
Outline Indistinguishability Examples Second quantization Keywords and References

Multiparticle systems:

indistinguishability and consequences

Sourendu Gupta

TIFR, Mumbai, India

Quantum Mechanics 1 2013
10 October, 2013

Sourendu Gupta Quantum Mechanics 1 2013: Lecture 13



Outline Indistinguishability Examples Second quantization Keywords and References

Outline

1 Outline

2 The problem and its resolution

3 Examples

4 Second quantization: a new notation

5 Keywords and References

Sourendu Gupta Quantum Mechanics 1 2013: Lecture 13



Outline Indistinguishability Examples Second quantization Keywords and References

1 Outline

2 The problem and its resolution

3 Examples

4 Second quantization: a new notation

5 Keywords and References

Sourendu Gupta Quantum Mechanics 1 2013: Lecture 13



Outline Indistinguishability Examples Second quantization Keywords and References

Outline

1 Outline

2 The problem and its resolution

3 Examples

4 Second quantization: a new notation

5 Keywords and References

Sourendu Gupta Quantum Mechanics 1 2013: Lecture 13



Outline Indistinguishability Examples Second quantization Keywords and References

Classical identical particles

1

2
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2

Evolution of identical (non-interacting) particles is unproblematic
in classical mechanics. Two particles distinguished by their initial
conditions: trajectories forever distinguishable, even if all intrinsic
properties are the same. Possible since phase space trajectories do
not cross. Classical identical particles can be “painted” to
distinguish them.
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Quantum identical particles
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If two particles cannot be distinguished by intrinsic properties, then
quantum evolution (even of non-interacting particles) is
problematic: unique labelling of initial states not possible in
general. There is no quantum “paint”.
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Two particle states and identical particles

Single particle states are |λ〉, where λ stands for a complete set of
eigenvalues. A two particle state is |λ1;λ2〉 = |λ1〉 ⊗ |λ2〉. Define
an interchange operator P , such that

P |λ1;λ2〉 = |λ2;λ1〉 ,
i.e., P creates a different outer product |λ2〉 ⊗ |λ1〉. If the two
particles are identical, then the vector space with this basis is the
same as the vector space with the previous basis. In that case P

must be an unitary matrix. However, P2 |λ1;λ2〉 = |λ1;λ2〉, i.e.,
P2 = 1, so its eigenvalues are ±1.
When P = 1, the particles are called bosons; when P = −1 they
are called fermions. This is an intrinsic property, i.e., all quantum
states of many fermions have the same sign under permutations
(and similarly for bosons). In relativistic quantum mechanics one
can prove a spin-statistics theorem: all bosons have integer spin
and all fermions have half integer spin.
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N-particle states: permutations

The states of N identical particles can be created by a simple
extension of the previous argument. Any permutation of N objects
can be built out of permutations of appropriately chosen pairs.
Each pair-wise permutation multiplies the state by a fixed sign. So,
successive permutations multiply the state by products of these
signs.

Using the permutation operators Pα, one may write

|λ1;λ2; · · ·λN〉B,F ∝
∑

α

(±1)αPα |λ1;λ2; · · ·λN〉 ,

where (−1)α is −1 only if the permutation interchanges an odd
number of pairs of fermions. The constant of proportionality must
be chosen to normalize the state.
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N-particle wavefunctions

The wavefunction of a non-interacting N-boson system is

Ψλ1,λ2,···λN

B (r1, r2, · · · , rN) ∝
∑

P

N
∏

i=1

ψλi (rP(i)),

where the sum is over all N! permutations of the labels. For the
N-fermion wavefunction one gets the determinant

Ψλ1,λ2,···λN

F (r1, r2, · · · , rN) ∝
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ψλ1(r1) ψλ2(r2) · · · ψλN (rN)
ψλ1(r2) ψλ2(r3) · · · ψλN (r1)

...
... · · · ...

ψλ1(rN) ψλ2(r1) · · · ψλN (rN−1)
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∣

.

This is called a Slater determinant.
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Some consequences

The Slater determinant vanishes whenever two of the single
particle quantum states are identical, i.e., when λi = λj . This
means that two fermions cannot be in the same state. This is
called Pauli’s exclusion principle.

For two particle states, one may create projection operators

S =
1√
2
(1 + P) and A =

1√
2
(1− P),

which project out the symmetric and antisymmetric states
respectively. Here S + A = 1. For higher number of particles
the S and A projectors shown before do not sum to unity.

Even for interacting particles, when the multi-particle state
cannot be written as tensor products of single particle states,
the interchange of all quantum numbers of two identical
particles results in multiplying the state by ±1.
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Exchange effects in transitions

A two particle system is initially in the state |a; b〉 and makes a
transition to the state where one of the particles is in state |c〉
whereas the other is in state |d〉. The transition probability is

P = |〈c ; d |a; b〉|2+|〈d ; c |a; b〉|2 = |〈c |a〉|2|〈d |b〉|2+|〈c |b〉|2|〈d |a〉|2.

When the two particle states are symmetrized, i.e., the initial state
is (1/

√
2)(1± P) |a; b〉 and the final state is (1/

√
2)(1± P) |c ; d〉,

the transition probability is

P =

∣

∣

∣

∣

〈c ; d | 1
2
(1± P)(1± P) |a; b〉

∣

∣

∣

∣

2

= |〈c |a〉 〈d |b〉 ± 〈d |a〉 〈c |b〉|2 .

In the second case there is interference between the two
possibilities, and this interference is missing in the first case.
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Ground state of He

Since the Coulomb force does not depend on spins, electron spins may be
approximately neglected. But when there are 2 or more electrons, we
must keep track of it. The ground state of He is
∑

mm′

am,m′ |100; 100〉⊗
∣

∣

∣

1

2
,m;

1

2
,m′

〉

= |100; 100〉⊗
∑

mm′

am,m′

∣

∣

∣

1

2
,m;

1

2
,m′

〉

,

where the spatial part, |100; 100〉, is obviously symmetric. But the
complete state must be antisymmetric under exchange of all quantum
numbers of the system. So, the spin part must be completely
antisymmetric. So this must be a total spin 0 state

|0, 0〉 = 1√
2

{∣

∣

∣

1

2
,
1

2
;
1

2
,− 1

2

〉

−
∣

∣

∣

1

2
,− 1

2
;
1

2
,
1

2

〉}

.

The prediction that the ground state of He has spin 0 follows from purely

quantum exchange effects. If the electrons is replaced by pions, which

have s = 0, the ground state would again have total spin zero. However,

the excited states of He and He(π) would be quite different. Exchange

effects are removed if one of the electrons in He is replaced by a muon.
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Shell model: chemistry and nuclear physics

1s

2s,2p

3s,3p,3d

4s,4p,4d,4f

The fact that atoms have electrons distributed in
many different orbitals, |nlm〉, is due to the fact
that electrons are fermions, and hence, through
the Pauli exclusion principle, must all occupy
different states. Since each electron has spin
s = 1/2, each orbital can be occupied by two
electrons (with opposite sz). This fact leads to
the shell model of atoms as we know them, and
to other consequences like finite valency in
chemistry.
Since nuclei contain protons and neutrons, which
are also fermions, a shell model also works for
nuclei. This is somewhat more complicated by
the fact that there are two different kinds of
indistinguishable fermions. 1s

2p

3s,3d

4p,4f

Sourendu Gupta Quantum Mechanics 1 2013: Lecture 13



Outline Indistinguishability Examples Second quantization Keywords and References

The colour quantum number

All baryons are made of three quarks. The u quark has charge 2e/3 and
spin 1/2, and the d quark has charge −e/3 and spin 1/2. The ∆++ is a
baryon with spin 3/2 and charge 2e. Hence it must contain three u
quarks. The quantum state of the ∆++ with maximum Jz must be

∣

∣

∣

∣

λ1,
1

2
,
1

2
, u;λ2,

1

2
,
1

2
, u;λ3,

1

2
,
1

2
, u

〉

,

since the total angular momentum must sum to 3/2. There is evidence
from various other properties that the spatial quantum numbers of the
three quarks, λi , are equal. Hence the state must be symmetric. But this
is impossible.

Various explanations were advanced, including exotic statistics under

exchange of quarks. However, the simplest explanation (and the one that

is now verified) is that there is an extra quantum number in the problem:

colour. Under the interchange of all quantum numbers, the state is

antisymmetric.
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A convenient notation

If λi is a complete set of eigenvalues for single particles and |λi 〉 are the
corresponding eigenvectors, then any multi-particle state of N
non-interacting particles is fully specified in the explicit notation

|λ1;λ2; · · ·λN〉 = |λ1〉 ⊗ |λ2〉 ⊗ · · · ⊗ |λN〉 ,
i.e., by giving the quantum numbers of each particle. However, one could
also try to specify the same state in a new notation

|n1, n2, · · ·〉 , (
∑

i

ni = N),

i.e., by specifying ni , the number of particles in each state i . However,
this notation loses the ordering of tensor products, which, as we saw, is
an important part of the specification of quantum states.
To do this, we first extend our considerations to Fock space, which is the
direct sum of Hilbert spaces for different particle numbers—

H0 ⊕H1 ⊕H2 ⊕ · · · ⊕ HN ⊕ · · ·
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Boson creation and annihilation operators

Introduce operators which change the number of particles, i.e., connect
the Hilbert spaces of operators with two different numbers of particles.
Let ai be the operator which decreases the number of particles in state
|i〉 by 1, i.e.,

ai |n1, n2, · · · , ni , · · ·〉 =
√
ni |n1, n2, · · · , ni − 1, · · ·〉 .

This “particle annihilation operator” is clearly not Hermitean; label its
adjoint by a

†
i . Clearly,

a
†
i |n1, n2, · · · , ni , · · ·〉 =

√
1 + ni |n1, n2, · · · , ni + 1, · · ·〉 .

Now aia
†
i and a

†
i ai are both Hermitean operators, which act on Hilbert

spaces of fixed number of particles. From the definitions, clearly

[ai , a
†
i ] |n1, n2, · · · , ni , · · ·〉 = |n1, n2, · · · , ni , · · ·〉 .

Similar arguments when the indices are different lead to the basic
commutation relations

[ai , a
†
j ] = δij , [ai , aj ] = [a†i , a

†
j ] = 0.
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Fermion creation and annihilation operators

Fermions are created and annihilated by operators which satisfy the
relation

{ai , a†j } = aia
†
j + a

†
j ai = δij , {ai , aj} = {a†i , a

†
j } = 0.

The last two relations imply that a2j = (a†j )
2 = 0 when acting on any

quantum state. As a result, the number of particles in any quantum state
is either 0 or 1 (ni = 0, 1 for all i).
A multi-particle state is obtained from the unique state |0〉 without any
particles (vacuum state) by the action of multiple creation operators—

|n1, n2, n3, · · ·〉 = (a†1)
n1(a†2)

n2(a†3)
n3 · · · |0〉 .

The permutation symmetry of particles is then subsumed into the

operator commutation (or anti-commutation) rules. Hence this definition

of multi-particle states is exactly the same as the ones given earlier by

the explicit symmetrization and anti-symmetrization formulae.
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Rewriting the operators

Particle creation and annihilation operators are not ladder operators.
Those work on states with fixed particle number. Particle creation and
annihilation operators connect Hilbert spaces of different numbers of
particles. Combinations like a

†
j ai can be used as ladder operators in

Hilbert spaces with fixed numbers of particles.
Rewriting the states allows us to rewrite the operators. Any single
particle observable is

f =
∑

ij

fij |λi 〉 〈λj | =
∑

ij

fija
†
i aj ,

Any two particle observable is

g =
∑

ijkl

gijkl |λi ;λj〉 〈λk ;λl | =
∑

ijkl

gijkla
†
i a

†
j akal ,

and so on. So, creation and annihilation operators allow us to rewrite the

quantum mechanics of many particle systems very efficiently. Further use

of this formalism is made in quantum field theory and in a formulation of

a truncated field theory called many-body theory.
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