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25 Abstract

26 1.  Environmental DNA (eDNA) metabarcoding has revolutionised biomonitoring in

27 both marine and freshwater ecosystems. However, for semi-aquatic and terrestrial 

28 animals, the application of this technique remains relatively untested.

29 2.  We first assess the efficiency of eDNA metabarcoding in detecting semi-aquatic

30 and terrestrial mammals in natural lotic ecosystems in the UK by comparing sequence 

31 data recovered from water and sediment samples to the mammalian communities 

32 expected from historical data. Secondly, using occupancy modelling we compared the 

33 detection efficiency of eDNA metabarcoding to multiple conventional non-invasive 

34 survey methods (latrine surveys and camera trapping). 

35 3. eDNA metabarcoding detected a large proportion of the expected mammalian

36 community within each area. Common species in the areas were detected at the 

37 majority of sites. Several key species of conservation concern in the UK were detected 

38 by eDNA sampling in areas where authenticated records do not currently exist, but 

39 potential false positives were also identified.

40 4. Water-based eDNA metabarcoding provided comparable results to conventional

41 survey methods in per unit of survey effort for three species (water vole, field vole, and 

42 red deer) using occupancy models. The comparison between survey ‘effort’ to reach 

43 a detection probability of ≥0.95 revealed that 3-6 water replicates would be equivalent 

44 to 3-5 latrine surveys and 5-30 weeks of single camera deployment, depending on the 

45 species.

46 5. Synthesis and Applications. eDNA metabarcoding can be used to generate an initial

47 ‘distribution map’ of mammalian diversity at the landscape level. If conducted during 

48 times of peak abundance, carefully chosen sampling points along multiple river 
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49 courses provide a reliable snapshot of the species that are present in a catchment 

50 area. In order to fully capture solitary, rare and invasive species, we would currently 

51 recommend the use of eDNA metabarcoding alongside other non-invasive surveying 

52 methods (i.e. camera traps) to maximize monitoring efforts.

53

54 Keywords: biomonitoring, camera trapping, eDNA metabarcoding, latrine surveys, 

55 mammals, occupancy modelling, rivers
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56 Introduction

57 Environmental DNA (eDNA) metabarcoding (the simultaneous identification of multiple 

58 taxa using DNA extracted from an environmental sample, e.g. water, soil, based on 

59 short amplicon sequences) has revolutionised the way we approach biodiversity 

60 monitoring in both marine and freshwater ecosystems (Valentini et al., 2016; Deiner 

61 et al. 2017). Successful applications include tracking biological invasions, detecting 

62 rare and endangered species and describing entire communities (Holman et al., 2019). 

63 Most eDNA metabarcoding applications on vertebrates to date have focused on 

64 monitoring fishes and amphibians (Hänfling et al., 2016; Valentini et al., 2016). What 

65 has become apparent from studies in lentic systems (ponds and lakes) is that semi-

66 aquatic and terrestrial mammals can also be detected (Hänfling et al., 2016; Harper et 

67 al., 2019). As a result, there has been an increasing focus on the use of both vertebrate 

68 (Harper et al., 2019) and mammal-specific primer sets (Ushio et al., 2017; Leempoel 

69 et al., 2019; Sales et al., 2019) for detecting mammalian communities using eDNA 

70 metabarcoding.

71 Mammals include some of the most imperiled taxa, with over one fifth of species 

72 considered to be threatened or declining (Visconti et al., 2011). Monitoring of 

73 mammalian biodiversity is therefore essential. Given that any optimal survey approach 

74 is likely to be species-specific, very few species can be detected at all times when they 

75 are present. This imperfect detection (even greater for elusive and rare species) can 

76 lead to biased estimates of occurrence and hinder species conservation (Mackenzie 

77 et al., 2002). For mammals, repeated surveys using several monitoring methods are 

78 usually applied. These include indirect observations such as latrines, faeces, hair, or 

79 tracks, or direct observations such as live-trapping or camera trapping surveys over 

80 short time intervals such that closure/invariance can be assumed and detectability 
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81 estimated (Nichols et al., 2008). Each of these methods has associated efficiency, cost 

82 and required expertise trade-offs, which become more challenging as the spatial and 

83 temporal scales increase.

84 eDNA sampling yields species-specific presence/absence data that are likely 

85 to be most valuable for inferring species distributions using well established analytical 

86 tools such as occupancy models (MacKenzie et al., 2002). These models resolve 

87 concerns around imperfect detection of difficult to observe species. When coupled with 

88 location-specific detection histories, these can be used to infer true occurrence states, 

89 factors that influence occupancy rates, colonization-extinction probabilities, and 

90 estimates of detection probability (MacKenzie et al., 2017). The use of eDNA sampling 

91 to generate species-specific detection data has unsurprisingly increased in recent 

92 years, and in many cases has outperformed or at least matched conventional survey 

93 methods (Lugg et al., 2018; Tingley et al., 2019). Although comparisons between 

94 eDNA analysis and conventional surveys for multi-species detection are numerous 

95 (see Table S1 in Lugg et al., 2018), studies focusing on detection probability estimates 

96 for multiple species identified by metabarcoding are rare (Abrams et al., 2019; 

97 Valentini et al., 2016).

98 The aim of this study was to assess the efficiency of eDNA metabarcoding for 

99 detecting semi-aquatic and terrestrial mammals in natural lotic systems in the UK. We 

100 conducted eDNA sampling in rivers and streams in two areas (Assynt, Scotland and 

101 Peak District National Park, England). Together these locations have the majority of 

102 UK semi-aquatic and terrestrial mammalian species present (Table S1). Our 

103 objectives were two-fold: first, we sought to establish whether eDNA metabarcoding is 

104 a viable technique for monitoring semi-aquatic and terrestrial mammals by comparing 

105 it to the mammalian communities expected from historical data, a group for which 
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106 eDNA sampling has rarely been evaluated in a natural setting. Secondly, we evaluate 

107 the detection efficiency of water- and sediment-based eDNA sampling in one of these 

108 areas (Assynt) for multiple species compared to multiple conventional non-invasive 

109 survey methods (latrine surveys and camera trapping).
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110 Material and Methods

111 Latrine surveys 

112 Assynt, a heather-dominated upland landscape in the far northwest of the Scottish 

113 Highlands, UK (Fig. 1A), is the location of an ongoing 20-year metapopulation study 

114 of water voles (Arvicola amphibius) led by the University of Aberdeen (Fig. S1). Here, 

115 we mainly focus only on data collected in 2017. The metapopulation is characterized 

116 by 116 discrete linear riparian habitat patches (ranging from 90 m to nearly 2.5 km) 

117 distributed sparsely (4% of waterway network) throughout the 140 km2 study area 

118 (Sutherland et al., 2014). Water voles use prominently placed latrines for territory 

119 marking (Fig. S2A). Using latrine surveys, a reliable method of detection (Sutherland 

120 et al., 2014), water vole occupancy status was determined by the detection of latrines 

121 that are used for territory marking (Sutherland et al., 2013). During the breeding 

122 season (July and August), latrine surveys were conducted twice at each site. In 

123 addition to water vole latrines, field vole (Microtus agrestis) pellets are also easily 

124 identifiable, and so field vole detections were also recorded along waterways as a 

125 formal part of the latrine survey protocol. Live-trapping was then carried out at patches 

126 deemed to be occupied by water voles according to latrine surveys to determine their 

127 abundances (this was used to determine which sites were sampled for eDNA; Fig. 

128 1A).

129

130 Camera Trap Data

131 Camera traps were deployed at the beginning of July and thus overlapped temporally 

132 with the latrine survey in Assynt. Data were collected from cameras deployed at seven 

133 of these patches. Within each of these patches, cameras were deployed at the 

134 midpoint of the areas where active signs (latrines, grass clipping, burrows) were 
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135 detected, and if no signs were detected, at the midpoint of historical water vole activity 

136 (J. Drake, C. Sutherland and X. Lambin, pers. comm.). These will also capture images 

137 of any species present in the area that come within close proximity of the camera (Fig. 

138 S3A-F).

139 Cameras were deployed approximately 1 m above ground on iron ‘u-posts’ to 

140 avoid flooding, prevent knock-down by wind/wildlife, and optimize both depth of field 

141 and image clarity. Cameras (Bushnell HD Trophy Cam, Overland Park, KA) were set 

142 at normal detection sensitivity (to reduce false-triggers from grass/shadows), low night 

143 time LED intensity (to prevent image white out in near depth of field), three shot burst 

144 (to increase chance of capturing small, fast moving bodies), and 15 min intervals 

145 between bursts (to increase temporal independence of captures and decrease 

146 memory burden). The area each camera photographed was approximately 1-2 m2. 

147 Animals were identified on images and information was stored as metadata tags using 

148 the R (R Core Team, 2018) package camtrapR following the procedures described in 

149 Niedballa et al. (2018). Independence between detections was based on 60-minute 

150 intervals between species-specific detections.

151

152 eDNA sampling

153 A total of 18 potential water vole patches were selected for eDNA sampling in Assynt 

154 from 25-27th October 2017. The time lag between the latrine/live-trapping and eDNA 

155 surveys was because of two main reasons: (i) legitimate concerns around cross-site 

156 DNA contamination during latrine/live-trapping where researchers moved on a daily 

157 basis between sites as well as regularly handled and processed live animals (for 

158 decontamination procedures see the Supplementary Material) and (ii) the selection of 

159 eDNA sampling sites was based on the latrine surveys and abundance data provided 
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160 by live-trapping so could only occur after this was completed by August 6th. Water and 

161 sediment samples were collected from patches where water voles were determined to 

162 be absent (five sites; A1-A5); with 1-2 individuals present (three sites; A9, A16 and 

163 18); 3-5 individuals (five sites; A6, A8, A11, A14 and A17); and 7-11 individuals (five 

164 sites; A7, A10, A12, A13 and A15; Fig. 1A). Each of these streams/rivers differed in 

165 their characteristics (in terms of width, depth and flow) and a representation of the 

166 sites is depicted in Fig. S4A-D. Three water (two litres each) and three sediment 

167 (~25mL) replicates were taken at each patch (further details of sample collection are 

168 provided in Appendix S1).

169 In addition to Assynt, eDNA sampling was also conducted on a smaller scale in 

170 the Peak District National Park, England (Fig. S5) to incorporate additional mammals 

171 that are not known to be present in Assynt (Table S1). Here, the occurrence of water 

172 vole was identified by the presence of latrines in two sites (P1 and P2) at the time of 

173 eDNA sampling (Fig. S2A), whilst no latrines were identified at one site (P3). At site 

174 P1, an otter (Lutra lutra) spraint was identified at the time of eDNA sampling (Fig. S2B). 

175 These three sites were sampled in March 2018 using the same methodology as in 

176 Assynt but were taken in close proximity (<50cm) to water vole latrines where present 

177 (Fig. S2A). 

178

179 eDNA Laboratory Methods

180 DNA was extracted from the sediment samples using the DNeasy PowerMax Soil kit 

181 and from the water samples using the DNeasy PowerWater Kit (both QIAGEN Ltd.) 

182 following the manufacturer's instructions in a dedicated eDNA laboratory in the 

183 University of Salford. In order to avoid the risk of contamination during this step, DNA 

184 extraction was conducted in increasing order of expected abundance of water voles in 
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185 the eDNA samples (all field blanks were extracted first, followed by the sites with 

186 supposedly zero water vole abundance, up to the highest densities last). Along with 

187 field blanks (Assynt = 8, Peak District = 2), six lab extraction blanks were included 

188 (one at the end of each daily block of extractions). A decontamination stage using a 

189 Phileas 25 Airborne Disinfection Unit (Devea SAS) was undertaken before processing 

190 samples from different locations. Additional information regarding decontamination 

191 measures and negative controls can be found in the Supplementary Material. 

192 A complete description of PCR conditions, library preparation and bioinformatic 

193 analyses are provided in Appendix S1. Briefly, eDNA was amplified using the 

194 MiMammal 12S primer set (MiMammal-U-F, 5′- GGGTTGGTAAATTTCGTGCCAGC-

195 3′; MiMammal-U-R, 5′- CATAGTGGGGTATCTAATCCCAGTTTG-3′; Ushio et al., 

196 2017) targeting a ˜170bp amplicon from a variable region of the 12S rRNA 

197 mitochondrial gene. A total of 147 samples, including field collection blanks (10) and 

198 laboratory negative controls (12, including six DNA extractions blanks and six PCR 

199 negative controls), were sequenced in two multiplexed Illumina MiSeq runs. To 

200 minimize bias in individual reactions, PCRs were replicated three times for each 

201 sample and subsequently pooled. Illumina libraries were built using a NextFlex PCR-

202 free library preparation kit according to the manufacturer’s protocols (Bioo Scientific) 

203 and pooled in equimolar concentrations along with 1% PhiX (v3, Illumina). The libraries 

204 were run at a final molarity of 9pM on an Illumina MiSeq platform using the 2 x 150bp 

205 v2 chemistry.

206 Bioinformatic analysis were conducted using OBITools metabarcoding package 

207 (Boyer et al., 2016) and the taxonomic assignment was conducted using ecotag 

208 against a custom reference database (see Appendix 1). To exclude MOTUs/reads 

209 putatively belonging to sequencing errors or contamination, the final dataset included 
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210 only MOTUs that could be identified to species level (>98%), and MOTUs containing 

211 less than 10 reads and with a similarity to a sequence in the reference database lower 

212 than 98% were discarded (Cilleros et al., 2019). The maximum number of reads 

213 detected in the controls for each MOTU in each sequencing run were removed from 

214 all samples (Table S7). For water voles, field voles and red deer (the most abundant 

215 wild mammals in terms of sequence reads in our dataset), this equated to a sequence 

216 frequency threshold of ≤0.17%, within the bounds of previous studies on removing 

217 sequences to account for contamination and tag jumping (Cilleros et al., 2019; 

218 Hänfling et al., 2016; Schnell, Bohmann, & Gilbert, 2015). 

219

220 Occupancy/Detection Analysis in Assynt

221 The data collection from the different survey types described above (water-based 

222 eDNA, sediment-based eDNA, latrine and camera traps) produced the following site-

223 specific detection/non-detection data:

224

225 (a) Latrine: two latrine surveys at 116 patches.

226 (b) w-eDNA: three water-based eDNA samples at 18 of the 116 patches surveyed.

227 (c) s-eDNA: three sediment-based eDNA samples at 18 of the 116 patches surveyed.

228 (d) Camera: six one-week occasions of camera trapping data at seven of the 18 

229 patches surveyed by both Latrine and eDNA (w-eDNA + s-eDNA) surveys.

230

231 We chose to focus on three species that were detected by at least three of the four 

232 methods: water voles, field voles and red deer (Cervus elaphus). Water voles and field 

233 voles were recorded using all four survey methods and had detection histories for 14 

234 surveying events ((Latrine  2) + (w-eDNA  3) + (s-eDNA  3) + (Camera  6)). 
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235 Red deer were not recorded during latrine surveys and had detection histories for 12 

236 surveying events ((w-eDNA  3) + (s-eDNA  3) + (Camera  6)). To demonstrate 

237 the relative efficacy of the four surveying methods, we restricted the analyses to the 

238 18 sites where both latrine surveys were conducted and eDNA samples were taken, 

239 seven of which had associated camera trapping data. Although each surveying 

240 method differs in terms of effort and effective area surveyed, each are viable surveying 

241 methods that are readily applied in practice. A unit of survey effort here is defined as 

242 one latrine survey, one w-eDNA replicate, one s-eDNA replicate or one week of 

243 camera trapping. So, while the specific units of effort are not directly comparable, the 

244 relative detection efficacy per surveying method-specific unit of effort is of interest and 

245 will provide important context for designing future monitoring studies and 

246 understanding the relative merits of each surveying method. Analyzing the data using 

247 occupancy models allowing for method-specific detectability enables such a 

248 comparison in per unit effort efficacy between eDNA metabarcoding and multiple 

249 conventional survey methods.

250 A single season occupancy model (MacKenzie et al., 2002) was applied to the 

251 ensemble data where detection histories were constructed using each of the surveying 

252 events as sampling occasions (MacKenzie et al., 2017). The core assumption here is 

253 that the underlying occupancy state (i.e. occupied or empty) is constant over the 

254 sampling period, and therefore, every sampling occasion is a potentially imperfect 

255 observation of the true occupancy status. Because occasions represent method-

256 specific surveying events, we used “surveying method” as an occasion-specific 

257 covariate on detection (Latrine, w-eDNA, s-eDNA and Camera). Our primary objective 

258 was to quantify and compare method-specific detectability, so we did not consider any 
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259 other competing models. For comparing the methods, we compute accumulation 

260 curves as (MacKenzie & Royle, 2005):

261

262 𝑝 ∗
𝑠𝑚𝑘 =  1 – (1 – 𝑝𝑠𝑚)𝑘

263

264 Where  is the cumulative probability of detecting species s, when species s is 𝑝 ∗
𝑠𝑚𝑘

265 present, using method m after k surveying events based on the estimated surveying 

266 method-specific detection probability for each species ( ). We vary k from 1 to a 𝑝𝑠𝑚

267 large number and find the value of k that results . We conducted the same 𝑝 ∗
𝑠𝑚𝑘 ≥ 0.95

268 analysis separately for water voles, field voles, and red deer. Analysis was conducted 

269 in R (R Core Team, 2018) using the package unmarked (Fiske & Chandler, 2011).
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270 Results

271 Mammal Detection via eDNA metabarcoding

272 The two sequencing runs generated 23,276,596 raw sequence reads and a total of 

273 15,463,404 sequences remained following trimming, merging, and length filtering. 

274 After bioinformatic analysis, the final ‘filtered’ dataset contained 23 mammals (Tables 

275 S2 and S3). For mammals, ~12 million reads were retained after applying all quality 

276 filtering steps (see Appendix 1). Reads from humans, cattle (Bos taurus), pig (Sus 

277 scrofa), horse (Equus ferus), sheep (Ovis aries) and dog (Canis lupus familiaris), were 

278 not considered further as the focus of this study was on wild mammals (Table S4). 

279 Felis was included because of the potential of it being wildcat (Felis silvestris) or 

280 domestic cat (F. catus)/wildcat hybrids. A final dataset comprising ~5.9 million reads 

281 was used for the downstream analyses (Table S4). 

282 In Assynt, the wild species identified were the red deer (18/18 sites); water vole 

283 (15/18); field vole (13/18); wood mouse (Apodemus sylvaticus - 9/18); pygmy shrew 

284 (Sorex minutus - 4/18); wild/domestic cat (Felis spp. - 4/18); mountain hare (Lepus 

285 timidus - 4/18); rabbit (Oryctolagus cuniculus - 3/18); water shrew (Neomys fodiens - 

286 3/18); common shrew (Sorex araneus - 2/18); edible dormouse (Glis glis - 2/18); grey 

287 squirrel (Sciurus carolinensis - 1/18); pine marten (Martes martes - 1/18); brown rat 

288 (Rattus norvegicus - 1/18); red fox (Vulpes vulpes - 1/18) and badger (Meles meles - 

289 1/18; Fig. 1B). All of these species are distributed around/within Assynt (Table S1), 

290 with the exception of the edible dormouse and the grey squirrel. These are 

291 unequivocally absent from the region. The edible dormouse is only present in southern 

292 England and the grey squirrel is not distributed that far north in Scotland (Mathews et 

293 al., 2018).
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294 Of the wild mammals in the Peak District, the water vole, field vole, wood mouse 

295 and otter were found in two sites (P1 and P2). The red deer, pygmy shrew, common 

296 shrew, water shrew, red squirrel (Sciurus vulgaris), grey squirrel, pine marten and 

297 badger were each found at a single site (Fig. S5). Only rabbit was found in site P3. All 

298 species identified are currently distributed within the Park (Table S1), except the red 

299 squirrel and pine marten. The pine marten, which is critically endangered in England, 

300 has only two reliable records that have been confirmed in the Park since 2000 and the 

301 red squirrel has not been present for over 18 years (Alston et al. 2012).

302 Overall, water samples yielded better results than sediment samples regarding 

303 species detection and read count for both areas sampled (Figs 1B and S5). In Assynt, 

304 only the wild/domestic cat was exclusively detected in sediment samples (four sites), 

305 whereas water samples recovered eDNA for ten additional species not found in the 

306 sediment samples. The red deer, water vole, field vole, mountain hare and pygmy 

307 shrew were also found in sediment samples in Assynt (Fig. 1B), and water vole and 

308 wood mouse in the Peak District sediment samples (Fig. S5).

309

310 Occupancy Analysis

311 Of the 18 sites where both latrine and eDNA surveys were conducted, water voles 

312 were detected at 13, and field voles were detected at 11. A total of seven wild 

313 mammals were recorded at the seven sites with a camera trap from July 10th to 

314 October 25th, 2017 (Fig. S3 and Table S5). There were several incidences where a 

315 shrew could not be identified to species level using camera traps. For camera traps, 

316 water voles were recorded at all sites, red deer at five out of seven, field voles and 

317 weasels at three sites, water shrews and otters at two, and a red fox at a single site.

Page 15 of 75

Confidential Review copy

Journal of Applied Ecology



16

318 For the 18 sites in Assynt, estimated site occupancy (with 95% confidence 

319 intervals) from the combined surveying methods was 0.91 (0.63 – 0.98) for water voles 

320 and 0.88 (0.57 – 0.98) for field voles. Red deer were observed at every patch by at 

321 least one of the methods, and therefore occupancy was 1 (Table 1). For all three 

322 species, per sample detection probability was higher for eDNA taken from water than 

323 for eDNA taken from sediment (Table 1, Fig. 2). The surveying method specific 

324 efficacy pattern was similar for water voles and field voles (Table 1, Fig. 2): latrine 

325 surveys had the highest probability of detecting the species (0.77 and 0.52 

326 respectively), followed by eDNA from water (0.57 and 0.40 respectively), then camera 

327 trapping (0.50 and 0.20 respectively), and finally eDNA from sediment (0.27 and 0.02 

328 respectively). Detection probability was higher for water voles than field voles using all 

329 four methods (Table 1, Fig. 2). No effort was made to record red deer presence during 

330 latrine surveys. Like the water voles and field voles, red deer detection has higher 

331 using eDNA from water (0.67, CI: 0.53 – 0.78) compared to eDNA from sediment (0.10, 

332 CI: 0.04 – 0.21). Unlike the voles, which were more detectable by cameras than 

333 sediment eDNA, red deer detection on cameras was similar to sediment eDNA (0.10, 

334 CI: 0.04 – 0.24).

335 The patterns described above detail surveying event-specific detectability. We 

336 also computed the cumulative detection probability for each method and each species 

337 ( ). The cumulative detection curves over 15 surveying events are shown in Fig. 2. 𝑝𝑠𝑚

338 The number of surveying events, k, required to achieve  for water voles 𝑝 ∗
𝑝𝑠𝑚 ≥ 0.95

339 was 3 surveys, 4 samples, 10 samples, and 5 weeks, for latrines, water eDNA, 

340 sediment eDNA, and cameras respectively. The number of surveying events, k, 

341 required to achieve  for field voles was 5 surveys, 6 samples, 141 samples, 𝑝 ∗
𝑝𝑠𝑚 ≥ 0.95

342 and 14 weeks, for latrines, water eDNA, sediment eDNA, and cameras respectively. 
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343 The number of surveying events, k, required to achieve  for red deer was 𝑝 ∗
𝑝𝑠𝑚 ≥ 0.95

344 3 samples, 30 samples, and 29 weeks, for water eDNA, sediment eDNA, and cameras 

345 respectively (see also Fig. 2).
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346 Discussion

347 Despite the increasing potential of eDNA metabarcoding as a biomonitoring tool 

348 (Deiner et al., 2017), its application has largely been focused on strictly aquatic or 

349 semi-aquatic animals, thus restricting management and conservation efforts of the 

350 wider ecosystem (Williams et al., 2018). Here, we demonstrate the ability of eDNA 

351 metabarcoding to provide a valuable ‘terrestrial dividend’ for mammals from freshwater 

352 lotic ecosystems, with a large proportion of the expected species from the wider 

353 landscape being detected in each of the two study locations. In particular, we have 

354 demonstrated that water-based eDNA sampling offers a promising and 

355 complementary tool to conventional survey methods for the detection of whole 

356 mammalian communities.

357

358 Detection of mammalian communities using eDNA metabarcoding

359 Of the species known to be common in both Assynt and the Peak District, eDNA 

360 metabarcoding readily detected the water vole, field vole and red deer at the majority 

361 of sites surveyed (Figs. 1B and S5). Pygmy, common and water shrews, wood mice 

362 and mountain hares were also detected by eDNA metabarcoding at multiple sites in 

363 Assynt (Fig. 1B). A higher eDNA detection rate is expected for aquatic and semi-

364 aquatic mammals compared to terrestrial mammals in aquatic environments due to 

365 the spatial and temporal stochasticity of opportunities for terrestrial mammals to be in 

366 contact with the water (Ushio et al., 2017). The semi-aquatic water vole was generally 

367 detected by eDNA metabarcoding where we expected to find it and at relatively high 

368 read numbers (Figs. 1B, S1 and S5). This is in line with previous studies in lentic 

369 systems (Harper et al., 2019). However, the red deer was the only terrestrial species 

Page 18 of 75

Confidential Review copy

Journal of Applied Ecology



19

370 detected by eDNA sampling at all sites in Assynt, and the terrestrial field vole at over 

371 70% of surveyed sites. 

372 In addition to lifestyle (semi-aquatic or terrestrial), the number of individuals of 

373 each species (i.e. group-living) may be important for eDNA detection (Williams et al., 

374 2018). As a counter example to this, otters and weasels were notably absent in the 

375 eDNA samples in Assynt despite being captured by camera traps (Fig. S3 and Table 

376 S5). Otters were present in the water eDNA samples at two sites in the Peak District, 

377 albeit at a lower number of reads in comparison to most of the other species detected 

378 (Fig. S5; Table S2). This mirrors previous studies where eDNA analysis has performed 

379 relatively poorly for otter detection in captivity and the wild (Harper et al., 2019; 

380 Thomsen et al., 2012). Carnivores were generally detected on fewer occasions (e.g. 

381 red foxes, badgers and pine martens; Figs. 1B and S5) or not at all (e.g. stoats and 

382 American mink in addition to those discussed above) in comparison to smaller 

383 mammals and red deer, and a similar pattern has been shown with North American 

384 carnivores in a recent study using eDNA from soil samples (Leempoel et al., 2019). 

385 For some of these species, species ecology/behavior such as a relatively large home 

386 range and more solitary nature (e.g. red foxes) may go some way towards explaining 

387 a lack of, or few, eDNA records. Furthermore, as demonstrated by Ushio et al. (2017) 

388 poor efficiency for amplifying some mammal species might be associated to 

389 suboptimal experimental conditions (e.g. inadequate primer design, primer bias, DNA 

390 concentration, species masking and/or annealing temperatures). 

391 Regarding the sampling medium for eDNA, we demonstrated that water is a 

392 more effective method for detection of mammal eDNA than sediment (Table 1; Figs. 

393 1B and S5). For one of our focal species, the water vole, 75% of sites which were 

394 deemed unoccupied by latrine surveys and those with ≤2 individuals (8 sites) in 
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395 Assynt, returned a non-detection for sediment eDNA as opposed to 37.5% of sites for 

396 water (Figs. 1A, 1B and S1). Distinct temporal inferences are provided by eDNA 

397 recovered from water and sediment samples. DNA bound to sediments can remain 

398 detectable for a longer period (i.e. up to hundreds of years) and provide historical data, 

399 whereas, eDNA retrieved from water samples provide more contemporary data due to 

400 a faster degradation in the water column (Turner et al., 2015). It is worth investigating 

401 further if sediment eDNA could indicate the presence of a more ‘established’ 

402 population, where a certain threshold of individuals and long-term occupation (i.e. 

403 historical) is required for detection in sediment (Fig. S1; Turner et al., 2015; Leempoel 

404 et al., 2019).

405 Importantly, sparse or single eDNA records should be carefully verified. The 

406 edible dormouse and grey squirrel sequences identified within the Assynt samples 

407 (Fig. 1B) and red squirrel within the Peak District (Fig. S5) highlights the caveats 

408 associated with this technique. If management decisions had relied on eDNA evidence 

409 alone, false positives for these species could lead to unnecessary resources being 

410 allocated for management/eradication programmes as the edible dormouse and grey 

411 squirrel are classified as invasive species within Great Britain. These potentially arose 

412 due to sample carryover from a previous sequencing run on the same instrument (a 

413 known issue with Illumina sequencing platforms; Nelson et al., 2014) which included 

414 those species for the reference database construction. Controlling for false positives 

415 is certainly a huge challenge in eDNA metabarcoding and the need to standardize and 

416 optimize thresholds for doing so is an ongoing debate (Ficetola et al., 2015; Harper et 

417 al., 2019).  

418  Even with these concerns around false positives highlighted, two records are 

419 potentially noteworthy in a conservation context for UK mammals because of the 
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420 relatively high read number associated with these records (Tables S2 and S3). The 

421 first of these is the Felis records in sediment samples in multiple sites in Assynt (Fig. 

422 1B). Even with ‘pure’ F. silvestris as reference sequences, it was not possible to 

423 distinguish between the wild and domesticated species for this 12S fragment (data not 

424 shown). Despite ongoing conservation efforts, there may now be no ‘pure’ Scottish 

425 wildcats left in the wild in the UK but isolated populations (perhaps of hybrid origin) 

426 may exist in this region (Sainsbury et al., 2019). Given that these eDNA detections 

427 were all from sediment samples, it is possible that they may be historical rather than 

428 contemporary (see above). The other significant eDNA record was the pine marten in 

429 the Peak District. The pine marten (Martes martes) is known to occur in the Scottish 

430 Highlands but had disappeared from most of the UK and recently has been recovering 

431 from historical persecution, including a potential expansion of its range. Still, authentic 

432 records from northern England are scarce or lacking altogether (Alston et al., 2012; 

433 Sainsbury et al., 2019). However, a record of a recent roadkill exists from just outside 

434 the Park’s boundary (BBC News, 2018). The high number of reads recovered for the 

435 Peak District sample (4293 reads versus 25 in the Assynt sample) adds credence to 

436 this positive eDNA detection but further investigations are warranted into the potential 

437 presence of this species in the area. 

438

439 Comparisons between surveying methods

440 Comparisons of species detection by traditional survey approaches and eDNA 

441 analysis are now numerous in the literature, and mainly focus on what is and what is 

442 not detected within and across different methods (Hänfling et al., 2016; Leempoel et 

443 al., 2019). Yet, there has been growing incorporation of occupancy modelling to 

444 estimate the probability of detecting the focal species, in comparison to one other 
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445 survey method, either for a single species (Lugg et al., 2018; Tingley et al., 2019) or 

446 multiple species (Valentini, et al., 2016; Abrams et al., 2019). Simultaneous multi-

447 method comparisons for multiple species have been lacking and this study directly 

448 addresses this for the first time.

449 The probability of detecting the water vole and field vole was higher for the 

450 latrine surveys than eDNA sampling (both water and sediment) and camera traps 

451 (Table 1; Fig. 2). However, when considering confidence intervals, there was 

452 considerable overlap between latrine, water-based eDNA metabarcoding and camera 

453 traps for both species, with only sediment-based eDNA metabarcoding yielding a low 

454 probability of detection (Table 1). Detection probabilities for water-based eDNA 

455 metabarcoding and camera traps were similar for water voles, with camera traps less 

456 likely to detect the field vole than water-based eDNA. For the red deer (for which no 

457 latrine survey was undertaken), water-based eDNA metabarcoding had a much higher 

458 probability of detection than either sediment-based eDNA metabarcoding or camera 

459 traps (which performed similarly; Table 1). Despite the increasing adoption of camera 

460 traps in providing non-invasive detections for mammals (Hofmeester et al., 2019), 

461 camera traps were outperformed by water-based eDNA metabarcoding for the three 

462 focal species in this component of the study. Here, camera traps were deployed so as 

463 to sample the habitat of the water vole (see Fig. S3), which may explain lower detection 

464 for other terrestrial species in comparison to eDNA metabarcoding (see above). 

465 Studies focusing on a single species often report that eDNA analysis outperforms the 

466 conventional survey method in terms of detection probabilities (e.g. Lugg et al., 2018). 

467 For metabarcoding, there is clearly a need to carefully consider the potential for cross 

468 contamination between samples and how false positives (and negatives) could impact 

469 detection probabilities using occupancy modelling with eDNA data (Brost et al., 2018; 
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470 Lahoz-Monfort et al., 2016). Among the recommendations made by Lahoz-Monfort et 

471 al. (2016) to account for these uncertainties, one was the simultaneous collection of 

472 data from more conventional surveying methods. Here, we have demonstrated 

473 general congruence between surveying methods for the water vole (Table S5; Fig. S1) 

474 and using certain species to apply a multiple detection methods model would be 

475 appropriate in further studies (Lahoz-Monfort et al., 2016). Alternatively, using 

476 repeated sampling and known negative controls in occupancy models that fully 

477 incorporate false-positive errors could be applied in the absence of other surveying 

478 data (Brost et al., 2018). Overall, multi-species metabarcoding studies may trade-off 

479 a slightly lower (but comparable) detection probability than other survey methods for 

480 individual species (Fig. 2) in favor of a better overall “snapshot” of occupancy of the 

481 whole mammalian community (Ushio et al., 2017). 

482 The comparison between survey ‘effort’ for the four methods to reach a 

483 probability of detection of ≥0.95 is highly informative and provides a blueprint for future 

484 studies on mammal monitoring. Focusing on the water vole for example, three latrine 

485 surveys would be required. A total of four water-based and 10 sediment-based eDNA 

486 replicates or five weeks of camera trapping would be required to achieve the same 

487 result (Fig. 2). This increases for the field vole in the same habitat, with five latrine 

488 surveys and six water-based eDNA replicates. Sediment-based eDNA metabarcoding 

489 would be impractical for this species and camera trapping would take 14 weeks. What 

490 is important here is the spatial component and the amount of effort involved in the 

491 field. Taking 4-6 water-based eDNA replicates from around one location within a patch 

492 could provide the same probability of detecting these small mammals with three latrine 

493 surveys. In many river catchments, there may be 100s to 1000s of kilometers to survey 

494 that would represent suitable habitat, and only a fraction of that may be occupied by 
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495 any given species. This is particularly relevant in the context of recovery of water vole 

496 populations post-translocation or in situations where remnant populations are 

497 bouncing back after invasive American mink (Neovison vison) control has been 

498 instigated. On a local scale, finding signs of water voles through latrine surveys is not 

499 necessarily difficult, but monitoring the amount of potential habitat (especially lowland) 

500 for a species which has undergone such a massive decline nationally is a huge 

501 undertaking (Morgan et al., 2019). 

502 The use of eDNA metabarcoding from freshwater systems to generate an initial, 

503 coarse and rapid ‘distribution map’ for vertebrate biodiversity (and at a relatively low 

504 cost) could transform biomonitoring at the landscape level. For group-living (i.e. deer) 

505 and small mammal species, carefully chosen sampling points (with at least five water-

506 based replicates) along multiple river courses could provide a reliable indication of 

507 what species are present in the catchment area if conducted during times of peak 

508 abundance (i.e. Summer and Autumn). Then, on the basis of this, practitioners could 

509 choose to further investigate specific areas for confirmation of solitary, rare or invasive 

510 species (e.g. carnivores) with increased effort in terms of both the number of sampling 

511 sites and replicates taken. At present, we would recommend the use of eDNA 

512 metabarcoding alongside other non-invasive surveying methods (e.g. camera traps) 

513 when monitoring invasive species or species of conservation concern to maximize 

514 monitoring efforts (Abrams et al., 2019; Sales et al., 2019). 

515 It is clear that eDNA metabarcoding is a promising tool for monitoring semi-

516 aquatic and terrestrial mammals in both lotic (this study) and lentic systems (Harper 

517 et al., 2019; Ushio et al., 2017). We detected a large proportion of the expected 

518 mammalian community (Table S1). Water-based eDNA metabarcoding is comparable 

519 or out-performs other non-invasive survey methods for several species (Fig. 2). 
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520 However, there remain challenges for the application of this technique over larger 

521 spatial and temporal scales. Technical issues of metabarcoding in laboratory and 

522 bioinformatic contexts have been dealt with elsewhere (Harper et al., 2019) but 

523 understanding the distribution of eDNA transport in the landscape and its entry into 

524 natural lotic systems is at an early stage (and incorporating such variables in 

525 occupancy modelling approaches). This clearly requires more detailed and systematic 

526 eDNA sampling than undertaken here, particularly in an interconnected river/stream 

527 network with organisms moving between aquatic and terrestrial environments. 

528 Leempoel et al. (2019) recently demonstrated the feasibility for detecting terrestrial 

529 mammal eDNA in soil samples but this study has shown that sampling a few key areas 

530 in freshwater ecosystems (e.g. larger rivers and lakes) within a catchment area could 

531 potentially provide data on a large proportion (if not all) of the mammalian species 

532 within it, even when some species are present at low densities (Deiner et al., 2017). 

533 In this regard, future studies might also investigate the value of citizen science, where 

534 trained volunteers can contribute to data collection at key sites, thus scaling up the 

535 reach of research whilst raising public awareness and the significance of mammalian 

536 conservation concerns (Parsons et al., 2018).
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683 Tables

684

685 Table 1. Estimated site occupancies and detection probabilities obtained for water-

686 based eDNA (w-eDNA), sediment-based eDNA (s-eDNA) and conventional survey 

687 methods (Latrine and Camera) in Assynt. 

Detection probability

Species Occupancy Latrine w-eDNA s-eDNA Camera

Water vole 0.91
(0.63 – 0.98)

0.77
(0.59 – 0.89)

0.57
(0.43 – 0.71)

0.27
(0.16 – 0.41)

0.50
(0.35 – 0 .65)

Field vole 0.89
(0.57 – 0.98)

0.52
(0.34 – 0.69)

0.40
 (0.26 – 0.55)

0.02
(0.00 – 0.14)

0.20
(0.10 – 0.37)

Red deer 1.00
(1.00 – 1.00) -- 0.67

(0.53 – 0.78)
0.10

(0.04 – 0.21)
0.10

(0.09 – 0.24)

688

689

690
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FIGURES

Figure 1. Environmental DNA (eDNA) sampling sites in Assynt, Scotland (A). 

Categorical values for water vole abundance at each site based on live-trapping data. 

In (B), a bubble graph representing presence-absence and categorical values of the 

number of reads retained (after bioinformatic filtering) for eDNA (water in blue and 

sediment in orange) from each wild mammal identified in each site in Assynt (A1-A18).

Figure 2. The detection probabilities of each survey method (sediment-based eDNA, 

water-based eDNA, latrine and camera) for each of three focal species (from top to 

bottom on the left); water vole; field vole and red deer. On the right, the accumulation 

curves for each species for the number of sampling events for each survey method 

to provide a ≥0.95 probability of detection.
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Figure 1. Environmental DNA (eDNA) sampling sites in Assynt, Scotland (A). Categorical values for water 
vole abundance at each site based on live-trapping data. In (B), a bubble graph representing presence-
absence and categorical values of the number of reads retained (after bioinformatic filtering) for eDNA 

(water in blue and sediment in orange) from each wild mammal identified in each site in Assynt (A1-A18). 
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Figure 2. The detection probabilities of each survey method (sediment-based eDNA, water-based eDNA, 
latrine and camera) for each of three focal species (from top to bottom on the left); water vole; field vole 

and red deer. On the right, the accumulation curves for each species for the number of sampling events for 
each survey method to provide a ≥0.95 probability of detection. 

Page 37 of 75

Confidential Review copy

Journal of Applied Ecology



1 SUPPLEMENTARY MATERIAL

2

3 Fishing for mammals: landscape-level monitoring of terrestrial and semi-

4 aquatic communities using eDNA from lotic ecosystems

5

6 Naiara Guimarães Sales1*, Maisie B. McKenzie1*, Joseph Drake2*, Lynsey R. Harper3, 

7 Samuel S. Browett1, Ilaria Coscia1, Owen S. Wangensteen4, Charles Baillie1, Emma 

8 Bryce5, Deborah A. Dawson6, Erinma Ouchu1, Bernd Hänfling3, Lori Lawson Handley3, 

9 Stefano Mariani1,7, Xavier Lambin5, Christopher Sutherland2 and Allan D. McDevitt1#

10

11 1Environment and Ecosystem Research Centre, School of Science, Engineering and 

12 Environment and Life Sciences, University of Salford, Salford, UK

13 2Department of Environmental Conservation, University of Massachusetts-Amherst, 

14 Amherst, USA

15 3Department of Biological and Marine Sciences, University of Hull, Kingston upon Hull, 

16 UK

17 4Norwegian College Fishery Science, University of Tromsø, Tromsø, Norway

18 5School of Biological Sciences, University of Aberdeen, Aberdeen, UK

19 6Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK

20 7School of Natural Sciences and Psychology, Liverpool John Moores University, 

21 Liverpool, UK

22

23

Page 38 of 75

Confidential Review copy

Journal of Applied Ecology



24 Appendix 1

25

26 eDNA sample collection

27 Three water sample replicates (two litres each) and three sediment sample replicates 

28 (50 ml falcon tube, approximately half-filled) were taken at each site in Assynt, always 

29 within a reachable distance from the river’s edge and at a depth where sediment 

30 samples could be taken (Fig. S4A). Water samples were filtered on site using a 

31 Sterivex 0.45 µm filter unit (Merck Millipore) and filters were stored in silica beads in 

32 the field (1-3 days; Majaneva et al., 2018) then frozen until DNA extraction. Sediment 

33 samples were stored in 100% ethanol. Appropriate decontamination precautions were 

34 taken including the use of disposable gloves and decontamination of all equipment 

35 and surfaces by using 50% bleach solution). Samples from the Peak District were 

36 filtered within 5 hours in the University of Salford laboratory facilities due to its close 

37 proximity to the sampling locations. A single filter was used for each replicate in Assynt 

38 and the Peak District, and the volume filtered varied between each, ranging from 150 

39 ml to 2 L (see Tables S2 and S3). Negative field controls were taken in both Assynt 

40 (N= 8) and the Peak District (N= 2) and were obtained by collecting, preserving and 

41 processing distilled water in exactly the same way as the field samples. The amount 

42 of sediment collected also varied, with 4 to 10g used in the extractions. A Pearson’s 

43 correlation was performed to determine if the amount of water/sediment influenced the 

44 amount of retained reads for mammals after bioinformatic filtering.

45

46 Reference database

47 Given that this project proposed to use mammal-specific primers (MiMammal-U, Ushio 

48 et al., 2017) to target the same region of 12S as the MiFish primers (Miya et al., 2015), 

Page 39 of 75

Confidential Review copy

Journal of Applied Ecology



49 an in silico evaluation was first performed using ecoPCR (Ficetola et al., 2010) of the 

50 MiMammal-U primer set against a custom, phylogenetically curated reference 

51 database for mammals distributed in the UK and Ireland. This database was one of 

52 several databases constructed for UK vertebrates and used in an eDNA 

53 metabarcoding study of pond biodiversity (see Harper et al. 2019 for details). The 

54 mammal database was updated in July 2018 for the purposes of the present study. 

55 Parameters were set to allow a fragment size of 50-250 bp and different number of 

56 mismatches (0, 1, 2, 3) between each primer and each sequence in the reference 

57 database. Reference sequence data was available for 103 mammal species (91.96%) 

58 in the UK. The nine species that were not represented were either cetaceans or bats. 

59 Of those species with reference sequence data (N = 103), 44 (42.72%), 65 (63.11%), 

60 72 (69.90%), and 82 (79.61%) mammals were amplified when 0, 1, 2, and 3 primer-

61 sequence mismatches were allowed respectively. Species that did not amplify under 

62 any scenario due to the lack of an appropriate reference sequence for the specific 12S 

63 region being targeted for MiMammal (and of relevance to this study) were the 

64 European water vole (Arvicola amphibius), greater white-toothed shrew (Crocidura 

65 russula), Millet’s shrew (Sorex coronatus), Eurasian pygmy shrew (Sorex minutus), 

66 field vole (Microtus agrestis), common vole (Microtus arvalis), grey squirrel (Sciurus 

67 carolinensis), and European polecat (Mustela furo).

68 Because certain focal mammalian species were missing from online reference 

69 databases, a new reference database of 32 UK terrestrial mammals targeting this 

70 fragment of the 12S gene was created from ethanol-preserved tissues samples 

71 obtained from National Museums Scotland (Table S6).  DNA was extracted using the 

72 ISOLATE II kit according to the manufacturer’s protocol. These DNA samples were 

73 then included in a large vertebrate barcoding project using the MiFish (Miya et al., 
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74 2015) primers (O. Wangensteen et al., unpublished data). Although these primers 

75 were originally designed to amplify fishes, they are known to amplify mammals also 

76 and target the exact same region as the MiMammal primers (Ushio et al., 2017). This 

77 was conducted to save on sequencing costs and the prior knowledge that these 

78 primers would generate reference sequences for the majority of UK mammals 

79 (Hänfling et al., 2016). Of these mammals, only Sorex araneus and Neomys fodiens 

80 failed to generate reference sequences. PCRs were then carried out on a subset of 

81 the tissue-extracted DNA (see Table S6) and Sanger-sequenced (Macrogen Inc.) 

82 using the MiMammal-U primers (Ushio et al., 2017) to confirm the results obtained 

83 with the MiFish primers.

84

85 eDNA Laboratory Methods

86 Field and Laboratory controls

87 In order to avoid the risk of contamination, clean and consistent field and laboratory 

88 protocols are paramount. Besides the decontamination measures taken, three types 

89 of negative controls (field, extraction and PCR) were included. Field blanks comprised 

90 of distilled water which was preserved and processed using exactly the same protocols 

91 and equipment as the field samples. These were processed first to ascertain if 

92 contaminations arose in the field (either during the water/sediment sampling or during 

93 the filtering process). DNA extraction blanks, represented by empty tubes included in 

94 the extraction step, were undertaken at the end of each batch of extractions to 

95 ascertain the potential for contaminations arising from reagents and the laboratory 

96 environment. Finally, no-template amplification controls (NTC) were included during 

97 the amplification step (PCR) of the actual samples through the inclusion of several 

98 reactions lacking DNA to account for putative contamination during this procedure. 
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99 The chronology of DNA extraction followed an increasing order of expected 

100 abundance in the eDNA samples (all field blanks extracted first, followed by the sites 

101 with supposedly zero water vole abundance, up to the highest densities last). Field 

102 blanks were processed at the beginning of the DNA extraction to try to tease apart the 

103 potential contamination between field and lab contaminations. The implementation of 

104 this chronology was due to the fact that it is the first time a study focusing on using 

105 eDNA with terrestrial and semi-aquatic mammals has been undertaken like this in 

106 multiple sites that were sampled in the same session, with the researchers moving 

107 around in the habitat (terrestrial) of the target group of organisms. 

108

109 eDNA amplification and sequencing

110 A set of 96 primers pairs with seven-base sample-specific MIDs and a variable number 

111 (2-4) of fully degenerate positions (leading Ns) to increase variability in amplicon 

112 sequences were used. PCR amplification was conducted using a single-step protocol 

113 and to minimize bias in individual reactions, PCRs were replicated three times for each 

114 sample and subsequently pooled. The PCR reaction consisted of a total volume of 20 

115 µl including 10 µl Amplitaq; 0.16 µl of BSA; 1.0 µl of each of the two primers (5 µM); 

116 5.84 µl of ultra-pure water, and 2 µl of DNA template. The PCR profile included an 

117 initial denaturing step of 95°C for 10 min, 40 cycles of 95°C for 30s, 60°C for 45s, and 

118 72°C for 30s and a final extension step of 72°C for 5 min. Amplification were checked 

119 through electrophoresis in a 1.5% agarose gel stained with GelRed (Cambridge 

120 Bioscience). PCR products were pooled in two different sets and a left-sided size 

121 selection was performed using 1.1x Agencourt AMPure XP (Beckman Coulter). 

122 Illumina libraries were built from each set, using a NextFlex PCR-free library 

123 preparation kit according to the manufacturer’s protocols (Bioo Scientific). Libraries 
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124 were then quantified by qPCR using a NEBNext qPCR quantification kit (New England 

125 Biolabs) and pooled in equimolar concentrations along with 1% PhiX (v3, Illumina). 

126 The libraries were run at a final molarity of 9pM on an Illumina MiSeq platform using 

127 the 2 x 150bp v2 chemistry.

128

129 Bioinformatic analysis

130 OBITools metabarcoding package (Boyer et al., 2016) was used for the bioinformatic 

131 analysis. Quality of the reads was assessed using FastQC, paired-end reads were 

132 aligned using illuminapairedend and the ngsfilter command was used for dataset 

133 demultiplexing. Short fragments originated from library preparation artefacts (primer-

134 dimer, non-specific amplifications) and reads containing ambiguous bases were 

135 removed applying a length filter selecting fragments of 140-190bp using obrigrep. 

136 Clustering of strictly identical sequences was performed using obiuniq and a chimera 

137 removal step was applied in vsearch (Rognes et al., 2016) through the uchime-denovo 

138 algorithm (Edgar et al., 2011). The taxonomic assignment was conducted using 

139 ecotag.

140 A stringent approach was applied to our analyses to avoid false positives and 

141 exclude MOTUs/reads putatively belonging to sequencing errors or contamination. 

142 The final dataset included only MOTUs that could be identified to species level (>0.98), 

143 and MOTUs containing less than 10 reads and with a similarity to a sequence in the 

144 reference database lower than 98% were discarded (Cilleros et al., 2019). Singleton 

145 reads within individual replicates were also discarded. The maximum number of reads 

146 detected in the controls for each MOTU in each sequencing run were removed from 

147 all samples (Table S7). For water voles, field voles and red deer (the most abundant 

148 wild mammals in terms of sequence reads in our dataset), this equated to a sequence 
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149 frequency threshold of ≤0.17%, within the bounds of previous studies on removing 

150 sequences to account for contamination and tag jumping (Cilleros et al., 2018; Schnell, 

151 Bohmann, & Gilbert, 2015). The number of retained reads per replicate was not 

152 significantly correlated with the volume of water filtered (Pearson’s correlation: r = 

153 0.213; p = 0.094) or the amount of sediment collected (Pearson’s correlation: r = 0.076; 

154 p = 0.556).
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155 TABLES
156

157 Table S1. Species (and the Order to which they belong) that are expected to be found 

158 within Assynt (based on Matthews et al. 2018) and the Peak District (Alston et al. 2012) 

159 and whether or not they were detected by eDNA. A * indicates species where presence 

160 is uncertain from Matthews et al. (2018).

161

Common name Scientific name Order eDNA
Assynt
Red deer Cervus elaphus Artiodactyla Yes
Sika deer Cervus nippon Artiodactyla No
Roe deer Capreolus capreolus Artiodactyla No
Water vole Arvicola amphibius Rodentia Yes
Field vole Microtus agrestis Rodentia Yes
Wood mouse Apodemus sylvaticus Rodentia Yes
Bank vole* Myodes glareolus Rodentia No
Brown rat Rattus norvegicus Rodentia Yes
Pygmy shrew Sorex minutus Eulipotyphla Yes
Water shrew Neomys fodiens Eulipotyphla Yes
Common shrew Sorex araneus Eulipotyphla Yes
Hedgehog* Erinaceus europaeus Eulipotyphla No
European mole Talpa europaea Eulipotyphla No
Mountain hare Lepus timidus Lagomorpha Yes
European rabbit Oryctolagus cuniculus Lagomorpha Yes
Stoat Mustela erminea Carnivora No
Weasel Mustela nivalis Carnivora No
Badger Meles meles Carnivora Yes
Otter Lutra lutra Carnivora No
Red fox Vulpes vulpes Carnivora Yes
Pine marten Martes martes Carnivora Yes
Wildcat* Felis silvestris Carnivora ?

Peak District
Red deer Cervus elaphus Artiodactyla Yes
Roe deer Capreolus capreolus Artiodactyla No
Fallow deer Dama dama Artiodactyla No
Water vole Arvicola amphibius Rodentia Yes
Field vole Microtus agrestis Rodentia Yes
Wood mouse Apodemus sylvaticus Rodentia Yes
Bank vole Myodes glareolus Rodentia No
Brown rat Rattus norvegicus Rodentia No
House mouse Mus musculus Rodentia No
Grey squirrel Sciurus carolinensis Rodentia Yes
Harvest mouse* Micromys minutus Rodentia No
Pygmy shrew Sorex minutus Eulipotyphla Yes
Water shrew Neomys fodiens Eulipotyphla Yes
Common shrew Sorex araneus Eulipotyphla Yes
Hedgehog Erinaceus europaeus Eulipotyphla No
European mole Talpa europaea Eulipotyphla No
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Mountain hare Lepus timidus Lagomorpha No
Brown hare Lepus europaeus Lagomorpha No
European rabbit Oryctolagus cuniculus Lagomorpha Yes
Stoat Mustela erminea Carnivora No
Weasel Mustela nivalis Carnivora No
Badger Meles meles Carnivora Yes
Otter Lutra lutra Carnivora Yes
Red fox Vulpes vulpes Carnivora No
American mink Neovison vison Carnivora No
Pine marten Martes martes Carnivora Yes
Polecat Mustela putorius Carnivora No

162

163
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164 Table S2. Species identified (with at least 98% identity to the reference database) and 

165 their associated number of reads after bioinformatic filtering in each site (Assynt A1-

166 A18 and Peak District P1-P3) and in each of three replicates (_1 to _3) for water-based 

167 eDNA. The volume of water filtered is indicated for each replicate.

168 Additional file: TableS2_Reads_Water.xlsx

169

170 Table S3. Species identified (with at least 98% identity to the reference database) and 

171 their associated number of reads after bioinformatic filtering in each site (Assynt A1-

172 A18 and Peak District P1-P3) and in each of three replicates (_1 to _3) for sediment-

173 based eDNA. The weight of sediment used for the DNA extraction is indicated for each 

174 replicate.

175 Additional file: TableS3_Reads_Sediment.xlsx

176
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177 Table S4. Number of reads obtained after all filtering steps applied to remove non-

178 target MOTUs.

WATER Total

Total Reads 13,336,06
4

After removing reads from the blanks 10,709,19
9

After removing non-mammal reads 10,262,85
1

After removing human reads 8,508,564
After removing domestic animals (Sus, Bos, Equus, Ovis, 
Canis) 5,544,208
MOTUs with minimum identity of 0.98 5,414,427

SEDIMENT Total
Total Reads 3,309,866
After removing reads from the blanks 1,684,433
After removing non-mammal reads 1,543,826
After removing human reads 649,499
After removing domestic animals (Sus, Bos, Equus, Ovis, 
Canis) 500,473
MOTUs with minimum identity of 0.98 465,997

179

180

181

182

Page 48 of 75

Confidential Review copy

Journal of Applied Ecology



183 Table S5. Mammalian species recorded at seven camera traps in Assynt. Boxes 

184 shaded in grey represent sites where each species was recorded.

185

Common name Scientific name Site
A5 A10 A11 A12 A13 A14 A15

Water vole Arvicola amphibius
Red deer Cervus elaphus
Field vole Microtus agrestis
Water shrew Neomys fodiens
Weasel Mustela nivalis
Otter Lutra lutra
Red fox Vulpes vulpes
Unidentified Shrew -

186

187
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188 Table S6. List of tissue samples from mammals used for generating a local reference 

189 database using MiFish primers (Miya et al. 2015). All species were tested for 

190 amplification using MiMammal-U primers (Ushio et al. 2017) and those highlighted in 

191 bold were Sanger-sequenced.

192

Common name Scientific name ID
Wood mouse Apodemus sylvaticus Z.2009.101.1025
Wood mouse Apodemus sylvaticus Z.2009.101.1149M
House mouse Mus domesticus Z.2009.101.593M
House mouse Mus domesticus Z.2009.101.426
Field Vole Microtus agrestis Z.2009.101.1045
Field Vole Microtus agrestis Z.2009.101.1994M
Bank Vole Myodes glareolus Z.2009.101.97M
Bank Vole Myodes glareolus Z.2009.101.696M
Weasel Mustela nivalis Z.2009.101.664
Weasel Mustela nivalis Z.2009.101.363
Yellow-necked mouse Apodemus flavicollis Z.2009.101.983M
Yellow-necked mouse Apodemus flavicollis Z.2009.101.984M
Water shrew Neomys fodiens Z.2009.101.141M
Water shrew Neomys fodiens Z.2009.101.1915M
Pygmy shrew Sorex minutus Z.2009.101.1162M
Pygmy shrew Sorex minutus Z.2009.101.458M
Common shrew Sorex araneus Z.2009.101.611M
Common shrew Sorex araneus Z.2009.101.126M
Common Vole Microtus arvalis Z.2009.101.991
Common Vole Microtus arvalis Z.2009.101.917
Brown Rat Rattus norvegicus Z.2009.101.931
Brown Rat Rattus norvegicus Z.2009.101.1026
Grey Squirrel Sciurus carolinensis 23/24
Grey Squirrel Sciurus carolinensis 23/10
Water Vole Arvicola amphibius 23/15
Water Vole Arvicola amphibius 23/17
Edible dormouse Glis glis 23/16
Edible dormouse Glis glis 23/35
Brown hare Lepus europaeus 23/22
Mountain hare Lepus timidus 23/20
Mountain hare Lepus timidus 23/1
Hedgehog Erinaceus europaeus 23/19
Mole Talpa europaea 23/13
Mole Talpa europaea 23/14
Red fox Vulpes vulpes 23/25
Badger Meles meles 23/12
Badger Meles meles 23/34
Otter Lutra lutra 23/7
Otter Lutra lutra 23/33
Polecat Mustela putorius 23/5
Polecat Mustela putorius 23/6
Red deer Cervus elaphus 23/31
Red deer Cervus elaphus 23/32
Sheep Ovis aries 23/9
Horse Equus caballus 24/31
Red Squirrel Sciurus vulgaris 1/24
Red Squirrel Sciurus vulgaris 1/31
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Pine marten Martes martes 1/1
Pine marten Martes martes 1/13
Coypu Myocastor coypus 62/12
Coypu Myocastor coypus 22/13
Brown hare Lepus europaeus 22/7
Stoat Mustela erminea 22/31
Stoat Mustela erminea 22/33
Red fox Vulpes vulpes 21/28
Hedgehog Erinaceus europaeus 72/32
Sika Cervus nippon 57/31
Horse Equus caballus 57/24
Beaver Castor fiber 63/25
Sheep Ovis aries 58/31
American mink Neovison vison AMX01
American mink Neovison vison AMX02
Wildcat Felis silvestris Z.2015.118.1
Wildcat Felis silvestris Z.2015.118.2

193
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194 Table S7. Maximum number of reads subtracted to control for contamination and/or 

195 tag switching for each wild species in each eDNA sampling type (water or sediment) 

196 and the type of blank in which the reds were identified (Field, Extraction and PCR). 

197 Species indicated by * were not identified as eDNA positive records.

198

Common name Scientific name Blank Reads
Red deer Cervus elaphus Field 164
Water vole Arvicola amphibius Extraction 7479
Field vole Microtus agrestis Field 324
Wood mouse Apodemus sylvaticus None 0
Brown rat Rattus norvegicus None 0
Pygmy shrew Sorex minutus Field 1
Water shrew Neomys fodiens Extraction 1
Common shrew Sorex araneus Field 2
Mountain hare Lepus timidus Field 76
European rabbit Oryctolagus cuniculus Field 38
Stoat* Mustela erminea Field 68
Badger Meles meles None 0
Otter Lutra lutra Extraction 1
Red fox Vulpes vulpes None 0
Pine marten Martes martes None 0
Cat Felis spp. None 0
American mink* Neovison vison Extraction 343
Red squirrel Sciurus vulgaris Extraction 1
Grey squirrel Sciurus carolinensis None 0
Edible dormouse Glis glis None 0
Human 1 Homo sapiens Field 547
Human 2 Homo sapiens Field 110107
Human 3 Homo sapiens Field 1
Cattle Bos spp. Extraction 1630
Sheep Ovis spp. Field 122
Pig Sus scrofa domesticus Field 99
Dog Canis lupus familiaris Field 135
Horse Equus przewalskii None 0
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FIGURES

Figure S1. Presence and absence of water voles (Arvicola amphibius) from 1999-

2017 using latrine surveys (X. Lambin, unpublished data) from sites A1-A18. Positive 

detections using environmental DNA (eDNA; water; and water and sediment) indicated 

in 2017.
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Figure S2. Example of a water vole latrine with faecal pellets, highlighted in the red 
rectangle in (A), and an otter spraint in (B). Both are from site P1 in the Peak District.  
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Figure S3. Examples of camera trap photographs for six species. Photographs have 

been manually adjusted to increase visibility of the species. Red boxes are used to 

highlight where the smaller mammals are positioned within the photograph. A: weasel 

(Mustela nivalis); B: red deer (Cervus elaphus); C: water vole (Arvicola amphibius); D: 

field vole (Microtus agrestis); E: Eurasian otter (Lutra lutra) and F: water shrew 

(Neomys fodiens).
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Figure S4. Examples of four sampling areas for environmental DNA (eDNA): A = A8; 

B = A12; C = A16 and D = A11. Sites A8, A11 and A12 returned positive eDNA records 

for the water vole, site A16 was negative. Sampling at site A11 was conducted in a 

narrow stream that is not visible here but is indicated by the white arrows (D). Sampling 

methodology for eDNA is indicated in (A), where sampling was conducted along the 

edge of the river/stream for both water and sediment samples.
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Figure S5: A bubble graph representing presence-absence and categorical values of 

the number of reads retained (after bioinformatic filtering) for eDNA (water in blue and 

sediment in orange) from each wild mammal identified in each site (P1-P3) in the Peak 

District National Park. The location of the Peak District is indicated in the inset map 

but the actual sampling sites can not be disclosed due to conservation and persecution 

concerns around certain protected species. 
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