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1. Introduction and summary of results
1.1 The present paper is the outcome of an attempt to apply to the principal problems of
the theory of partitions the methods, depending upon the theory analytic functions, which
have proved so fruitful in the theory of the distribution of primes and allied branches of
the analytic theory of numbers.
The most interesting functions of the theory of partitions appear as the coefficients in the
power-series which represents certain elliptic modular functions. Thus p(n), the number of
unrestricted partitions of n, is the coefficient of xn in the expansion of the function

(1.11) f(x) = 1 +

∞
∑

1

p(n)xn =
1

(1− x)(1− x2)(1− x3) · · · .
†

If we write

(1.12) x = q2 = e2πiτ ,

where the imaginary part of τ is positive, we see that f(x) is substantially the reciprocal
of the modular function called by Tannery and Molk‡ h(τ); that, in fact,

(1.13) h(τ) = q
1
12 q0 = q

1
12

∞
∏

1

(1− q2n) =
x

1
24

f(x)
.

The theory of partitions has, from the time of Euler onwards, been developed from an almost
exclusively algebraical point of view. It consists of an assemblage of formal identities – many
of them, it need hardly be said, of an exceedingly ingenious and beautiful character. Of
asymptotic formluæ, one may fairly say, there are none§. So true is this, in fact, that we

∗A short abstract of the contents of part of this paper appeared under the title “Une formule asymptotique
pour le nombre des partitions de n, ” in the Comptes Rendus, January 2nd, 1917 [No. 31 of this volume].

†P. A. MacMahon, Combinatory Analysis, Vol. II, 1916, p. 1.
‡J. Tannery and J. Molk, Fonctions elliptiques, Vol. II, 1896, pp, 31 et seq. We shall follow the notation

of this work whenever we have to quote formulæ from the theory of elliptic functions.
§We should mention one exception to this statement, to which our attention was called by Major MacMa-

hon. The number of partitions of n into parts none of which exceed r is the coefficient pr(n) in the series

1 +

∞
∑

1

pr(n)x
n =

1

(1− x)(1− x2) · · · (1− xr)
.

This function has been studied in much detail, for various special values of r, by Cayley, Sylvester and
Glaisher: we may refer in particular to J. J. Sylvester, “On a discovery in the theory of partitions,” Quarterly

Journal, Vol. I, 1857, pp. 81 – 85, and “On the partition of numbers,” ibid., pp. 141 – 152 (Sylvester’s
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have been unable to discover in the literature of the subject any allusion whatever to the
question of the order of magnitude of p(n).

1.2 The function p(n) may, of course, be expressed in the form of an integral

(1.21) p(n) =
1

2πi

∫

Γ

f(x)

xn+1
dx,

by means of Cauchy’s theorem, the path Γ enclosing the origin and lying entirely inside the
unit circle. The idea which dominates this paper is that of obtaining asymptotic formulæ
for p(n) by a detailed study of the integral (1.21). This idea is an extremely obvious one;
it is the idea which has dominated nine-tenths of modern research in analytic theory of
numbers: and it may seem very strange that it should never have been applied to this
particular problem before. Of this there are no doubt two explanations. The first is that
the theory of partitions has received its most important developments, since its foundation
by Euler, at the hands of a series of mathematicians whose interests have lain primarily in
algebra. The second and more fundamental reason is to be found in the extreme complexity
of the behavior of the generating function f(x) near a point of the unit circle.
It is instructive to contrast this problem with the corresponding problems which arise
for the arithmetical functions π(n), ϑ(n),Ψ(n), µ(n), d(n), . . . which have their genesis in
Riemann’s Zeta-function and the functions allied to it. In the latter problems we are
dealing with functions defined by Dirichlet’s series. The study of such functions presents
difficulties far more fundamental than any which confront us in the theory of the modular
functions. These difficulties, however, relate to the distribution of the zeros of the functions
and their general behavior at infinity: no difficulties whatever are occasioned by the crude
singularities of the functions in the finite part of the plane. The single finite singularity
of ζ(s), for example, the pole at s = 1, is a singularity of the simplest possible character.

Works, Vol. II, pp. 86 – 89 and 90 – 99); J. W. L. Glaisher, “On the number of partitions of a number into a
given number of parts”, Quarterly Journal, Vol. XL, 1909, pp. 57 – 143; “Formulæ for partitions into given
elements, derived from Sylvester’s Theorem”, ibid., pp. 275 – 348; “Formulæ for the number of partitions
of a number into the elements 1, 2, 3, . . . , n upto n = 9”, ibid., Vol. XLI, 1910, pp. 94 – 112; and further
references will be found in MacMahon, loc. cit., pp. 59 – 71, and E. Netto, Lehrbuch der Combinatorik,
1901, pp. 146 – 158. Thus, for example, the coefficient of xn in

1

(1− x)(1− x2)(1− x3)

is

p3(n) =
1
12
(n+ 3)2 − 7

72
+ 1

8
(−1)n + 2

9
cos

2nπ

3
;

as is easily found by separating the function into partial fractions. This function may also be expressed in
the forms

1
12
(n+ 3)2 + ( 1

2
cos 1

2
πn)2 − ( 2

3
sin 1

3
πn)2,

1 +
[

1
12
n(n+ 6)

]

, { 1
12
(n+ 3)2},

where [n] and {n} denote the greatest integer contained in n and the integer nearest to n. These formulæ
do, of course, furnish incidentally asymptotic formulæ for the functions in question. But they are, from this
point of view, of a very trivial character: the interest which they possess is algebraical.
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It is this pole which gives rise to the dominant terms in the asymptotic formulæ for the
arithmetical functions associated with ζ(s). To prove such a formula rigorously is often
exceedingly difficult; to determine precisely the order of the error which it involves is in
many cases a problem which still defies the utmost resources of analysis. But to write
down the dominant terms involves, as a rule, no difficulty more formidable than that of
deforming a path of integration over a pole of the subject of integration and calculating the
corresponding residue.

In the theory of partitions, on the other hand, we are dealing with functions which do not
exist at all outside the unit circle. Every point of the circle is an essential singularity of the
function, and no part of the contour of integration can be deformed in such a manner as to
make its contribution obviously negligible. Every element of the contour requires special
study; and there is no obvious method of writing down a “dominant term”.

The difficulties of the problem appear then, at first sight, to be very serious. We possess,
however, in the formulæ of the theory of linear transformation of the elliptic functions, an
extremely powerful analytical weapon by means of which we can study the behavior of f(x)
near any assigned point of the unit circle∗. It is to an appropriate use of these formulæ that
the accuracy of our final results, an accuracy which will, we think, be found to be quite
startling, is due.

1.3 It is very important, in dealing with such a problem as this, to distinguish clearly the
various stages to which we can progress by arguments of progressively “deeper” and less
elementary character. The earlier results are naturally (so far as the particular problem
is concerned) superseded by the later. But the more elementary methods are likely to be
applicable to other problems in which the more subtle analysis is impracticable.

We have attacked this particular problem by a considerable number of different methods,
and cannot profess to have reached any very precise conclusions as to the possibilities of
each. A detailed comparison of the results to which they lead would moreover expand this
paper to a quite unreasonable length. But we have thought it worth while to include a
short account of two of them. The first is quite elementary; it depends only on Euler’s
identity

(1.31)
1

(1− x)(1− x2)(1 − x3) · · · = 1 +
x

(1− x)2
+

x4

(1− x)2(1− x2)2
+ · · ·

– an identity capable of wide generalisation – and on elementary algebraical reasoning. By
these means we shew, in section 2, that

(1.32) eA
√
n < p(n) < eB

√
n,

where A and B are positive constants, for all sufficiently large values of n.

∗See G. H. Hardy and J. E. Littlewood, “Some problems of Diophantine approximation (II: The trigono-
metrical series associated with the elliptic Theta-functions),” Acta Mathematica, Vol. XXXVII, 1914, pp.
193 – 238, for applications of the formulæ to different but not unrelated problems.
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It follows that

(1.33) A
√
n < log p(n) < B

√
n;

and the next question which arises is the question whether a constant C exists such that

(1.34) log p(n) ∼ C
√
n.

We prove that this is so in section 3. Our proof is still, in a sense, “elementary.” It does not
appeal to the theory of analytic functions, depending only on a general arithmetic theorem
concerning infinite series; but this theorem is of the difficult and delicate type which Messrs
Hardy and Littlewood have called “Tauberian.” The actual theorem required was proved
by us in a paper recently printed in these Proceedings∗. It shews that

(1.35) C =
2π√
6
;

in other words that

(1.36) p(n) = exp

{

π

√

(

2n

3

)

(1 + ǫ)

}

,

where ǫ is small when n is large. This method is one of very wide application. It may
be used, for example, to prove that, if p(s)(n) denotes the number of partitions of n into
perfect s-th powers, then

log p(s)(n) ∼ (s + 1)

{

1

s
Γ

(

1 +
1

s

)

ζ

(

1 +
1

s

)}s/(s+1)

n1/(s+1).

It is certainly possible to obtain, by means of arguments of this general character, informa-
tion about p(n) more precise than that furnished by the formula (1.36). And it is equally
possible to prove (1.36) by reasoning of a more elementary, though more special, character:
we have a proof, for example, based on the identity

np(n) =
n
∑

ν=1

σ(ν)p(n− ν),

where σ(ν) is the sum of divisors of ν, and a process of induction. But we are at present
unable to obtain, by any method which does not depend upon Cauchy’s theorem, a result
as precise as that which we state in the next paragraph, a result, that is to say, which is
“vraiment asymptotique.”

∗G. H. Hardy and S. Ramanujan, “Asymptotic formulæ for the distribution of integers of various types,”
Proc. London Math. Soc., Ser. 2, Vol. XVI, 1917, pp. 112 – 132 [No. 34 of this volume].
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1.4 Our next step was to replace (1.36) by the much more precise formula

(1.41) p(n) ∼ 1

4n
√
3
exp

{

π

√

(

2n

3

)

}

.

The proof of this formula appears to necessitate the use of much more powerful machinery,
Cauchy’s integral (1.21) and the functional relation

(1.42) f(x) =
x1/24
√

(2π)

√

(

log
1

x

)

exp

{

π2

6log (1/x)

}

f(x′),

where

(1.43) x′ = exp

{

− 4π2

log (1/x)

}

.

This formula is a merely a statement in different notation of the relation between h(τ) and
h(T ) where

T =
c+ dτ

a+ bτ
, a = d = 0, b = 1, c = −1;

viz.

h(τ) =

√

(

i

τ

)

h(T ).∗

It is interesting to observe the correspondence between (1.41) and the results of numerical
computation. Numerical data furnished to us by Major MacMahon gave the following
results: we denote the right-had side of (1.41) by ̟(n).

n p(n) ̟(n) ̟/p

10 42 48.104 1.145

20 627 692.385 1.104

50 204226 217590.499 1.065

80 15796476 16606781.567 1.051

It will be observed that the progress of ̟/p towards its limit unity is not very rapid, and
that ̟ − p is always positive and appears to tend rapidly to infinity.

1.5 In order to obtain more satisfactory results it is necessary to construct some auxiliary
function F (x) which is regular at all points of the unit circle save x = 1, and has there a
singularity of a type as near as possible to that of the singularity of f(x). We may then
hope to obtain a much more precise approximation by applying Cauchy’s theorem to f −F
instead of to f . For although every point of the circle is a singular point of f , x = 1 is, to

∗Tannery and Molk, loc. cit., p. 265 (Table XLV, 5).
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put it roughly, much the heaviest singularity. When x −→ 1 by real values, f(x) tends to
infinity like an exponential

exp

{

π2

6(1− x)

}

;

when

x = re2pπi/q,

p and q being co-prime integers, and r −→ 1, |f(x)| tends to infinity like an exponential

exp

{

π2

6q2(1− r)

}

;

while, if

x = re2θπi,

where θ is irrational, |f(x)| can become infinite at most like an exponential of the type

exp

{

o

(

1

1− r

)}

.∗

The function required is

(1.51) F (x) =
1

π
√
2

∞
∑

1

Ψ(n)xn,

where

(1.52) Ψ(n) =
d

dn

{

coshCλn − 1

λn

}

,

(1.53) C = 2π/
√
6 = π

√

2
3 , λn =

√

(n− 1
24 ).

This function may be transformed into an integral by means of a general formula given by
Lindelöf†; and it is then easy to prove that the “principal branch” of F (x) is regular all
over the plane except at x = 1‡; and that

F (x)− χ(x),

where

∗The statements concerning the “rational” points are corollaries of the formulæ of the transformation
theory, and proofs of them are contained in the body of the paper. The proposition concerning “irrational”
points may be proved by arguments similar to those used by Hardy and Littlewood in their memoir already
quoted. It is not needed for our present purpose. As a matter of fact it is generally true that f(x) −→ 0
when θ is irrational, and very nearly as rapidly as 4

√

(1− r). It is in reality owing to this that our final
method is so successful.

†E. Lindelöf, Le calcul de résidus et ses applications à la théorie des fonctions, (Gauthier-Villars, Col-
lection Borel, 1905), p. 111.

‡We speak, of course, of the principal branch of the function, viz., that represented by the series (1.51)
when x is small. The other branches are singular at the origin.
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(1.54) χ(x) =
x1/24
√

(2π)

√

(

log
1

x

) [

exp

{

π2

6log (1/x)

}

− 1

]

is regular for x = 1. If we compare (1.42) and (1.54), and observe that f(x′) tends to unity
with extreme rapidity when x tends to 1 along any regular path which does not touch the
circle of convergence, we can see at once the very close similarity between the behaviour of
f and F inside the unit circle and in the neighbourhood of x = 1.

It should be observed that the term −1 in (1.52) and (1.54) is-so far as our present assertions
are concerned-otiose: all that we have said remains true if it is omitted; the resemblance
between the singularities of f and F becomes indeed even closer. The term is inserted
merely in order to facilitate some of our preliminary analysis, and will prove to be without
influence on the final result.

Applying Cauchy’s theorem to f − F , we obtain

(1.55) p(n) =
1

2π
√
2

d

dn

(

eCλn

λn

)

+O(eD
√
n),

where D is any number greater than

1
2C = 1

2π
√

(23 ).

1.6 The formula (1.55) is an asymptotic formula of a type far more precise than that of
(1.41). The error term is, however, of an exponential type, and may be expected ultimately
to increase with very great rapidity. It was therefore with considerable surprise that we
found what exceedingly good results the formula gives for fairly large values of n. For
n = 61, 62, 63 it gives

1121538.972, 1300121.359, 1505535.606,

while the correct values are

1121505, 1300156, 1505499.

The errors

33.972, −34.641, 36.606

are relatively very small, and alternate in sign.

The next step is naturally to direct our attention to the singular point of f(x) next in
importance after that at x = 1, viz., that at x = −1; and to subtract from f(x) a second
auxiliary function, related to this point as F (x) is to x = 1. No new difficulty of principle
is involved, and we find that

(1.61) p(n) =
1

2π
√
2

d

dn

(

eCλn

λn

)

+
(−1)n

2π

d

dn





e
1
2Cλn

λn



+O(eD
√
n),

where D is now any number greater than 1
3C. It now becomes obvious why our earlier

approximation gave errors alternately of excess and of defect.
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It is obvious that this process may be repeated indefinitely. The singularities next in
importance are those at x = e

2
3
πi and x = e

4
3
πi; the next those at x = i and x = −i; and

so on. The next two terms in the approximate formula are found to be

√
3

π
√
2
cos
(

2
3nπ − 1

18π
) d

dn

(

e
1
3
Cλn

λn

)

and √
2

π
cos
(

1
2nπ − 1

8π
) d

dn

(

e
1
4
Cλn

λn

)

.

As we proceed further, the complexity of the calculations increases. The auxiliary function
associated with the point x = e2pπi/q involves a certain 24q-th root of unity, connected with
the linear transformation which must be used in order to elucidate the behaviour of f(x)
near the point; and the explicit expression of this root in terms of p and q, though known,
is somewhat complex. But it is plain that, by taking a sufficient number of terms, we can
find a formula in which the error is

O(eCλn/ν),

where ν is a fixed but arbitrarily large integer.

1.7 A final question remains. We have still the resource of making ν a function of n, that
is to say of making the number of terms in our approximate formula itself a function of n.
In this way we may reasonably hope, at any rate, to find a formula in which the error is
of order less than that of any exponential of the type ean; of the order of a power of n, for
example, or even bounded.

When, however, we proceeded to test this hypothesis by means of the numerical data most
kindly provided for us by Major MacMahon, we found a correspondence between the real
and the approximate values of such astonishing accuracy as to lead us to hope for even
more. Taking n = 100, we found that the first six terms of our formula gave

190568944.783
+348.872

−2.598
+.685
+.318
−.064

190569291.996,

while p(100) = 190569292; so that the error after six terms is only .004. We then proceeded
to calculate p(200) and found
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3, 972, 998, 993, 185.896
+36, 282.978

−87.555
+5.147
+1.424
+0.071
+0.000 ∗

+0.043

3, 972, 999, 029, 388.004,

and Major MacMahon’s subsequent calculations shewed that p(200) is, in fact,

3, 972, 999, 029, 388.

These results suggest very forcibly that it is possible to obtain a formula for p(n), which
not only exhibits its order of magnitude and structure, but may be used to calculate its
exact value for any value of n. That this is in fact so is shewn by the following theorem.

Statement of the main theorem.

THEOREM. Suppose that

(1.71) φq(n) =

√
q

2π
√
2

d

dn

(

eCλn/q

λn

)

,

where C and λn are defined by the equations (1.53), for all positive integral values of q; that
p is a positive integer less than and prime to q; that ωp,q is a 24q-th root of unity, defined

when p is odd by the formula

(1.721) ωp,q =
(

−q
p

)

exp
[

−
{

1
4(2− pq − p) + 1

12

(

q − 1
q

)

(2p− p′ + p2p′)
}

πi
]

,

and when q is odd by the formula

(1.722) ωp,q =
(

−p
q

)

exp
[

−
{

1
4(q − 1) + 1

12

(

q − 1
q

)

(2p − p′ + p2p′)
}

πi
]

,

where
(

a
b

)

is the symbol of Legendre and Jacobi†, and p′ is any positive integer such that

1 + pp′ is divisible by q; that

(1.73) Aq(n) =
∑

(p) ωp,qe
−2npπi/q;

and that α is any positive constant, and ν the integral part of α
√
n.

Then

(1.74) p(n) =
∑ν

1 Aqφq +O(n− 1
4 ),

so that p(n) is, for all sufficiently large values of n, the integer nearest to

(1.75)
∑ν

1 Aqφq.

∗This term vanishes identically.
†See Tannery and Molk, loc. cit., pp. 104 – 106, for a complete set of rules for the calculation of the

value of
(

a
b

)

, which is, of course, always 1 or −1. When both p and q are odd it is indifferent which formula
is adopted.
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It should be observed that all the numbers Aq are real. A table of Aq from q = 1 to q = 18
is given at the end of the paper (Table II).
The proof of this main theorem is given in section 5; section 4 being devoted to a number
of preliminary lemmas. The proof is naturally somewhat intricate; and we trust that we
have arranged it in such a form as to be readily intelligible. In section 6 we draw attention
to one or two questions which our theorem, in spite of its apparent completeness, still
leaves open. In section 7 we indicate some other problems in combinatory analysis and
the analytic theory of numbers to which our method may be applied; and we conclude
by giving some functional and numerical tables: for the latter we are indebted to Major
MacMahon and Mr. H. B. C. Darling. To Major MacMahon in particular we owe many
thanks for the amount of trouble he has taken over very tedious calculations. It is certain
that, without the encouragement given by the results of these calculations, we should never
have attempted to prove theoretical results at all comparable in precision with those which
we have enunciated.

2. Elementary proof that eA
√
n < p(n) < eB

√
n for sufficiently large values of n.

2.1 In this section we give the elementary proof of the inequalities (1.32). We prove, in
fact, rather more, viz., that positive constants H and K exist such that

(2.11)
H

n
e2

√
n < p(n) <

K

n
e2

√
2n

for n ≥ 1∗. We shall use in our proof only Euler’s formula (1.31) and a debased form of
Stirling’s theorem, easily demonstrable by quite elementary methods: the proposition that

n!en/nn+
1
2

lies between two positive constants for all positive integral values of n.

2.2 The proof of the first of the two inequalities is slightly the simpler. It is obvious that
if

∑

pr(n)x
n =

1

(1− x)(1 − x2) · · · (1− xr)

so that pr(n) is the number of partitions of n into parts not exceeding r, then
(2.21) pr(n) = pr−1(n) + pr−1(n− r) + pr−1(n− 2r) + · · ·
We shall use this equation to prove, by induction, that

(2.22) pr(n) ≥
rnr−1

(r!)2
.

∗Somewhat inferior inequalities, of the type

2A[
√

n] < p(n) < nB[
√

n],

may be proved by entirely elementary reasoning; by reasoning, that is to say, which depends only on the
arithmetical definition of p(n) and on elementary finite algebra, and does not presuppose the notion of a
limit or the definition of the logarithmic or exponential functions.
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It is obvious that (2.22) is true for r = 1. Assuming it to be true for r = s, and using
(2.21), we obtain

ps+1(n) ≥ s

(s!)2
{ns−1 + (n− s− 1)s−1 + (n− 2s− 2)s−1 + · · ·}

≥ s

(s!)2

{

ns − (n− s− 1)s

s(s+ 1)
+

(n− s− 1)s − (n− 2s− 2)s

s(s+ 1)
+ · · ·

}

=
ns

(s+ 1)(s!)2
=

(s + 1)ns

{(s + 1)!}2 .

This proves (2.22). Now p(n) is obviously not less than pr(n), whatever the value of r.
Take r = [

√
n]: then

p(n) ≥ p[
√
n](n) ≥

[
√
n]

n

n[
√
n]

{[√n]!}2 >
H

n
e2

√
n,

by a simple application of the degenerate form of Stirling’s theorem mentioned above.

2.3 The proof of the second inequality depends upon Euler’s identity. If we write

∑

qr(n)x
n =

1

(1− x)2(1− x2)2 · · · (1− xr)2
,

we have
(2.31) qr(n) = qr−1(n) + 2qr−1(n− r) + 3qr−1(n− 2r) + · · ·,
and
(2.32) p(n) = q1(n− 1) + q2(n− 4) + q3(n− 9) + · · ·
We shall first prove by induction that

(2.33) qr(n) ≤
(n+ r2)2r−1

(2r − 1)!(r!)2
.

This is obviously true for r = 1. Assuming it to be true for r = s, and using (2.31), we
obtain

qs+1(n) ≤
1

(2s− 1)!(s!)2
{(n + s2)2s−1 + 2(n + s2 − s− 1)2s−1

+ 3(n + s2 − 2s− 2)2s−1 + · · ·}.

Now
m(m− 1)am−2b2 ≤ (a+ b)m − 2am + (a− b)m,

if m is a positive integer, and a, b, and a− b are positive, while if a− b ≤ 0, and m is odd,
the term (a− b)m may be omitted. In this inequality write

m = 2s + 1, a = n+ s2 − ks− k (k = 0, 1, 2, . . .), b = s+ 1,

and sum with respect to k. We find that

(2s + 1)2s(s + 1)2{(n+ s2)2s−1 + 2(n + s2 − s− 1)2s−1 + · · ·} ≤ (n+ s2 + s+ 1)2s+1;
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and so

qs+1(n) ≤
(n+ s2 + s+ 1)2s+1

(2s + 1)2s(s + 1)2(2s − 1)!(s!)2
≤ {n+ (s+ 1)2}2s+1

(2s+ 1)!{(s + 1)!}2 .

Hence (2.33) is true generally.

It follows from (2.32) that

p(n) = q1(n− 1) + q2(n− 4) + · · · ≤
∞
∑

1

n2r−1

(2r − 1)!(r!)2
.

But, using the degenerate form of Stirling’s theorem once more, we find without difficulty
that

1

(2r − 1)!(r!)2
<

26rK

4r!
,

where K is a constant. Hence

p(n) < 8K

∞
∑

1

(8n)2r−1

4r!
< 8K

∞
∑

1

(8n)
1
2
r−1

r!
<

K

n
e2

√
2n.

This is the second of the inequalities (2.11).

3. Application of a Tauberian theorem to the determination of the constant
C.

3.1 The value of the constant

C = lim
log p(n)√

n
,

is most naturally determined by the use of the following theorem.
If g(x) =

∑

anx
n is a power-series with positive coefficients, and

log g(x) ∼ A

1− x

when x → 1, then

log sn = log (a0 + a1 + · · ·+ an) ∼ 2
√
An

when n → ∞.

This theorem is a special case∗ of Theorem C in our paper already referred to.

Now suppose that

g(x) = (1− x)f(x) =
∑

{p(n)− p(n− 1)}xn =
1

(1− x2)(1 − x3)(1− x4) · · · .

∗Loc. cit., p. 129 (with α = 1) [p. 321 of this volume].
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Then

an = p(n)− p(n− 1)

is plainly positive. And

(3.11) log g(x) =
∞
∑

2

log
1

1− xµ
=

∞
∑

1

1

ν

x2ν

1− xν
∼ 1

1− x

∞
∑

1

1

ν2
=

π2

6(1− x)
,

when x → 1∗. Hence
(3.12) log p(n) = a0 + a1 + · · ·+ an ∼ C

√
n,

where C = 2π/
√
6 = π

√

2
3 , as in (1.53).

3.2 There is no doubt that it is possible, by “Tauberian” arguments, to prove a good
deal more about p(n) than is asserted by (3.12). The functional equation satisfied by f(x)
shews, for example, that

g(x) ∼ (1− x)3/2√
2π

exp

{

π2

6(1 − x)

}

,

a relation far more precise than (3.11). From this relation, and the fact that the coefficients
in g(x) are positive, it is certainly possible to deduce more than (3.12). But it hardly
seems likely that arguments of this character will lead us to a proof of (1.41). It would
be exceedingly interesting to know exactly how far they will carry us, since the method
is comparatively elementary, and has a much wider range of application than the more
powerful methods employed later in this paper. We must, however, reserve the discussion
of this question for some future occasion.

4. Lemmas preliminary to the proof of the main theorem.

4.1 We proceed now to the proof of our main theorem. The proof is somewhat intricate,
and depends on a number of subsidiary theorems which we shall state as lemmas.

∗This is a special case of a much more general theorems: see K. Knopp, “Grenzwerte von Reihen bei
der Annäherung an die Konvergenzgrenze,” Inaugural Dissertation, Berlin, 1907, pp. 25 et seq.; K. Knopp,
“Über Lambertsche Reihen,” Journal für Math., Vol. CXLII, 1913, pp. 283 – 315; G. H. Hardy, “Theorems
connected with Abel’s Theorem on the continuity of power series,” Proc. London Math. Soc., Ser. 2, Vol.
IV, 1906, pp. 247 – 265 (pp. 252, 253); G. H. Hardy, “Some theorems concerning infinite series,” Math.

Ann., Vol. LXIV, 1907, pp. 77 – 94; G. H. Hardy, “Note on Lambert’s series,” Proc. London Math. Soc.,
Ser. 2, Vol. XIII, 1913, pp. 192 – 198.

A direct proof is very easy: for

νxν−1(1− x) < 1− xν < ν(1− x),

1

1− x

∑ x2ν

ν2
< log g(x) <

1

1− x

∑ xν+1

ν2
.
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Lemmas concerning Farey’s series.

4.21 The Farey’s series of order m is the aggregate of irreducible rational fractions

p/q (0 ≤ p ≤ q ≤ m),

arranged in ascending order of magnitude. Thus

0

1
,
1

7
,
1

6
,
1

5
,
1

4
,
2

7
,
1

3
,
2

5
,
3

7
,
1

2
,
4

7
,
3

5
,
2

3
,
5

7
,
3

4
,
4

5
,
5

6
,
6

7
,
1

1

is the Farey’s series of order 7.

Lemma 4.21. If p/q, p′/q′ are two successive terms of a Farey’s series, then

(4.211) p′q − pq′ = 1.
This is, of course, a well-known theorem, first observed by Farey and first proved by
Cauchy∗. Th following exceedingly simple proof is due to Hurwitz†.
The result is plainly true when m = 1. Let us suppose it true for m = k; and let p/q, p′/q′

be two consecutive terms in the series of order k.
Suppose now that p′′/q′′ is a term of the series of order k+1 which falls between p/q, p′/q′.
Let

p′′q − pq′′ = λ > 0, p′q′′ − p′′q′ = µ > 0.

Solving these equations for p′′, q′′ and observing that p′q − pq′ = 1, we obtain

p′′ = µp+ λp′, q′′ = µq + λq′.

Consider now the aggregate of fractions

(µp+ λp′)/(µq + λq′),

where λ and µ are positive integers without common factor. All of these fractions lie between
p/q and p′/q′; and all are in their lowest terms, since a factor common to numerator and
denominator would divide

λ = q(µp+ λp′)− p(µq + λq′),

and µ = p′(µq + λq′)− q′(µp+ λp′).
Each of them first makes its appearance in the Farey’s series of order µq+λq′, and the first
of them to make its appearance must be that for which λ = 1, µ = 1. Hence

p′′ = p+ p′, q′′ = q + q′,

∗J. Farey, “On a curious property of vulgar fraction,” Phil. Mag., Ser. 1, Vol. XLVII, 1816, pp. 385,
386; A. L. Cauchy, “Démonstration d’un théorème curieux sur les nombres,” Exercices de mathématiques,
Vol. I, 1826, pp. 114 – 116. Cauchy’s proof was first published in the Bulletin de la Société Philomatique

in 1816.
†A. Hurwitz, “Ueber die angenäherte Darstellung der Zahlen durch rationale Brüche,” Math. Ann., Vol.

XLIV, 1894, pp 417-436.
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p′′q − pq′′ = p′q′′ − p′′q′ = 1.

The lemma is consequently proved by induction.

Lemma 4.22. Suppose that p/q is a term of the Farey’s series of order m, and p′′/q′′, p′/q′

the adjacent terms on the left and right: and let jp,q denote the interval

p

q
− 1

q(q + q′′)
,

p

q
+

1

q(q + q′)
.∗

Then (i) the intervals jp,q exactly fill up the continuum (0, 1), and (ii) the length of each

of the parts into which jp,q is divided by p/q† is greater than 1/2mq and less than 1/mq.
(i) Since

1

q(q + q′)
+

1

q′(q′ + q)
=

1

qq′
=

p′q − pq′

qq′
=

p′

q′
− p

q
,

the intervals just fill up the continuum.
(ii) Since neither q nor q′ exceeds m, and one at least must be less than m, we have

1

q(q + q′)
>

1

2mq
.

Also q+ q′ > m, since otherwise (p+ p′)/(q+ q′) would be a term in the series between p/q
and p′/q′. Hence

1

q(q + q′)
<

1

mq
.

Standard dissection of a circle.

4.22 The following mode of dissection of a circle, based upon Lemma 4.22, is of fundamental
importance for our analysis.
Suppose that the circle is defined by

x = Re2πiθ (0 ≤ θ ≤ 1).

Construct the Farey’s series of order m, and the corresponding intervals jp,q. When these
intervals are considered as intervals of variation of θ, and the two extreme intervals, which
correspond to abutting arcs on the circle, are regarded as constituting a single interval ξ1,1,
the circle is divided into a number of arcs

ξp,q,

where q ranges from 1 to m and p through the numbers not exceeding and prime to q‡. We
call this dissection of the circle the dissection Ξm.

∗When p/q is 0/1 or 1/1, only the part of this interval inside (0, 1) is to be taken; thus j0,1 is 0, 1/(m+1)
and j1,1 is 1− 1/(m+ 1), 1.

†See the preceding footnote
‡p = 0 occurring with q = 1 only.
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Lemmas from the theory of the linear transformation of the

elliptic modular functions.

4.3 Lemma 4.31. Suppose that q is a positive integer; that p is a positive integer not

exceeding and prime to q; that p′ is a positive integer such that 1+pp′ is divisible by q; that
ωp,q is defined by the formulæ (1.721) or (1.722) ; that

x = exp

(

−2πz

q
+

2pπi

q

)

, x′ = exp

(

−2π

qz
+

2p′πi
q

)

,

where the real part of z is positive; and that

f(x) =
1

(1− x)(1− x2)(1 − x3) · · · .

Then

f(x) = ωp,q

√
z exp

(

π

12qz
− πz

12q

)

f(x′).

This lemma is merely a restatement in a different notation of well-known formulæ in the
transformation theory.

Suppose, for example, that p is odd. If we take

a = p, b = −q, c =
1 + pp′

q
, d = −p′,

so that ad− bc = 1; and write

x = q2 = e2πiτ , x′ = Q2 = e2πiT ,

so that

τ =
p

q
+

iz

q
, T =

p′

q
+

i

qz
;

then we can easily verify that

T =
c+ dτ

a+ bτ
.

Also, in the notation of Tanner and Molk, we have

f(x) =
q

1
12

h(τ)
, f(x′) =

Q
1
12

h(T )
;

and the formula for the linear transformation of h(τ) is

h(T ) =

(

b

a

)

exp
[

{1
4(a− 1)− 1

12 [a(b− c) + bd(a2 − 1)]}πi
]
√

(a+ bτ) h(τ),
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where
√

(a+ bτ) has its real part positive∗. A little elementary algebra will shew the
equivalence of this result and ours.
The other formula for ωp,q may be verified similarly, but in this case we must take

a = −p, b = q, c =
1 + pp′

q
, d = p′.

We have included in the Appendix (Table I) a short table of some values of ωp,q, or rather
of (logωp,q)/πi.
Lemma 4.32. The function f(x) satisfies the equation

(4.321) f(x) = ωp,q

√

{

q

2π
log

(

1

xp,q

)}

x
1
24
p,q exp

{

π2

6q2 log(1/xp,q)

}

f(x′p,q),

where

(4.322) xp,q = xe−2pπi/q, x′p,q = exp

{

− 4π2

q2 log(1/xp,q)
+

2p′πi
q

}

.

This is an immediate corollary from Lemma 4.31, since

z =
q

2π
log

(

1

xp,q

)

, e−πz/12q = x
1
24
p,q,

π

12qz
=

π2

6q2 log(1/xp,q)
, x′ = exp

(

−2π

qz
+

2p′πi
q

)

= x′p,q.

If we observe that
f(x′p,q) = 1 + p(1)x′p,q + · · · ,

we see that, if x tends to e2pπi/q along a radius vector, or indeed any regular path which
does not touch the circle of convergence, the difference

f(x)− ωp,q

√

{

q

2π
log

(

1

xp,q

)}

x
1
24
p,q exp

{

π2

6q2 log(1/xp,q)

}

tends to zero with great rapidity. It is on this fact that our analysis is based.

Lemmas concerning the auxiliary function Fa(x).

4.41. The auxiliary function Fa(x) is defined by the equation

Fa(x) =
∞
∑

1

Ψa(n)x
n,

where

Ψa(n) =
d

dn

cosh aλn − 1

λn
,

∗Tannery and Molk, loc. cit., pp. 113, 267.



Asymptotic formulæ in combinatory analysis 359

λn =
√

(n− 1
24 ), a > 0.

Lemma 4.41. Suppose that a cut is made along the segment (1,∞) in the plane f x.
Then Fa(x) is regular at all points inside the region thus defined.

This lemma is an immediate corollary of a general theorem proved by Lindelöf on pp. 109
et seq. of his Calcul des residus∗.
The function

Ψa(z) =
d

dz

cosh a
√

(z − 1
24)− 1

√

(z − 1
24 )

satisfies the conditions imposed upon it by Lindelöf, if the number which he calls α is
greater than 1

24 ; and

(4.411) Fa(x)

∫ a+i∞

a−i∞

xz

1− e2πiz
φ(z) dz,

if

x = reiθ, 0 < θ < 2π, xz = exp{z(log r + iθ)}.

4.42. Lemma 4.42. Suppose that D is the region defined by the inequalities

−π < −θ0 < θ < θ0 < π, r0 < r, 0 < r0 < 1,

and that log(1/x) has its principal value, so that log(1/x) is one-valued, and its square root

two-valued, in D. Further, let

χa(x) =
√

{π log(1/x)}x 1
24

[

exp

{

a2

4 log(1/x)

}

− 1

]

,

that value of the square root being chosen which is positive when 0 < x < 1. Then

Fa(x)− χa(x)

is regular inside D†.
We observe first that, whenθ has fixed value between 0 and 2π, the integral on the right-
hand side of (4.411) is uniformly convergent for 1

24 ≤ α ≤ α0. Hence we may take α = 1
24

in (4.411). We thus obtain

Fa(x) = ix
1
24

∫ ∞

0

xit

1− e
1
12

πi−2πt
Ψa(

1
24 + it) dt+ ix

1
24

∫ ∞

0

x−it

1− e
1
12

πi+2πt
Ψa(

1
24 − it) dt,

∗Lindelöf gives references to Mellin and Le Roy, who had previously established the theorem in less
general forms.

†Both Fa(x) and χa(x) are two-valued in D. The value of Fa(x) contemplated is naturally that repre-
sented by the power series.
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where the
√
it and

√
−it which occur in Ψa(

1
24 + it) and Ψa(

1
24 − it) are to be interpreted

as e(1/4)πi
√
t and e−(1/4)πi

√
t respectively. We write this in the form

(4.421) Fa(x) = Xa(x) + ix
1
24

∫ ∞

0

xit

e−
1
12

πi+2πt − 1
Ψa(

1
24 + it) dt

+ix
1
24

∫ ∞

0

x−it

1− e
1
12

πi+2πt
Ψa(

1
24 − it) dt

= Xa(x) + Θ1(x) + Θ2(x),

say, where

Xa(x) = ix
1
24

∫ ∞

0
xitΨa(

1
24 + it) dt.

Now, since

|xit| = e−θt, |x−it| = eθt,

the functions Θ are regular throughout the angle of Lemma 4.42. And

Xa(x) =
x

1
24√
i

∫ ∞

0
e−λt d

dt

(

coshµ
√
t− 1√
t

)

dt,

where

λ = i log
1

x
, µ = a

√
i.

The form of this integral may be calculated by supposing λ and µ positive, when we obtain

∫ ∞

0
e−λw2 d

dw

(

coshµw − 1

w

)

dw = 2λ

∫ ∞

0
e−λw2

(cosh µw − 1) dw

=
√

(λπ)(eµ
2/4λ − 1).

Hence

(4.422) Xa(x) =
√

{π log(1/x)}x 1
24

[

exp

{

a2

4 log(1/x)

}

− 1

]

= χa(x),

and the proof of the lemma is completed.

Lemmas 4.41 and 4.42 shew that x = 1 is the sole finite singularity of the principal branch
of Fa(x).

4.43 Lemma 4.43 Suppose that P, θ1, and A are positive constants, θ1 being less than π.
Then

|Fa(x)| < K = K(P, θ1, A),

for

0 ≤ r ≤ P, θ1 ≤ θ ≤ 2π − θ1, 0 < a ≤ A.
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We use K generally to denote a positive number independent of x and of a. We may employ
the formula (4.411). It is plain that

∣

∣

∣

∣

xz

1− e2πiz

∣

∣

∣

∣

< Ke−θ1|η|,

|Ψa(z)| =

∣

∣

∣

∣

∣

∣

d

dz







cosh a
√

(z − 1
24)− 1

√

(z − 1
24 )







∣

∣

∣

∣

∣

∣

< KeK
√

|η|,

where η is the imaginary part of z. Hence

|Fa(x)| < K

∫ ∞

−∞
eK

√
|η|−θ1|η| dη < K.

4.44 Lemma 4.44. Let c be a circle whose centre is x = 1, and whose radius δ is less than

unity. Then

|Fa(x)− χa(x)| < Ka2,

is x lies in c and 0 < a ≤ A,K = K(δ,A) being as before independent of x and of a.
If we refer back to (4.421) and (4.422), we see that it is sufficient to prove that

|Θ1(x)| < Ka2, |Θ2(x)| < Ka2;

and we may plainly confine ourselves to the first of these inequalities. We have

Θ1(x) =
x

1
24

√
i

∫ ∞

0

xit

e−
1
12

πi+2πt − 1

d

dt

{

cosh a
√

(it)− 1
√

(t)

}

dt.

Rejecting the extraneous factor, which is plainly without importance, and integrating by
parts, we obtain

Θ(x) =

∫ ∞

0
Φ(t)

cosh a
√

(it)− 1
√

(t)
dt,

where

Φ(t) = − ixit log x

e−
1
12

πi+2πt − 1
+

2πxite−
1
12

πi+2πt

(e−
1
12

πi+2πt − 1)2
.

Now |θ| < 1
2π and |xit| < Ke

1
2πt. It follows that

|Φ(t)| < Ke−πt;

and

|Θ(x)| < K

∫ ∞

0

e−πt

√
t
| sinh2 1

2a
√

(it)| dt
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< K

∫ ∞

0

e−πt

√
t
{cosh a

√

(12 t)− cos a
√

(12t)} dt

< K

∫ ∞

0
e−πw2

(

cosh
aw√
2
− cos

aw√
2

)

dw

= K(ea
2/8π − e−a2/8π) < Ka2.

5. Proof of the main theorem.

5.1 We write

(5.11) Fp,q(x) = ωp,q

√
q

π
√
2
FC/q(xp,q),

where C = π
√

2
3 , xp,q = xe−2pπi/q; and

(5.12) Φ(x) = f(x)−
∑

q

∑

p

Fp,q(x),

where the summation applies to all values of p not exceeding q and prime to q, and to all
values of q such that
(5.13) 1 ≤ q ≤ ν = [α

√
n],

α being positive and independent of n. If then

(5.14) Fp,q(x) =
∑

cp,q,nx
n,

we have

(5.15) p(n)−
∑

q

∑

p

cp,q,n =
1

2πi

∫

Γ

Φ(x)

xn+1
dx,

where Γ is a circle whose centre is the origin and whose radius R is less than unity. We
take

(5.16) R = 1− β

n
,

where β also is positive and independent of n.
Our object is to shew that the integral on the right-hand side of (5.15) is of the form

O(n− 1
4 ); the constant implied in the O will of course be a function of α and β. It is to

be understood throughout that O’s are used in this sense; O(1), for instance, stands for
a function of x, n, p, q, α, and β (or some only of these variables) which is less in absolute

value than a number K = K(α, β) independent of x, n, p, and q.
We divide up the circle Γ by means of dissection Ξν of 4.22, into arcs ξp,q each associated
with a point Re2pπi/q; and we denote by ηp,q the arc of Γ complementary to ξp,q. This being
so, we have

(5.17)

∫

Γ

Φ(x)

xn+1
dx =

∑

∫

ξp,q

f(x)− Fp,q(x)

xn+1
dx−

∑

∫

ηp,q

Fp,q(x)

xn+1
dx

=
∑

Jp,q −
∑

jp,q,

say. We shall prove that each of these sums is of the form O(n− 1
4 ); and we shall begin

with the second sum, which only involves the auxiliary functions F .
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Proof that
∑

jp,q = O(n− 1
4 ).

5.21. We have, by Cauchy’s theorem,

(5.211) jp,q =

∫

ηp,q

Fp,q(x)

xn+1
dx =

∫

ζp,q

Fp,q(x)

xn+1
dx,

where ζp,q consists of the contour LMNM ′L′ shewn in the figure. Here L and L′ are the
ends of ξp,q, LM and M ′L′ are radii vectors, and MNM ′ is part of a circle Γ1 whose radius
R1 is greater than 1. P is the point e2pπi/q; and we suppose that R1 is small enough to
ensure that all points of LM and M ′L′ are at a distance from P less than 1

2 . The other
circle c shewn in the figure has P as its centre and radius 1

2 . We denote LM by ̟p,q, M
′L′

by ̟′
p,q and MNM ′ by γp,q: and we write

(5.212) jp,q =

∫

ζp,q

=

∫

γp,q

+

∫

̟p,q

+

∫

̟′
p,q

= j1p,q + j2p,q + j3p,q.

N

Γ

O R l R1

L

L′

̟
M

P M ′

η

Γ1

̟′

c

ξ

The contribution of
∑

j1p,q.

5.22. Suppose first that x lies on γp,q and outside c. Then, in virtue of (5.11) and Lemma
4.43, we have

(5.221) Fp,q(x) = O(
√
q).

If on the other hand x lies on γp,q, but inside c, we have, by (5.11) and Lemma 4.44,

(5.222) Fp,q(x)− χp,q(x) = O(q−
3
2 ),
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where

(5.2221) χp,q(x) = ωp,q

√
q

π
√
2
χC/q(xp,q).

But, if we refer to the definition of χa(x) in Lemma 4.42, and observe that
∣

∣

∣

∣

exp
a2

4 log(1/x)

∣

∣

∣

∣

= exp
a2 log(1/r)

4[{log(1/r)}2 + θ2]
< 1

if x = reiθ and r > 1, we see that
(5.223) χp,q(x) = O(

√
q)

on the part of γp,q in question. Hence (5.221) holds for all γp,q. It follows that

j1p,q = O(R−n
1

√
q),

(5.224)
∑

jp,q = O(R−n
1

∑

q

q
3
2 ) = O(n

5
4R−n

1 ) ∗

This sum tends to zero more rapidly than any power of n, and is therefore completely
trivial.

The contributions of
∑

j2p,q and
∑

j3p,q.

5.231. We must now consider the sums which arise from the integrals along ̟p,q and
̟′

p,q; and it is evident that we need consider in detail only the first of these two lines. We
write

(5.2311) j2p,q =

∫

̟p,q

Fp,q(x)− χp,q(x)

xn+1
dx+

∫

̟p,q

χp,q(x)

xn+1
dx = j′p,q + j′′p,q,

say.
In the first place we have, from (5.222),

j′p,q = O

(

q−
3
2

∫ R1

R

dr

rn+1

)

= O(q−
3
2n−1),

since

(5.2312) R−n =

(

1− β

n

)−n

= O(1).

Thus
(5.2313)

∑

j′p,q = O{n−1
∑

q<O(
√
n)

q−
1
2} = O(n− 3

4 ).

5.232. In the second place we have

j′′p,q = ωp,q

√
q

π
√
2

∫

̟p,q

χC/q(xp,q)

xn+1
dx.

∗Here, and in many passages in our subsequent argument, it is to be remembered that the number of
values of p, corresponding to a given q is less than q, and that the number of values of q is of order

√
n.

Thus we have generally

∑

O(qs) = O





∑

q<O(
√
n)

qs+1



 = O(n
1

2
s+1).
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It is plain that, if we substitute y for xe−2pπi/q, then write x again for y, and finally
substitute for χC/q its explicit expression as an elementary function, given in Lemma 4.42,
we obtain

(5.2321) j′′p,q = O(
√
q)

∫

{E(x) − 1}
√

(

log
1

x

)

x−n−23
24dx = O(

√
q)J ,

say, where

(5.23211) E(x) = exp

{

π2

6q2 log(1/x)

}

,

and the path of integration is now a line related to x = 1 as ̟p,q is to x = e2pπi/q: the line
defined by x = reiθ, where R ≤ r ≤ R1, and θ is fixed and (by Lemma 4.22) lies between
1/2qν and 1/qν.

Integrating J by parts, we find

(5.2322) (n− 1
24 )J = −

[

{E(x) − 1}
√

(

log
1

x

)

x−n+ 1
24

]r=R1

r=R

−1
2

∫

{E(x) − 1}
(

log
1

x

)−1
2
x−n−23

24dx

+
π2

6q2

∫

E(x)

(

log
1

x

)− 3
2

x−n−23
24dx = J1 + J2 + J3,

say.

5.233. In estimating J1, J2, and J3, we must bear the following facts in mind.

(1) Since |x| ≥ R, it follows from (5.2312) that |x|−n = O(1) throughout the range of
integration.

(2) Since 1−R = β/n and 1/2qν < θ < 1/qν, where ν = [α
√
n], we have

log

(

1

x

)

= O

(

1

q
√
n

)

,

when r = R, and
1

log(1/x)
= O(q

√
n),

throughout the range of integration.

(3) Since

|E(x)| = exp
π2 log(1/r)

6q2[{log(1/r)}2 + θ2]
,

E(x) is less than 1 in absolute value when r > 1. And, on the part of the path for which
r < 1, it is of the form

expO

(

1

q2nθ2

)

= expO(1) = O(1).



366 Paper 36

It is accordingly of the form O(1) throughout the range of integration.

5.234. Thus we have, first

(5.2341) J1 = O(1)O(1)O(R−n
1 ) +O(1)O(q−

1
2n− 1

4 )O(1) = O(q−
1
2n− 1

4 ),

secondly

(5.2342) J2 = O(1)O(q
1
2n

1
4 )

∫ R1

R

dr

rn+
23
24

= O(q
1
2n− 3

4 ),

and thirdly

(5.2343) J3 = O(q−2)O(1)O(q
3
2n

3
4 )

∫ R1

R

dr

rn+
23
24

= O(q−
1
2n− 1

4 ).

From (5.2341), (5.2342), (5.2343), and (5.2322), we obtain

J = O(q−
1
2n− 5

4 ) +O(q
1
2n− 7

4 );

and, from (5.2321), j′′p,q = O(n− 5
4 ) +O(qn− 7

4 ).

Summing, we obtain

(5.2344)
∑

j′′p,q = O(n− 5
4

∑

q<O(
√
n)

q) +O(n− 7
4

∑

q<O(
√
n)

q2)

= O(n− 1
4 ) +O(n− 1

4 ) = O(n− 1
4 ).

5.235. From (5.2311), (5.2313), and (5.2344), we obtain

(5.2351)
∑

j2p,q = O(n− 1
4 );

and in exactly the same way we can prove

(5.2352)
∑

j3p,q = O(n− 1
4 ).

And from (5.212), (5.224), (5.2351), and (5.2352), we obtain, finally,

(5.2353)
∑

jp,q = O(n− 1
4 ).

Proof that
∑

Jp,q = O(n− 1
4 ).

5.31. We turn now to the discussion of

(5.311) Jp,q =

∫

ξp,q

f(x)− Fp,q(x)

xn+1
dx

=

∫

ξp,q

f(x)−Xp,q(x)

xn+1
dx−

∫

ξp,q

Fp,q(x)− χp,q(x)

xn+1
dx

+

∫

ξp,q

ρp,q(x)

xn+1
dx

= J1
p,q + J2

p,q + J3
p,q,
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say, where

ρp,q(x) = ωp,q

√

(

q

2π
log

1

xp,q

)

x
1
24
p,q,

Xp,q(x) = χp,q(x) + ρp,q(x) = ρp,q(x)E(xp,q),

E(x) being defined as in (5.23211).

Discussion of
∑

J2
p,q and

∑

J3
p,q.

5.32. The discussion of these two sums is, after the analysis which precedes, a simple
matter. The arc ξp,q is less than a constant multiple of 1/q

√
n; and x−n = O(1) on ξp,q.

Also

|Fp,q(x)− χp,q(x)| = O(q−
3
2 ),

by (5.222); and

(5.321)

√

(

log
1

xp,q

)

= O(q−
1
2n− 1

4 ),

since |xp,q| = R = 1− (β/n), |amxp,q| < 1/qν.
Hence

J2
p,q = O(q−

5
2n−1

2 ),

(5.322)
∑

J2
p,q = O(n−1

2
∑

q<O(
√
n)

q−
3
2 ) = O(n−1

2 );

and

J3
p,q = O(q−1n− 3

4 ),

(5.323)
∑

J3
p,q = O(n− 3

4

∑

q<O(
√
n)

1) = O(n− 1
4 ).

Discussion of
∑

J1
p,q.

5.33. From (4.321) and (5.2221), we have

(5.331) f(x)−Xp,q(x) = ωp,q

√

(

q

2π
log

1

xp,q

)

x
1
24
p,qE(xp,q)Ω(x

′
p,q),

where

Ω(z) = f(z)− 1 =
∞
∏

1

(

1

1− zν

)

− 1 =
∞
∑

1

p(ν)zν ,

if |z| < 1 and

x′p,q = exp

{

− 4π2

q2 log(1/xp,q)
+

2πip′

q

}

.

Now

|x′p,q| = exp

[

− 4π2 log(1/R)

q2{[log(1/R)]2 + θ2}

]

,
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where θ is the amplitude of xp,q. Also

q2{[log(1/R)]2 + θ2} = O

{

q2
(

1

n2
+

1

q2n

)}

= O

(

1

n

)

,

while log(1/R) is greater than a constant multiple of 1/n. There is therefore a positive
number δ, less than unity and independent of n and of q, such that

|x′p,q| < δ;

and we may write Ω(x′p,q) = O(|x′p,q|).
We have therefore

E(xp,q)Ω(x
′
p,q) = O(|x′p,q|−

1
24 )O(|x′p,q|) = O(|x′p,q|

23
24 ) = O(1);

and so, by (5.321),

f(x)− χp,q(x) = O(
√
q)O

(
√

∣

∣

∣

∣

log
1

xp,q

∣

∣

∣

∣

)

O(1) = O(n− 1
4 ).

And hence, as the length of ξp,q is of the form O(1/q
√
n), we obtain

J1
p,q = O(q−1n− 3

4 ),

(5.332)
∑

J1
p,q = O(n− 3

4

∑

q<O(
√
n)

1) = O(n− 1
4 ).

5.34. From (5.311), (5.322), (5.323), and (5.332), we obtain

(5.341)
∑

Jp,q = O(n− 1
4 ).

Completion of the proof.

5.4. From (5.15), (5.17), (5.2353), and (5.341), we obtain

(5.41) p(n)−
∑

q

∑

p

cp,q,n = O(n− 1
4 ).

But
∑

p

cp,q,n =

√
q

π
√
2
Aq

d

dn

cosh(Cλn/q)− 1

λn
,

where
Aq =

∑

p

ωp,qe
−2npπi/q.

All that remains, in order to complete the proof of the theorem, is to shew that

cosh(Cλn/q)− 1

may be replaced by 1
2e

Cλn/q;
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and in order to prove this it is only necessary to shew that

∑

q<O(
√
n)

q
3
2
d

dn

1
2e

Cλn/q − cosh(Cλn/q) + 1

λn
= O(n− 1

4 ).

On differentiating we find that the sum is of the form

∑

q<O(
√
n)

q
3
2

{

O

(

1

qn

)

+O

(

1

n
3
2

)}

= O







1

n

∑

q<O(
√
n)

q
1
2







= O(n− 1
4 ).

Thus the theorem is proved.

6. Additional remarks on the theorem.

6.1. The theorem which we have proved gives information about p(n) which is in some
ways extraordinarily exact. We are for this reason the more anxious to point out explicitly
two respects in which the results of our analysis are incomplete.
6.21. We have proved that

p(n) =
∑

Aqφq +O(n− 1
4 ),

where the summation extends over the values of q specified in the theorem, for every fixed
value of α; that is to say that, when α is given, a number K = K(α) can be found such
that

|p(n)−
∑

Aqφq| < Kn− 1
4

for every value of n. It follows that

(6.211) p(n) = {
∑

Aqφq},
where {x} denotes the integer nearest to x, for n ≥ n0, where n0 = n0(α) is a certain
function of α.
The question remains whether we can, by an appropriate choice of α, secure the truth of
(6.211) for all values of n, and not merely for all sufficiently large values. Our opinion is that
this is possible, and that it could be proved to be possible without any fundamental change
in our analysis. Such a proof would however involve a very careful revision of our argument.
It would be necessary to replace all formulæ involving O’s by inequalities, containing only
numbers expressed explicitly as functions of the various parameters employed. This process
would certainly add very considerably to the length and the complexity of our argument. It
is, as it stands, sufficient to prove what is, from our point of view, of the greatest interest;
and we have not thought it worth while to elaborate it further.
6.22. The second point of incompleteness of our results is of much greater interest and
importance. We have not proved either that the series

∞
∑

1

Aqφq
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is convergent, or that, if it is convergent, it represents p(n). Nor does it seem likely that
our method is one intrinsically capable of proving these results, if they are true – a point
on which we are not prepared to express any definite opinion.

It should be observed in this connection that we have not even discovered anything definite
concerning the order of magnitude of Aq for large values of q. We can prove nothing better
than the absolutely trivial equation Aq = O(q). On the other hand we can assert that Aq

is, for an infinity of values of q, effectively of an order as great as q, or indeed even that it
does not tend to zero (though of course this is most unlikely).

6.3. Our formula directs us, if we wish to obtain the exact value of p(n) for a large value of
n, to take a number of terms of order

√
n. The numerical data suggest that a considerably

smaller number of terms will be equally effective; and it is easy to see that this conjecture
is correct.

Let us write

β = 4π
√

(

2
3

)

= 4C, µ =

[

β
√
n

log n

]

,

and let us suppose that α < 2. Then

ν
∑

µ+1

Aqφq =

ν
∑

µ+1

O(q
3
2 )O

(

1

qn

)

O(eC
√
n/q) = O





1

n

ν
∑

µ+1

√
qeC

√
n/q





= O

(

1

n

∫ ν

µ

√
xeC

√
n/x dx

)

,

since
√
qeC

√
n/q decreases steadily throughout the range of summation∗.

Writing
√
n/y for x, we obtain

O

(

n− 1
4

∫

√
n/µ

1/α
y−

5
2 eCy dy

)

= O

{

n− 1
4

(√
n

µ

)− 5
2

eC
√
n/µ

}

= O{n− 1
4 (log n)−

5
2 e

1
4
logn}

= O(log n)−
5
2 = o(1).

It follows that it is enough, when n is sufficiently large, to take

[

β
√
n

log n

]

terms of the series. It is probably also necessary to take a number of terms of order√
n/(log n); but it is not possible to prove this rigorously without a more exact knowledge

of the properties of Aq than we possess.

6.4. We add a word on certain simple approximate formulæ for log p(n) found empirically
by Major MacMahon and by ourselves. Major MacMahon found that if

∗The minimum occurs when q is about equal to 2C
√
n.
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(6.41) log10 p(n) =
√

(n+ 4)− an,
then an is approximately equal to 2 within the limits of his table of values of p(n) (Table
IV). This suggested to us that we should endeavour to find more accurate formulæ of the
same type. The most striking that we have found is
(6.42) log10 p(n) =

10
9 {
√

(n+ 10)− an};
the mode of variation of an is shewn in Table III.
In this connection it is interesting to observe that the function

13−
√
np(n)

(which ultimately tends to infinity with exponential rapidity) is equal to .973 for n =
30000000000.

7. Further applications of the method.

7.1. We shall conclude with a few remarks concerning actual or possible applications of our
method to other problems in Combinatory Analysis or the Analytic Theory of Numbers.
The class of problems in which the method gives the most striking results may be defined
as follows. Suppose that q(n) is the coefficient of xn in the expansion of F (x), where F (x)
is a function of the form

(7.11)
{f(±xa)}α{f(±xa

′
)}α′ · · ·

{f(±xb)}β{f(±xb′)}β′ · · · ;
∗

f(x) being the function considered in this paper, The a’s, b’s, α’s, and β’s being positive
integers, and the number of factors in numerator and denominator being finite; and suppose
that |F (x)| tends exponentially to infinity when x tends in an appropriate manner to some
or all the points e2pπi/q. Then our method may be applied in its full power to the asymptotic
study of q(n), and yields results very similar to those which we have found concerning p(n).
Thus, if

F (x) =
f(x)

f(x2)
= (1 + x)(1 + x2)(1 + x3) · · · = 1

(1− x)(1 − x3)(1− x5) · · · ,

so that q(n) is the number of partitions of n into odd parts, or into unequal parts†, we find
that

q(n) =
1√
2

d

dn
J0[iπ

√

{1
3 (n+ 1

24)}]

+
√
2 cos(23nπ − 1

9π)
d

dn
J0[

1
3 iπ
√

{1
3 (n+ 1

24)}] + · · · .

∗Since

f(−x) =
{f(x2)}3
f(x)f(x4)

,

the arguments with a negative sign may be eliminated if this is desired.
†Cf. MacMahon, loc. cit, p. 11. We give at the end of the paper a table (Table V) of the values of q(n)

up to n = 100. This table was calculated by Mr. Darling.
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The error after [α
√
n] terms is of the form O(1). We are not in a position to assert that

the exact value of q(n) can always be obtained from the formula (though this is probable);
but the error is certainly bounded.
If

F (x) =
f(x2)

f(−x)
=

f(x)f(x4)

{f(x2)}2 = (1 + x)(1 + x3) + x5) · · · ,

so that q(n) is a number of partitions of n into parts which are both odd and unequal, then

q(n) =
d

dn
J0[iπ

√

{1
6(n − 1

24 )}]

+2 cos(23nπ − 2
9π)

d

dn
J0[

1
3 iπ
√

{1
6 (n− 1

24)}] + · · · .

The error is again bounded (and probably tends to zero).
If

F (x) =
{f(x)}2
f(x2)

=
1

1− 2x+ 2x4 − 2x9 + · · · ,

q(n) has no very simple arithmetical interpretation; but the series is none the less, as the
direct reciprocal of simple ϑ-function, of particular interest. In this case we find

q(n) =
1

4π

d

dn

eπ
√
n

√
n

+

√
3

2π
cos(23nπ − 1

6π)
d

dn

e
1
3
π
√
n

√
n

+ · · · .

The error here is (as in the partition problem) of order O(n− 1
4 ), and the exact value can

always be found from the formula.

7.2. The method also be applied to product of form (7.11) which have (to put the matter
roughly) no exponential infinities. In such cases the approximation is of much less exact
character. On the other hand the problems of this character are of even greater arithmetical
interest.
The standard problem of this category is that of the representation of a number as a sum
of s squares, s being any positive integer odd or even∗. We must reserve the application of
our method to this problem for another occasion; but we can indicate the character of our
main result as follows.
If rs(n) is the number of representations of n as the sum of s squares we have

F (x) =
∑

rs(n)x
n = (1 + 2x+ 2x4 + · · ·)s = {f(x2)}s

{f(−x)}2s =
{f(x)}2s{f(x4)}2s

{f(x2)}5s .

We find that

(7.21) rs(n) =
π
1
2s

Γ(12s)
n
1
2s−1

∑ cq

q
1
2s

+O(n
1
4
s),

∗As is well known, the arithmetical difficulties of the problem are much greater when s is odd.
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where cq is a function of q and of n of the same general type as the function Aq of this
paper. The series

(7.22)
∑ cq

q
1
2s

is absolutely convergent for sufficiently large values of s, and the summation in (7.21) may
be regarded indifferently as extended over all values of q or only over a range 1 ≤ q ≤ α

√
n.

It should be observed that the series (7.22) is quite different in form from any of the infinite
series which are already known to occur in connection with this problem.

7.3. There is also a wide range of problems to which our methods are partly applicable.
Suppose, for example, that

F (x) =
∑

p2(n)xn =
1

(1− x)(1− x4)(1 − x9) · · · ,

so that p2(n) is the number of partitions of n into squares. Then F (x) is not an elliptic
modular function; it possesses no general transformation theory: and the full force of our
method can not be applied. We can still, however, apply some of our preliminary methods.
Thus the “Tauberian” argument shews that

log p2(n) ∼ 2−
4
33π

1
3{ζ(32 )}

2
3n

1
3 .

And although there is no general transformation theory, there is a formula which enables
us to specify the nature of the singularity at x = 1. This formula is

1

f(e−πz)
= 2

√

(π

z

)

exp

{

2π√
z
ζ(−1

2)

}

×
∞
∏

1

{1− 2e−2π
√

(n/z) cos 2π
√

(n/z) + e−4π
√

(n/z)}.

By the use of this formula, in conjunction with Cauchy’s theorem, it is certainly possible
to obtain much more precise information about p2(n) and in particular the formula

p2(n) ∼ 3−
1
2 (4πn)−

7
6{ζ(32 )}

2
3 e2

−(4/3)3π(1/3){ζ( 32 )}
2
3 n

1
3
.

The corresponding formula for ps(n), the number of partitions of n into perfect s-th powers,
is

ps(n) ∼ (2π)−
1
2 (s+1)

√

(

s

s+ 1

)

kn
1

s+1
− 3

2 e(s+1)kn1/(s+1)
,

where

k =

{

1

s
Γ

(

1 +
1

s

)

ζ

(

1 +
1

s

)} s
s+1

.
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The series (7.21) may be written in the form

π
1
2s

Γ(12s)
n
1
2s−1

∑

p,q

ωs
p,q

q
1
2 s

e−npπi/q,

where ωp,q is always one of the five numbers 0, e
1
4
πi, e−

1
4
πi, −e

1
4
πi, −e−

1
4
πi. When s is even

it begins

π
1
2s

Γ(12s)
n
1
2s−1{1−

1
2 s + 2cos(12nπ − 1

4sπ)2
−1
2s + 2cos(23nπ − 1

2sπ)3
−1
2 s + · · ·}.

It has been proved by Ramanujan that the series gives an exact representation of rs(n)
when s = 4, 6, 8; and by Hardy that this also true when s = 3, 5, 7. See Ramanujan, “On
certain trigonometrical sums and their applications in the Theory of Numbers”; Hardy,
“On the expression of a number as the sum of any number of squares, and in particular of
five or seven∗”.

∗[Ramanujan’s paper referred to is No. 21 of this volume. That of Hardy was published, in the first
instance, in Proc. National Acad. of Sciences, (Washington), Vol. IV, 1918, pp. 189 – 193, and later (in
fuller form and with a slightly different title) in Trans. American Math. Soc., Vol. XXI, 1920, pp. 255 –
284.]
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Table I: ωp,q.

p q log ωp,q/πi p q log ωp,q/πi p q log ωp,q/πi

1 1 0 3 11 3/22 8 15 7/18
1 2 0 4 11 3/22 11 15 -19/90
1 3 1/18 5 11 −5/22 13 15 -7/18
2 3 −1/18 6 11 5/22 14 15 -1/90
1 4 1/8 7 11 −3/22 1 16 -29/32
3 4 −1/8 8 11 −3/22 3 16 -27/32
1 5 1/5 9 11 −5/22 5 16 -5/32
2 5 0 10 11 −15/22 7 16 -3/32
3 5 0 1 12 55/72 9 16 3/32
4 5 −1/5 5 12 −1/72 11 16 5/32
1 6 5/18 7 12 1/72 13 16 27/32
5 6 −5/18 11 12 −55/72 15 16 29/32
1 7 5/14 1 13 11/13 1 17 -14/17
2 7 1/14 2 13 4/13 2 17 8/17
3 7 −1/14 3 13 1/13 3 17 5/17
4 7 1/14 4 13 −1/13 4 17 0
5 7 −1/14 5 13 0 5 17 1/17
6 7 −5/14 6 13 −4/13 6 17 5/17
1 8 7/16 7 13 4/13 7 17 1/17
3 8 1/16 8 13 0 8 17 -8/17
5 8 −1/16 9 13 1/13 9 17 8/17
7 8 −7/16 10 13 −1/13 10 17 -1/17
1 9 14/27 11 13 −4/13 11 17 -5/17
2 9 4/27 12 13 −11/13 12 17 -1/17
4 9 −4/27 1 14 13/14 13 17 0
5 9 4/27 3 14 3/14 14 17 -5/17
7 9 −4/27 5 14 3/14 15 17 -8/17
8 9 −14/27 9 14 −3/14 16 17 14/17
1 10 3/5 11 14 −3/14 1 18 -20/27
3 10 0 13 14 −13/14 5 18 2/27
7 10 0 1 15 1/90 7 18 -2/27
9 10 −3/5 2 15 7/18 11 18 2/27
1 11 15/22 4 15 19/90 13 18 -2/27
2 11 5/22 7 15 −7/18 17 18 20/27
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Table II: Aq.

A1 = 1.

A2 = cosnπ.

A3 = 2cos(23nπ − 1
18π).

A4 = 2cos(12nπ − 1
8π).

A5 = 2cos(25nπ − 1
5π) + 2 cos 4

5nπ.

A6 = 2cos(13nπ − 5
18π).

A7 = 2cos(27nπ − 5
14π) + 2 cos(47nπ − 1

14π) + 2 cos(67nπ + 1
14π).

A8 = 2cos(14nπ − 7
16π) + 2 cos(34nπ − 1

16π).

A9 = 2cos(29nπ − 14
27π) + 2 cos(49nπ − 4

27π) + 2 cos(89nπ + 4
27π).

A10 = 2cos(15nπ − 3
5π) + 2 cos 3

5nπ.

A11 = 2cos( 2
11nπ − 15

22π) + 2 cos( 4
11nπ − 5

22π) + 2 cos( 6
11nπ − 3

22π)

+2 cos( 8
11nπ − 3

22π) + 2 cos(1011nπ + 5
22π).

A12 = 2cos(16nπ − 55
72π) + 2 cos(56nπ + 1

72π).

A13 = 2cos( 2
13nπ − 11

13π) + 2 cos( 4
13nπ − 4

13π) + 2 cos( 6
13nπ − 1

13π)

+2 cos( 8
13nπ + 1

13π) + 2 cos 10
13nπ + 2cos(1213nπ + 4

15π).

A14 = 2cos(17nπ − 13
14π) + 2 cos(37nπ − 3

14π) + 2 cos(57nπ − 3
14π).

A15 = 2cos( 2
15nπ − 1

90π) + 2 cos( 4
15nπ − 7

18π) + 2 cos( 8
15nπ − 19

90π) + 2 cos(1415nπ + 7
18π).

A16 = 2cos(18nπ + 29
32π) + 2 cos(38nπ + 27

32π) + 2 cos(58nπ + 5
32π) + 2 cos(78nπ + 3

32π).

A17 = 2cos( 2
17nπ + 14

17π) + 2 cos( 4
17nπ − 8

17π) + 2 cos( 6
17nπ − 5

17π) + 2 cos 8
17nπ

+2cos(1017nπ − 1
17π) + 2 cos(1217nπ − 5

17π) + 2 cos(1417nπ − 1
17π) + 2 cos(1617nπ + 8

17π).

A18 = 2cos(19nπ + 20
27π) + 2 cos(59nπ − 2

27π) + 2 cos(79nπ + 2
27π).

It may be observed that
A5 = 0 (n ≡ 1, 2 (mod 5)), A7 = 0 (n ≡ 1, 3, 4 (mod 7)),

A10 = 0 (n ≡ 1, 2 (mod 5)), A11 = 0 (n ≡ 1, 2, 3, 5, 7 (mod 11)),

A13 = 0 (n ≡ 2, 3, 5, 7, 9, 10 (mod 13)), A14 = 0 (n ≡ 1, 3, 4 (mod 7)),

A16 = 0 (n ≡ 0 (mod 2)), A17 = 0 (n ≡ 1, 3, 4, 6, 7, 9, 13, 14 (mod 17));
while A1, A2, A3, A4, A6, A8, A9, A12, A15 and A18 never vanish.
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Table III: log10 p(n) =
10
9 {
√

(n+ 10) − an}.

n an n an
1 3.317 10000 4.148
3 3.176 30000 4.364
10 3.011 100000 4.448
30 2.951 300000 4.267

100 3.036 1000000 3.554
300 3.237 3000000 2.072
1000 3.537 10000000 -1.188
3000 3.838 30000000 -6.796

∞ −∞

Table IV∗: p(n).

1 1 21 792 41 44583 61 1121505
2 2 22 1002 42 53174 62 1300156
3 3 23 1255 43 63261 63 1505499
4 5 24 1575 44 75175 64 1741630
5 7 25 1958 45 89134 65 2012558
6 11 26 2436 46 105558 66 2323520
7 15 27 3010 47 124754 67 2679689
8 22 28 3718 48 147273 68 3087735
9 30 29 4565 49 173525 69 3554345
10 42 30 5604 50 204226 70 4087968
11 56 31 6842 51 239943 71 4697205
12 77 32 8349 52 281589 72 5392783
13 101 33 10143 53 329931 73 6185689
14 135 34 12310 54 386155 74 7089500
15 176 35 14883 55 451276 75 8118264
16 231 36 17977 56 526823 76 9289091
17 297 37 21637 57 614154 77 10619863
18 385 38 26015 58 715220 78 12132164
19 490 39 31185 59 831820 79 13848650
20 627 40 37338 60 966467 80 15796476

. . . contd.
∗The numbers in this table were calculated by Major MacMahon, by means of the recurrence formulæ

obtained by equating the coefficients in the identity

(1− x− x2 + x5 + x7 − x12 − x15 + · · ·)
∞
∑

0

p(n)xn = 1.

We have verified the table by direct calculation up to n = 158. Our calculation of p(200) from the asymptotic
formula then seemed to render further verification unnecessary.
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Table IV (Contd.)

81 18004327 111 679903203 141 16670689208 171 301384802048
82 20506255 112 761002156 142 18440293320 172 330495499613
83 23338469 113 851376628 143 20390982757 173 362326859895
84 26543660 114 952050665 144 22540654445 174 397125074750
85 30167357 115 1064144451 145 24908858009 175 435157697830
86 34262962 116 1188908248 146 27517052599 176 476715857290
87 38887673 117 1327710076 147 30388671978 177 522115831195
88 44108109 118 1482074143 148 33549419497 178 571701605655
89 49995925 119 1653668665 149 37027355200 179 625846753120
90 56634173 120 1844349560 150 40853235313 180 684957390936
91 64112359 121 2056148051 151 45060624582 181 749474411781
92 72533807 122 2291320912 152 49686288421 182 819876908323
93 82010177 123 2552338241 153 54770336324 183 896684817527
94 92669720 124 2841940500 154 60356673280 184 980462880430
95 104651419 125 3163127352 155 66493182097 185 1071823774337
96 118114304 126 3519222692 156 73232243759 186 1171432692373
97 133230930 127 3913864295 157 80630964769 187 1280011042268
98 150198136 128 4351078600 158 88751778802 188 1398341745571
99 169229875 129 4835271870 159 97662728555 189 1527273599625

100 190569292 130 5371315400 160 107438159466 190 1667727404093
101 214481126 131 5964539504 161 118159068427 191 1820701100652
102 241265379 132 6620830889 162 129913904637 192 1987276856363
103 271248950 133 7346629512 163 142798995930 193 2168627105469
104 304801365 134 8149040695 164 156919475295 194 2366022741845
105 342325709 135 9035836076 165 172389800255 195 2580840212973
106 384276336 136 10015581680 166 189334822579 196 2814570987591
107 431149389 137 11097645016 167 207890420102 197 3068829878530
108 483502844 138 12292341831 168 228204732751 198 3345365983698
109 541946240 139 13610949895 169 250438925115 199 3646072432125
110 607163746 140 15065878135 170 274768617130 200 3972999029388
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Table V ∗: q(n).

n cn n cn n cn n cn
1 1 26 165 51 4097 76 53250
2 1 27 192 52 4582 77 58499
3 2 28 222 53 5120 78 64234
4 2 29 256 54 5718 79 70488
5 3 30 296 55 6378 80 77312
6 4 31 340 56 7108 81 84756
7 5 32 390 57 7917 82 92864
8 6 33 448 58 8808 83 101698
9 8 34 512 59 9792 84 111322
10 10 35 585 60 10880 85 121792
11 12 36 668 61 12076 86 133184
12 15 37 760 62 13394 87 145578
13 18 38 864 63 14848 88 159046
14 22 39 982 64 16444 89 173682
15 27 40 1113 65 18200 90 189586
16 32 41 1260 66 20132 91 206848
17 38 42 1426 67 22250 92 225585
18 46 43 1610 68 24576 93 245920
19 54 44 1816 69 27130 94 267968
20 64 45 2048 70 29927 95 291874
21 76 46 2304 71 32992 96 317788
22 89 47 2590 72 36352 97 345856
23 104 48 2910 73 40026 98 376256
24 122 49 3264 74 44046 99 409174
25 142 50 3658 75 48446 100 444793

∗We are indebted to Mr. Darling for this table.


