.33.52.7.11-13-17-19
42 | 2880 =26.3%2.5 20951330400 = 2°.3%.52.7.11-13-17-19
22 13072=219.3 27935107200 = 27-33.52.7.11-13-17-19
48 |3360=2°-3-5-7 41902660800 = 26.3%*.52.7.11-13-17-19
32 | 3456 =27.33 48886437600 = 2°-.3%.52.72.11-13-17-19
20 | 3584 =2°.7 64250746560 = 26.33.5.7.11-13-17-19-23
45 | 3600 = 2*-32%. 52 73329656400 = 2*.3%.52.72.11-13-17-19
36 | 3840=2%-3.5 80313433200 = 2*.3%3.52.7.11-13-17-19-23
42 | 4032=26-3%2.7 97772875200 = 26.3%.52.72.11-13-17-19
13 | 4096 = 212 128501483120 = 27-.3%.5.7-11-13-17-19-23
48 | 4320=2°-3%.5 146659312800 = 2°-3*.52.72.11-13-17-19
30 | 4608 =29 .32 160626866400 = 2°-.3%.52.7.11-13-17-19-23
42 | 4800 =263 .52 240940299600 = 2%.3%.52.7.11-13-17-19-23
60 |5040=7-5-3%-2% 293318625600 = 26.3%*.52.72.11-13-17-19
36 | 5376 =28-3.7 *321253732800 = 26.33.52.11.13-17-19-23
48 | 5760 =27-3%.5 481880599200 = 2°.3%.52.7-11-13-17-19-23
24 | 6144 =213 642507465600 = 27-3%3.5%2.7.11-13-17-19-23
56 | 6720=26.3.5.7 963761198400 = 26.3%.52.7.11-13-17-19-23
36 | 6912 =28.33 1124388064800 = 2°-.33.52.72.11-13-17-19-23
22 | 7168 =210.7 1606268664000 = 26.3%.5%.7.11-13-17-19-23
54 | 7200 = 2°-32.52 1686582097200 = 2*.3*.52.72.11-13-17-19-23
40 | 7680=2-3-5 1927522396800 = 27-.3%.52.7.11-13-17-19-23
48 | 8064 =27-3%2.7 %2248776129600 = 26.3%.52.72.11-13-17-19-23
14 | 8192 =213 3212537328000 = 27-33.53.7.11-13-17-19-23
56 | 8640 =26.33.5 3373164194400 = 2°.3*.52.72.11-13-17-19-23
33 | 9216 = 210. 32 4497552259200 = 27-.33.52.72.11-13-17-19-23
72 110080 =2°-32.5-7| 6746328388800 = 26.3%.52.72.11-.13-17-19-23
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8. Now let us consider what must be the nature of IV in order that NV should be a highly
composite number. In the first place it must be of the form

Qa2 . 3a3  KAs . 7aT .p‘llf’l7

where

ag > az > as > -+ > ap, > 1. (32)
This follows at once from the fact that
d(wP P wi® ) = d(22 3% 5% L p)™h),

for all prime values of wy, w3, ws, ..., wp,.
It follows from the definition that, if NV is highly composite and N’ < N, then d(N’) must
be less that d(N). For example, 2N < N, and so d(2N) < d(N). Hence

1 1 1
T+ =) (1+=)>(1+ :
as as 1+a5

provided that N is a multiple of 3.
It is convenient to write

ay =0 ()\>p1). (33)

Thus if N is not a multiple of 5 then as should be considered as 0.

Again, ap, must be less than or equal to 2 for all values of p;. For let P; be the prime next
above p1. Then it can be shewn that P; < p? for all values of p;.*

Now, if ay, is greater than 2, let

NP,

P

Then N’ is an integer less than N, and so d(N') < d(N). Hence

N =

(1 + apl) > 2(ap1 - 1)’

or
3> ap,,

*It can be proved by elementary methods that, if x > 1, there is at least one prime p such that z < p < 2.
This result is known as Bertrand’s Postulate: for a proof, see Landau, Handbuch, p. 89. It follows at once
that Py < p?, if p1 > 2; and the inequality is obviously true when p; = 2. Some similar results used later in
this and the next section may be proved in the same kind of way. It is for some purposes sufficient to know
that there is always a prime p such that z < p < 3z, and the proof of this is easier than that of Bertrand’s
Postulate. These inequalities are enough, for example, to shew that

log P1 = logp1 + O(1).
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which contradicts our hypothesis. Hence
Apy < 27 (34)

for all values of p;.

Now let p/{,p’l,pl,Pl,P{ be consecutive primes in ascending order. Then, if p; > 5,apn
1

must be less than or equal to 4. For, if this were not so, we could suppose that

NP,

(p1)?

But it can easily be shewn that, if p; > 5, then

N =

(p1)* > Py
and so N' < N and d(N') < d(N). Hence
(1 + apzlz) > 2(ap/1/ — 2). (35)
But since ar > b, it is evident that
1
(1 +a,) <2, —2),

which contradicts (35); therefore, if p; > 5, then

(Ip/lr S 4. (36)
Now let .
PP

It is easy to verify that, if 5 < p; <19, then
pip1 > py Pi;
and so N < N and d(N') < d(N). Hence

(1 + apl)(l + apfl)(l + aplll) > 2ap1ap/1(2 + apflz),

1 1 1
<1 + —) 1+ >2(1+ ,
Qpy ap, 1+ aplll

But from (36) we know that 1+ a,n < 5. Hence

1 1
<1 - —> 1+ > 22 (37)
ap, ap’l

or
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From this it follows that a,, = 1. For, if a,, > 2, then

1 1
(1 + —> 1+ <2
ap, Gp

in virtue of (32). This contradicts (37). Hence, if 5 < p; < 19, then

9

=

ap, = 1. (38)

Next let
N’ = NP\P{/(p1pipy)-

It can easily be shewn that, if p; > 11, then
PLP{ < pipipy;
and so N' < N and d(N') < d(N). Hence

(1 + apl)(l + Clpll)(l + aprlr) > 4ap1ap/1ap,1,,

1 1 1
<1 + —) 1+ 1+ > 4. (39)
apl apfl ap//

1

or

From this we infer that a,, must be 1. For, if a,, > 2, it follows from (32) that

<1+i> R [ R <32,
Qpy ap’l CLp//

1

which contradicts (39). Hence we see that, if p; > 11, then
ap, = 1. (40)
It follows from (38) and (40) that, if p; > 5, then
ay, = 1. (41)
But if p; = 2 or 3, then from (34) it is clear that
ap, =1 or 2. (42)

It follows that a,, = 1 for all highly composite numbers, except for 22 and perhaps for
certain numbers of the form 2¢ - 32. In the latter case a > 2. It is easy to shew that, if
a > 3,2%.3% cannot be highly composite. For if we suppose that

N =21.3.5,
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then it is evident that N < N and d(N’) < d(N), and so
3(1+a) > 4a,

or
a < 3.

Hence it is clear that a cannot have any other value except 2. Moreover we can see by
actual trial that 22 and 22 - 32 are highly composite. Hence

ap, =1 (43)
for all highly composite values of N save 4 and 36, when
ap, = 2.
Hereafter when we use this result it is to be understood that 4 and 36 are exceptions.
9. It follows from (32) and (43) that N must be of the form

2.3-5-7T---py
X 2:3:-5-T-py
X 2.3-5---p3
X cey (44)

where p1 > po > p3 > pg > -+ - and the number of rows is as.
Let P, be the prime next above p,., so that

log Pr = logpr + 0(1)7 (45)

in virtue of Bertrand’s Postulate. Then it is evident that

ap, >, ap, <r—1; (46)
and so
ap, < ap, — 1. (47)
It is to be understood that
ap, =0, (48)

in virtue of (33).
It is clear from the form of (44) that r can never exceed ag, and that

Pay, = A (49)
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10. Now let
N — E)\[logu/logk}*7

v
where v < p; so that N’ is an integer. Then it is evident that N’ < N and d(N’) < d(N),
and so

(I+ay)(a+ay) > ay <1 +ay + “Ziﬂ) ,

or

I
I fay>a, [L]

log A (50)

Since the right-hand side vanishes when v > py, we see that (50) is true for all values of A
and v 1.

Again let
—1—[lo; log A
N’:NM [log 1/ log ]7
where [log pu/log A] < ay, so that N’ is an integer. Then it is evident that N < N and
d(N'") < d(N), and so

log p
1+a,)(d+ay) > (2+ay,) <a>\— [logA]) . (51)
Since the right-hand side is less than or equal to 0 when

ax < [log p/log AJ,

we see that (51) is true for all values of A and p. From (51) it evidently follows that

log(An)
1+ a) < (240, | 2B (52
From (50) and (52) it is clear that
log v log 11
< < —
ay [log/\} <ax<ay+(2+ay) [log)\} , (53)

for all values of A\, and v.
Now let us suppose that v = p; and = P, so that a, = 1 and a, = 0. Then we see that

log py log P
<ay<2 4
[log)\]_a)‘_ [log)\ ’ (54)

for all values of A. Thus, for example, we have

p1=3, 1<ay <4

*[z] denotes as usual the integral part of z.
fThat is to say all prime values of A and v, since X in ay is be definition prime.
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p1 =95, 2<ay <4
p1=17 2<ay<6;

p1 =11, 3 <az <6;
and so on. It follows from (54) that, if A < pq, then

aylog A\ = O(logpy), axlog\ # o(logpy). (55)

11. Again let

N — N)[\\/{(1+ak+au) log 1/ log A}]M—l—[\/{(l—l—a)\—l—a#) log A/log i}

and let us assume for the moment that

ay > {1+ ax +a,)log A/ log u},

in order that N’ may be an integer. Then N’ < N and d(N’) < d(N), and so

(1+a)(1+a,) > {1+ax+[/{(1+ax+a,)logu/log ]}
x{ay — [V T ar + ap)Tog \Tog ]}
> {ar + V{1 +ax+ ay,)log pu/log A}}
x{ay — /{1 + ax + a,) log A/ log p}}. (56)

It is evident that the right-hand side of (56) becomes negative when

a, < \/{(1 +ay + ay)log A/ log u},

while the left-hand side remains positive, and so the result is still true. Hence

aylog p —aylog A < 2\/{(1—1—a>\—|—au)10g)\log,u}, (57)

for all values of A and . Interchanging A and p in (57), we obtain

aylog A —aylog pu < 2\/{(1+a>\+au)log)\logu}. (58)

From (57) and (58) it evidently follows that

laxlog A — a, log p| < 2\/{(1+a,\—|—au)log/\log,u}, (59)

for all values of A and p. It follows from this and (55) that, if A and p are neither greater
than pq, then

axlog A — a, log i = O+/{log p1 log(Ap)}, (60)
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and so that, if log A = o(log p1), then

aslog2 ~ azlog3d ~ aslogh ~ -+ ~ ay log \. (61)

12. It can easily be shewn by elementary algebra that, if x,y, m and n are not negative,
and if

|z —y| < 2¢/(ma + ny + mn),

then
!\/<w+n)—\/<y+m>!<¢(m+n);} 62)
V(@ +n) =/ (m+n)| </(y+m).
From (62) and (59) it follows that
WA+ an)Tog A} — /(1 +a,) log | < v/{log (W)}, (63)
and
WA+ an)log A} — vogO)}| < /{(1 +a,) log i}, (64)

for all values of A and p. If, in particular, we put u = 2 in (63), we obtain

V{1 +az)log2} —/{log(20)} < {(1+ax)log A}
< V{1 +a2)log2} + v/{log(2))}, (65)

for all values of A. Again, from (63), we have

(1+ax)log A < (V{(1 +ay)logv} + /{log(Av)})?,

or

axlog\ < (14 a,)logv +logv + 2v/{(1 + a,) log v log(A\v)}. (66)

Now let us suppose that A < p. Then, from (66), it follows that

axlogA+logp < (1+a,)logy +log(uv) + 2/{(1 + a,)logvlog(\v)}
< (1+a,)logv +log(uw) + 2¢/{(1 + a,) log v log(pv)}
= (V{0 +a)logv} + Vlog(uw)}?, (67)

with the condition that A < y. Similarly we can shew that

axlog A +log > {/{(1 + a,) log v} — /log(u)}?, (67')
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with the condition that A < pu.

13. Now let
N = %2[1% A/{m(n) log 2} gllog A/{m () log 3} .. llog A/{m () log p}]

where 7(p)log n < log A < log p;. Then it is evident that N’ is an integer less than N, and
so d(N') < d(N). Hence

(1 T %) (14 a2)(1 + as)(1 +as) - (1 + a)

>{a+ log A }{a—i— log A } {a—i— log A }
2T a(ulog2 f 170 m(u)log3 P p(p)logp )

that is
log A log A
a210g2+—}{ } {a log u + —— }
{ (1) (1) ! (1)
< ) as log 2 + log 2)(azlog 3 +1og3) - - - (a, log pu + log )
< > aslog 2 + log 1) (azlog3 +log p) - - - (a, log p + log p).

In other words

1
(1+2)
A
logA
., Fm losm \f %Gy —less | [, 565 s
azlog 2 + log 1 azlog3 + log 1 ay log p + log p

17<r>(g>)\ log 1 (W)
><1+ , (68)

{(V{ + ay,)log v} + /log(uv)}?

w here v is any prime, in virtue of (67). From (68) it follows that

log)\ log,u
VA +ay)log v} 4 /log(uv) > ()

(1 N a) 1/m(p) B

provided that 7(u)log u < log A < log p;.

14. Again let
N’ = N2~ 1-llegA/{m(p)log 2 3—1—[log A/{m (i) log 3}] . .. | —1—[log A/{m () log u}]
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where 1 < pp and A > p. Let us assume for the moment that

log A
ax log k > i,
(1)
for all values of x less than or equal to y, so that N’ is an integer. Then, by arguments
similar to those of the previous section, we can shew that

1) ()
1+ ay oE3 +log
><1— . (70)
2+ ay {V{(1Q +a,)logv} — \/log(uv)}?
From this it follows that
log A
5 tlogpu
WA+ @) log v} — Vlog(uw)| < S (71)
1 - (2+ai>

provided that u < p; and g < A. The condition that

ag logk > {log A\/m(u)}

is unnecessary because we know from (67’) that

WA+ ay)logv} — \log(pv)| < /(alog & + log i) < \/{% +logu}, (72)

when
aglog ke < {log A/m ()},
and the last term in (72) is evidently less than the right-hand side of (71).

15. We shall consider in this and the following sections some important deductions from
the preceding formulee. Putting ¥ = 2 in (69) and (71), we obtain

logA logu

VI F a)Tog2} > =
L\ /()

<1+—> 1

ax

— V1og(2p), (73)

provided that 7(u)log u < log A < log p1, and

V{1 +ap)log?2} < (i
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provided that p < p;, and p < A\. Now supposing that A = p; in (73), and A = P} in (74),
we obtain

VI + az) log 2 i —los s Tog(2 75
{( +a2) og }> 21/7T(M) 1 - Og( M)? ( )
provided that 7(u)log u < logpy, and
logP1
-1 4 log 1
(1)
\/{(1 + a2) 10g2} < \J { 1— 2—1/7T(M) } + log(2,u), (76)

provided that p < py. In (75) and (76) p can be so chosen as to obtain the best possible
inequality for as. If py is too small, we may abandon this result in favour of

log p1 log Py
< <2
[logQ] =2 = [log2 ’ (77)

which is obtained from (54) by putting A = 2.

After having obtained in this way what information we can about as, we may use (73) and
(74) to obtain information about ay. Here also we have to choose p so as to obtain the
best possible inequality for ay. But if A is too small we may, instead of this, use

V{1 + a)log2} — /log(2)\) < {(1+ ay)log\}
< V{1 +az)log2} + \/log(2)), (78)

which is obtained by putting u = 2 in (63).

16. Now let us consider the order of ag. From (73) it is evident that, if 7(u)log u < log A <
log p1, then

log\ logu
(14 az)log 2 + log(2u) + 2¢/{(1 + az) log 21og(2)} > ( an )VW) (79)
1+ - -
ax

But we know that for positive values of =,

1 1 1 1
ex—l_g—i_o(l)’ ex—1_0<5>'

Hence

log A\ 11/7T( : _ log A () +o(1)
(1) (1+i) W g (1) | log (1+%>

ax
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_ log A —i—O{lOg/\};
log <1 + %) ()

and

log _ m(pw)logp |
(1 | i)1/7r(u) L © Jog (1 4 L) = Olua).
ay ax

Again from (55) we know that ag = O(log p1). Hence (79) may be written as

aslog 2 + O/ (log p1 log ) + O(log 1)

log A log A
~ log (1 + %) e { (1) } T Oua). (80)

But
log 1 = O(pay),

% plog py
pay ay log A O( Tog A >,

Again

log A1 1
ke + R8P 24/ (log p1 log pu);
7 log A

and so

log A1 1
ﬁlogpllogmzo<og ogu+u0gp1>.

7 log A
Hence (80) may be replaced by

log A\ log \ 1 1
a210g22L+O<0g gl Mngl), (81)
log (1 + i) K log A
ax
provided that 7(u)log u < log A < log p;. Similarly, from (74), we can shew that
log A\ log A\ 1 1
aslog2 < %t L0 < PEABH | K ngl) (82)
log (1 + —1+1aA> H log A

provided that p < p; and p < A. Now supposing that A = py in (81), and A = P; in (82),
and also that

1t = O+/(log p1 log log p1 ), # 0+/(log p1 log log p1), *

*f # o(¢) is to be understood as meaning that |f| > K¢, where K is a constant, and f # O(¢) as
meaning that |f|/¢ — co. They are not the mere nagations of f = o(¢) and f = O(¢).
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we obtain

aslog?2 > lfogggl + O+/(log p1 loglog p1),

(83)
aslog2 < % + O\/(logpl log log p1).
From (83) it evidently follows that
1
as log2 = 08 P1 + O\/(logpl loglog p1). (84)
log 2
And it follows from this and (60) that if A < p; then
_ logps
axlogA =325 + O{V/log p1log A) + +/(log p1 log log p1)}. (85)
Hence, if log A = o(log p1), we have
1
aslog?2 ~ aslog3 ~ aslogh ~ -+ ~ aylog A ~ 08 D1 (86)

log2 "

17. The relations (86) give us information about the order of a) when A is sufficiently small
compared to pi, in fact, when A is of the form p{, where ¢ — 0. Such values of A constitute
but a small part of its total range of variation, and it is clear that further formulse must
be proved before we can gain an adequate idea of the general behaviour of ay. From (81),
(82) and (84) it follows that

o A 1 log Al 1
og < logp +O{ 08 AI0g K | K08P +\/(10gp110g10gp1)},

log<1+i) ~ log2 L log A\
. (87)
log A 1 log A1 1
o8 Y 2 E)gp; +O{ AL 4 ”l;)gfl +/(log 1 loglogm)},
log <1 + m) g H g
provided that 7(u)log plog A < log p;. From this we can easily shew that if
(1) log wlog A < logp;
then
ay < (208N lospi _ 1)1 4 o) 108K, plogm \/(log p1 loglog p1)
- o (log \)2 log A\ ’
(88)

~ log i plogpr | +/(logpiloglogp)
> 2log)\/logp1 111 .
ax = ( ) 0 u * (log \)? log A
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Now let us suppose that

log py
1 = ).
c8AF o <log logp1>

Then we can choose i so that

#:O{bgA <10g1ﬂ>}
log p1

M¢O{10gA <10g1ﬂ>}
log p1

Now it is clear that log u = O(loglog p1), and so

logp . (loglogp1\ ) y/(logpiloglogpy) |
B _o (228 o :
“ log A

and

plogpr _ ) | /(logpiloglog p1)
(log \)? log A '

From this and (88) it follows that, if

1
log A # 0 _ o8Pt 7
log log p1

then

log p1 log log p1)
log A\ '

(89)

> 21og)\/logp1 -1 -1 O
o = ( + log A

ay < (210g>\/10gp1 _ 1)—1 +0 { \/(
) {w

log p1 log log p1) }

Now we shall divide that primes from 2 to p; into five ranges thus

\Y IV I11 II RANGE I

2 P1

(Ip)" e{x(ip)3}e {ﬁ (li—];) 5} e{rk(Iplyp)? }
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We shall use the inequalities (89) to specify the behavior of ay in ranges I and II, and the
formula (85) in ranges IV and V. Range III we shall deal with differently, by a different
choice of p in the inequalities (88). We can easily see that each result in the following
sections gives the most information in its particular range.

18. Range I:

log A # O+/(log p1 loglog p1).*

Let
A= [(2log)\/logp1 o 1)—1],

and let
(21og>\/10gp1 o 1)—1 + €y,

where —3 < €, < 1, be an integer, so that
(2lo8Mlogpr _ )=L _ A 41 ¢, (90)
when €y > 0, and
(2log)\/logp1 -~ 1)—1 —A—e (91)

when €y < 0. By our supposition we have

\/(log p1 log log p1)
log A

= o(1). (92)

First let us consider the case in which

6 £ 0 { v/ (log py loglogpl)}

log A

so that

y/(logpiloglogpi)
Tog A = o(€y). (93)

It follows from (89), (90), and (93) that, if €y > 0, then

ax < A+1—e\+o(ey), }

(94)
ayx>N—ey+ O(EA).

*We can with a little trouble replace all equations of the type f = O(¢) which occur by inequalities
of the type |f| < K¢, with definite numerical constants. This would enable us to extend all the different
ranges a little. For example, an equation true for

log A # O+/(log p1)
would be replaced by an inequality true for log A > K+/(log p1), where K is definite constant, and similarly

log A = 04/ (log p1) would be replaced by log A < k+/(logp1).
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Since 0 < €) < 1, and ay and A are integers, it follows from (94) that
ax <A, ay>A-1 (95)
Hence
ay = A. (96)
Similarly from (89) (91) and (93) we see that, if €y < 0, then

ay §A—6)\+0(6)\), }

(97)
ay>A—1—¢€y+o(en).

Since —% < €y < 0, it follows from (97) that the inequalities (95), and therefore the equation
(96), still hold. Hence (96) holds whenever

40 { \/(logzﬁ);g log p1) } (98)
In particular it holds whenever
ex # 0(1), (99)
Now let us consider the case in which
& =0 { \/(logzi(l);oAglogpl) } , (100)

so that ey = o(1), in virtue of (92). It follows from this and (89) and (90) that, if €, > 0,
then

ay < A+1+0(1),
(101)
ay > A+ 0(1).
Hence
ax <A+1, ay>A;
and so
ay=A or A+1. (102)
Similarly from (89), (91), and (100), we see that, if €) < 0, then
ay < A + 0(1)7
(103)
a) ZA—l-l-O(l).
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Hence
ax <A, ax=>A-1;

and so
ay=A or A—1. (104)
For example, let us suppose that it is required to find ay when \ ~ plé . We have
(2logMloepr _1)=L — (21/8 _1)=1 4 5(1) = 11.048- - + o(1).
It is evident that A = 11 and €y # o(1). Hence a) = 11.

19. The results in the previous section may be rewritten with slight modifications, in order
that the transition of a) from one value to another may be more clearly expressed. Let

log(1+1/x)

A=p, = (105)

and let = + €, where —% <€ < %, be an integer. Then the range of x which we are now
considering is

log p1
_ ol 1
r=o <log log p1 > ’ (106)

and the results of the previous section may be stated as follows. If
€&z #0Sx (bglﬂ> (107)
! log p1 ’

ay = [z]. (108)

then

As a particular case of this we have

when €, # o(1). But if
log log py
€&z =01 —_ ) (109)
log p1

ay = [z] or [x+1]; (110)

then when €, > 0
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and when €, <0
ay = [z] or [z—1]. (110"

20. Range II:

log A = O\/(logpl loglogp1),

1
log A # 0 o8Pt )
log log p1

From (89) it follows that

1 log 1
iy = (2oeNtosm )ty o f Voemloglogp) | (111
log A
But )
210g)\/10g;n1 B o 0g P1 o(1).
( ) log 2log A +0(1)
Hence
1
aylog A = E)ggz;l + O+/(log p1 log log p1). (112)
As an example we may suppose that
A\ ~ eV (ogp1)

Then from (112) it follows that

lo
ay = YUOBPD | reetoe .

log 2
21. Range III:

1
log A\ = O _o8p1 7
log log py
log A # o(log p1)3.

Let us suppose that g = O(1) in (88). Then we see that

log p1 logp  plogpr  +/(logpiloglogpy)
_ 11
A log 2log A +O()+0 { U (log \)? log A ' (113)
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or

+ v/ (log p1 log logpl)} :

).

1 1 log A\ 1
ay log A = ng1+O 0og K 1og +uogp1
log 2 1 log A
Now 1 log A 1
g pO8A O(log \) = o o8 P1
1 log A
plogpr _ ) (logp
log A\ log\ )’
log p1
log1 = .
V/(log piloglog p1) = O ( og \ )
Hence

For example, when

A ~ ellogp1)
we have .
(logp1)® 1
= 1 .
ax o 2 + O(logpy)1
22. Range IV:

log A = O(log p1),
log A # o(loglog p1).

In this case it follows from (85) that

]
axlog A = 2P 4 0 /(log p1 log \).

log 2

As an example in this range, when we suppose that

1
1. 1
A ~ ellogpr) 7

we obtain from (116)

3
1

(log p1)

3
O(l1 8.
log 2 + O(logp1)3

ay) =

23. Range V: log A = O(loglogp).

Paper 15

(114)

(115)

(116)
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From (85) it follows that

+ 0+/(log p1 log log py). (117)

For example, we may suppose that

A\ ~ eV (loglogp1)

Then
oen O+/(log p1).
10g 2/ (log logp1
24. Let X be the prime next below A, so that A’ < A — 1. Then it follows from (63) that
VA +ax)log N} — /{(1+ ax)log A} > —/log(AX). (118)

Hence

V{A +aylog(A — 1)} — {(1 +ax)log A} > —/{2log \}. (119)
But

1 1 2
1 .
log(/\—1)<10g)\——)\<log/\< _72/\10g/\> ;

and so (119) may be replaced by

VI Fan) - Ty > YL 5 (120)

2Alog A

But from (54) we know that

1 ] 1
| tay > 1+[ogp1] L logpi _ logp

log \ log\ = log\’

From this and (120) it follows that

VO Fax) T ray > Ylosr) 5 (121)

22(log \)3

Now let us suppose that A?(log \)? < %logpl. Then, from (121), we have

V(1 +ay) =1 +ay) >0,

or

ay > ay. (122)
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From (122) it follows that, if A?(log \)? < %logpl, then
as > as > as > a7y > 0 > ay. (123)
In other words, in a large highly composite number
202 .303 . 505 70T Ly

the indices comparatively near the beginning form a decreasing sequence in the strict sense
which forbids equality. Later on groups of equal indices will in general occur.

To sum up, we have obtained fairly accurate information about a) for all possible values of
A. The range I is by far the most extensive, and throughout this range a) is known with
an error never exceeding 1. The formule (86) hold throughout a range which includes all
the remaining ranges II - V, and a considerable part of I as well, while we have obtained
more precise formulee for each individual range II-V.

25. Now let us consider the nature of p,.. It is evident that r cannot exceed ao; i.e., 7
cannot exceed

log p1
0+/(log p1 log log p1). 124
log2? " V/(log p1 loglog p1) (124)

From (55) it evidently follows that

ap, logp, = O(log p1), }
ap, log p, # o(log p1);

(125)

(1+ ap,)logp, = O(log p1), } (126)

(1+ ap,)logp, # o(logp1).

But from (46) we know that

ap, log p, > rlog py,
! (127)

(1+ap,)logpr < rlogp;.
From (125) - (127) it follows that

rlog p, = O(logpy), }
rlogp, # o(log p1);

ap'r = (T)7
129
ap, # o(r). } 129)

(128)

and
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26. Supposing that A = p, in (81) and A = P, in (82), and remembering (128), we see
that, if ru = o(log p1), then

1 log p, 1
10g<1+—>2 oep {1+O<°g”+ i )} (130)
ap, azlog 2 ri o logpr
and
1 log P, 1
log (1+ < B lypo( 8L TR (131)
a+ap, as log 2 an log p1

But, from (47), we have

1 1
1 1+ — ) <1 1 .
Og< +apr'>_ Og< +1+CLPT>
Also we know that

logPT:long—l—O(l)zlogpr{1+0< ! >}:10gpr{1—|—0< ! >}
log p, log p1

Hence (131) may be replaced by

1 1 , 1
10g<1+_)§ o8P {1+o(ﬂ+i>}. (132)
ap, as log 2 an log p1
From (130) and (132) it is evident that
1 log pr logp — rp
log(1+— ) = 1+0 + . (133)
ap, a1 log 2 T log p1
In a similar manner
1 log py logp — rp
1 1 = 1 — + — . 134
og( +1—i—apr> aglog2{ +O< T +10gp1 (134

Now supposing that

i = o(log p1),
ru # O(log ), } (135)

and dividing (134) by (133), we have

log (1 + +) 1
T+ap, :1+O<og,u+ r,u>7
log (1 i %) ri - logpr

1 1 lo r
+ :1+—+0{< g’“‘+—“>/am},
L+ap, Qp, rp o logp

or
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that is ) ) |
= — 1o (=L TE L
1+ap,  ap, T log py
Hence
logp = r°p
ap, =ap, +1+0 + , (136)
log p1
in virtue of (129). But ap, <r —1, and so
logpu  rp
ap, <r+ 0| ——+—— . (137)
po - logp
But we know that a,, > r. Hence it is clear that
logp  rp
ap, =1+ 0 + . (138)
po - logp
From this and (136) it follows that
logp 1
ap,=r—1+0 | —+ —— ], (139)
po logpr

provided that the conditions (135) are satisfied.
Now let us suppose that 7 = 01/(log p1). Then we can choose y such that 2y = o(log p)
and p # O(1). Consequently we have

1 2
2B _ o), B = o(1);
e log p1

and so it follows from (138) and (139) that

ap, =1 +ap, =, (140)
provided that r = 04/ (log p1). From this it is clear that, if » = 0y/(log p1), then
PL>P2>p3>ps>ccc >y (141)

In other words, in a large highly composite number
202 .39 . 595 ... p
the indices comparatively near the end form a sequence of the type
ho4...3...2000 1.

Near the beginning gaps in the indices will in general occur.
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Again, let us suppose that r = o(logp1),r # oy/(log p1), and g = O(1) in (138) and (139).
Then we see that

2
ar,:r+0< >,
P log p1

2
ero(iZ)
log p1

provided that r = o(log p1) and r # 04/(log p1). But when r # o(log p1), we shall use the
general result, viz.,

(142)

ap, = O(r), ap, # o(r),
ap, = O(r), ap, # o(r), } (143)

which is true for all values of r except 1.

27. Tt follows from (87) and (128) that

logp, _logpi {Ingl log p
log (1 + i) ~ log2
log P, - logpi o { log p1 log p

log <1—|— 1+11sz> ~ log?2

+rp+ +/(log p1 log logm)} ,

(144)

+ 71+ v/ (log py log logpl)} 7

with the condition that ru = o(logp;). From this it can easily be shewn, by arguments
similar to those used in the beginning of the previous section, that

logp,  logp: +O{logp1 log pu
T/

= I log1 145
log(1+41/r) log 2 "’7‘:“4‘\/(0%171 og ng1)}, (145)

provided that ru = o(log p1).
Now let us suppose that r = o(log p1); then we can choose p such that

pp=o0 (109’;])1) ; 1w#FO(1).

Consequently ru = o(log p1) and log pn = o(), and so

logpy logp of

log p1).
T
From these relations and (145) it follows that, if » = o(log p1), then

logp,  logpr
log(1+1/r) log2’

(146)
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that is to say that, if r = o(log p1), then

logpy ~ logpy ~  logps ~  logp,
log2  log(l1+ %) log(l+3%) log(1+1/r)

(147)

Again let us suppose that 7 = O/(log p1 loglog p1) in (145). Then it is possible to choose
1 such that

ri = O+/(log p1 log log p1), } (148)
ru # o\/(logm loglog p1).

It is evident that log u = O(loglog p1), and so

log py 1 log p1 log]
08P1OSH _ <w> = 0+/(log py loglog p1),
i rH

in virtue of (148). Hence

logpr _ logp
log(1+1/r)  log2

+ 0+/(log p; log log p1 ), (149)

provided that

r = 0+/(log p1loglog py ).

Now let us suppose that r = o(logp1),r # o0y/(logpi loglogpi) and p = O(1), in (145).
Then it is evident that

logpy = O(r?), /(logpiloglogp1 = O(r),

and

logpilog i _ , (logp) _ ()
T r '

Hence we see that

log p; log py
= O 150
log(1+1/r) log2 +0(r), (150)

if

r=o(logpi), r# oy/(logpiloglogpi).
But, if r # o(log p1), we see from (128) that

log p
= O(logpl)v
log(1+1/r) (151)
log p,
eP # o(log p1).

log(1+1/r)
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From (150) and (151) it follows that, if r # 01/(log p; log log p1), then

log pr log p1
= ; 152
log(1+1/r)  log2 +0(r); (152)

and from (149) and (152) that, if » = o(log p1), then

logpr logp
log(1+1/r) log2’

in agreement with (147). This result will, in general, fail for the largest possible values of
r, which are of order log p;.

It must be remembered that all the results involving p; may be written in terms of IV, since
p1 = O(log N) and p; # o(log N), and consequently

logp; = loglog N + O(1). (153)

28. We shall now prove that successive highly composite numbers are asymptotically equiv-
alent. Let m and n be any two positive integers which are prime to each other, such that

log mn = o(log p1) = o(log log N); (154)
and let
% =2%2.3% 5% ... 5%, (155)
Then it is evident that
mn = 21021 . 3191 . 5l0s] ... 5ldel (156)
Hence
0xlog A = O(log mn) = o(log p1) = o(ay log \); (157)

so that 0y = o(ay).

Now
m N 52 53 5@
d(nN> — d(N) <1+1+a2> <1+1+a3>---<1+1+%>. (158)

But, from (60), we know that

aylog A\ = azlog 2 + O+/(log py log \).

3
5y 5y log A log A\ 2
1 =1 O<|6
+1+ax Jrazlogfr {‘ A’<10gpl

Hence

137
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dxlog A log A 1
= 14+ 282 0052 ki
azlog 2 logp1 |/ \log p1

8y log A 0] log A <logp> <5,\log/\>2
= ex + O +0 | 2=
P { azlog 2 log p1 log p1 log p1

Oy log A 0x|log A 1
_ exp 208X [onlos ogmn L (159)
azlog 2 log p1 log p1
It follows from (155), (156), (158) and (159) that
log 2 1 1
d(mN) = al(N)eXP{62 082+ 051083+ -+ 0plogp
n as log 2

+O|52|log2 + |03]log 3 + - - - + |9, | log p <logmn>
log p1 log p1

3
- d(N)e lc;gz(inolg/g) +O<1100¥;g7;1n> 5

1 {logzI +0 log mn (log m") }

— d(N)€a2 log 2 logpy (160)
Putting m = n + 1, we see that, if
logn = o(log p1) = o(loglog N),
then
d {N <1 + l) } — d(N)em{log(l+%)+O<logn,/&)"g%)}
n
vro{mosny(oeEn) |
1 ag log 2
= d(N) (14~ (161)

Now it is possible to choose n such that

n(logn)% # 04/ (loglog N),
logn
1 1 — ;
+0 {n ogmn <loglogN>} > 0;

d {N (1 + %)} > d(N). (162)

and

that is to say
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From this and (29) it follows that, if N is a highly composite number, then the next highly
composite number is of the form

3
N+O{N(logloglogN)2} (163)

(loglog N)

Hence the ratio of two consecutive highly composite numbers tends to unity.
It follows from (163) that the number of highly composite numbers not exceeding z is not

of the form
log z+/(log log x)
0 — ¢ -
(log log log x)2

29. Now let us consider the nature of d(N) for highly composite values of N. From (44)
we see that

d(N) = 27P1)=m(p2) . 3m(p2)=7(ps) . y7(p3)=7(pa) ... (1 4 qy). (164)
From this it follows that
d(N) =29 .3% .5% ...g%, (165)
where w is the largest prime not exceeding 1 + as; and
ay = m(pa-1) + O(py). (166)

It also follows that, if p1, @9, 03, ..., p) are a given set of primes, then a number i can be
found such that the equation

d(N):pfl.pgz.pg&..p/ﬁu...p@

is impossible if N is a highly composite number and 3, > fi. We may state this roughly
by saying that as N (a highly composite number) tends to infinity, then, not merely in N
itself, but also in d(N), the number of prime factors, as well as the indices, must tend to
infinity. In particular such an equation as

d(N) = k- 2™, (167)

where k is fixed, becomes impossible when m exceeds a certain limit depending on k.
It is easily seen from (153), (164), and (165) that

w = O(az) = O(log p1) = O(loglog N) = O{log log d(l}V)L } .

w # o(az) = o(log p1) = o(loglog N) = ofloglog d(N) (168)

139
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It follows from (147) that if A = o(log p1) then
logag1 N logagl N loga51 . logaAl . (169)
log(1—3) log(1l— 3) log(1 — =) log(1 — %)
Similarly, from (149), it follows that if A = O/ (log p1 loglog p1) then
log(1+ ay) log py
= — 1 log1 . 1
Again, from (152), we see that if A # 0/(log p1 loglog p1) then
log(1 1
og(l+ay) _ logp o), (171)

log(1 —1/)) log 2

In the left-hand side we cannot write « instead of 1 4+ «, as ay may be zero for a few
values of .
From (165) and (170) we can shew that

logd(N) = aglog2+ O(as), logd(N) # aslog2 + o(as);
and so
log d(N) = aslog2 + Tk g p1+0 oz 1 Tog g ) (172)
But from (163) we see that
loglog d(N) = log p1 + O(log log p1).

From this and (172) it follows that
ﬁ‘l'o log log log d(N)}
azlog2 = log d(N) — {logd(N)} 2~V 1 Telosd®) - f (173)

30. Now we shall consider the order of dd(N) for highly composite values of N. It follows
from (165) that

log dd(N) =log(1 + a2) + log(1 + a3) + - - - + log(1 + ag). (174)
Now let A\, X, ), ... be consecutive primes in ascending order, and let

A = O0+/(log p1 loglog p1),

*More precisely @ ~ a2. But this involves the assumption that two consecutive primes are asymptotically
equivalent. This follows at once from the prime number theorem. It appears probable that such a result
cannot really be as deep as the prime number theorem, but nobody has succeeded up to now in proving it
by elementary reasoning.
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A # 0y/(log p1 loglog p1).

Then, from (174), we have

logdd(N) = log(l+ ag)+log(l + ag) + -+ log(1l+ ay)
+ log(1+ ay) +log(l +ay )+ - +log(l+ o). (175)

But, from (170), we have

log(14+az) + log(l+asz)+---+log(l+ ay)
= - 1 1-Ha-Ha-LYH(1-<
log 2 Og{( 2)( 3)( 5) \

+ ovleemmelemios{ (- Ha-h-(1-3) ). a7)

It can be shewn, without assuming the prime number theorem®, that

1 1
—log{(l - - %)(1 - %) ( - —>} = loglogp +~v+ O (—) , (177)
p log
where v is the Eulerian constant. Hence

log{(l _la-bhuo-by.. (1 - 1)} — O(loglog p).

p
From this and (176) it follows that

log(1+a) + log(l+4+az)+---+log(l+ay)

- - Ehefa-pa-b(1-5)}

+ O{y/(log p1 loglog p1) loglog A}

_ lﬁ)gggllog{(1—%)(1_%)...< _%)}

+  0{\/(log p1 loglog p1) logloglog p; }. (178)

Again, from (152), we see that

log(1 + ay) +log(l + ayr) + -+ - +log(1 4+ ag)

log p1 1 1 1
- _ ] 1— =) (1-=1)... (1- =
s s () (o) (-5))

*See Landau, Handbuch, p.139.
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+O{)\'log<1—%>+)\Nlog<1—%>+---+wlog<1—%>}
—ll‘i)ggf;ll {(1-%) <1—%>~-<1—%>}+O{7r(w)—7r()\)}
AB{0-003) 0D o) o

From (175), (178) and (179) it follows that

log dd(N) = —.28P1 log{(l ~ha-1y... (1 _ %)}

log 2

+ O{\/(log p1loglogpy) log log log p1}
_loepny S LY (- o losrL
log 2 N log log p1
log p1 1 1 log p1
= — logd (1— 1)1 - S
log 2 og{( 2)( < w)} <log10gp1
log py log p1
= log1 0] 0]
log 2 {og BwEY+ (1 gw)} (loglogpl

1 1
— 2P Hogloglogpy + 7 + O _OBPL
log 2 log log p1 log D1 log log p1

loglog N

= ——— <loglogloglog N +~+ O
log 2

+

_ 180
log log log N> } (180)

in virtue of (177), (168), and (163). Hence, if N is a highly composite number, then

dd( ) (logN logz{1oglogloglogN+’y+0<7logloglogN)}' (181)

31. It may be interesting to note that, as far as the table is constructed,

2,22 9% .. 21 33.23.22...,3.21 5.25.22 .. 5.2%
7-227-26 7219 9.9.29.22 .. 9.210

and so on, occur as values of d(/N). But we know from § 29 that k- 2™ cannot be the value
of d(N) for sufficiently large values of m; and so numbers of the form k- 2™ which occur as
the value of d(N) in the table must disappear sooner or later when the table is extended.
Thus numbers of the form 5 - 2™ have begun to disappear in the table itself. The powers
of 2 disappear at any rate from 2'® onwards. The least number having 2'® divisors is

27.3%.5%.7.11-13-.-41- 43,
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while the smaller number, viz.,
28.31.5%. 72111341

has a larger number of divisors. viz. 135-2''. The numbers of the form 7 - 2™ disappear
at least from 7 - 2'% onwards. The least number having 7 - 2'3 divisors is

20.3%.5%.7.11-13-..31 - 37,
while the smaller number, viz.
29.3%.5%.7.11-13---31
has a larger number of divisors, viz. 225 - 25,

v
Superior Highly Composite Numbers

32. A number N may be said to be a superior highly composite number if there is a positive
number € such that

d(N d(N’
EVE) > (&/)27 (182)
for all values of N’ less that N, and
!
d(N)>d(N) (183)

Ne ~ (Ve

for all values of N’ greater that N.
All superior highly composite numbers are also highly composite. For, if N < N, it follows

from (182) that

d(N) > d(N') (%) > d(N');

and so NN is highly composite.

33. Now let us consider what must be the nature of N in order that it should be a superior
highly composite number. In the first place it must be of the form

942 . 343 , 5a5 ,p¢117 (184)
or of the form

..pl
--p2

ot Ot
ESIEN
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i.e. it must satisfy the conditions for a highly composite number. Now let
N' = N/,

where A < p;. Then from (182) it follows that

14 ay a)
AECL/\ - /\e(a)\—l)’
or
1
A< (1 + —> .
a
Again let
N’ — Njy.
Then, from (183), we see that
1+ay 2+ ay
AECL/\ AE([I)\-FI)’

or

1
A€><1+ >
14 ay

Now supposing that A = p; in (185) and A = P, in (186), we obtain

Now let us suppose that € = 1/z. Then, from (187), we have
p1<2° < Py
That is, py is the largest prime not exceeding 2*. It follows from (185) that
ay < (AT —1)71,
Similarly, from (186),
ay > (AT 1)t -1,
From (189) and (190) it is clear that

ay = A7 —1)71.

Paper 15

(185)

(186)

(187)

(188)

(189)

(190)

(191)



Highly composite numbers 145

Hence N is of the form
ol@V/7 =)~ g[(B8Y*-1)7"] 5[(6Y/*-1)71] DL (192)
where p; is the largest prime not exceeding 2%.
34. Now let us suppose that A = p, in (189). Then
ap, < (pi/w — 1)_1.

But we know that r < ap,. Hence

or
1 x
pr < <1+ —> . (193)
r
Similarly by supposing that A = P, in (190), we see that
ap, > (PM* —1)7t —1.
But we know that r — 1 > ap,.. Hence
r> (Prl/m -1t

or
1 xr
R><L%>. (194)
T

From (193) and (194) it is clear that p, is the largest prime not exceeding (1+1/7)*. Hence
N is of the form

.o , (195)

where p; is the largest prime not greater than 2%, ps is the largest prime not greater than
(%)x, and so on. In other words N is of the form

eﬂ(21)+ﬂ(g)x+ﬂ(§)f+---.’ (196)
and d(N) is of the form

T ﬂ.§cv ﬂ.iz
2m(@) . 3y ()T (197)
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Thus to every value of z not less than 1 correspondence one, and only one, value of N.

35. Since
d(N) _ d(N)

Nl/z — (N/)l/x’
for all values of N', it follows from (196) and (197) that

d(N) < Nl/x T z 3 4 T (198)
/0% /ma3)e J1/z(3)"
for all values of N and z; and d(N) is equal to the right-hand side when
N = G I (199)

Thus, for example, putting x = 2, 3, 4 in (198), we obtain

d(N) < \/BN),
d(N) < 8(3N/35)3, (200)
d(N) < 96(3N/50050) 7,

for all values of N; and d(N) = y/(3N) when N = 22.3;d(N) = 8(3N/35)1§ when N =
23.32.5.7;d(N) = 96(3N/50050) i when

N=2.3.52.7.11-13.

36. M and N are consecutive superior highly composite numbers if there are no superior
highly composite numbers between M and N.

From (195) and (196) it is easily seen that, if M and N are any two superior highly
composite numbers, and if M > N, then M is a multiple of N; and also that, if M and
N are two consecutive superior highly composite numbers, and if M > N, then M/N is
a prime number. From this it follows that consecutive superior highly composite numbers
are of the form

T, T17TQ, T1TQT3, TIT2T3T4, ..., (201)
where 71,79, 3 ... are primes. In order to determine 7y, w9, ... we proceed as follows. Let

x) be the smallest value of x such that [2%] is prime 2}, the smallest value of x such that

XTq . . .
[(%) | is prime, and so on; and let 1, x9,... be the numbers 2}, 2 ... arranged in order of

magnitude. Then ,, is the prime corresponding to x,,, and
N = mymomy -« - Ty, (202)

if x, <z < Tpy1.
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37. From the preceding results we see that the number of superior highly composite num-
bers not exceeding

NIV
Ol

I27)+9(5)7+9(

yr (203)
is
T2") +7(3) +m(3)" + -
In other words if x,, < x < z,41 then
n=r2")+m(3)"+7m(3)"+---. (204)

It follows from (192) and (202) that, of the primes my, w2, 73, ..., T, the number of primes
which are equal to a given prime w is equal to

(@ —1)71). (205)

Further, the greatest of the primes my, 7o, 3 ..., 7, is the largest prime not greater than
2% and is asymptotically equivalent to the natural nth prime, in virtue of (204).

The following table gives the values of m,, and z,, for the first 50 values of n, that is till z,,
reaches very nearly 7.

m =2 :Elziggg:l

T =3 vy = 1255 = 1.5849 - -
T3 =2 T3 = 1})‘;@) =1.7095 - - -
m =5 vy = 1253 =2.3219...
5 =2 z5 = 1982 —2.4094. ..

log(3)
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6 =3
=17
g =

9 = 11
o = 13
T =2
T2 =3
T3 =05
T = 17
w5 = 19
T = 2
m7 = 23
mg =1
9 = 29
Top = 3
o1 = 31
o9 = 2
o3 = 37
o4 = 41
o5 = 43
Tog = 47

_ _log3 __
Te = og(2) 2.7095. ..

zr = 18T — 28073 ...

log2 —
— log2 _
78 = % = 31062
rg = TEY =3.4504 .

1o = TE =3.7004...

log2 _ 38017...

TIL = fog(8)

log 3

og(§

log5 39693 ..

T13 = Tog()

p1g = P = 4.0874...

T15 = P = 4.2479. .

1082 _ 4 4965 . ..

T16 = Tog(I)

Ti7 = lfoggzz?’ =4.5235...

logT 47992, ..

T18 = Tog(3)

T19 = lfogg229 = 4.8579...

log3 40233 ...

T20 = log(2)

To1 = lfogg?’; =4.9541...

log2 51908 ..

122 = fog(E)

w3 = AT = 5.2094..

To4 = lfoggél =5.3575...

o5 = T =5.4262. ..

o6 = TET = 5.5545..

Paper 15
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o7 =5
Tog = 53
o9 = 59
T30 = 2
w31 = 11
T390 = 61
33 = 3
T34 = 67
w35 = 71
36 = 13
w37 =79
m3s = 13
mT39 = 83
40 = 89
Ty = 2
Ty0 = 97
mys = 101
myq = 103
w5 = 107
Ty = 7
myr = 109
myg = 113
T = 17
T = 127

L8 =

T29 =

T30 =

T31 =

€32 =

T33 =

T34 =

I35 =

T36 =

T3r =

T3g =

T39 =

L40 =

T41 =

Ty2 =

L43 =

Tyq =

L45 =

L46 =

Tyr =

L48 =

Tg9 =

T50 =

log 2

_ 13)?(%5) = 5.5945. ..
1{)5523 =5.7279. ..
% = 5.8826...
13)?(%2) = 5.8849...
11;>gg(1%1) =5.9139...
1fogg@’21 =5.9307...
hl)o?% = 6.0256. ..
% = 6.0660. . .
1{>Ogg721 = 6.1497 ...
lfogg? =6.1898...
1fogg729 = 6.3037...
1155(1%33 = 6.3259...
?{% = 6.3750...
1foggg29 = 6.4757. ..
1()1?0(%?) =6.5790...
1fogg927 =6.5999. ..
13§glgl = 6.6582. ..
% =6.6724. ..
1‘15;37 = 6.7414. ..
hl)f;g(%?) = 6.7641 ...
higglgf? = 6.7681...
lqgglé?’ = 6.8201...
% = 6.9875...
log 127 _ .9886.. . .
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38. It follows from (17) and (198) that logd(N) < F(x), where
2 (3)° (3)°
F(z):llogN+1{/ @dt+/2 @dw/g @dtJr---}, (206)
x T 2 t 2 t ) t

for all values of N and x. In order to obtain the best possible upper limit for log d(N), we
must choose x so as to make the right-hand side a minimum.

The function F'(z) is obviously continuous unless (1 + 1r)* = p, where r is a positive
integer and p a prime. It is easily seen to be continuous even then, and so continuous
without exception. Also

T 3\x
oy 1 1 2 n(t) /<a> m(t)

1 xT x
+E{7T(2 )log2+ m(3)"log 3 + -}

= AP+ + I+ —log N, 20n

unless (14 1/r)* = p, in virtue of (17).
Thus we see that F(z) is continuous, and F’(x) exists and is continuous except at certain
isolated points. The sign of F’(z), where it exists, is that of

D2%) +9(3)" +9(3) + - —log N,

and 19(2x)+19(%)x+19(§)x+"',

is a monotonic function. Thus F’(x) is first negative and then positive, changing sign once
only, and so F'(x) has a unique minimum. Thus F(x) is a minimum when z is a function
of N defined by the inequalities

0@%+0@V+ﬁ%¥+~~{jﬁg%gjjg}. (208)

Now let D(N) be a function of N such that
T § x x
D(N) = o7 (2 )(%)ﬂ(g) (%)ﬂ(%) . (209)

where z is the function of N defined by the inequalities (208). Then, from (198), we see
that

d(N) < D(N), (210)

for all values of N; and d(N) = D(N) for all superior highly composite values of N. Hence
D(N) is the maximum order of d(N). In other words, d(/N) will attain its maximum order
when N is a superior highly composite number.



Highly composite numbers

V.
Application to the Order of d(N).

39. The most precise result known concerning the distribution of the prime numbers is
that

m(x) = + O(xe~aVlogz
ey
where g
Li(x) = Tog

and a is a positive constant.
In order to find the maximum order of d(N) we have merely to determine the order of
D(N) from the equations (208) and (209). Now, from (208), we have

log N = 9(2%) + O(3)* = 9(2%) + 0(2%*/3);
and so
9(2%) =log N + o(log N3 (212)
and similarly from (209) we have

log D(N)

2
log 2 + o(log N)3. (213)

7(2%) =
It follows from (211) - (213) that the maximum order of d(N) is

2Li(10g N)+Ollog Nefa\/m]‘ (214)

It does not seen to be possible to obtain an upper limit for d(/N) notably more precise
than (214) without assuming results concerning the distribution of primes which depend
on hitherto unproved properties of the Riemann (-function.

40. We shall now assume that the “Riemann hypothesis” concerning the (-function is true,

i.e., that all the complex roots of ((s) have their real part equal to % Then it is known

that
) =2 = VE- 3 2+ 0, (215)
where p is a complex root of ((s), and that

(z) = Li(z) — §Li(vx) = Y _ Li(a”) + Ol

Wl

)
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—iaj—ﬁ—2ﬁ_1 ;p_p_; 33_0 NG
= Li(z) logz  (logx)? log:nz P) (10g3;)2zp2+0{(10g$)3}7 (216)

since i—,z is absolutely convergent when k > 1. Also it is known that

p
3 ‘% = O{V/z(log 2)?}; (217)
and so
Y (zx) — x = O{/z(log x)?}. (218)
From (215) and (216) it is clear that
, Vzx) —x NG
- A2 A 21
7(x) i(z) + log = R(z)+ O {log a:)3} , (219)
where
2T+
=——F 22
Ria) =~ (220)
But it follows from Taylor’s theorem and (218) that
. V(@) - 2
Li¥(z) — Li(z) = gz + O(log x)*, (221)
and from (219) and (221) it follows that
: VT
7(x) = Liv(z) — R(x) + O { Tog 2 | (222)
41. Tt follows from the functional equation satisfied by ((s), viz.,
(2m)°T(s)¢(s) cos 3ms = 3C(1 — s), (223)
that
(1— s)r 1V5T <71 +4\/§> ¢ <1 +2*/g>

is an integral function of s whose apparent order is less than 1, and hence is equal to

rcAHTI{ - o)

[where p runs through the complex roots of ((s) whose imaginary parts are positive]. From
this we can easily deduce that

s(1+s)7r_1J2rsI‘<1;_S> C(l—i—s):H(l—i—%), (224)
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[where p now runs through all the roots]. Subtracting 1 from both sides, dividing the result
by s, and then making s — 0, we obtain

Z; =1+ i(y—log4n), (225)

where v is the Eulerian constant. Hence we see that

xz’ 1 1 1
Col<EH - - )
= 2@2% = Z(2 + v — log 47). (226)

2P
2
p

It follows from (220) and (226) that
(log 4 — v)vz < R(x)(log x)* < (4 + v — log 47)/x. (227)

It can easily be verified that

e e a6 | @26)
approximately.
42. Now 27 + 5(2)
)= gy

where i

S(x) = Z ?;
so that, considering R(z) as a function of a continuous variable, we have

1 ~ AVz +25() S'(x)

B = Joga? ~ " ollogaP T (loga)?

S'(x) 1
= +0 ————— ¢,
(log z)? Vr(log x)?

for all values of x for which S(z) possesses a differential coefficient.
Now the derived series of S(x), viz.,

- 1 xf

S(z) = — —

W=

is uniformly convergent throughout any interval of positive values of x which does not

include any value of z of the form x = p™; and S(z) is continuous for all values of z. It
follows that

S(en) = S(az) = [ (e
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for all positive values of z1 and z9, and that S(x) possesses a derivative
S'(x) = S(x),
whenever x is not of the form p™. Also
iy _ o J (oga)?
S(z)=0 { NG
Hence
:c—i—hO 1 O h
R h)=R — |dt=R — . 229
@i =R+ [ o(Z)d=rw+o() (220)
43. Now
log N = 9(2%) + (37 + O
= 927+ (3)" +O0{z*(3)>"} + O(3)"

Similarly log D(N) = log2 - w(2%) + log(2)Li(3)* + O(2°#/12). Writing X for 2%, we have

log N = 9(X) + X'°8(2)/ 162 1 O{(log N) 7% }; } (230)
log D(N) = log 2.7(X) + log(3) Li{ X'08(2)/ 1062} L O(X 12
It follows that
log N = X + O[X°8(:/ 182,
and so
X =log N + O[(log N)los(3)/les2] (231)
Again, from (230) and (231), it follows that
log N = 9(X) + (log N)'0s(3)/ 1082 1 Of(log N)i2}, (232)
and
log D(N) = log2.m(X) + log(2)Li(log N)log(%)/logz + O{(log N)TE}
= log?2 {LM(X) - R(X)+O0 &] }
+1og(2) Li{(log N)°8(2)/ 1982} 1 O{(log N) T}, (233)
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in virtue of (222). From (231) and (233) it evidently follows that
log D(N) = log2- Lid(X) —log2 - R(X) + log(3)Li{(log N)'o8(3)/ 1082}
= log2- Li{log N — (log N)log(%)/logz + O(log N)
—log?2 - R{log N + O(log N)l&(3/1ee2}

5

12}

+log(3)Li{(log N)'e(2)/1e2} 4 O {&%} : (234)

in virtue of (231) and (232). But

Li{log N — (logN)”Og( )/1082y | O(log N) iz }

log(3)/log2 3 {2log(3)/log2}—1
_ Liflog N) — (o8N LolUeNel ) Qg N7
loglog N loglog N (loglog N)?
log( )/log 2 5
_ Liflog N) — 108 Y) +O(log N)1z;

loglog N
and
R{log N + O(log N)¢(3)/ 1962} — R(log N') + O{(log N){log(%)/log2}—%}
= R(logN)+ O(log N)%
in virtue of (229). Hence (234) may be replaced by
log D(N) = log2 - Li(log N) + log(3) Li{ (log n)'#(3) o6 2}

(log N)log( )/ log2

—log?2
©8 loglog N

—log2.R(log N) + O {%} . (235)

That is to say the maximum order of d(NV) is

2Li(log N)+<Z>(N)’ (236)

where

(log N)log( )/ log2
loglog N

o) = log(%)L{agN)lOg( iog2)

10g N
log log N)3

— R(log N)
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This order is actually attained for an infinity of values of N.

44. We can now find the order of the number of superior highly composite numbers not
exceeding a given number N. Let N’ be the smallest superior highly composite number
greater than IV, and let

N/ = P@) 03 +0(5) "+

Then, from § 37, we know that
2N < N' < 27N, (237)

so that N = 0(NNlog N); and also that the number of superior highly composite numbers
not exceeding N’ is
n=m(2")+m(3)" +7(z)" 4

By arguments similar to those of the previous section we can shew that

)/log2 _ (108 N)log(3)/log2
loglog N

(log N)
O{W} (238)

It is easy to see from § 37 that, if the largest superior highly composite number not exceeding
N is

n = Li(logN)+ Li(log N)s( R(log N)

202 . 303 . 55 ... pip

then the number of superior highly composite numbers not exceeding N is the sum of all
the indices, viz,
az +az+as—+ -+ ap

45. Proceeding as in § 28, we can shew that, if IV is a superior highly composite number
and m and n are any two positive integers such that [n is a divisor of N, and]

log mn = o(loglog N),

then

a(2N) = a(N)2 et ro( i) (239)

n
From this we can easily shew that the next highly composite number is of the form

N (log log log N)?
N+O0O { loglog N . (240)
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Again, let us S and S be any two consecutive superior highly composite numbers, and let

G @I I+

Then it follows from § 35 that
d(N) < <—> d(s), (241)

for all values of N except S and s’. Now, if S be the nth superior highly composite number,
so that

Tp <X < Tpyr,

where z,, is the same as in § 36, we see that
N 1/xn
d(N) < <—> d(s), (241")

for all values of N except S and s'. If N is S or S’, then the inequality becomes an equality.
It follows from § 36 that d(S) < 2d(S’). Hence, if N be highly composite and S’ < N < S,
so that dS’" < d(N) < d(S), then

Ld(S) < d(N) < d(8'), d(S") < d(N) < 2d(5").

From this it is easy to see that the order (236) is actually attained by d(N) whenever N is
a highly composite number. But it may also be attained when N is not a highly composite
number. For example, if

]\f:(235pl)><(235p2)7

where pq is the largest prime not greater than 2%, and po the largest prime not greater than

(2)®, it is easily seen that d(V) attains the order (236): and N is not highly composite.

VI
Special Forms of N.

46. In §5-38 we have indirectly solved the following problem: to find the relations which
must hold between x1, 29,3, ... in order that

g7 (z1) | (%)w(rz) . (%)w(ws) e

may be a maximum, when it is given that

19(%1) + 79(%2) + 19(%3) + -
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is a fixed number. The relations which we obtained are

log2 log(%) B log(g)
logzy  logzs  logas

This suggests the following more general problem. If N is an integer of the form

ec19(x1) + c29(w2) + cs?(ws) + -+ (242)

where ¢y, co,c3,... are any given positive integers, it is required to find the nature of N,
that is to say the relations which hold between x1,xs,x3,..., when d(N) is of maximum
order. From (242) we see that

(242)

1+¢ +c2>“(5"2) (1 et +C3>”(x3)

- m(z1)
dN) = (1 +a) < 1+ 1+ ¢ + ¢

If we define the “superior” numbers of the class (242) by the inequalities

aw) _ dv)

Ne — (Nl)e )

for all values of N’ less than N, and
dN) _ d(V)
Ne (N/)e ’

for all values of N’ greater than N, N and N’ in the two inequalities being of the form
(242), and proceed as in § 33, we can shew that

14cy+eo @/ca
1+cy

4 o (e
ele1/m)P{(Ler)™/1} (c2/x>19{(1+q+cz)x/c2} o

14c¢
e 1

d(N) < N'/=

(243)

for all values of z, and for all values of N of the form (242). From we can shew, by arguments
similar to those of § 38, that N must be of the form

1teytes\T/C2 1+cq+eotes)®/€3
enn((renanyenn{ (M) brean{ (M) }+ (244)

and d(N) of the form

x
Itecjteates ) =) }

T 14cq1+c ci
ﬂ{(1+01)61} 14+c +e W{( Ther 2) 2} 1+c+ca+es W{( THer+en
(1+c1) -

1+¢ 1+c1+c

(244")
From (244) and (244’) we can find the maximum order of d(N), as in § 43.
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47. We shall now consider the order of d(/V) for some special forms of N. The simplest
case is that in which N is of the form

2:3:5-7p;
so that

log N = 9(p),
and

d(N) = 27P),

It is easy to shew that

) log N
Li(log N)—R(log N)+O{ (1@3 }

d(N) =2 (245)

In this case d(IN) is exactly a power of 2, and this naturally suggests the question: what
is the maximum order of d(N) when d(N) is exactly a power of 27

It is evident that, if d(N) is a power of 2, the indices of the prime divisors of N cannot be
any other numbers except 1,3,7,15,31, ...; an so in order that d(/V) should be of maximum
order, N must be of the form

o0(@1)+20(22)+40(23)+89 (24) -,

and d(N) of the form
27r(x1)+7r(m2)+7r(:v3)+---.

It follows from § 46 that, in order that d(/N) should be of maximum order N, must be of
the form

eﬁ(x)+219(\/5)+419(x21!)+819(:c%)+~~, (246)
and d(N) of the form
o (@) 4 (/B Fr(at) () o (247)

Hence the maximum order of d(N) can easily be shewn to be

2Li(1og Ny WUoeN) b0 N)—',—O{ V/(log N) }

(loglog N)2 (loglog N)3 (248)

It is easily seen from (246) that the least number having 2" divisors is
2.3-4-5-7-9-11-13-16-17-19-23-25-29--- to n factors, (249)
where 2, 3, 4, 5, 7, ... are the natural primes, their squares, fourth powers and so on,

arranged according to order of magnitude.
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48. We have seen that the last indices of the prime divisors of N must be 1, if d(N) is of
maximum order. Now we shall consider the maximum order of d(N) when the indices of
the prime divisors of IV are never less than an integer n. In the first place, in order that
d(N) should be of maximum order, N must be of the form

6"79(5(31)-H9(SL‘2)-i-19(:(:3)—i--~7

and d(N) of the form

(1+ n)ﬂ(m) <2—i__n>ﬂ(m) <3 + n)ﬂ(xa) e

14+n 24+n

It follows from §46 that N must be of the form

=y { (35) HHo{ (555) (250)
and d(N) of the form
~{(35)} (55"}
7r{(1+n)”/"} 24+n n 3+n +n
(1+n) <1+n> <2—|—n (251)

Then, by arguments similar to those of § 43, we can shew that the maximum order of d(V)
is

(n + 1)LH0/n)log N}+(N) (252)
where
S(N) = {bg(n +2) _ 1} Li (l log N) I
log(n + 1) n
(L log )"t 1" | (log V)
; nlog(%logN) —R<;logN> +){(loglogN)3}'
if n > 3, it is easy to verify that
S R

and so (252) reduces to

Li{(1/n) log N}—R{(1/n) log NHO{ % }

(n+1) , (253)

provided that n > 3.
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49. Let us next consider the maximum order of d(N) when N is a perfect nth power. In
order that d(IN) should be of maximum order, N must be of the form

enﬁ(xg)—l-m?(mg )+nd(xg)+--

and d(N) of the form

1420\ (14 30\ ")
14+n 14 2n

(14 n)™@1) <

It follows from § 46 that N must be of the form

e o { (422 ) o] (E2) (254)
and d(N) of the form
o (1x2n)® o (LB
(14 pypid0+n)7) <ﬂ> {5) }<1+3”> =) (255)
1+n 1+2n

Hence we can shew that the maximum order of d(N) is

7 n) lo - n) lo V/(og V)
(4 1)/ 0E IR/ gN}+o{(loglogN)3}7 (256)

provided that n > 1.

50. Let I[(N) denote the least common multiple of the first N natural numbers. Then it
can easily be shewn that

I(N) = 2llog Nlog2]  gllog N/log3]  gllog N/log5] . .. (257)
where p is the largest prime not greater than N. From this we can shew that

I(N) = ! HIVRHINE) 40N o, (258)

and so
1
d{U(N)} = 27 (3)r W) (ym(V3) (259)

From (258) and (259) we can shew that, if NV is of the form [(M), then

d(N) = 2Lillog N)+6(N) (260)
where
log(§) /(log N) | 4log(3) (log N)
N) = 8 2 — R(log N 5.
H(N) log2 loglog N * (loglog N)? R(log N) + 0 (loglog N)3
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It follows from (258) that

I(N) = eNTOlVN(oe)}, (261)
and from (259) that
d{l(N)} — 9Li(n)+O(VNlog N) (262)

51. Finally, we shall consider the number of divisors of N! It is easily seen that
NI =202.30 . 505 ... po» (263)

where p is the largest prime not greater than N, and

o 3]

It is evident that the primes greater than %N and not exceeding N appear once in N!, the
primes greater than %N and not exceeding %N appear twice, and so on up to those greater

than N/[v/N] and not exceeding N/(v/N] — 1), appearing [v/N] — 1 times*. The indices of
the smaller primes cannot be specified so simply. Hence it is clear that

1 1
N1 = JOHIGNEIGN (=) | e | ges  gas .. aw (264)

where w is the largest prime not greater than v/ N, and

ay— 1+ [VN] = |:¥:|+|:%:|+|:%:|+

From (264) we see that

d(NY) = MB)mEN(A TGN L o [VN] =1 factors
O{log(l—i—ag) +log(1 a3)+ ~+log(1+aw)}

_ 27r( ( )ﬂ( N) (%) N L to [\/N]—l factors
O{wlog(l-i—az)}
)

_ 2L2(N)(§)Ll( N (%)Li(%N)... to [\/N] factors
% O(WNTogN) (265)

Since N N
LiN) = fogw +© { (log N2 } |

*Strictly speaking, this is true only when N > 4.
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we see that
N N
d(N) = (jmg—N*O{W},

where

C=(1+D'1+50+hs0+hi....

From this we can easily deduce that, if IV is of the form M!, then

log N +2logNlogloglogN+O{ log N }
d(N) — C(loglog N)2 (loglog N)3 (lo

where C' is the same constant as in (266).

glog N)3
M

(266)

(267)

52. It is interesting in this connection to shew how, by considering numbers of certain
special forms, we can obtain lower limits for the maximum orders of the iterated functions

dd(n) and ddd(n). By supposing that

we can shew that

VEiogn)
dd(n) > 4 log logn

for an infinity of values of n. By supposing that

N =227~ 33%—1 =1
o — log p _q
AT log A

ddd(n) > (log n)loglogloglogn

where

we can shew that

for an infinity of values of n.

(268)

(269)
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