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LIST OF ABBREVIATIONS

API Application Programmer Interface

AMBER Assisted Model Building with Energy Refinement

BOA Born-Oppenheimer Approximation

CMAP Correction Map

CpHMD Constant pH Molecular Dynamics

DNA Deoxyribonucleic Acid

EAF Exchange attempt frequency

ESP Electrostatic Potential

FEP Free Energy Perturbation

FFT Fast Fourier Transform

GBSA Generalized Born with Surface Area

GPU Graphical Processing Unit

GRF Generalized Reaction Field

H-REMD Hamiltonian Replica Exchange Molecular Dynamics

HEWL Hen egg-white lysozyme

IPS Isotropic Periodic Sum

LIE Linear Interaction Energy

LJ Lennard-Jones

MC Monte Carlo

MD Molecular Dynamics

MM Molecular Mechanics
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MPI Message Passing Interface

MO Molecular Orbital

MTP Multiple Trajectory Protocol

PBC Periodic Boundary Conditions

PBSA Poisson-Boltzmann with Surface Area

pH-REMD pH Replica Exchange Molecular Dynamics

PMF Potential of Mean Force

QM Quantum Mechanics

REFEP Replica Exchange Free Energy Perturbation

REMD Replica Exchange Molecular Dynamics

RESP Restrained Electrostatic Potential

RMSD Root mean squared deviation

RNA Ribonucleic Acid

STP Single Trajectory Protocol

T-REMD Temperature Replica Exchange Molecular Dynamics

TI Thermodynamic Integration

14



LIST OF CONSTANTS AND OPERATORS
erf (x) 2√

π

∫ x
0
exp(−t2)dt Error function

erfc(x) 1− erf (x) Complementary Error Function

h 6.626068× 10−34m2kg/sec Planck’s Constant [1]

i
√
−1 Imaginary unit

▽⃗ ( ∂
∂x⃗
, ∂
∂y⃗
, ∂
∂z⃗
) Gradient Operator

▽2 ▽ · ▽ = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
Laplace Operator

kB 1.380 658(12) ×10−23 J K−1 Boltzmann’s constant [1]
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Solution pH has profound effects on the structure, function, and activity of many

complex biomolecules that catalyze the chemical reactions responsible for sustaining

life. Even focusing on the human body, the various physiological environments span

a wide pH range—as low as 1 in the stomach to values as high as 8.1 in pancreatic

secretions. Small changes from the normal pH of a biomolecule’s environment can

be catastrophically disruptive to its activity. For example, a change in pH of as little as

±0.1 pH units in the human bloodstream is enough to cause life-threatening alkalosis or

acidosis.

Due to the importance of pH in biology and the profound effect it can have on

biomolecules, it is important to incorporate pH effects in computational models designed

to treat these biomolecules. The solution pH controls protonation state equilibria of

specific functional groups prevalent in biomolecules, such as carboxylates, amines,

and imidazoles. These protonation states in turn affect the charge distribution in the

biomolecule which can have a significant impact on both its 3-dimensional structure

as well as interactions with the surrounding environment. In many cases, pH can also

impact whether or not a proton donor or acceptor will be available for catalysis during

the course of the biocatalytic mechanism.

The aim of my work is to develop accurate and efficient computational models

to probe the pH-dependent behavior of proteins and nucleic acids. The models must
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be carefully designed to obey the laws of thermodynamics under the constraint of an

externally applied pH. Only then can the results be directly compared to experimental

measurements.

In this dissertation, I present my work on the development of pH-based models for

biomolecules and other work performed in the area of molecular modelling. In the first

chapter, I introduce the fundamental concepts computational biomolecular modeling

that lay the foundation for the presented work. This is followed by chapters on free

energy and sampling, constant pH simulations, replica exchange, and some useful

tools I developed to aid in conducting computational research with the Amber simulation

package.
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CHAPTER 1
INTRODUCTION

1.1 Origins of Computational Chemistry

The seeds of computational chemistry were sown in the mid-1800s with Ludwig

Eduard Boltzmann’s formulation of statistical mechanics. In an era when the existence

of atoms and molecules was hotly disputed within the physics community, Boltzmann

fathered a theory in which the behavior and interaction of individual atoms or molecules

on the microscopic scale could be used to describe and predict macroscopic phenom-

ena. Using his theorems and equations, it became possible to reduce the problem of

simulating ∼ 1023 molecules to simulating ∼ 1 molecule. Boltzmann used this to great

effect in describing and deriving previously-known, phenomenological equations for

ideal gases, such as the widely known equation of state, PV = nRT . All that remains to

provide the foundation for using molecular simulations is the proper description of atoms

and molecules on the microscopic scale.

The theories required to accurately model the behavior of individual atoms interact-

ing with each other and their surroundings would not be developed until the first half of

the 20th century with the advent of quantum mechanics. The limits of classical mechan-

ics became apparent when considering the Rayleigh-Jeans formula for calculating the

spectral emission of a radiating black body. The Rayleigh-Jeans law, given by Eq. 1–1,

is completely derived using the laws of classical mechanics. By looking at Eq. 1–1, we

see that the emission spectrum diverges at high frequencies (ν)—a clear violation of the

well-established law of conservation of energy.

Bν(T ) =
2ν2kT

c2
(1–1)

To address this apparent disparity, Max Planck suggested that the error in the classical

mechanical approach was to assume a continuous emission spectrum. Instead, Planck

suggested that the emission spectra was quantized, leading to an equation that agreed
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much closer with experiment. This idea of quantized energy emissions, while developed

to reconcile the mathematics of black-body radiation with experimental measurements,

would forever change our understanding of the microscopic world.

As quantum mechanics matured, our ability to explain and predict behavior at the

atomic scale dramatically improved. In 1929, Paul Dirac proclaimed, “The fundamental

laws necessary for the mathematical treatment of a large part of physics and the whole

of chemistry are thus completely known, and the difficulty lies only in the fact that the

application of these laws leads to equations that are too complex to be solved.” Even

approximations designed to simplify the equations of quantum mechanics in molecular

systems resulted in computations too complex to apply to all but the simplest systems.

With the fundamental theory necessary to describe single molecules and the machinery

required to extend that description to experimental measurements at our disposal,

computers provided the catalyst that thrusted theoretical chemistry into a prominent role

in chemical research.

The next sections will describe the theory of quantum mechanics and the ap-

proximations typically employed to simplify its equations, followed by a description of

statistical mechanics.

1.1.1 Quantum Mechanics

Twenty years after Planck introduced the idea of quantized oscillators to explain

black-body radiation, Erwin Schrödinger introduced a wave equation formulation of

quantum mechanics (QM). [2] Schrödinger’s equation (Eq. 1–2) bears a strong resem-

blance to Hamilton’s formulation of classical mechanics by employing an analogous

Hamiltonian operator comprised of a kinetic energy term (related to the momentum

operator) and a potential energy term.

EΨ(x⃗ , t) = ĤΨ(x⃗)

=

(
− ℏ2

2m
▽2 +V (x⃗)

)
Ψ(x⃗) (1–2)
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In Eq. 1–2, E is the total energy, Ĥ is the Hamiltonian operator, and Ψ(x⃗ , t) is the

wavefunction—the central object of Schrödinger’s equation containing all of the informa-

tion and properties inherent to the system.

Eq. 1–2 is a special form of Schrödinger’s equation corresponding to a stationary

state (i.e., the potential function is time-independent, so the energy for that state is

constant). In chemistry when we wish to calculate observable properties of a system

composed of atoms, the kinetic energy is the sum of the kinetic energies of the atomic

particles in the system, and the potential energy is calculated as the interaction of all

charged particles—protons and electrons—in the electric field they create (plus any

external field that may be present).

The wavefunction contains all of the information about each of the particles in the

system. As the number of particles in the system increases, so too does the complexity

of the wavefunction and the effort required to solve Eq. 1–2. Therefore, we turn to a

number of approximations developed to simplify computing a solution to Schrödinger’s

equation.

1.1.1.1 Born-Oppenheimer Approximation

The Born-Oppenheimer approximation (BOA) is pervasive in the field of computa-

tional chemistry. Electrons can move far more rapidly than nucleons since electrons are

roughly 1000 times lighter. This implies that electrons can reorganize around moving nu-

clei so quickly that nuclear protons are always subject to the potential from the average

electric field generated by the electrons.

Using the BOA, the wavefunction of a molecular system can be separated into

two parts: an electronic part where the nuclei are treated as fixed point charges, and a

nuclear part where the nuclei move through the average electric field generated by the

electrons. [3] So critical is the BOA to computational chemistry that it appears at the

heart of nearly every computational molecular model.
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1.1.1.2 Computational Quantum Mechanics

The main goal of most QM calculations in chemistry and molecular physics is to

determine atomic and molecular properties of the system by estimating the electronic

part of the wavefunction from the BOA. These calculations have provided valuable

assistance to experimental investigations. QM calculations can provide reliable mea-

surements of molecular geometries, [4] potential and free energy barriers of chemical

reactions, [5] ionization energies, [6] proton affinities and gas-phase basicities [7], and

many other chemical and molecular properties. [8]

These calculations are becoming routine as more and more experimental studies

employ some form of calculation to help interpret results or strengthen conclusions.

Despite all their successes and the rapid increase of computational power over recent

years, however, the computational demands of QM methods often remain prohibitively

high for systems with more than 100 – 200 atoms. Furthermore for researchers inter-

ested in these large systems, calculations on a single arrangement of atomic nuclei

becomes increasingly insufficient to quantify the behavior of those systems.

For such applications, we turn our attention back to statistical mechanics with the

aim of ultimately applying those principles to molecular mechanical simulations of large

molecules that often contain thousands—even hundreds of thousands—of atoms.

1.1.2 Statistical Mechanics

Macroscopic chemical systems are composed of a vast number of atoms—on

the order of Avogadro’s number, or 6.022 × 1023. How, then, can our calculations of

a single molecule or a small cluster of molecules be used to predict the behavior of a

collection of 1023 molecules? For that we turn to statistical mechanics and the idea of an

ensemble.

In a system with N particles (where N is typically on the order of Avagadro’s number

in magnitude), there are 6N total degrees of freedom in the system corresponding to

the position and momentum of each particle in all three dimensions. This ultra-high,
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6N-dimensional space is referred to as phase space, and the collection of all points

that conform to a small set of thermodynamic constraints—e.g., constant volume or

energy—represents an ensemble. [9] The connection between this imaginary ensemble

of systems and experimental measurements of real systems was provided by Josiah

Gibbs. The experimental value of any system in the lab is postulated to be equal to the

value of that mechanical observable averaged over every member of the ensemble.

[9] By knowing the probability of finding a member of an ensemble with a given set of

properties, this ensemble average can be calculated according to Eq. 1–3.

⟨A⟩ =
∑
aW (a)A(a)∑
aW (a)

=
∑
a

P(a)A(a) (1–3)

W (a) in Eq. 1–3 can be thought of as the number of states in the ensemble with the

same value of A. P(a) is the normalized probability for that state, where
∑
aW (a) is the

normalization factor.

Given that there are on the order of 1023 particles in the typical system, the number

of ensemble members from which the average is calculated appears at first glance to

be intractable. However, it turns out that the mean square fluctuations of measurable

properties within the ensemble scale as roughly 1/
√
N where N is the number of

particles in the system. Because N is on the order of 1023, the fluctuations around

the most probable value in the ensemble vanish and the ensemble average and most

probable value become identical. The problem of calculating the ensemble average of a

desired property is reduced to the far more tractable task of calculating its most probable

value.

The most commonly used ensemble, called the canonical ensemble, is constrained

such that each member has the same number of particles, volume, and temperature

(NVT). Other common ensembles include the microcanonical ensemble (NVE), the
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grand canonical ensemble (µVT), and the isobaric-isothermal ensemble (NpT), where

E, µ, and p stand for constant energy, chemical potential, and pressure, respectively. At

typical temperatures and particle densities, the fluctuations of mechanical properties in

each of these ensembles becomes negligible. Therefore, these ensembles are effec-

tively equivalent to one another, allowing us to choose the one that is most convenient to

work with mathematically.

The link between these ensembles and thermodynamics is the natural logarithm of

the partition function, which happens to be the normalization constant from Eq. 1–3 for

each of the ensembles. The partition functions of the common ensembles are shown in

Eqs. 1–4 to 1–7.

The logarithm of the partition function for each ensemble is directly proportional

to the thermodynamic function that has the same set of ‘natural’ variables. These

connections are summarized in Eqs. 1–8 to 1–11. [9]

Microcanonical Ω(N,V ,E) = ω(E) (1–4)

Canonical Q(N,V ,T ) =
∑
E

Ω(N,V ,E) exp(−βE) (1–5)

Grand Canonical Ξ(µ,V ,T ) =
∑
N

Q(N,V ,T ) exp(βµN) (1–6)

Isobaric-Isothermal ∆(N, p,T ) =
∑
V

Q(N,V ,T ) exp(−βpV ) (1–7)

In Eqs. 1–4 to 1–7, ω is the total number of states with a given energy and β is 1/kBT .

According to the principle of equal a priori probabilities, all states in the microcanonical

ensemble are considered equally probable simply because there is no reason to assume

otherwise.
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Microcanonical S = k ln (Ω(N,V ,E)) (1–8)

Canonical A = −kT ln (Q(N,V ,T )) (1–9)

Grand Canonical pV = kT ln (Ξ(µ,V ,T )) (1–10)

Isobaric Isothermal G = −kT ln (∆(N, p,T )) (1–11)

With the link to classical thermodynamics now firmly established through the

partition function, statistical mechanics can now explain the whole of thermodynamics

from the microscopic behavior of individual atoms and molecules. One of the principle

challenges of computational chemistry becomes how to efficiently estimate the partition

function.

Significant effort in computational chemistry centers on estimating the canonical

partition function Q(N,V ,T ). The naı̈ve approach to calculate the sum in 1–5 would

be to calculate the degeneracy of each energy level (Ω(N,V ,E)) and scale it with

the exponential weighting factor (exp(−βE)) called the Boltzmann factor. Due to the

immeasurable size of Ω(N,V ,E), however, this approach is highly inefficient in practice.

It turns out that most of the effort put into computing Q(N,V ,T ) results in terms that

contribute very little to the partition function since there are more available states at

higher energies (which carry little weight with the Boltzmann factor).

Because it is infeasible to calculate the full sums in Eqs. 1–4 to 1–7, partition

functions are estimated using a representative subsample of the available points to

construct the needed distributions. The strategies of generating these subsamples are

collectively referred to as sampling. The two most common approaches—Monte Carlo

and Molecular Dynamics—are discussed in the following sections.

1.1.2.1 Monte Carlo

One approach to approximating Eq. 1–5, called Monte Carlo (MC) sampling, is

to select new configurations of atomic positions at random in the molecular system,
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evaluate the energy of that structure, and add its contribution—weighted by the Boltz-

mann factor—to the sum of the partition function. This is equivalent to reorganizing the

sum in Eq. 1–5 to sum over individual states rather than energy levels. Eq. 1–5 is then

estimated as

Q(N,V ,T ) ≈
Nsamples∑
i=1

exp(−βEi) (1–12)

Because we assume no prior knowledge of phase space beforehand, using random

configurations in MC sampling is critical to avoid introducing bias into the subsample.

The MC approach to approximating the partition function proves to be highly inefficient,

however, as most random atomic configurations in a chemical system correspond to

species that are unphysical and contribute ∼0 to the partition function.

For example, consider characterizing the phase space of an ethane molecule using

MC. A random configuration is generated by placing both carbon atoms and all six

hydrogen atoms at a random point in space, evaluating the energy of that configuration

using a QM calculation, and adding that term to the summation in Eq. 1–12. Figure 1-1

depicts two conformations of ethane with an equal probability of being chosen, only

one of which will have an energy low enough to contribute significantly to Q(N,V ,T ). It

should be easy to see that there are far more unphysical arrangements of the atoms in

ethane than chemically reasonable ones.

While MC suffers severe limitations, Metropolis et al. proposed a modification to the

traditional MC approach that helped alleviate many of the problems described above.

[10] This variant, described below, is called Metropolis Monte Carlo after the method’s

architect.

Metropolis Monte Carlo

Metropolis’s breakthrough in MC methods is a subtle change to the standard ap-

proach. Instead of generating random structures and adding them all to the ensemble

with a weight equal to the Boltzmann factor, random structures are generated and ac-

cepted as full members of the ensemble with a probability proportional to the Boltzmann
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Figure 1-1. Two conformations of an ethane molecule. The conformation on the left is
the typical ‘staggered’ conformation known to be the lowest-energy
structure. The structure on the right is an absurd conformation that is never
considered experimentally. While the structure on the right contributes
negligibly to the partition function, it is an equally likely structure to be
proposed by Monte Carlo as the one on the left.

factor. Therefore, lower-energy structures are more likely to be added to the ensemble

since the probability of accepting the former is significantly greater.

In practice, an ensemble is built using Metropolis MC by constructing a chain of

states beginning with some initial structure. The ‘next’ structure is generated randomly

and accepted with a probability that ensures the constructed ensemble reproduces

the correct probability distributions for each state. The process of generating a random

conformation and evaluating its acceptance into the ensemble is called a trial move.

The resulting chain of states generated by Metropolis MC is called a Markov

chain, and it has two important qualities. First, trial moves are selected from a finite

set of available, predetermined moves that cannot change as the Markov chain grows.

Second, a Markov chain is said to be memoryless—that is, the probability of accepting

a proposed structure depends only on the current state and not on any other state that
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has come before. Because thermodynamics deals with chemical equilibria, an ensemble

built from a Markov chain of states needs an additional property—reversibility.

A reversible Markov chain needs to satisfy the additional condition of detailed

balance, a relationship shown in Eq. 1–13.

Piπi→j = Pjπi→j (1–13)

where Pi is the probability of being in state i and πi→j is the probability of accepting the

proposed change of going to state j from state i (called the transition probability ). The

detailed balance condition in a Markov chain asserts an equilibrium between all states in

the chain. Eq. 1–13 is nothing more than a common equilibrium expression encountered

in general chemistry where Pi is the ‘concentration’ of state i in the Markov chain and

the transition probability is the ‘rate’ of changing from state i to state j .

The last remaining detail of Metropolis MC is to define a transition probability equa-

tion that satisfies detailed balance. For the canonical ensemble, where the probability

of being in state i is proportional to the Boltzmann factor, Eq. 1–14 satisfies detailed

balance.

πi→j = min

{
1,
exp(−βEi)
exp(−βEj)

}
(1–14)

Eq. 1–14 can be inserted into Eq. 1–13 to verify that this choice for the transition

probability satisfies detailed balance and therefore results in a reversible Markov chain.

Models using the Metropolis MC approach instead of traditional MC are far more

efficient—so much so that the term Monte Carlo often implies Metropolis Monte Carlo,

[11, 12] and that convention will be adopted for the rest of this dissertation.

One concern that Metropolis MC does not address, however, is the propensity for

random choices to result in meaningless structures. This is alleviated by starting from a

chemically reasonable structure and limiting the magnitude of the structure differences

allowed in each trial move—a technique referred to as importance sampling. The step

size becomes a tunable parameter of the method. If it is too small, then it will take a long
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time to fill the ensemble with different structures. However, if it is too large, the likelihood

of proposing reasonable structures will drop off and the acceptance rate will suffer.

1.1.2.2 Molecular Dynamics and the Ergodic Hypothesis

An alternative method for constructing a statistical ensemble of states, called

molecular dynamics (MD), corresponds to generating structures by integrating the

equations of motion for molecular systems and building ensembles from the resulting

trajectories. The idea that a time-average over a trajectory is equal to an ensemble

average is called the ergodic hypothesis, and is the cornerstone of MD methods.

The most common equations of motion used in MD simulations are those from clas-

sical mechanics. The force on each atomic nucleus is calculated as the gradient of the

potential energy function U(x⃗) at the nuclear centers and then integrated numerically ac-

cording to Newton’s laws. A discussion of computational MD and numerical integration

of the classical equations of motion is presented in Appendix A.

Molecular dynamics simulations have several advantages compared to Monte

Carlo-based methods. First, MD can be used to calculate temporal properties, such

as diffusion. Second, every structure that is generated during a molecular dynamics

trajectory is a full member of the resulting ensemble. In contrast, MC-based techniques

discard some fraction of the structures they generate. Finally, trajectories generated

by MD simulations can inform about the nature of how a molecule moves within a

particular environment, which may provide insight into the behavior of molecular

systems. For these reasons, MD techniques have become very popular in the field since

the first reported use on proteins in 1977. [13] Molecular dynamics does have several

weaknesses, however, which must be overcome in order to use MD simulations as

predictive instruments in chemistry.

Standard molecular dynamics—simple integration of Newton’s laws—samples

strictly from the microcanonical ensemble since energy is conserved. While the var-

ious thermodynamic ensembles are equivalent in the thermodynamic (macroscopic)
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limit, it is often more convenient to work with other ensembles, like the canonical and

isobaric-isothermal ensembles. The desire to simulate systems with different thermo-

dynamic constraints led to the development of numerous ways to control temperature

and pressure. [12] These techniques are referred to as thermostats and barostats,

respectively.

The naı̈ve approach to maintaining a constant temperature is to scale all velocities

at each time step such that each point along the trajectory has the same kinetic energy

(and therefore temperature). [14] For large systems, however, the resulting perturba-

tion on the system is too large. To address this problem, Berendsen et al. proposed a

method in which the factor by which velocities are scaled is reduced so that thermaliza-

tion occurs on a finite time scale (rather than instantaneously). [15] Similar approaches

exist for maintaining constant pressure. [15] Analogous to scaling the velocities to

maintain a constant temperature, the system volume is scaled to maintain a constant

pressure.

Another major challenge in MD simulations is choosing the integration time step.

The time step must be chosen short enough to avoid accumulating integration errors,

but long enough that slow structural changes may be sampled in a reasonable amount

of simulation time. While the slow motions with small frequencies are often the most in-

teresting since they correspond with global conformational changes in macromolecules,

the time step is dictated by the high frequency motions—see Fig. 1-2 for a graphical

illustration clarifying this phenomena.

As an example, bonds between hydrogen and ‘heavy’ atoms (e.g., carbon, oxygen,

and nitrogen) often give rise to the highest frequency motions in typical macromolecules.

These degrees of freedom cut the maximum time step that can be used for MD simula-

tions in half. As a result, constraints are often applied to these high-frequency degrees

of freedom to permanently fix them to their equilibrium bond lengths using any of a

number of algorithms. [16–20]
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Figure 1-2. The curves represent the trajectory of simple harmonic oscillators with a
high frequency (left) and low frequency (right). The black arrows are the
trajectory traced out integrating Newton’s laws numerically using a time step
of 1 time units in the plot. The red line is the analytical trajectory to simple
harmonic oscillation.

While atomic forces can be derived from QM calculations on molecular systems and

MD can be performed using this potential, the massive computational expense of QM

models hinders their utility for large biomolecules. It is necessary, therefore, to develop a

model that can accurately describe large molecules while being simple enough to solve

with reasonable computational effort. For that, we turn to molecular mechanics.

1.2 Molecular Mechanics

We saw from Sec. 1.1.1.2 that computational chemists use quantum mechanics to

solve the electronic Schrödinger equation in order to calculate the energy as a function

of nuclear coordinates. For small molecules containing 20 – 30 atoms, there are typically

a small number of conformations that the molecule can reasonably adopt at typical
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temperatures, and partition functions can be reasonably approximated using only a

handful of different structures.

For larger systems, however, it becomes increasingly difficult to use QM methods

for two reasons. First, the computational demand for obtaining the energy of a single

structure rapidly increases. Second, phase space becomes so massive that calculating

the potential energy of a small number of snapshots is no longer a reasonable approx-

imation to the partition function. For these reasons, we seek to develop a model with

which we can efficiently calculate interatomic potentials in molecular systems without

solving the electronic Schrödinger equation. This model will fit a simple functional form

to the potential of the molecule, describing the interaction between every atom in the

system. These functions typically have analytic derivatives that can be rapidly evalu-

ated to facilitate their use in MD simulations. Because the analytic gradients of these

potentials are the forces that act on the atomic centers, these molecular mechanical

models are called force fields. I will now discuss how these force fields are designed,

with special attention paid to the Amber family of force fields.

1.2.1 Force Fields

In this section, I will discuss the various parameters found in common force fields,

including bonds, angles, torsions, and non-bonded interactions.

1.2.1.1 Bonds

I begin with modeling the chemical bond. Using the Born-Oppenheimer approxima-

tion, we can calculate the potential energy surface for a chemical bond by calculating the

potential energy at different nuclear separations using an appropriate QM methodology.

A common choice of function to reproduce the ‘correct’ potential energy surface is a

Taylor series expansion centered around the equilibrium bond length. This series can be

truncated at any order to achieve the desired accuracy and precision. An example for

the Hydrogen molecule is shown in Fig. 1-3, where the ‘exact’ potential energy surface

is taken from Ref. 21. When the deviation from the minimum bond length is small, the
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Figure 1-3. The exact potential energy surface for H2 [21] plotted with the best-fitting
quadratic and quartic polynomials and the best-fitting Morse potential (Eq.
1–16).

potential behaves like a simple harmonic oscillator obeying the potential

U(x⃗) =
1

2
k(x⃗ − x⃗eq)2 (1–15)

where x⃗eq is the equilibrium bond length.

Another function commonly used to model chemical bonds, called the Morse

potential, is shown in Eq. 1–16. The Morse potential has the benefit that it can model

bond dissociation (Dx⃗ in Eq. 1–16)—an effect that cannot be captured with a low-order,

truncated Taylor series expansion. It is used less frequently than a second- to fourth-

order truncated Taylor series, however, because it is costlier to compute and most

simulations employing force fields study conformations in which bonds remain close to

their equilibrium values. When bond lengths deviate little from equilibrium, the difference

between the Morse potential and a quadratic (or quartic) polynomial is small. [22]
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U(x⃗) = Dx⃗ [1− exp (αx⃗(x⃗ − x⃗eq))]2 (1–16)

Bond parameters can be derived from either high-level quantum calculations—such

as those shown in Fig. 1-3—or from experimental measurements. Vibrational force

constants (k in Eq. 1–15) and dissociation energies (Dx⃗ in 1–16) can be determined

spectroscopically and subsequently used to define the bond parameters.

1.2.1.2 Angles

A valence angle is defined as the angle (θ) between atoms separated by two

consecutive bonds—see Fig. 1-5B. Like bonds, they behave like simple harmonic

oscillators when they are sufficiently close to the equilibrium value. As a result, they are

typically treated with the simple quadratic potential function U(θ⃗) = 1/2k(θ⃗ − θ⃗eq)
2.

Angle parameters, too, can be derived from either high-level QM calculations or

from spectroscopic measurements. Infrared spectroscopy is particularly well-suited for

deriving these parameters, since vibrational frequencies correspond with harmonic force

constants.

1.2.1.3 Torsions

A torsion is defined between four atoms connected by three sequential bonds—for

simplicity I will reference the atom numbers from the labels in Fig. 1-5C. The torsion

angle (ϕ), then, is the angle between the bonds 1–2 and 3–4 when projected onto a

plane whose normal vector is the 2–3 bond. This projection is easily visualized for the

Newman projection of a torsion, shown in Fig. 1-5D. It should be apparent that torsion

potentials should repeat with a maximum period of 360° since torsion angles separated

by 360° are identical.

The functional form used for torsions is different than that used for bonds and

angles. While a periodic function can be represented by a Taylor series polynomial of

infinite order, a Fourier series is far more suited to fitting torsion potentials than Taylor
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series since the basis functions of a Fourier series are, themselves, periodic. A common

functional form for torsion potentials is given in Eq. 1–17. [22]

U(ϕ) =

N∑
i

ki [1 + cos (niϕ+ ψi)] (1–17)

where the torsion potential is represented as a sum of N terms with barrier heights ki ,

periodicities of ni , and phase shifts of ψi .

Torsion potentials are easily the most important of all bonded parameters in force

fields. Bonds and angles are relatively rigid, since they are often modeled by quadratic

potentials with modestly large force constants. Even making the force constant for bonds

and angles two times larger than they should be will result in only a small change in

conformational sampling. Torsion potentials, on the other hand, typically have much

smaller barriers and give rise to far more significant conformational changes.

Consider the ethane molecule in which torsions are defined between H–C–C–H.

At room temperature, neither the individual bonds or angles will deviate much from

their equilibrium values, but the torsion angle will readily sample every value due to

the low energy barriers between staggered and eclipsed conformations. In order to

accurately calculate the partition function, then, a force field must properly reproduce

the energy barriers along the torsion coordinate to provide a reasonable estimate of the

thermodynamic properties of ethane.

Unlike bond and angle parameters, there are no spectroscopic techniques that

can be used to extract torsion parameters. Furthermore, force field parameters are not

orthogonal with one another—for example, different choices for non-bonded potential

terms (described in Sections 1.2.1.4 and 1.2.1.5) will impact torsion profiles. Therefore,

torsion terms are typically the last values fitted when designing a force field, and are

used as correctional terms to ‘fix’ the deficiency of the other force field parameters in

describing conformational equilibria. Force fields are often systematically improved just

by changing some torsion terms. [23–25]
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1.2.1.4 Electrostatic Interactions

The three potentials that I just discussed are called bonded interactions since they

occur between atoms connected by bonds. Potentials between all atoms are called

non-bonded interactions. The first of the non-bonded interactions I will discuss arise due

to charge-charge interactions, typically referred to as electrostatic interactions.

Atoms treated in a force field are assigned partial charges that roughly correspond

to atom electronegativities, although each force field has a precise recipe for deriving

partial atomic charges. A common strategy to assign partial charges is to fit to an

electrostatic potential (ESP) calculated using a QM method. It is common practice to

apply constraints to the fit to ensure that rotationally degenerate atoms (e.g., the three

hydrogen atoms in a freely rotating methyl group) have the same charge—a technique

referred to as restrained electrostatic potential (RESP). [26–28]

There are two principle charge-charge interaction models utilized in modern force

fields: so-called polarizable and fixed-charge force fields. The polarizable force fields

allow the partial atomic charge of each atom to change in response to its surroundings,

providing additional flexibility to force field parametrization. Due to the added com-

putational expense of computing polarizable potentials and the difficulty this imposes

on deriving other aspects of the force field, fixed-charge force fields (i.e., force fields

where partial atomic charges never change) are more commonly used. All future discus-

sion in this dissertation of electrostatic interactions in the MM framework will focus on

fixed-charge, monopole-monopole interactions.

The electrostatic potential is calculated according to

U(ri ,j) = k
qiqj
ri ,j

(1–18)

In Eq. 1–18, k is the electrostatic constant, qi is the partial charge on atom i , and ri ,j

is the distance between atoms i and j . One thing to note about Eq. 1–18 is the long-

ranged nature of the interaction. While the electrostatic energy of two charged particles
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falls to 0 as the distance between them becomes infinite, 1/i decays so slowly that∑∞
i=1 1/i = ∞. Therefore, electrostatic interactions typically have to be evaluated over a

very long distance (or calculated completely).

1.2.1.5 van der Waals Interactions

In addition to electrostatic interactions, force fields also employ another non-bonded

potential that accounts for van der Waals interactions. The van der Waals potential is

composed of two parts—a strongly repulsive term that models steric clashes and an

attractive term accounting for dispersion interactions. The attactive term of the van der

Waals potential is derived mostly from the London dispersion forces shown for an ideal

gas dimer in Eq. 1–19. [3]

U(ri ,j) = −3
2

αI

r 6
(1–19)

where I is the first ionization energy and α is the polarizability. This attractive interac-

tion arises even in noble gases due to instantaneous atomic polarization caused by

correlated movements of the electrons.

The most common functional form used to model van der Waals interactions is

called the Lennard-Jones (LJ) potential, shown in Eq. 1–20.

ULJ(ri ,j) = 4εi ,j

[(
σi ,j
ri ,j

)12
−
(
σi ,j
ri ,j

)6]

= 4εi ,j

[
1

4

(
Rmin,i ,j
ri ,j

)12
− 1
2

(
Rmin,i ,j
ri ,j

)6]
(1–20)

=
ai ,j
r 12i ,j

− bi ,j
r 6i ,j

where ri ,j is the distance between atoms i and j , and the remaining terms are labeled in

a schematic diagram showing the nature of the LJ potential in Fig. 1-4. The three forms
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of Eq. 1–20 are equivalent if

Rmin,i ,j = 21/6σi ,j

ai ,j = εi ,jR
12
min,i ,j

bi ,j = 2εi ,jR
6
min,i ,j

Due to its computational efficiency, the third form of Eq. 1–20 is typically used in

molecular simulations. To use Eq. 1–20 in these simulations, the ai ,j and bi ,j values must

be computed for every pair of atoms in the system. For transferable force fields (i.e.,

force fields whose parameters can be used for many different, but related, systems),

each type of atom defined in the force field is typically assigned an individual ε and

σ parameter which must be combined with every other atom type to yield ai ,j and bi ,j .

The way in which these individual atomic parameters are mixed is referred to as the

combining rules.

1.2.1.6 Other Force Field Terms

The parameters presented in the previous sections make up the bulk of all parame-

ters found in typical force fields. In this section I will describe some of the less-commonly

used types of parameters.

Improper Torsions. Improper torsions are typically used as correction terms to

control out-of-plane motion. There are numerous instances where four or more atoms

should be predominantly coplanar—such as aromatic five- and six-membered rings. The

existing parameters I have already mentioned do not necessarily ensure that the proper

planarity of these systems will be maintained. As a result, improper torsion terms are

added to the force field in key locations to suppress unwanted out-of-plane motion. A

diagrammatic depiction of an improper torsion is shown in Fig. 1-5E.

Correction Map. Torsion potentials are so important to ensuring that MM simula-

tions generate a sensible conformational ensemble that some force fields parametrize

coupled torsion parameters to improve the accuracy. The most common implementation
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Figure 1-4. The Lennard Jones potential between two atoms with a Rmin,i ,j of 3.816 Å
and ε of 0.1094 kcal mol-1. The various parameters are indicated on the
graph, and the full LJ potential is shown alongside its repulsive and attractive
terms.

of these coupled-torsion corrections is done in the form of a correction map, or CMAP

term. [29] The CMAP is generated by mapping the potential energy surface of two tor-

sions in a small sample system without the CMAP correction and subtracting that from

the ‘true’ potential energy surface calculated with some high-level QM method.

The CMAP is then laid out on a grid, using some type of interpolating spline (e.g.,

bicubic splines) to calculate potential energies and forces during MD simulations. A

schematic of the coupled-torsions commonly parametrized via CMAPs is shown in Fig.

1-5F.

Urey-Bradley. Another parameter commonly used in CHARMM force fields [30]

is called the Urey-Bradley potential. The functional form of the Urey-Bradley term

is identical to the bond term in Sec. 1.2.1.1 (Eq. 1–15), but exists between atoms
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Figure 1-5. Schematics shown for various parameters present in typical force fields. A)
is a bond parameter, B) shows the valence angle parameter and the
Urey-Bradley parameter where u⃗ is the shown distance, C) depicts a torsion,
D) depicts the same torsion using a Newman projection, E) depicts an
improper torsion, and F) depicts two coupled torsions alongside a typical
free energy map of two torsions that CMAP parameters attempt to fit to.

separated by two bonds (i.e., forming a valence angle). The Urey-Bradley term is shown

in Fig. 1-5B alongside the valence angle.

1.2.2 The Amber Force Field

The Amber force field is a popular family of force fields designed to treat large

biomolecules such as proteins, DNA, and RNA. This section will focus on the functional

form and implementation of the Amber force fields [23, 31, 32] in the supporting Amber

programs. [33]
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1.2.2.1 Functional Form

The functional form of the Amber force fields is typically presented as in Eq. 1–21,

[31] although this is an incomplete specification. A more rigorous definition is presented

in Eq. 1–22, taking into account the proper exclusion of non-bonded terms between

bonded atoms.

U(q) =
∑

bonds

Kr(r − req)2 +
∑

angles

Kθ(θ − θeq)
2

+
∑

torsions

Vn
2
[1 + cos(nϕ− γ)] +

1

2

∑
i

∑
j

[
Ai ,j
R12i ,j

− Bi ,j
R6i ,j
+ kelec

qiqj
ϵRi ,j

]
(1–21)

∑
bonds

Kr(r − req)2 +
∑

angles

+Kθ(θ − θeq)
2+

U(q) =
∑

torsions

Vn
2
[1 + cos(nϕ− γ)] +

1

2

∑
i

∑
j∈l1−4,i

[
Ai ,j
2.0R12i ,j

− Bi ,j
2.0R6i ,j

+
qiqj
1.2ϵRi ,j

]
+ (1–22)

1

2

∑
i

∑
j /∈lexcl ,i

[
Ai ,j
R12i ,j

− Bi ,j
R6i ,j
+ kelec

qiqj
ϵRi ,j

]

Amber employs a simple harmonic potential to model angles and bonds to com-

pletely describe the interactions between atoms separated by one and two bonds—i.e.,

no electrostatic or Lennard-Jones potentials are calculated between pairs of atoms

connected by a bond or angle. Torsions are treated with a truncated Fourier series

expansion, typically using integral values for the periodicity (n in Eqs. 1–21 and 1–22).

Therefore, the sum over torsions in Eqs. 1–21 and 1–22 is a sum over all individual

torsion terms for each distinct torsion. Improper torsions are modeled the same way as

‘proper’ torsions with only a single term designed to maintain their planar geometry.

The non-bonded interactions are composed of a Lennard-Jones term (the third

form of Eq. 1–20) and electrostatic term calculated between all atom pairs that are not

excluded from the computation. The non-bonded exclusion list—lexcl ,i for atom i in Eq.
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1–22—is composed all atoms separated by one, two, and three bonds (i.e., that form

bonds, angles, or torsions with atom i ). Finally, the LJ interactions between all atoms

separated by three bonds are scaled by 1/2 and the electrostatic interactions between

those atom pairs are scaled by 1/1.2. In Eq. 1–22, l1−4,i represents the list of atoms

related to atom i like atoms 1 and 4 in Fig. 1-5C.

1.2.2.2 Implementation

This section will describe how the Amber family of force fields is implemented in the

Amber program suite. It is important to note that the Amber force field is not unique—

there are many variants, each with a different name. [23, 31, 32, 34–36] All information

necessary to fully describe a molecular system with the Amber force field is contained

in two files—the parameter-topology file (prmtop) and the coordinate file. The prmtop

file—fully described in Appendix B—contains all of the information regarding the bonded

network and the necessary parameters for evaluating Eq. 1–22. The coordinate file

contains the Cartesian coordinates and velocities for each atom in the system described

by the prmtop file.

The prmtop file is generated by the tleap program by matching the parameters

from a database to the assigned ‘atom types’ of the input structure. Atom types are

descriptors of individual atoms that specifies the properties and typical chemical

structure of bonds involving that atom. Each atom type, i , has a predetermined set of

atom parameters—an atomic mass, a LJ radius ri , and a LJ well-depth εi . The pairwise

Rmin,i ,j in Eq. 1–20 of atom types i and j is the sum ri + rj . The combined well depth

εi ,j is the geometric mean of the individual well depths (√εiεj ). These are the so-called

combining rules employed by tleap when parametrizing a molecule with an Amber force

field.

The Amber parameter databases store a list of all recognized atom types as well as

the bond, angle, and torsion parameters between the various bonded arrangements of

the available atom types. For instance, each pair of atom types that could form a bond
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(e.g., two aromatic carbons or an aromatic carbon and an aromatic hydrogen) has an

equilibrium bond length and bond force constant associated with it. Also stored in these

parameter databases are the equilibrium angle displacements with corresponding force

constants and torsion parameters (periodicities, barrier heights, and phase shifts for

each term of every torsion).
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CHAPTER 2
BIOMOLECULAR SIMULATION: SAMPLING AND FREE ENERGY

All of the simulation models discussed in Chapter 1 use an electrostatic equation

dealing with charges interacting in a vacuum. However, biological chemistry occurs

almost exclusively in an aqueous environment, necessitating the development of models

capable of simulating these systems in solution. In this chapter, I will describe the

various methods by which solvent effects are introduced into simulation, followed by

the ensemble sampling techniques that will be used for the principle studies in this

dissertation.

2.1 Simulations in the Condensed Phase

The techniques by which solvation effects can be incorporated into various compu-

tational models can be separated into two groups. The most obvious way is to include

the solvent atoms and molecules directly into the simulation alongside the system of

interest—referred to collectively as explicit solvent methods. While explicit solvent mod-

els are the most accurate approach in principle, they drastically increase the size of the

system—simultaneously increasing the cost of the simulation and amount of sampling

required to obtain converged results.

An alternative way to include solvent effects is by modifying the electrostatic

interactions in a system to account for the natural screening that a particular solvent

provides. These approaches are called implicit solvent methods because solvent

effects are included in an average way without including the actual solvent atoms or

molecules in the simulation. Simulations employing implicit solvent models result in

smaller systems in which comformational sampling converges more rapidly because

the solvent degrees of freedom are already included in a mean field way. However,

individual solvent molecules often play a critical role in the structure and function of

biological molecules and behave very differently from molecules in bulk solvent—an

effect implicit solvent models are ill-equipped to handle.
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The following sections describe the various implicit and explicit solvent models

commonly used in biomolecular simulations.

2.1.1 Implicit Solvent

One of the most important qualities of a solvent—especially an aqueous solvent—is

its ability to polarize in response to an electric field, thereby reducing the magnitude of

electrostatic interactions across a given distance. While the naı̈ve approach of simply

applying the solvent dielectric everywhere is attractive in its simplicity, solvent-excluded

regions should obviously not be subject to the screening effects of the solvent. For large

biomolecules, the solvent-excluded regions can be quite large, so it becomes important

to deal with these regions effectively.

2.1.1.1 Distance-dependent Dielectric

Among the earliest approaches to account for the different dielectric environments

of the interior of a bimolecule and bulk solvent introduced a dielectric constant that

changed as a function of the distance between two charged particles. As the separation

between two particles increased, so too did the likelihood that they were separated by

solvent, and were therefore subject to dielectric screening effects.

This approach is attractive in its simplicity—it adds little to the computational cost of

the model while retaining the simple, pairwise-decomposable nature of the electrostatic

potential term. A common equation modeling the dielectric constant is given below in

Eq. 2–1. [12]

εeff (r) =
εbulk − 1
2

[
(rS)2 + 2rS + 2

]
exp(−rS) (2–1)

where r is the distance between the two particles, εbulk is the dielectric constant of the

bulk, εeff is the effective dielectric constant at a given particle separation, and S is a free

parameter. Fig. 2-1 plots the resulting curve for εeff from Eq. 2–1 for different values of

the free parameter.
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Figure 2-1. Distance-dependent dielectric for different values of the free parameter S in
Eq. 2–1.

This effective dielectric constant is then incorporated as ϵ in Eq. 1–22, and influ-

ences the calculated forces due to its dependence on ri ,j . One of the biggest weak-

nesses of distance-dependent dielectrics is that it treats every atom in the biomolecule

as though they are in the same environment, whereas the shapes of biomolecules—and

their solvent-excluded volumes—are often highly irregular. That is, two atoms buried

inside the solvent-excluded volume separated by d Å are treated exactly the same

way as two different atoms d Å apart whose interstitial region is solvent-accessible.

Furthermore, because the shapes of biomolecules can vary greatly from system to

system, the ‘optimal’ value for S in Eq. 2–1 is highly system-dependent. Finally, while

the true dielectric regions are either the value of the bulk solvent or the molecule inte-

rior, a distance-dependent dielectric has a large region corresponding to unphysical,

intermediate values of the dielectric.
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For these reasons, the distance-dependent dielectric model is rarely used in

modern simulations, having given way to the more accurate methods like the Poisson-

Boltzmann and Generalized Born equations.

2.1.1.2 Poisson-Boltzmann

At the heart of most modern implicit solvent models lies the Poisson equation

▽ϵ(⃗r) · ▽ϕ(⃗r) = −4πρ(⃗r)

where ϕ is the electrostatic potential distribution function, ρ is the charge distribution

function, and ϵ is the dielectric constant at a given point in space. The dielectric constant

is often divided into two regions—a region of low dielectric in the solvent-excluded

volume and that of the bulk solvent ‘outside’ the system of interest. [22]

The Poisson equation is only valid, however, at zero ionic strength. When mobile

ions are present—as is the case in vivo with all biomolecules—the Poisson equation

must be augmented with an appropriate distribution of counterions. The probabil-

ity of finding an ion in a particular region of space is related to its Boltzmann factor

exp(−βqϕ(⃗r)), where qϕ(⃗r) is the energy of a point charge in a given electrostatic poten-

tial. Because ions come in pairs with both positive and negative charges, the Boltzmann

probability of finding both types of ions must be included. The equation for calculating

the electrostatic potential in a biomolecular system with a given solution ionic strength,

termed the Poisson-Boltzmann (PB) equation, is shown in Eq. 2–2. [22]

▽ϵ(⃗r) · ▽ϕ(⃗r)− ϵ(⃗r)λ(⃗r)κ2
kBT

2q
exp (−βqϕ(⃗r)) + ϵ(⃗r)λ(⃗r)κ2

kBT

2q
exp (βqϕ(⃗r)) = −4πρ(⃗r)

▽ϵ(⃗r) · ▽ϕ(⃗r)− ϵ(⃗r)λ(⃗r)κ2
kBT

q
sinh

(
qϕ(⃗r)

kBT

)
= −4πρ(⃗r)

(2–2)

46



In Eq. 2–2, q is the charge of the ions (both positive and negative ions are present),

λ(r) is a simple switching function that is 0 in solvent-excluded regions and 1 in solvent-

accessible regions, and κ2 is related to the ionic strength as

κ2 =
8πq2I

ϵkBT

Eq. 2–2 is a non-linear, second-order differential equation in the electrostatic

potential that must be solved iteratively until the desired level of self-consistency in the

electrostatic potential is achieved. The sinh term in Eq. 2–2 may be expanded using its

Taylor series expansion. If the ionic strength is low and the solute is not highly charged

(so ϕ(⃗r) is relatively small), the Taylor series expansion for sinh can be truncated after

the first term to yield the much simpler Eq. 2–3 with little loss of accuracy. Eq. 2–3 is

called the linearized Poisson-Boltzmann equation because the Taylor series expansion

for sinh is truncated after its linear term.

▽ ϵ(⃗r)▽ ϕ(⃗r)− ϵ(⃗r)λ(⃗r)κ2ϕ(⃗r) = −4πρ(⃗r) (2–3)

The Poisson Equation can be solved exactly for only the simplest systems, like

solvating a point-charge or a conducting sphere with a uniform charge distribution on

its surface. Eq. 2–2 or 2–3 must be solved numerically for complex biomolecules with

irregular shapes. A common approach is to set up a three-dimensional grid surrounding

the solute and calculate the charge distribution on the grid from the partial charges of

each solute atom. The dielectric boundary can be calculated from the solvent accessible

surface [37], so each grid point has an associated charge and dielectric value. The

differential equations can then be solved via finite differences within the defined grid.

[38]

After the electrostatic potential is calculated via Eq. 2–2, the free energy is calcu-

lated by integrating the product of the charge distribution and the calculated electrostatic
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potential according to

G =
1

2

∫
ρ(⃗r)ϕ(⃗r)dr⃗

where the 1/2 factor corrects for double-counting the interactions. The free energy of

solvation due to solvent polarization is calculated from the difference in the electrostatic

potentials in vacuum and solvent (ϕsolv − ϕvac )—a quantity referred to as the reaction

field. [12] The charge-dependent portion of the solvation free energy then becomes

∆Gpol =
1

2

∫
ρ(⃗r) (ϕsolv (⃗r)− ϕvac (⃗r)) dr⃗ (2–4)

Models employing implicit solvent via the PB equation have proven effective in many

cases. [38–41] However, due to requirements of a fairly dense grid and the iterative,

self-consistent nature of solving the PB equation, the computational cost of this model is

too high for many applications. Furthermore, the dielectric function is discontinuous at

the boundaries of the solvent-excluded and solvent-accessible regions, making stable

gradients (and therefore forces) difficult to calculate. [42] Therefore, I will now consider

a common approximation to the PB equation called the Generalized Born model that

seeks to provide an efficient, analytical alternative to solving the PB equation.

2.1.1.3 Generalized Born

While the electrostatic potential generated by most charged species cannot be

solved analytically using the Poisson equation, I will consider two simple, ideal systems

that can. The first is a perfect conducting sphere of radius r with a uniform charge

distribution. Given a total charge q and using the Poisson equation to calculate the

electrostatic potential induced by the charged sphere, the polar contribution to the free

energy of solvation can be calculated from Eq. 2–4, giving the familiar Born equation,

shown below. [22]

∆Gpol = −1
2

(
1

ϵvac
− 1

ϵbulk

)
q2

r
(2–5)
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In Eq. 2–5, ϵvac is the dielectric constant of a vacuum, which is unity. It is shown explicitly

here to demonstrate that the dielectric constant of the solvent-excluded volume in the

Poisson equation does not appear in the Born equation.

If instead of being a perfect conducting sphere with a uniform charge distribution,

the sphere had a perfect dipolar charge distribution, the free energy of solvation using

the Poisson equation would result in the Kirkwood-Onsager equation, shown below. [22]

∆Gpol = −1
2

(
2(ϵ− 1)
2ϵ+ 1

)
µ2

r 3
(2–6)

where the ϵ is the dielectric constant of the bulk solvent and the dielectric constant of

vacuum has simply been replaced by 1.

The Generalized Born (GB) formalism for calculating the polar contribution to the

solvation free energy is, as its name would suggest, an extension of the Born solution

shown in Eq. 2–5 to complex molecules with an arbitrary size and shape. [43–47] Still

et al. were the first to propose the method, adjusting the Born equation (Eq. 2–5) as

shown below. [43]

∆Gpol = −1
2

(
1− 1

ϵ

) N∑
i=1

N∑
j=1

qiqj
fGB

(2–7)

where qi is the charge of atom i , ϵ is the dielectric constant of the solvent, and fGB is an

arbitrary, analytic function of atom positions designed to calibrate Eq. 2–7 to experiment.

The most common form of fGB devised by Still et al., and still used predominantly today,

is shown in Eq. 2–8.

fGB =

√
r 2i ,j + αiαj exp

(
−
r 2i ,j
4αiαj

)
(2–8)

where ri ,j is the distance between atoms i and j and αi is called the effective Born radius

of atom i for reasons that will soon be apparent.

Eq. 2–8 does not represent a theoretically ‘correct’ choice for fGB , nor has it been

shown to be the best choice—in fact it probably is not. [48] However, it is a good choice
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for several reasons. First, Eq. 2–8 is a simple formula with analytical gradients—

assuming αi is an analytic function of the nuclear positions—and can be computed

rapidly. More importantly, however, Eq. 2–8 has the appropriate limiting behavior. [43]

For a single particle—or two identical point charges separated by a distance of 0—fGB

reduces to α and Eq. 2–7 reduces to the Born equation (Eq. 2–5) in which the radius of

the ‘sphere’ is αi . It is for this reason that the αi values can be thought of as an ‘effective’

radius. Furthermore, for two point charges separated by a small distance (i.e., smaller

than the effective radii of the two particles) the result agrees with the Kirkwood-Onsager

solution (Eq. 2–6) to within 10% of the true value. [43]

The next major challenge in solving Eq. 2–7 is calculating the effective Born radii,

αi , for each atom. The effective radius of an atom reflects the spherically average dis-

tance of that atom from the solvent excluded surface. Calculating the effective radii is

particularly challenging because it must be done rapidly, accurately, and so gradients

may be easily computed. Because GB was developed as an efficient alternative to

solving the PB equation, computationally intensive approaches to calculating the effec-

tive radii offer little advantage over using the more precise PB equation. Furthermore,

Onufriev et al. has demonstrated the importance of computing effective Born radii ac-

curately, [47] showing that so-called ‘perfect radii’ reproduce PB results very closely.

Finally, gradients are necessary to perform either geometry optimization or molecu-

lar dynamics, and an expression that lends itself to rapid computation of an accurate

gradient is an attractive feature.

The most common approach to computing the effective radius is called the coulomb

field approximation, shown below in Eq. 2–9. [22]

Ii =

∫
Ωi

d3r

4πr 4
(2–9)

50



Ii in Eq. 2–9 is the coulomb field integral for atom i and Ωi signifies the integral

is over all space centered on atom i . The effective radius is then computed from this

integral using Eq. 2–10.

αi =
(
ρ−1i − Ii

)−1 (2–10)

where ρi is the intrinsic van der Waals radius of atom i and Ii is the integral from Eq.

2–9.

As computational power increased and simulations reached longer time scales

and larger systems, however, deficiencies in these equations began to surface, leading

to efforts to improve the calculation of the effective Born radii. [47, 49–51] The two

approaches that have been implemented in the Amber suite of programs are briefly

described below.

Onufriev et al. noticed that Eqs. 2–9 and 2–10 tended to underestimate the effective

radii of buried atoms because it assumed that interstitial regions of space between

atoms were solvent-filled, despite the fact that they were too small to contain a full water

molecule. [49] As a result, they modified Eq. 2–10 into the following form:

αi =
[
ρ−1i − ρ−1i tanh

(
aΨ− βΨ2 + γΨ3

)]−1 (2–11)

where Ψ = Iρi (Ii is taken from Eq. 2–9), and a, β, and γ are fitting parameters. The tanh

function was chosen because it is infinitely differentiable (analytically) and increases

the effective radii of more deeply-buried atoms while leaving the effective radii of atoms

closer to the surface unchanged. In this way, Eq. 2–11 maintains the success Eq. 2–10

displayed for small compounds while improving the behavior of deeply-buried residues.

[49] This GB variant is referred to as GBOBC (where OBC comes from the authors

Onufriev, Bashford, and Case).

Mongan et al. took a different approach. While Eq. 2–11 provided uniform scaling

for all atoms with a given degree of burial (as measured by the value of Ii in Eq. 2–9),
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Rsolv

Figure 2-2. Region of space between two atoms i and j of radius Ri and Rj that is
inaccessible to a spherical solvent molecule of radius Rsolv . This inaccessible
region is called the neck and is shaded gray.

Mongan et al. adopted an approach based on geometry. By treating each atom and

each solvent molecule as a sphere—a good approximation for a water molecule—

the interstitial space between two solute atoms that is inaccessible to solvent can be

quantified. Because this interstitial region resembles a neck—as seen in Fig. 2-2—this

model is referred to as GBneck. [50]

The most recent approach by Nguyen et al. involves a re-parametrization of the

intrinsic atomic radii (ρi in Eq. 2–10) for atoms commonly involved in salt bridges and a

combination of the ideas presented in the GBOBC and GBneck models described above.

[51]
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2.1.1.4 Non-polar Solvation

The process of solvation can be broken down into two fictitious steps—a cavitation

step in which the solvent is excluded from a region of space equal to the solute’s solvent

excluded volume, and a charging step where the solvent-polarized charge distribution

of the solute is inserted into that cavity. Because the free energy is a state function, this

gedanken decomposition will yield an identical free energy to the true experimental free

energy—assuming of course that each step can be calculated exactly. The free energies

of these two steps are referred to as the non-polar and polar solvation free energy,

respectively.

The Poisson-Boltzmann and Generalized Born equations shown in Eqs. 2–2 and

2–7 are used to compute the polar solvation free energy (i.e., the portion of the free

energy derived from the reaction field). There are several methods for calculating the

non-polar solvation free energy.

Methods for calculating the non-polar contribution to solvation are often parametrized

by assuming that the solvation free energy for extended and branched alkanes is non-

polar in nature. The most common way to calculate non-polar solvation is to fit a surface

tension value to the experimental solvation free energies of the alkanes. [22] This

approach can be rationalized using the idea that the presence of a non-polar solute

immersed in solvent disrupts the solvent-solvent interactions, thereby restricting solvent

structure in the solvation shell surrounding the solute. This effect imposes an entropic

penalty to solvation (that is offset by the polar solvation term for soluble compounds).

If this was the only source of the ‘non-polar’ solvation free energy, then its magnitude

would vary with the size of the molecule, which is directly related to its surface area.

Combining this surface-area non-polar solvation term with either the Poisson-

Boltzmann or Generalized Born equations for the polar solvation term results in the

so-called PBSA and GBSA methods, respectively. One of the most common methods for

calculating the surface area in GBSA molecular dynamics simulations is called the linear
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combination of pairwise overlaps (LCPO) method—so-called because it is parametrized

by fitting five parameters to the spherical overlaps of individual atoms. [52] The chief

advantage of LCPO is that it provides an efficient way to calculate surface areas using

an analytical formula whose derivatives can be easily calculated for use in molecular

dynamics.

2.1.2 Explicit Solvent

While the implicit solvent methods described above are useful ways of incorporating

solvation effects in molecular simulations, all solvent effects are accounted for in an

average way. Therefore, individual water molecules that play structurally important roles

in biomolecules are not treated well by either PB or GB methodologies. In such cases,

it is advantageous to include the solvent molecules explicitly in the simulation. Explicit

solvent significantly increases the cost of the simulation by adding a large number of

atoms to the system, but should improve the accuracy by creating a model closer to

reality.

A large drawback when adding explicit solvent, however, is the fact that modern

simulations at an atomic resolution (i.e., where all atoms are treated explicitly) are

limited to, at most, 108 atoms, [53] although simulations between 105 to 106 atoms are

more reasonable. Macroscopic systems, on the other hand, contain on the order of 1023

atoms—an intractable number for modern hardware, so our simulations must be scaled

down to a microscopic size.

As a demonstration, the hairpin ribozyme is a biomolecule that contains roughly

2100 atoms. Adding only 22,000 water molecules—enough to create a 20 Å spherical

solvent buffer around the ribozyme—increases the simulation size to roughly 90,000

atoms. It is quite clear, therefore, that even on the largest supercomputers, we can

only model a microscopic droplet in explicit solvent. At such small sizes, the ratio of

surface area to volume for these minuscule droplets is astronomically large, and water
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molecules at the solvent-air interface behave quite differently from those molecules in

bulk solvent.

While early approaches of applying a ‘cap’ potential—an artificial biasing potential

penalizing solvent that diffuses too far away from the solute—helped overcome some

surface effects like evaporation, it made direct comparison to experiment dubious. A

major breakthrough in explicit solvent calculations came with the introduction of periodic

boundary conditions. [54]

2.1.2.1 Periodic Boundary Conditions

To emulate bulk solution behavior using a system composed of a tractable number

of atoms, we impose periodic boundary conditions (PBC) on the system, replicating it

infinitely in every dimension. In such a system, each atom interacts with all other atoms

in all other simulation cells—including its own periodic images. [54] A two-dimensional

illustration of PBC is shown in Fig. 2-3 for a rectangular unit cell illustrating these ideas.

A practice commonly adopted in PBC simulations in which each atom interacts

directly with only a single image of every other atom—specifically the nearest image—is

called the minimum image convention. The minimum image convention is employed

to simplify the problem, but also imposes a limit to the range of calculated interactions.

Specifically, the non-bonded interactions do not extend beyond half the length of the

shortest side of the unit cell. Employing the minimum image convention, the energy

calculated for a system with PBC is the energy of a single unit cell in the field generated

by every periodic cell. The challenge is how to calculate the non-bonded interactions

for every atom in the system. The common approaches employed in biomolecular

simulation are explored in the next three sections.

2.1.2.2 Cutoff Methods

The simplest approach to calculating non-bonded interactions is to employ a simple

cutoff that is smaller than half the length of the shortest side of the unit cell—i.e., all

non-bonded interactions between atoms closer than the cutoff are included and all
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Figure 2-3. Periodic simulation in two dimensions with a rectangular unit cell. The
maximum permissible cutoff (rcut) for the minimum image convention is
shown with a blue dotted circle centered on particle 1 in the first box.

those between atoms greater than the cutoff are neglected. Because the common

forms of the non-bonded potential decay as the distance between atoms increases (see

Eqs. 1–18 and 1–20), interactions between distant atoms are significantly smaller than

interactions between nearby atoms. The non-bonded interactions are modeled as the

simple piecewise function shown in Eq. 2–12.
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U ′(x⃗i ,j) =

 U(x⃗i ,j) : |⃗xi ,j | < xcut0 : |⃗xi ,j | > xcut
(2–12)

While conceptually simple and computationally efficient, simple cutoffs suffer from

a severe limitation. The potential, and therefore the force, encounters a discontinuity at

the cutoff distance, shown in Fig. 2-4A. This discontinuity results in simulations that do

not conserve energy and leads to numerous, non-physical artifacts. [55–61] This effect

is particularly pronounced for electrostatic interactions—a very long-range potential of

the form 1/r . As mentioned before, this function decays so slowly that
∑∞
i=1 1/i = ∞.

Two monovalent ions must be separated by ∼332 Å before their interaction energy drops

to 1 kcal/mol. Such a cutoff would require a unit cell size at least 664 Å on each edge

containing ∼107 water molecules.

Given the need to improve the behavior of the non-bonded potentials near the cutoff

distance, two popular modifications to the simple cutoff approach were introduced—a

smooth switching function and a shifting function. The switching function approach

applies a smooth function at a given distance that satisfies the following criteria: a) the

potential and its gradient is continuous everywhere, b) the short-ranged form of the

potential is unchanged, and c) the potential approaches 0 at the cutoff. Eq. 2–12 is an

example of a very simple switching function in which the original potential is multiplied by

1 when the interparticle distance is less than the cutoff and 0 otherwise. Of course, this

switching function does not obey either the a) or c) conditions listed above. An example

of a smooth switching function is shown in Fig. 2-4B. [62]

The second family of methods commonly employed are so-called shifting functions

since the potential is modified by ‘shifting’ the potential up such that the value of the

potential becomes zero at the cutoff distance. [54, 62] Simply shifting the potential,

though, is not enough for MD simulations, since the force will remain unchanged and

still faces a discontinuity at the cutoff. Therefore, the shifting function often contains a
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Figure 2-4. Effects of various 16 Å cutoff schemes on the electrostatic interaction of two
monovalent ions with opposite charges. A) shows the effect of imposing a
hard cutoff. B) shows a typical switching function starting at 8 Å. C) shows a
typical shifting function for the electrostatic potential. The energies as a
function of distance are shown in the top 3 plots and the forces as a function
of distance are the bottom 3 plots.

force-shifting component, as shown in Eq. 2–13. [54] The effect of the shifting function is

shown in Fig. 2-4C.

Us (⃗ri ,j) =


U (⃗ri ,j − U (⃗rcut)−

(
dU (⃗ri ,j )

dr⃗i ,j

)
r⃗i ,j=r⃗cut

(⃗ri ,j − r⃗cut) r⃗i ,j < r⃗cut

0 r⃗i ,j ≥ r⃗cut
(2–13)

58



Figure 2-5. Periodic cells added in a spherical shape radially from the central unit cell.
The progression from darker to lighter cells shows the order in which
interactions are accumulated in the sum of the electrostatic interactions (with
the darker cells being added before the lighter ones). The example, adapted
from Allen and Tildesley, is shown in two dimensions, but can be trivially
extended to three dimensions. [54]

2.1.2.3 Ewald Summation

Ideally, simulations in the condensed phases would be performed without truncating

electrostatic interactions at all. The full electrostatic interaction for a net neutral unit cell

takes the functional form
∑N
i=1(−1)i/i , since there are an equal number of charges of

both signs. This sum is conditionally convergent, meaning that, while it converges to a

finite value, that value depends on the order in which the terms are summed. [54] A nat-

ural choice for ordering the summation of the infinite number of electrostatic interactions

with particle i is by summing all of the electrostatic interactions with each particle j in

every unit cell extending radially from the unit cell containing i . This approach is shown

diagrammatically in Fig. 2-5. [54]
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In 1921, Ewald devised a method whereby the electrostatic interactions between

an ion and all of its periodic images in a crystal lattice could be computed according

to the technique presented in Fig. 2-5. [63] The same approach can be used for

simulations in the condensed phase when PBC are used. The technique, called the

Ewald sum, utilizes a trick to cause the electrostatic interactions between particles to

decay arbitrarily rapidly, allowing the interactions to be truncated at a distance where

the interactions themselves are negligible. To do this, a Gaussian charge distribution

is centered at each point charge with the opposite sign of the point charge, as shown

in Fig. 2-6. Given a width of the Gaussian distribution α, the functional form of the

neutralizing charge distribution is shown in Eq. 2–14.

ρi(r) =
qiα

3

π3/2
exp

(
−α2r 2

)
(2–14)

where ρi is the charge distribution due to particle i and its neutralizing Gaussian and α is

the tunable parameter controlling how diffuse the Gaussian is.

The electrostatic interaction of two charged particles i and j with their neutralizing

charge distribution is

Ei ,j = qiqj
erfc(αri ,j)

ri ,j

where erfc is the complementary error function. The complementary error function

decays rapidly—more rapidly for narrower neutralizing distributions. The narrower

the neutralizing distributions are, the smaller the cutoff that may be used without

compromising accuracy. In fact, at the limit where the Gaussian width is zero, the

neutralizing charge distribution becomes a delta function that exactly cancels the original

point charge, allowing a cutoff of zero!

However, while adding the neutralizing charge distributions has allowed us to com-

pute the direct electrostatic energies between particles rapidly by imposing a relatively

short cutoff, we have changed our system. The effect of the neutralizing charge distri-

butions must be canceled by inverting all of the neutralizing charge distributions and
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Figure 2-6. A one-dimensional example of particles with a given charge (red) with a
neutralizing Gaussian charge distribution (blue) shown.

adding their interaction back to the original sum. By adding these so-called canceling

charge distributions back to the electrostatic sum, the original interaction of just the point

charges is recovered. The interactions between these neutralizing charge distributions

represent a number of convolution integrals which may be computed very rapidly by tak-

ing the Fourier transform of the distributions and summing the contributions in reciprocal

space. The result is then reverse-Fourier transformed to obtain the electrostatic potential

at each of the particles. [54]

Particle-Mesh Ewald. A weakness of Ewald’s summation is that the Fourier trans-

form is a slow operation—on the order of O(N2) where N is the number of particles. To

address this shortcoming, the charge density due to the canceling charge distributions

can be discretized on a 3-dimensional mesh with a given grid spacing. This allows us

to use the fast Fourier transform algorithm (FFT) to perform both the Fourier transform
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and reverse Fourier transform to calculate the electrostatic potential at each of the

mesh points. Unlike the standard Fourier transform, the FFT scales as O(N log(N)),

resulting in a substantial increase in computational efficiency. The potential at each of

the particles—and its gradient—can then be interpolated from the adjacent grid points

on the mesh using cardinal B-splines. [64] This approach is termed Particle-Mesh Ewald

(PME) due to the way in which the particles interact with the mesh to determine the

long-range electrostatic interactions.

2.1.2.4 Other Approaches

Ewald-based methods employing the discrete fast Fourier transform have been very

popular over the past two decades. As the rapid increase in computational power al-

lowed simulations to run increasingly longer, the deficiency of typical cutoff methods for

simulating highly charged systems—such as DNA or RNA—became readily apparent.

[65, 66] Properly accounting for long-range electrostatic effects using PME resulted in

stable simulations of not only proteins, but also highly charged systems like DNA and

RNA. [59] Furthermore, by employing the FFT, PME allowed calculations to be done

more rapidly by reducing the computational cost of the non-bonded interactions.

However, there are two principle drawbacks of Ewald-based methods. First, the use

of periodic boundaries may introduce artifacts into the system caused by the correlated

motions of each periodic image. [67] For instance, if periodic boundary conditions was

imposed on a gas of monovalent ions such that each cell had a single particle, the

particle distribution would necessarily be uniform since periodic symmetry reduces

dimensionality of the system to a single degree of freedom. While this effect does not

seem to induce measurable artifacts for most simulations, [67] a more serious limitation

of Ewald-based methods has to do with the changing architecture of modern computers.

For many years, the efficiency of the central processing unit (CPU), typically mea-

sured in the speed with which it executes each operation (i.e., clock speed), improved

as engineers were able to shrink the size of the transistors and place increasingly more
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of these transistors onto each CPU die. Recently, however, the power requirements to

increase the clock speed caused chips to melt since the the heat generated could not be

dissipated quickly enough. This drove chip manufacturers to increase the computational

power of these CPUs by adding additional cores. To take advantage of this form of

improved CPU efficiency, computational algorithms must be designed to run in parallel.

It turns out that due to the non-local nature of the FFT and the algorithmic details of its

efficient implementation, calculations employing such methods are limited in their ability

to take advantage of the increasing parallelism of modern processors.

To alleviate the limited scalability of standard PME, Cerutti and Case devised an

approach, termed Multi-level Ewald, to divide the system into smaller charge grids so

that the reciprocal-space sum can be performed in parallel in multiple, independent

‘chunks.’ [68] These independent grids can then be ‘stitched’ together using a much

coarser global grid that can be computed far more rapidly.

To combat both shortcomings mentioned for Ewald-based methods, many re-

searchers have investigated alternatives to the PME treatment of long-range electro-

static interactions in bimolecular simulations. One such method, the isotropic periodic

sum (IPS), assumes an isotropic distribution of particles by replicating the surrounding

region around each particle within a cutoff infinitely in all directions. [69] While this

method necessitates using a larger cutoff to more fully characterize each particle’s

surroundings, it avoids needing a charge grid populated from every atom in the system,

thereby reducing the communication overhead. As a result, IPS can be implemented in

such a way that is more scalable on modern hardware than PME.

The generalized reaction field (GRF) method employs yet another approach to

treating long-range electrostatics based on the PB equation. A sphere is constructed

around each particle whose radius is equal to the non-bonded cutoff distance, inside

which all interactions are computed directly. The surroundings are modeled as a bulk

dielectric environment, and the reaction field potential is calculated on the sphere
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analytically according to the linearized PB equation. The force exerted by this electric

field can be calculated on the atom at the center of the constructed sphere. [70] This

approach has the same cost as typical cutoff methods, but models interactions outside

the cutoff as though it were bulk solvent. Such treatment necessitates the use of a larger

cutoff value than that required by Ewald methods.

While the list of methods here is not comprehensive, the general aim of PME-

replacements is to either lessen the likelihood of observing periodicity artifacts in simu-

lations and/or to present an algorithm that is more amenable to parallelization. Despite

the challenges in computational scaling and efficiency associated with parallelizing the

reciprocal-space Ewald sum, Ewald-based methods are still widely used today, even on

highly tuned, specialized hardware designed specifically to accelerate MD simulations.

[71]

2.2 Sampling

Sampling is the principle problem in most condensed phase simulations—especially

involving biomolecules. For such large systems, the size of phase space—a 6N-

dimensional hyperspace composed of positions and momenta for N particles in all 3

spatial dimensions—is unconscionably large. Although any chemical system can be

characterized completely if the density of states is known at an arbitrary energy (Ω(E)),

this number is so vast that it cannot be directly computed.

Luckily, the partition functions of most thermodynamic ensembles—in particular

that for the canonical ensemble (Eq. 1–5)—are almost entirely comprised of low-

energy structures due to the exponential weighting in the Boltzmann factor. Despite

this fortuitous simplification, no simulation is capable of truly exhaustive sampling for

typical biomolecular simulations, and it is unlikely that exhaustive sampling will ever be

attainable.

The most naı̈ve approach to sampling—running pure molecular dynamics or Monte

Carlo simulations—is frequently insufficient to characterize rare events that happen on
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the millisecond or even second timescale. Even with highly specialized (and expensive)

hardware, pure MD simulations are currently confined to the millisecond timescale.

[72] In this section, I will discuss three approaches to enhance sampling compared to

traditional MD simulations—umbrella sampling, steered molecular dynamics (SMD), and

expanded ensemble techniques (and the special case of replica exchange).

2.2.1 Umbrella Sampling

Umbrella sampling is a biased sampling technique that acts on a specific reac-

tion coordinate. In complex systems, there are often free energy barriers separating

different states that are far larger than the average available thermal energy, kBT . An

example is shown as a black line in Fig. 2-7 in which the 6N-dimensional free energy

surface (reduced to 3N-dimensional when the momentum integral is separated from the

canonical partition function) is projected onto a 1-dimensional reaction coordinate. This

reduced-dimension free energy surface, called a potential of mean force (PMF) shows

a free energy barrier of roughly 6 kBT in Fig. 2-7. In standard dynamics simulations, it

would take a very long unbiased simulation to cross that barrier.

The trick involved in umbrella sampling is to modify the underlying potential with

a harmonic biasing potential to encourage the simulation to sample higher energy

structures more often. Fig. 2-7 shows how a quadratic umbrella potential changes the

shape of the underlying PMF such that higher-energy structures are sampled more

frequently. Clearly, the two biasing potentials shown in Fig. 2-7 tend to favor sampling

near the two transition states separating different minima, since that portion of the

reaction coordinate is lowest in energy.

The resulting ensemble of the modified potential, shown in Eq. 2–15, contains more

snapshots around the areas that are traditionally sampled poorly by MD simulations

of finite duration. However, all properties calculated based on these statistics refer

to a fictitious system, and will not translate into experimental observables. In other

words, the statistics collected from an umbrella sampling simulation correspond to the
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Figure 2-7. An example 1-dimensional PMF (shown in black). Two biasing umbrella
potentials are shown alongside the resulting, biased PMF. All PMF curves
have been translated so that the ‘minimum’ free energy is 0. Because only
energy differences are significant, vertical translations of the PMF have no
effect on calculated properties.

Hbias Hamiltonian in Eq. 2–15, whereas the physical system actually obeys the Horig

Hamiltonian. [12]

Hbias(x⃗) = Horig(x⃗) +
1

2
kumb(f (x⃗)− s)2 (2–15)

Horig is the original, unbiased Hamiltonian in Eq. 2–15, kumb is the force constant on the

harmonic umbrella potential, f (x⃗) is the reaction coordinate, and s is the center of the

umbrella potential along that reaction coordinate.

Since the exact shape of the biasing potential is known, and the sampling provides

information about the shape of the total biased potential, we can use that information

to deduce the underlying shape of the original Hamiltonian along the chunk of the PMF
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that our simulation has effectively characterized through sampling. However, because

the umbrella potential is monotonically increasing on either side of the umbrella center,

configurations far away from that center will be sampled very poorly, leading to poor

convergence in those regions. To alleviate this issue, a series of umbrella sampling

simulations are performed in intervals along the reaction coordinate—called windows—

which are used to construct ‘pieces’ of the PMF near the center of the respective

umbrellas. These pieces are then stitched together to approximate the total, unbiased

PMF.

The free energy of the biased potential along the PMF is related to the probability

density function at that point according to

πbias(x⃗0) =

∫
exp (−βHbias(x⃗)) δ(x⃗ − x⃗0)dx⃗

exp (−βAbias(x⃗0))

where π is the probability distribution function, δ is the Dirac delta function that serves

to extract only those ensemble members that correspond to the specific point x⃗0 on the

PMF, and A is the free energy along the PMF at that value. The unbiased probability

distribution, which is directly related to the unbiased free energy up to an arbitrary

constant, can be estimated according to

πunbias(x⃗) = exp (−β(Abias − Aunbias)) exp
[
β

(
1

2
kumb(f (x⃗)− s)2

)]
πbias(x⃗)

where A is the Helmholtz free energy along the PMF. The unbiased probability distribu-

tion function is estimated for each window, and must be recombined to calculate the full

PMF. [11]

While the weighted histogram analysis method has been arguably the most popular

method for determining the additive constants necessary at each window to construct

the ‘best’ complete PMF, [73] more recent methods have been shown to be better esti-

mators of the unbiased PMF. Such examples include the multistate Bennett acceptance

ratio (MBAR) [74] and variational free energy profile, [75] which have demonstrated
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superior performance in computing not only the PMF more efficiently with less data, [75]

but also reasonable estimations of the statistical errors. [74]

2.2.2 Steered Molecular Dynamics

The idea of steered molecular dynamics (SMD) is very similar to that of umbrella

sampling. A harmonic biasing potential is added to the underlying potential along

a reaction coordinate to drive the sampling along that coordinate. Unlike umbrella

sampling in which the harmonic potentials are fixed at a given position along the

reaction coordinate, the potential is moved along the reaction coordinate at some speed

in SMD simulations.

While SMD appears similar to umbrella sampling, the fact that the umbrella potential

moves marks a significant fundamental difference between the two techniques. Um-

brella sampling performs equilibrium sampling with the biased Hamiltonian, whereas the

finite speed of the moving umbrella in SMD simulations is inherently non-equilibrium.

[11] The non-equilibrium work done by moving umbrella is tabulated, and effectively

represents an upper-bound estimate on the free energy according to Eq. 2–16. [11]

⟨W1,2(x⃗)⟩ ≥ ∆A1,2 (2–16)

whereW is the work along the path given by x⃗ between states 1 and 2 and ∆A is the

free energy change between those two states. Clearly, the utility of the work profile

calculated using SMD simulations is severely limited since Eq. 2–16 is simply an

inequality.

The link between equilibrium free energies and computed work profiles from SMD

simulations was supplied by Jarzynski in 1997. [76] The so-called Jarzynski equality,

shown in Eq. 2–17, states that equilibrium free energies can be calculated from a

complete ensemble of work profiles along the reaction coordinate between an ensemble

of starting points at state x⃗1 and driving the center of the umbrella to state x⃗2.
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exp (−β∆A1,2) = ⟨exp (−βW1,2(x⃗0))⟩ (2–17)

A caveat to Eq. 2–17 is that an infinite number of work profiles between states 1

and 2 are necessary for the equality to hold. Because simulating an infinite number of

trajectories is impossible, we must be content to estimate the total free energy using a

finite number of simulations. Fortunately, the exponential average converges very rapidly

with a small number of ‘good’ work profiles (i.e., low-energy work profiles that follow the

true PMF closely), since high-energy profiles contribute little to the average.

Optimizing the computational performance of SMD simulations is a balancing act.

Pull too quickly and all computed work profiles will most likely be much higher than the

true PMF, giving you a poor estimate of the actual free energy. Pull too slowly and the

simulations will take too long to traverse the full reaction coordinate. The optimal pulling

speed will generate a wide distribution of work profiles that gives a good estimate of the

total PMF.

2.2.3 Expanded Ensemble

A common class of techniques used to enhance sampling compared to standard

molecular dynamics are so-called expanded ensemble techniques. The canonical en-

semble, for instance, is limited by the thermodynamic constraints imposed by requiring

all members of the ensemble to have the same number of particles, volume, and tem-

perature (NVT ). These variables are referred to as state parameters, since they define

each state present in the ensemble.

The way expanded ensemble techniques enhance sampling is to generate a larger

ensemble in which many, smaller thermodynamic ensembles are brought into equilib-

rium. True to its name, enhanced sampling is obtained by sampling from an expanded

ensemble of numerous standard thermodynamic ensembles. The first example exam-

ined in the literature involved expanding the canonical ensemble to multiple tempera-

tures. [77] This new ensemble is a combination of multiple canonical ensembles each

69



at a different temperature. By allowing a simulation to migrate through temperature-

space as it is sampling new conformations, expanded ensemble simulations can take

advantage of the flatter free energy surfaces present at higher temperatures to enhance

conformational sampling while still collecting statistics at the target temperature of

interest.

The total partition function for this new, expanded ensemble is shown in Eq. 2–18.

[77]

Q =

M∑
m=0

Qm exp ηm (2–18)

where Qm is the canonical partition function at a given temperature m and ηm is a

carefully chosen set of tuning parameters designed to bias the simulation toward

spending more time near the temperatures of interest. [77] Either periodically or at

random intervals throughout the MD or MC simulation, a Monte Carlo attempt to

change the temperature of the ‘current’ conformation is performed. Successful attempts

between temperatures k and m are evaluated according to the Monte Carlo criteria

shown in Eq. 2–19.

Pk→m = min {(βk − βm)H(x⃗) + ηm − ηk} (2–19)

where Pk→m is the probability of changing from temperature k to temperature m and η is

the constant tuned to control the residence time of the simulation at each temperature

(see Eq. 2–18).

If statistics are desired for a specific temperature, an ensemble can be generated

from all snapshots with the target temperature. By allowing the simulation to visit higher

temperatures, new pathways around and over barriers are opened up by traversing

temperature-space and configuration (conformation) space simultaneously. The avail-

able kinetic energy at higher temperatures makes it more likely that high barriers will

be crossed than at lower temperatures, while the samples taken at lower tempera-

tures provide the resolution necessary to characterize the thermodynamic properties

70



at biologically relevant temperatures. However, since the simulation is allowed to visit

multiple temperatures, a significant portion of the simulation is ‘wasted’ sampling higher

temperatures that contribute little to the low-temperature ensemble. The amount of

time that the simulation is permitted to spend at each temperature must be carefully

balanced to enhance sampling with enough simulation done at higher temperatures and

maintain a desired level of resolution of the low temperature ensemble. This distribution

is controlled by the η parameter at each temperature (Eq. 2–18), whose optimal values

are determined by running short simulations at each temperature to estimate the shape

of phase space. [77]

2.2.4 Replica Exchange Molecular Dynamics

Replica exchange molecular dynamics (REMD) simulations are a special case of

expanded ensemble simulations that are designed to be scalable to modern, parallel

computers. In these simulations, a finite number of independent simulations, or replicas

are run, each with a different state parameter (e.g., different temperatures). These

replicas periodically attempt to exchange information between each other—either

configurations or state parameters—in such a way that maintains the validity of the

‘subensemble’ of each replica. A diagrammatic representation of REMD simulations is

shown in Fig. 2-8. [78]

To ensure that each replica is in a state of equilibrium with all other replicas in

the REMD simulation, a reversible Markov chain of moves along the state parameter

dimension is necessary (see Fig. 2-8). Trial moves are typically done between a single

pair of replicas to simplify the expression for calculating the exchange probability. As

we saw in Section 1.1.2.1, applying the Metropolis criteria to a randomly proposed MC

move satisfies the requirement of detailed balance. Therefore, Metropolis MC is used to

enable replicas to sample along the state space coordinate in REMD calculations.

There are several different choices one can make for the state space parameter

when setting up a REMD calculation. Common choices include temperature [78],
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Figure 2-8. Diagrammatic sketch of REMD simulations. Replicas are represented as
thick arrows and exchange attempts are shown between adjacent replicas
connected by thin black arrows. The question-mark indicates that a MC
move is accepted with the probability calculated according to the Metropolis
criteria. Successful and unsuccessful exchange attempts are shown with a
green or red question mark, respectively.

umbrella potentials (for umbrella sampling simulations) [79, 80], Hamiltonians, [81–85]

and solution pH, [86–89] among others. [90, 91] These methods are discussed in detail

in later chapters.

2.3 Free Energy Calculations

Calculating the ‘free energy’ is the Holy Grail of computational chemistry, as it

furnishes the ultimate comparison with experimental observables. As a result, significant

effort has been spent searching for computationally efficient ways to accurately calculate
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free energy changes of various processes, including conformational rearrangement,

[92, 93] protein folding, [94–96] solvation, [97, 98] protein-ligand binding, [99, 100] and

protein-protein binding [101, 102] among others.

Because the free energy is a state function, the free energy differences between

two distinct states are independent of the path taken from the starting state to the

other. In fact, this principle holds even if that pathway is completely fictitious! This gives

simulation a significant advantage in computing free energies, since the easiest path

along which to compute this value may be used—even if that pathway is chemically

nonsensical. Despite this advantage, however, free energies remain exceedingly difficult

to compute directly. [103] In this section, I will briefly outline several methods com-

monly used to compute free energy differences between two states—Thermodynamic

Integration, Free Energy Perturbation, and end-state free energy methods.

2.3.1 Thermodynamic Integration

Thermodynamic Integration (TI) is a so-called alchemical free energy calculation

method, since it contains an interpolating parameter λ that ‘morphs’ one system into

another. [11, 12] Assuming the two states 0 and 1 obey the potential energy functions,

or Hamiltonians, H0 and H1, respectively, the Hamiltonian of the perturbed system is

shown in Eq. 2–20.

H(q, p) = f (λ)H0(q, p) + g(λ)H1(q, p) (2–20)

where λ is a switching parameter with the continuous domain between 0 and 1 and the

functions f (λ) and g(λ) obey the relationships

f (0) = 1, f (1) = 0

g(0) = 0, g(1) = 1
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such that the Hamiltonian at either end point is a pure function of one of the two states.

A linear switching function, with

f (λ) = λ

g(λ) = 1− λ

is commonly used due to its simplicity. Because the scaling parameter λ is continuous

and can be made to vary infinitely slowly, sampling done at the intermediate states (i.e.,

0 < λ < 1) are always at equilibrium. The total free energy, then, can be calculated via

the integral shown in Eq. 2–21. [12]

∆G0→1 =

∫ 1

0

⟨
∂H

∂λ

⟩
λ

dλ (2–21)

where the average is taken over the ensemble generated at each λ. Because doing

“true” TI would require an infinite number of simulations for λ equal to all real numbers

between 0 and 1, Eq. 2–21 is approximated using a Riemann sum, shown below.

∆G0→1 ≈
1∑

λ=0

⟨
∂H

∂λ

⟩
λ

∆λ

Therefore, TI calculations require the selection of a set of windows (i.e., λ selections

between 0 and 1) at which an ensemble must be generated to evaluate the gradient of

the coupled Hamiltonian with respect to the coupling parameter λ. A sufficient number of

λ values must be chosen to obtain an accurate and converged free energy—the number

of required windows varies from system to system.

For the simple linear switching function described previously, the gradients required

by Eq. 2–21 can be computed analytically based on the functional form of the underlying

Hamiltonians. The only terms that contribute to ∂G/∂λ are those terms that include

interactions with one of the atoms that differ in some way between the two end states.

Therefore, as one would expect, the TI calculations converge more rapidly when the

perturbation between states 0 and 1 are small. Indeed, TI calculations have been
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successfully employed to calculate many free-energy based properties, such as protein

pKas, [104] and solvation free energies. [105]

Traditional TI calculations suffer from a severe limitation when applied to typical MM

force fields, however. Using the functional form of the Amber force field (Eq. 1–21) as

an example, there is a significant problem with converging TI calculations at windows

where λ approaches either 0 or 1 when atoms are ‘appearing’ or ‘disappearing’ (i.e.,

when those atoms exist only in one end point). The problem arises in the Lennard Jones

term which has a very strong repulsive force at close intermolecular distances with a

singularity at the origin. This singularity exists as long as the Hamiltonian containing this

atom has non-zero weight according to the chosen λ value, which is true for all values

except 0 or 1. Therefore, even when λ is arbitrarily close to either 0 or 1, there is a

region of space around the center of all disappearing atoms in which no atom can enter

due to the repulsive r−12 term of the almost-vanished atom. This phenomena, referred

to as a hard core, hurts convergence of TI calculations by preventing configurations

in which molecules enter the space partially occupied by a disappearing atom. [106]

Figure 2-9 demonstrates this effect by plotting the Lennard Jones potential between two

carbon atoms when one of them vanishes at λ = 1.

To address this limitation, an additional λ-dependent term is added to disappearing

atoms to soften the core near the end points and eliminate the singularity that prevents

particles from entering the space occupied by a partially-vanished atom. This approach,

described below, is referred to as soft-core thermodynamic integration.

Soft-core TI. To avoid the singularity in the Lennard Jones potential term of a

vanishing atom in TI calculations, the functional form of this potential is adjusted by

Eq. 2–22. A good choice for the functional form of the soft-core potential should satisfy

several conditions. First, the potential should be either 0 for a vanished atom or the

original Lennard Jones potential for an atom that is ‘fully’ present. Second, the potential

must not diverge between a partially vanished atom and an unperturbed atom when
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Figure 2-9. Hard core of disappearing atom caused by the Lennard Jones terms. The
λ = 1 state is the one in which a carbon atom has vanished.

their separation approaches zero. Finally, the force must remain conservative (i.e.,

the energy difference between any two points must be independent of the path taken

between them). Eq. 2–22 satisfies all of these requirements, making it a good candidate

to replace the standard Lennard-Jones potential in vanishing atoms.

ULJi ,j (ri ,j ,λ) = λn4εi ,j

 1[
αLJ(1− λ)2 +

(
ri ,j
σi ,j

)6]2 − 1

α(1− λ)2 +
(
ri ,j
σi ,j

)6


ULJi ,j (ri ,j ,λ) = (1− λ)n4εi ,j

 1[
αLJλ2 +

(
ri ,j
σi ,j

)6]2 − 1

αλ2 +
(
ri ,j
σi ,j

)6
 (2–22)
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Figure 2-10. Functional form of soft-core Lennard Jones interactions with different
values of α from Eq. 2–22. The λ = 1 state is the one in which an atom has
vanished. See Fig. 2-9 to see how soft cores enable sampling close to the
center of the vanishing atom when λ ≈ 1.

The top equation of Eq. 2–22 corresponds to the functional form when one of the atoms

vanishes when λ = 0 and the bottom equation corresponds to the case where one of the

atoms vanishes when λ = 1. The denominators in Eq. 2–22 do not contain a singularity

when ri ,j = 0 when one of the atoms has vanished. The parameter α controls how ‘soft’

the core of the vanishing atoms are, as shown in Fig. 2-10. [107]

TI simulations using soft-core potentials for the Lennard Jones terms of vanishing

atoms show significantly better convergence of free energies. [105, 107]

2.3.2 Free Energy Perturbation

An alternative approach to calculate the free energy difference between two states

is the free energy perturbation (FEP) method proposed by Zwanzig. [108] The free

energy between two states A and B can be calculated according to Eq. 2–23.
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∆GA→B = −kBT ln ⟨exp (−β(EB − EA))⟩A (2–23)

where the averages are taken over the ensemble generated in state A and EB are the

energies of the structures in ensemble A evaluated with the Hamiltonian governing the

behavior of ensemble B. This is called forward sampling, since the ensemble we used

to estimate the free energy came from the original state. [12] The reverse, or backward

sampling, represents the reverse process (i.e., by swapping the indices A and B in Eq.

2–23). Because free energy is a state function, the forward and backward free energies

should sum exactly to 0.

This balance between the forward and reverse sampling rarely balances completely

for complex transformations, however, indicating a shortcoming in the naı̈ve FEP

approach. If the ensembles generated by the two states are significantly different, the

forward and reverse free energies will be systematically different. For instance, if we are

simulating the free energy change of transforming benzene into phenol to calculate their

difference in solvation free energies, the solvent arrangement around the two systems

will be significantly different due to the added bulk of the hydroxyl group in phenol as

well as the difference in the dipole moment caused by that hydroxyl.

To address this shortcoming, two end-states are often interpolated using a coupling

parameter λ similar in spirit to TI. By perturbing the system slowly from state A to B,

the differences between adjacent states are reduced, leading to similar ensembles that

generate more consistent forward and reverse free energies when used in Eq. 2–23.

[12]

2.3.3 End-state Calculations

The final family of free energy methods I will discuss here are so-called end-

state calculations since they involve calculating the free energy change ∆GA→B from

simulations performed only on the two physical end states A and B. These methods are
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often used to estimate binding free energies of a non-covalently bound protein-ligand or

protein-protein complex. [99, 101, 102, 109, 110]

I will discuss two methods within this family that are routinely used in binding free

energy calculations—the so-called Molecular Mechanics Poisson-Boltzmann surface

area (MM-PBSA) method [111, 112] and the linear interaction energy (LIE) method.

[113, 114]

2.3.3.1 MM-PBSA

MM-PBSA, and its closely-related counterparts MM-GBSA (GB implicit solvent),

MM-3DRISM (3D-RISM implicit solvent), and QM/MM-GBSA, are commonly used to

calculate binding free energies of noncovalently bound complexes. These methods

compute binding free energies via the thermodynamic cycle shown in Fig. 2-11, where

the solvation free energy terms are computed using an implicit solvent model (e.g.,

Poisson-Boltzmann, Generalized Born, or 3D-RISM). The total free energy computed

along the cycle, shown in Eq. 2–24, is taken from ensemble averages over a simulated

trajectory. The ensembles are typically generated by running either a MD or MC simula-

tion for each of the three states—the bound complex, unbound receptor, and unbound

ligand. [110]

∆Gbinding = ⟨∆Hsolv ,bound⟩+ ⟨∆Hbinding,gas⟩ − ⟨∆Hsolv ,unbound⟩ (2–24)

The averages in Eq. 2–24 are taken from the ensembles of each system.

The principal computational cost of an MM-PBSA calculation is due to the initial

simulations required to construct each ensemble. To reduce the cost of computing

binding free energies with MM-PBSA, all three ensembles mentioned above can be

extracted from a single simulation of the bound complex, a technique referred to as the

single trajectory protocol. [110] This approach will always underestimate the binding

free energy (predicting overly-stable binding), since the bound states of the receptor

and ligand will always be less stable in the bound conformation than they are when
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Figure 2-11. Thermodynamic cycle for MM/PBSA calculations. Implicit solvent is
represented with a blue background, while a white background represents
systems in the gas phase.

free in solution. However, when making the same approximation for a family of related

receptors and ligands, the systematic errors in each end-state calculation will be similar.

Therefore, MM-PBSA methods can be useful for tasks like rank-ordering a handful of

proposed inhibitors for a specific enzyme by calculating accurate relative binding free

energies. [109]

2.3.3.2 LIE

The linear interaction energy method (LIE) is another end-state method widely used

to calculate noncovalent binding free energies of small ligands to proteins. LIE is based

on assuming that the binding free energy is a result of the energetic differences of the
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ligand in the two environments—bound in the active site of the protein versus hydrated

in solution—and obeys linear response theory. [113] The electrostatic contribution to

LIE can be simplified to the concept of charging the atoms of the ligand inside a cavity

that has the same shape as the ligand. Following the ideas Marcus theory, [115] the

reorganization energy of the surrounding solvent λ can be expressed as [113]

λ = ⟨VB − VA⟩A − ∆GA→B = ⟨VA − VB⟩+∆GA→B (2–25)

Solving for ∆GA→B in Eq. 2–25 yields the following expression for the free energy of

the change from the ligand bound in environment A to the ligand bound in environment

B:

∆GA→B =
1

2

(
⟨∆V ⟩A + ⟨∆V ⟩B

)
(2–26)

Eq. 2–26 can be readily applied to the electrostatic contribution of the binding

free energy, but the non-polar non-bonded interactions—namely the van der Waals

interactions—are not known to obey Marcus theory accurately. As a result, the non-polar

interaction energy is scaled in Eq. 2–27 by a parameter that is adjusted to fit a database

of known binding affinities. [113]

∆Gbind =
1

2

⟨
∆V elecw→p

⟩
+ α

⟨
∆V vdWw→p

⟩
(2–27)

where the ‘w’ subscript indicates the ligand free in water and ‘p’ indicates the ligand

bound in the protein. The van der Waals interactions are scaled by the parameter α,

which was adjusted to give good agreement with experimental binding affinities. LIE

calculations require two ensembles to be generated—one of the ligand free in explicit

solvent and the other of the ligand bound in the protein. A diagrammatic representation

of the LIE calculation is shown in Fig. 2-12.
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Figure 2-12. Schematic showing interactions necessary to compute the LIE free energy
of noncovalent binding for a ligand in a protein using white arrows.
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CHAPTER 3
CONSTANT PH REPLICA EXCHANGE MOLECULAR DYNAMICS

In this chapter, I will discuss my work with REMD simulations in which the state

parameter—the property exchanged between replicas—is the solution pH. This work is

reprinted with permission from Swails, and Roitberg, J. Chem. Theory Comput 2012, 8

4393–4404. Copyright 2012 American Chemical Society. [88]

3.1 Constant pH and pKa Calculations

Solution pH is often critical to the proper functioning of biological catalysts. [116,

117] The pH environment of biological systems influences the ionization equilibria

present in the system, thereby affecting the protonation state of various titratable

residues in the system. A titratable residue is any residue that has a pKa value within 1

or 2 units of the biological pH range (which is roughly 1 – 9). The protonation states of

these residues can have a profound effect on the stability of the system, the system’s

interactions with its surroundings, and any catalytic mechanism that relies on a specific

set of protonation states to carry out general acid-base catalysis or nucleophilic attack.

[118]

Simulations aimed at modeling proteins or nucleic acids must have some method

for assigning protonation states for each titratable residue. Because bond breaking

and bond formation are impossible in classical force fields, each residue is typically

assigned one protonation state and the entire simulation is run using this set of states.

This approach has two drawbacks. First, the choice of protonation state is often based

on the behavior of each titratable residue when free in solution. This may not be a valid

assumption, however, because the protein or nucleic acid environment can modulate

a residue’s protonation state equilibrium. Second, a single protonation state may

not accurately represent the true ensemble of states at the desired pH. If the pH is

close to the pKa of a given residue, or if the system populates conformations in which
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the dominant protonation state changes, then the true ensemble is represented by

conformations with different protonation states.

The first drawback can be addressed by using tools such as PROPKA [119] and

H++, [120] which provide a means to assign protonation states to titratable residues

by calculating the pKa of the starting structure. However, this does not address the

possibility that multiple protonation states may be necessary to build the desired

ensemble.

While it may seem that both drawbacks can be addressed by simply running

simulations with every possible set of protonation states, this approach quickly becomes

unwieldy. Given N titratable residues, there are at least 2N distinct protonation states

assuming each residue is either protonated or deprotonated. With only 10 titratable

residues this amounts to a minimum of 1024 distinct simulations! While most of these

states may not be found in the given ensemble, there is no way to know which ones to

exclude a priori. It is important, then, to develop a method capable of directly probing

protonation state equilibria in biological molecules.

In order to probe protonation state equilibria in a thermodynamically meaningful

way, simulations must be run at constant pH. The first approaches for constant pH

simulations used continuum electrostatics methods to calculate the perturbing effect of

the system environment on protonation state equilibria using an implicit solvent model

(e.g., the Poisson-Boltzmann equation) on a single structure. [121–123] These methods,

while sometimes useful for calculating pKa values in biological systems, assume that the

full protonation state equilibria can be characterized with a single structure. In particular,

using a single structure neglects the response of the system relaxing to accommodate

the new protonation state. While the effects of system relaxation has been addressed

to some degree by treating the protein interior with a large dielectric constant, [123] this

approach assumes an unphysical homogeneity in the system’s dielectric response to

protonation state changes.
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A more sophisticated approach to incorporating the system response involves

simultaneous sampling of both protonation states and side-chain rotamers. [124] This

approach dramatically improves pKa prediction with respect to experiment, but may

be insufficient for systems with large scale conformational changes that cannot be

attributed only to side chain mobility.

To capture the coupled nature of conformational flexibility with protonation state

sampling, several constant pH molecular dynamics (CpHMD) methods have been pro-

posed. [125–131] These methods have proven to be powerful tools for pKa calculation

and prediction, although there is still room for improvement. [132] For systems in which

some titratable residues experience large pKa shifts, predicted pKa values are often in

error by more than 1 pH unit even in the studies that reproduce experimental values the

closest. [132] This is usually a direct result of insufficient sampling of protonation and

conformational states or a limitation of the underlying model. Machuqueiro and Baptista

have shown that correcting some of the limitations of the underlying model, such as

improving the definition of the reference compound (whose role is described below in

the Theory section) and improving the underlying force field improves results. [133]

Other work has coupled enhanced sampling techniques, such as accelerated molecular

dynamics [134], with CpHMD to show that improved conformational sampling also im-

proves predicted pKas with respect to experiment. [135] Webb et al. recently published

a systematic study showing that the errors inherent to experimental measurements are

often larger than those reported, which has important implications for assessing the

accuracy of theoretical predictions. [136]

Replica exchange molecular dynamics (REMD) is a family of extended ensemble

techniques that have been shown to dramatically improve sampling. [78, 85, 137–140] In

REMD simulations, a series of independent replicas (single MD trajectories of a system)

periodically attempt to exchange information, such as temperature [78, 137] and, more

recently, pH [86, 87] to sample from an expanded ensemble covering multiple states.
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In this study, I implemented the pH-REMD method described by Itoh et al. [87]

in the sander module of the Amber [141] software package. I show how this method

significantly improves sampling compared to CpHMD in hen egg-white lysozyme

(HEWL), a system commonly used as a benchmark for pKa calculations. Titration curves

generated using pH-REMD contain significantly less noise and converge more rapidly

than CpHMD, suggesting pH-REMD is a powerful tool for carrying out pKa predictions.

Our group has previously shown that temperature REMD simulations converge

significantly faster with increasing exchange attempt frequency (EAF). [142, 143]

Here, I show that increasing the EAF in pH-REMD simulations causes pH-dependent

observable properties to converge faster as well.

In the next sections, I will describe the foundation of the constant pH method

developed by Mongan et al. [130] and the corresponding pH-REMD method. [86,

87] I will then describe the details of my study on HEWL followed by the results and

conclusions drawn from that study.

3.2 Theory

Here I will describe the theory behind constant pH simulations, beginning with a

description of the statistical ensemble corresponding to this family of simulations and

following up with an overview of the methods used in this study.

3.2.1 The Semi-Grand Ensemble

At conditions of constant pH, systems no longer obey the constraints of the typical

canonical ensemble presented in the opening chapter. Instead, the chemical potential

of hydronium—related directly to the solution pH by Eq. 3–1—is held constant, thereby

allowing the H+ count to fluctuate.
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µH
+

=
∂G

∂NH+

= −kT ln[H+]

= −kT ln(10) log[H+]

= kT ln(10) pH (3–1)

where µH+ is the chemical potential of hydronium and the activity of the hydronium ion

has been replaced by the concentration due to the very low concentrations in which it is

typically present in biological systems. Looking back at Eq. 1–6, we can calculate the

partition function of the semi-grand canonical ensemble using Eq. 3–2, introducing a

pH-dependence in our sampling scheme.

Ξ(µH
+

,V ,T ) =
∑
NH
+

Q(N,V ,T ) exp(βRTNH
+

ln(10) pH)

=
∑
NH
+

Q(N,V ,T ) exp(NH
+

ln(10) pH) (3–2)

3.2.2 CpHMD

I used the constant pH molecular dynamics (CpHMD) method developed by

Mongan et al. [130] that employs Monte Carlo transitions between discrete protonation

states at periodic intervals during a MD simulation to probe protonation state equilibria.

In this CpHMD implementation, both the dynamics and the MC protonation state

sampling are performed in Generalized Born implicit solvent. After a predetermined

number of steps, the MD is halted and a protonation state change is attempted by

evaluating the energetic cost of that proposed change, calculated according to Eq. 3–3.

[130]

∆G = kBT (pH − pKa,ref ) ln 10 + ∆Gelec − ∆Gelec,ref (3–3)
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Table 3-1. Reference pKa values for the acidic residues treated in this study. Values are
the same as those used in the original Amber CpHMD implementation.[130]

Residue Reference pKa

Aspartate 4.0
Glutamate 4.4
Histidine (Hδ) 7.1
Histidine (Hϵ) 6.5

Eq. 3–3 represents a free energy change of protonating or deprotonating a titratable

residue embedded in a biological system with respect to a predefined reference com-

pound. The reference compound is a monomer of the titratable residue capped with

small, neutral functional groups. In Eq. 3–3, ∆Gelec is calculated by taking the difference

of the electrostatic energy between the proposed and existing protonation states. [130]

Directly calculating the free energy change associated with protonation or depro-

tonation is difficult because evaluating the energetic cost of desolvating a free proton

and making and breaking chemical bonds is impossible in a classical mechanical frame-

work. Therefore, we calculate the free energy cost of this protonation state change by

comparing the free energy of the protonation state change to ∆Gelec,ref in Eq. 3–3, a

precomputed free energy for the reference compound that is adjusted to reproduce

experimental pKa values. Eq. 3–3, then, represents a shift in the pKa of a titratable

residue in a biological system from its value free in solution. The reference compound

pKa values used in the Amber CpHMD implementation [130] are shown in Table 3-1.

Running a CpHMD simulation, we obtain an ensemble consisting of multiple

protonation states properly weighted for the semi-grand canonical ensemble, the

thermodynamic ensemble corresponding to constant temperature, volume (or pressure)

and chemical potential of hydronium (i.e., constant pH). [126] Because the simulation is

assumed to be ergodic, the deprotonation fraction can be calculated by simply counting

the fraction of ensemble members in which the residue is deprotonated. Multiple

CpHMD simulations must be run with a range of pHs to calculate pKa values for titratable

residues in biological systems by fitting a titration curve to the data.
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Running a simulation with an expanded ensemble so each CpHMD simulation is

in equilibrium with simulations at different pHs can further enhance sampling from the

desired semi-grand canonical ensemble. For this, we turn to the pH-REMD method.

3.2.3 pH-REMD

Replica exchange simulations at constant pH (pH-REMD) is a variant of replica

exchange in which each replica is simulated at a separate pH. The full pH-REMD simu-

lation represents an expanded ensemble in which each replica samples conformations

with a fixed pH and samples different pH values at a fixed conformation.

In this study, I implemented the pH-REMD method introduced by Itoh et al. [87]

in the sander module of Amber. [141] In pH-REMD, adjacent replicas in the pH ladder

swap pH with the Monte Carlo exchange probability

Pi→j = min {1, exp [ln 10 (Ni − Nj) (pHi − pHj)]} (3–4)

for replicas i and j where Ni is the number of titratable protons present in replica i and

pHi is the pH of replica i prior to the exchange attempt.

Our group recently developed a different pH-REMD method in which replica

exchanges are attempted via Hamiltonian exchange where only atomic coordinates

are swapped. [89] In contrast, the currently proposed method only swaps the solution

pH between replicas. For large systems with more than 3 – 5 titratable residues, the

proposed method of swapping solution pH between replicas achieves more efficient

replica exchanges than the variant employing Hamiltonian exchange. For HEWL,

specifically, the Hamiltonian REMD variant experienced an exchange success rate of

< 0.01%, which is effectively indistinguishable from CpHMD simulations.

3.3 Methods

3.3.1 Starting Structure

I chose to study hen egg white lysozyme because it is well-characterized both

experimentally [136, 144, 145] and computationally. [86, 130, 146] I chose the structure
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from the protein data bank (PDB) with the code 1AKI [147] because it was the focus of

Mongan’s original study. [130]

The topology file was prepared in the tleap module of AmberTools 12 using the Am-

ber ff10 force field, which is equivalent to ff99SB [23] for proteins. Crystallographic water

molecules were removed from the starting structures, and tleap added all hydrogen

atoms. Finally, the mbondi2 intrinsic radii for implicit solvent calculations were selected

in tleap to be consistent with the initial implementation of CpHMD. [130]

3.3.2 Molecular Dynamics

To be consistent with the original implementation, the Generalized Born model

described by Onufriev et al. [49] (corresponding to the input parameter igb=2 for

Amber programs) was used with the salt concentration, modeled as a Debye screening

parameter, set to 0.1 M in every simulation. [130] Due to the long-range nature of the

electrostatic forces, I always used an infinite cutoff for non-bonded interactions.

Each starting structure was minimized using 50 steps of steepest descent followed

by 950 steps of conjugate gradient with 10 kcal mol-1 Å-2 restraints on the backbone

atoms to relieve bad contacts. Then, the minimized structure was heated by varying the

target temperature linearly from 10 K to 300 K for 667 ps, keeping weak restraints—

1 kcal mol-1 Å-2–on the backbone. I used the Langevin thermostat with a collision

frequency of 5 ps-1 to control the temperature. These simulations were performed using

the pmemd module of the Amber 12 program suite. [141]

After heating, each structure was further run at 300 K for 1 ns with 0.1 kcal mol-1

Å-2 restraints on the backbone. Each titratable carboxylate was deprotonated and the

histidine was protonated, and no protonation state changes were attempted during the

simulation. Next, the resulting structure was used to start 16 ns of CpHMD at pH values

spanning 2 to 7 with an interval of 0.5. Only the 10 acidic residues—the aspartates,

glutamates, and histidines—were titrated because HEWL is catalytically active at low pH

[148] and 1AKI was solved in these conditions. I used a 2 fs time step and attempted
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protonation state changes every 5 steps for all simulations in which protonation state

changes were attempted. The Langevin thermostat with a collision frequency of 10

ps-1 was used to control the temperature, and simulations were begun with a different

random seed to avoid synchronization artifacts. [149] I used the sander module of

Amber 12 for each of these simulations.

3.3.3 Replica Exchange

All pH-REMD simulations were run with 12 equally spaced replicas at pH values

spanning 2 to 7.5—identical to the pH values used for the CpHMD simulations with the

addition of a replica at pH 7.5. The additional replica is necessary because the REMD

implementation in sander requires an even number of replicas so that each replica has

a partner for each exchange attempt. The structures obtained after 1 ns of CpHMD

simulation for each pH were used as the starting structure for the replica exchange

simulations (the structure from CpHMD run at pH 7 was used for the replica run at pH

7.5 as well).

I ran pH-REMD simulations with exchange attempt frequencies (EAFs) (i.e., the

frequency with which replicas attempt to swap pH values) equal to 50 ps-1, 10 ps-1,

5 ps-1, and 0.5 ps-1 to assess the effect of EAF on the convergence of observable

properties. This corresponds to attempting exchanges every 10, 50, 100, and 1000

steps, respectively. All pH-REMD simulations were run for 15 ns. I note here that the

CpHMD simulations are equivalent to a REMD simulation with an EAF equal to 0.

I used an in-house, modified version of sander in which I implemented pH-REMD

for these simulations and wrote in-house scripts to extract pH-based titration data from

the ensemble of replica-based files. The replica at pH 7.5 was ignored in all pH-REMD

analyses so the simulations could be compared fairly.

3.4 Results and Discussion

CpHMD methods must sample both protonation states and conformation states to

build a thermodynamically meaningful ensemble. Here I will discuss how well CpHMD,
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as implemented in Amber, [130] samples from the desired ensemble. I then analyze how

pH-REMD affects protonation and conformational state sampling compared to CpHMD,

and how effective these tools are for pKa prediction.

3.4.1 Simulation Stability

CpHMD involves instantaneous changes in the charge distribution of the protein as

the protonation states are changed. Therefore, it is important to verify that trajectories

generated from CpHMD and pH-REMD remain stable with respect to secondary and

tertiary structure during the course of the simulation.

Mongan et al. [130] showed that temperature and energy fluctuations greater than

those obtained with standard MD (i.e., MD simulations with static protonation states)

were minimal during the course of a 1 ns simulation. Most of the energy fluctuations

arise from the intrinsic response of the force field to the new charge state.

To analyze structural stability, I plotted the root mean squared deviation (RMSD) of

every α-carbon in the protein with respect to the minimized crystal structure vs. time.

The results from CpHMD and pH-REMD simulations are shown in Fig. 3-1 for the lowest

pH, 2; the highest pH, 7; and an intermediate pH, 4.5. The RMSDs are bounded below 4

Å, suggesting that the trajectories remain stable for both CpHMD and pH-REMD during

the entire simulation.

3.4.2 Accuracy of Predicted pKas

One of the goals of any constant pH simulation method is to accurately predict

pKa values of titratable residues. The pKa of each residue was calculated by using the

Levenberg-Marquardt non-linear optimization method to fit the titration data at each pH

to the standard Hill equation shown below:

fd =
1

10n(pKa−pH) + 1
(3–5)

where fd is the fraction of the total simulation that the titratable residue spent in a

deprotonated state.
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Figure 3-1. RMSD plots for CpHMD simulations (a) and pH-REMD simulations at
different exchange attempt frequencies (b-d) as a function of time throughout
the simulation. The first nanosecond is excluded, as described in Methods.
The RMSD is plotted with respect to the minimized crystal structure 1AKI
and are shown for one low, one medium, and one high pH simulation (2, 4.5,
and 7, respectively).

Table 3-2 shows the calculated pKa values for each titratable residue calculated

from Eq. 3–5 for select exchange attempt frequencies. Hill coefficients that differ

significantly from 1 imply either that the pKa of that residue displays significant non-

Henderson-Hasselbalch (non-HH) behavior, or that protonation space is poorly sampled

at some pH values, depending on how well Eq. 3–5 fits the data. If Eq. 3–5 fits the

data poorly, then poor protonation state sampling is at least partially responsible for

the deviation of the Hill coefficient from 1. Because only the CpHMD simulations show

several residues whose Hill coefficient deviates substantially from 1, we conclude that

pH-REMD improves sampling from the desired ensemble.
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Table 3-2. pKa and Hill coefficients for each residue taken from each set of simulations.
The pKas and Hill coefficients (n) are shown for each EAF. pKa root mean
square errors (RMSEs) from the 13C-NMR experimental values published by
Webb et al. [136] are shown in the last row. Asp 66 was problematic because
it is positioned between several Arginine residues, causing it to resist
protonation. When it significantly impacts the RMSE, the RMSE for all
residues except Asp 66 is shown in parentheses next to the total RMSE.

CpHMD EAF=0.5 ps-1 EAF=50.0 ps-1

Residue pKa n pKa n pKa n Expt. pKa

GLU 7 3.62 1.16 3.60 0.88 3.84 0.96 2.6 ± 0.2
HIS 15 5.96 1.05 5.74 1.09 5.90 0.97 5.5 ± 0.2
ASP 18 2.26 1.11 2.01 0.94 2.01 0.89 2.8 ± 0.3
GLU 35 5.67 3.82 5.44 1.16 4.98 0.98 6.1 ± 0.4
ASP 48 1.22 0.43 1.11 0.71 1.99 0.83 1.4 ± 0.2
ASP 52 2.69 1.16 2.37 0.96 2.30 0.75 3.6 ± 0.3
ASP 66 -18.13 0.11 -3.17 0.49 1.53 1.19 1.2 ± 0.2
ASP 87 2.52 0.81 2.61 0.81 2.66 0.91 2.2 ± 0.1
ASP 101 3.69 2.10 3.66 1.00 3.57 0.87 4.5 ± 0.1
ASP 119 2.26 0.98 2.73 1.04 2.43 0.96 3.5 ± 0.3

RMSE 6.15 (0.74) 1.56 (0.76) 0.89 —

3.4.3 Enhancing Protonation State Sampling with pH-REMD

Replica exchange methodologies are well-known to improve sampling in the desired

ensemble [78, 138] as long as replicas traverse the state-space ladder regularly. If

replica exchange attempts always fail, the simulation does not benefit from those

attempts. In our pH-REMD simulations, exchange attempts between replicas with

neighboring pH values (i.e., replicas with solution pHs separated by 0.5 pH units)

succeeded between 40% to 98% of the time, displaying very efficient traversal of the

pH-space replica ladder. Here I will discuss the extent to which pH-REMD, with different

exchange attempt frequencies (EAFs), improves protonation state sampling compared

to CpHMD.

I show sample titration curves for simulations with no exchange attempts and

simulations in which replica exchanges were attempted with a frequency of 50 ps-1.

Residues for which ‘good’ titration curves are obtained with CpHMD are shown in Fig.
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Figure 3-2. Titration curves obtained with (a) EAF=0 ps-1, and (b) EAF=50 ps-1. The
data for these residues show the best fit to Eq. 3–5 for the CpHMD
simulations.

3-2. I characterize ‘good‘ titration curves by small deviations of each point from the

fitted titration curve and Hill coefficients between 0.5 and 1.5. Residues that show poor

titration curves for CpHMD—characterized by large deviations of points from the fitted

titration curve and/or Hill coefficients significantly shifted from 1—are shown in Fig. 3-3.

Figure 3-2 shows that even when CpHMD generates data that closely fit Eq. 3–5,

using pH-REMD still improves the fit. More drastic improvement is shown in Fig. 3-3

where CpHMD performs poorly because some residues become conformationally

trapped at several pHs, impacting protonation state sampling and skewing the points

away from the titration curve.
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Figure 3-3. Titration curves obtained with (a) EAF=0 ps-1 and (b) EAF=50 ps-1. The data
for these residues have the poorest fit to Eq. 3–5 for the CpHMD
simulations.

The quality of the fits can be quantified by measuring the deviation of each point

from the fitted equation according to Eq. 3–6

RSS =
∑
points

(O(x)− E(x))2 (3–6)

where RSS is the residual sum of squares, O(x) is the actual data point, and E(x)

is the value of the fitted equation at that value of x . Eq. 3–6 provides an easy way to

quantitatively evaluate how well the titration data from the pH-REMD simulations fit Eq.

3–5 compared to the CpHMD simulations. The results for the 8 residues plotted in Figs.

3-2 and 3-3 are shown in Table 3-3.

The improvement by using pH-REMD over conventional CpHMD, already apparent

by viewing Figs. 3-2 and 3-3, is striking as measured in Table 3-3. Even when CpHMD

performs well, pH-REMD results in an improvement of 2 – 3 orders of magnitude in the
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Table 3-3. Value of RSS according to Eq. 3–6 for the 8 residues shown in Figs. 3-2 and
3-3. Larger values represent more deviation from the fitted curve, whereas a
value of 0 represents a perfect fit. The ‘good’ titratable residues (Fig. 3-2) are
the first 4 entries and the ‘bad’ titratable residues (Fig. 3-3) are the last 4
entries.

Residue RSS (CpHMD) RSS (EAF=50 ps-1)
GLU 7 2.7× 10−2 7.9× 10−5
HIS 15 3.8× 10−2 2.7× 10−5
ASP 18 6.3× 10−3 3.3× 10−5
ASP 52 2.2× 10−2 1.3× 10−3
GLU 35 3.6× 10−1 4.2× 10−4
ASP 48 1.7× 10−1 2.4× 10−5
ASP 66 8.2× 10−4 2.9× 10−4
ASP 101 3.4× 10−2 2.7× 10−4

RSS metric, and results in at least another order of magnitude of improvement in the

cases where CpHMD performs poorly (except for Asp 66, for which CpHMD has already

proven to perform poorly in this study).

By exchanging structures with other replicas, ensembles generated at each pH

in pH-REMD simulations are able to escape from local minima that prevent titratable

residues from accurately sampling protonation states. Because each replica is run

independently, snapshots in each replica are not correlated with one another, so

ensembles generated at each pH contain more uncorrelated members in simulations

with more rapid EAFs (as long as replica exchange attempts succeed regularly).

Therefore, pH-REMD’s ability to cross free energy barriers more efficiently reduces to

an entropy argument—ensembles at each pH are given more opportunities to sample

different conformations.

Another way of thinking about pH-REMD simulations is to consider the entire

expanded ensemble, in which the simulations sample in both conformational-space and

pH-space. CpHMD simulations, on the other hand, do not sample in pH-space, as the

pH remains constant throughout the entire simulation. The protonation state of each

titratable residue strongly depends on both the solution pH and the protein conformation,

and is coupled to other titratable residues in complicated ways. Therefore, pH-REMD
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simulations can move through a much larger free energy space extended to another

dimension relative to CpHMD simulations—pH-space. CpHMD simulations are unable to

take advantage of lower free energy barriers in this expanded ensemble, causing them

to become more easily trapped in conformations that skew predicted pKas compared to

pH-REMD simulations.

In an extreme case—Asp 66—the CpHMD simulations at low pH never visited

conformations favorable to protonating. By allowing exchanges between pH replicas,

ensembles at lower pH crossed into regions of phase space favorable to Asp 66 proto-

nation.

The case of Asp 66 further demonstrates that increasing the EAF improves proto-

nation state sampling. The pKa prediction systematically improves as EAF is increased,

and the Hill coefficient improves from 0.11 to 1.19.

3.5 Exchange Attempt Frequency and Protonation State Sampling

To analyze the effect EAF has on pKa convergence, I divided each simulation into

sections of 0.25 ns and calculated the standard deviations of the pKa and Hill coefficient,

as well as the mean Hill coefficient, by fitting Eq. 3–5 to the data obtained from each pH.

The results are summarized in Table 3-4.

The average fluctuation in pKa systematically decreases as EAF increases, in large

part due to the improvement of residues that titrate poorly, namely Asp 48 and Asp 66.

The large standard deviation of these two residues is evidence that the protonation state

sampling does not converge on the 0.25 ns intervals that were used to generate the

statistics. However, increasing the EAF leads to a systematic decrease in the fluctua-

tions of the calculated pKa for Asp 48 and Asp 66, because a higher EAF decreases the

simulation time required to achieve pKa convergence.

The trend of the Hill coefficient shown in Table 3-4 also shows a radical improve-

ment in protonation state sampling with pH-REMD. While a Hill coefficient that deviates
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Table 3-4. Standard deviations of pKa (σpKa) and Hill coefficient (σn) and average Hill
coefficient (n̄) calculated by dividing each simulation into sections of 0.25 ns.
The pKa and Hill coefficients are calculated for each section of the simulation
by fitting fitting data from all pH replicas to Eq. 3–5 and calculating the
statistics from the 60 resulting data points.

CpHMD EAF=0.5 ps-1 EAF=50.0 ps-1

Residue σpKa n̄ σn σpKa n̄ σn σpKa n̄ σn
GLU 7 0.18 3.1 3.3 0.29 1.0 0.2 0.15 1.0 0.1
HIS 15 0.24 2.6 1.7 0.21 1.2 0.4 0.20 1.0 0.1
ASP 18 0.27 1.4 0.7 0.29 1.0 0.3 0.28 1.0 0.3
GLU 35 0.42 8.1 6.7 0.30 1.6 0.6 0.41 1.2 0.3
ASP 48 6.61 1.8 3.5 5.1 1.0 1.2 3.3 1.1 0.8
ASP 52 1.04 1.2 0.8 0.40 1.2 0.5 0.64 1.0 0.7
ASP 66 15 0.8 0.9 15 1.0 0.3 4.9 1.4 0.9
ASP 87 0.42 2.0 1.8 0.37 1.0 0.4 0.43 1.1 0.3
ASP 101 0.20 3.8 2.1 0.19 1.1 0.2 0.30 0.7 0.2
ASP 119 0.33 1.4 0.8 0.22 1.2 0.3 0.24 1.1 0.3

Average 2.4 3.0 2.7 2.2 1.1 0.4 1.1 1.1 0.4

significantly from 1 may indicate cooperativity between titrating residues, previous evi-

dence suggests these residues mostly titrate independently. [130] Furthermore, because

CpHMD and pH-REMD simulations converge to the same limiting ensemble, Hill coef-

ficients that diverge significantly from 1 in CpHMD simulations but remain close to 1 in

the pH-REMD simulations most likely indicate poor protonation state sampling in the

CpHMD simulations.

The CpHMD simulations show an average Hill coefficient of at least 2 for half of the

titratable residues, and its standard deviations are nearly as large as the Hill coefficient

itself. In this case, even low EAFs result in Hill coefficients closer to 1, and their average

relative standard deviation drops from 100% to 33%. Therefore, the Hill coefficients

from the CpHMD simulations symbolize poor protonation state sampling rather than

strong cooperativity between titrating residues.

A final metric for analyzing protonation state sampling of a particular residue is

to count the number of times the protonation state changes over a specified period of

time. I call these protonation state changes transitions, and I only consider a transition
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Figure 3-4. Number of protonation state transitions per ns of simulation time. A transition
is counted if consecutive snapshots in the ensemble have a different number
of protons for that residue. The CpHMD results are labeled with EAF=0.1
ps-1 to fit on the log-scale.

to have occurred if the number of protons on the titratable side-chain changed from one

snapshot to the next in a given ensemble. In particular, a tautomeric change, such as a

proton changing from one oxygen in a carboxylate to the other oxygen, is not counted.

Fig. 3-4 shows how the number of protonation state transitions per ns of simulation,

summed over every replica from pH 2 to 7, changes with EAF. In every simulation,

protonation state changes are attempted every 5 steps.

Simulations that result in more transitions demonstrate enhanced protonation state

sampling, since more protonation state changes occur in the same amount of time.

All simulations were carried out with the same set of parameters so every ensemble

generated at a given pH will converge to the same result given enough simulation time.

Therefore, simulations with more transitions will obtain converged pKa values faster.
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Fig. 3-4 shows that increasing EAF dramatically increases the number of transitions

despite the fact that the frequency of attempted protonation state changes is constant.

This is due to the nature of the probability of accepting a replica exchange attempt,

which is governed by Eq. 3–4. Because the success of an exchange attempt depends

only on the net difference of titrating protons between the two replicas, it is possible

for this net difference to be small, therefore the probability of accepting the exchange

attempt large, even when several residues have different protonation states. There-

fore, numerous protonation state changes for individual residues often accompany a

successful exchange of replicas.

3.5.1 Enhancing Conformational State Sampling with pH-REMD

Because conformations and protonation states are coupled, enhanced conforma-

tional sampling from pH-REMD naturally accompanies enhanced protonation state

sampling. In well-designed pH-REMD simulations (i.e., pH-REMD simulations in which

efficient mixing occurs in pH-space), each replica contributes structures to the ensemble

at each pH, which serves to increase the number of conformations visited at each pH.

RMSD is a metric that reflects how different the sampled conformations are from

a reference—in this case the original, minimized crystal structure. The histogrammed

RMSD data from Fig. 3-1 is shown in Fig. 3-5 to allow easier comparison between the

different simulations.

Simulations with higher EAFs traverse the replica ladder more rapidly, allowing

trajectories to break out of local minima that are tied to a particular protonation state.

The widening bin-widths in Fig. 3-5 show that RMSD-space is explored more thoroughly

within the 15 ns timescale sampled in each simulation as EAF increases to 10 ps-1

(there is no noticeable difference between the 10 ps-1 and 50 ps-1 EAF).

Because each simulation is subjected to the same set of external constraints (e.g.,

temperature, pH, solvation model, etc.), each generated ensemble should represent

a subset of the theoretically complete ensemble under these external constraints.
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Figure 3-5. Histogrammed RMSD data for pH 2, pH 4.5, and pH 7 taken from
simulations run with different EAFs.

Because these wider RMSD distribution reflects sampling of more conformations further

from the starting structure, it is almost certain that these wider distributions at high

EAF are thermodynamically ‘better’ (i.e., the ensembles approximate the theoretically

complete ensembles better) than their narrower counterparts in the CpHMD and 5

ps-1 EAF simulations. The original RMSD data, plotted in Fig. 3-1, also suggests that

pH-REMD simulations converge more rapidly because those simulations display many

transitions between conformations with different RMSDs.

In addition to sampling more RMSD space than CpHMD simulations, the pH-REMD

simulations also converge to their final RMSD distributions much more rapidly. To

quantify this measure, I used the Kullback-Leibler divergence [150, 151] (DKL). The

Kullback-Leibler divergence, calculated via Eq. 3–7, quantifies the similarity between two

distinct probability distributions P(i) and Q(i).
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Figure 3-6. Kullback-Leibler divergence for each simulation calculated via Eq. 3–7. P(i)
is the RMSD histogram of the indicated simulation at time t and Q(i) is the
RMSD histogram of the entire indicated simulation. Values closer to zero
indicate distributions of higher similarity.

DKL =

N∑
i=1

P(i) ln

(
P(i)

Q(i)

)
(3–7)

where DKL is the Kullback-Leibler divergence metric, i is the property of interest (RMSD

in this case), and P(i) and Q(i) are two probability distribution functions on i -space.

For discrete spaces (such as those obtained by histogramming data), Eq. 3–7 is

represented as a sum (as shown), but becomes an integral over all of i -space for

continuous probability distribution functions P(i) and Q(i).

Fig. 3-6 plots DKL calculated from Eq. 3–7 where P(i) is the RMSD distribution of

each simulation at time t and Q(i) is the final RMSD distribution of each simulation. As

P(i) and Q(i) become more similar, DKL tends toward zero. Therefore, the curves that

approach zero more rapidly approach their final RMSD distribution in a shorter amount

of time.

The pH-REMD simulations not only explore more RMSD space than the corre-

sponding CpHMD simulations, but they characterize this larger space more rapidly as
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well, since they converge to their final distribution faster than CpHMD. Furthermore, the

simulations with an EAF of 10 ps-1 and 50 ps-1 typically converge faster than the one

with an EAF of 5 ps-1. The only exception in this case, including the pHs not shown in

Fig. 3-6, is the simulation at pH 2. In general, simulations with EAF 10 ps-1 and 50 ps-1

are indistinguishable with respect to RMSD.

At pH 2, the RMSD distribution of the EAF=5 ps-1 simulation is much narrower than

the corresponding distributions at EAF 10 ps-1 and 50 ps-1. Therefore, it’s not surprising

that the DKL of the 5 ps-1 EAF simulation converges more rapidly than the higher EAFs.

In general, however, pH-REMD simulations with high EAFs sample more RMSD space

more efficiently than CpHMD and simulations with low EAFs.

To probe the nature of the conformational flexibility of HEWL at different EAFs, I

calculated the average atomic fluctuations for each residue from the average structure.

These fluctuations provide insight into the flexible regions of the protein, giving a more

fine-grained, structural analysis than RMSD does. The results, shown in Fig. 3-7,

show that the same parts of HEWL are generally flexible for each simulation, but the

pH-REMD simulations tend to display enhanced flexibility compared to the CpHMD

simulations. Again, because each simulation samples from the same ensemble subject

to the same thermodynamic constraints, this increased flexibility suggests that the

simulations at high EAF converge to the true ensemble more rapidly than the CpHMD

simulations and the pH-REMD simulations with a low EAF.

While the overall flexibility in pH-REMD simulations is increased with respect to the

CpHMD simulations, the dynamics still reveal different behavior at different pH. In partic-

ular, the region between residues 100 and 120 shows drastically increased flexibility at

pH values higher than 4 for the pH-REMD compared to the CpHMD simulations.

Furthermore, the region around residue 70, which shows heightened flexibility at pH

2 (Fig. 3-7), contains the problematic titratable residue Asp 66. This increased flexibility

104



Figure 3-7. Average atomic fluctuations for each residue relative to the average structure
of the ensemble. Data are shown for CpHMD, low EAF (0.5 ps-1) and high
EAF (50 ps-1).
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at high EAF is the likely explanation why Asp 66 protonates at low pH in the pH-REMD

simulations but not in the CpHMD simulation where this loop is substantially less flexible.

To probe the pH-dependence of HEWL dynamics further, I plot the distributions

of the distance between the carboxylate carbons of the catalytic residues Asp 52 and

Glu 35 at each pH. Because Asp 52 and GLU 35 are the catalytic residues in HEWL,

this behavior may have important implications in the HEWL catalytic activity profile as a

function of pH.

Fig. 3-8 shows that only the simulation run at pH 5 samples conformations in which

Asp 52 and Glu 35 are closely interacting for the CpHMD simulations. Furthermore,

the simulation at pH 5 spends roughly 75% of its time ‘stuck’ in this close interaction.

It is highly unlikely that this interaction is so strong at pH 5, yet is almost non-existent

at pH 4.5 and 5.5. More likely, Fig. 3-8 suggests that the CpHMD simulation run at

pH 5 became trapped while trajectories at other pH values were unable to enter this

conformational bin within the 16 ns of simulation.

pH-REMD simulations with a high EAF easily overcome this barrier within the

simulation time scale. The distributions from pH-REMD simulations with a 50 ps-1 EAF

display more expected behavior, given that the calculated pKas of Asp 52 and Glu 35

are 2.30 and 4.98, respectively (Table 3-2). This interaction is likely strongest when one

of the carboxylates is protonated and the other is deprotonated, and it is likely weakest

when both are deprotonated. Therefore, this interaction should be strongest at a pH

between 2.30 and 4.98.

The Asp 52—Glu 35 interaction is the strongest at pH 2.5 and decays as the pH

either increases or decreases. At pH 2.5, Asp 52 is most likely deprotonated while

Glu 35 is most likely protonated. At pH 2.0, both residues are likely to be protonated,

resulting in a slightly weaker interaction. However, this is still more favorable than when

both residues are deprotonated, so the interaction becomes significantly weaker as the

pH increases.
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Figure 3-8. Distributions of the Asp52-Cγ–Glu35-Cδ carboxylate carbons. Asp 52 and
Glu 35 are the catalytic residues of HEWL.
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Figure 3-9. Fraction of simulation with the Glu 35 – Asp 52 distance shorter than 5 Å vs.
pH.

Furthermore, tight coupling between Asp 52 and Glu 35 likely induces non-HH

behavior as these residues no longer titrate independently. This explains why the Hill

coefficient for Asp 52, reported in Table 3-2, is more significantly shifted away from 1—to

0.75—for the EAF of 50 ps-1. Over the pH range that contains the Asp 52 inflection

point, Fig. 3-8 shows that the interaction between the two active site residues is strong.

Over the pH range that contains the Glu 35 inflection point, however, the interaction

is weak, causing the Glu 35 titration to display nearly ideal Henderson-Hasselbalch

behavior.

To better illustrate the pH-dependence of the Glu 35 – Asp 52 interaction depicted

in Fig. 3-8, (at 50 ps-1 EAF) I integrated each of the distributions from 0 Å to 5 Å and

plotted the result against pH, shown in Fig. 3-9.
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Table 3-5. Average timings for CpHMD and pH-REMD simulations. CpHMD simulations
used 24 processors, whereas pH-REMD simulations used 288
processors—24 per replica. All simulations were performed on NICS
Keeneland. [152]

EAF (ps -1) Efficiency (ns/day)
0.0 7.56
0.5 6.81
5.0 6.55

10.0 6.72
50.0 6.70

3.5.2 Scalability With Increasing Exchange Attempt Frequency

It is important when selecting a simulation protocol to consider the performance im-

plications of each of the choices, since there is often a trade-off between computational

expense and theoretical rigor. As Mongan et al. demonstrated in their work, the CpHMD

method implemented in Amber is only marginally more expensive than traditional MD

with constant protonation states. [130] Here, I will discuss the performance implications

of increasing the EAF of pH-REMD simulations.

The computational cost of the pH-REMD simulations is the sum of the cost of the

underlying CpHMD method [130] and the cost of the replica exchange attempts. The

exchange success probability in pH-REMD simulations is governed by Eq. 3–4 and can

be implemented so that the computational cost of each exchange attempt is negligible.

The replicas of every simulation were carried out on 24 processors on NICS Keeneland

[152] so the simulation efficiency, measured in terms of ns of simulation per day, can be

directly compared. The average results obtained for each EAF is summarized in Table

3-5.

The decreased performance from the CpHMD simulation (EAF=0.0 in Table 3-5)

to the EAF=5.0 ps-1 simulations arises from the fact that REMD simulations in Amber

currently require each replica to perform the same number of MD steps between

exchange attempts. This synchronization causes each replica to run only as fast as the

slowest replica.
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The pH-REMD simulations are run with 288 processors (12 replicas with 24 proces-

sors each), whereas the CpHMD simulations are run each replica independently—with

only 24 processors. Therefore, the synchronization of the replicas in REMD is re-

sponsible for the 10% performance reduction between the CpHMD simulation and

the pH-REMD simulation with an EAF of 0.5 ps-1 (attempting exchanges every 1000

integration steps).

Increasing the EAF of pH-REMD simulations from 0.5 ps-1 to 50.0 ps-1 (attempting

exchanges every 10 steps) results in a 1% reduction in average simulation efficiency—a

value that falls well within the fluctuations between two different simulations with the

same EAF run on the same machine. Given the lack of performance degradation as

EAF increases and the improved performance of simulations as EAF increases, the

best EAF to use with the presented pH-REMD implementation is one where exchanges

are attempted every 10 to 50 integration steps (10.0 ps-1 and 50.0 ps-1 in this study,

respectively).

3.6 Conclusion

In this study, I have shown that pH-REMD effectively enhances sampling from the

semi-grand canonical ensemble compared to CpHMD in the case of hen egg-white

lysozyme. The titration curves generated from pH-REMD simulations are considerably

less noisy than the analogous titration curves generated from CpHMD simulations, and

they fit to the Hill equation much better. Furthermore, pKas calculated from pH-REMD

simulations converge faster and achieve better precision than CpHMD.

In some cases, pH-REMD can effectively cross potential energy barriers that trap

residues in CpHMD simulations. In the case of the Asp 66 residue in HEWL, CpHMD

simulations were unable to obtain noticeable protonation fractions even at a pH as low

as 2 when started from the 1AKI crystal structure. Utilizing pH-REMD simulations with

a rapid EAF, I obtained a titration curve with a Hill coefficient close to 1 and a calculated

pKa that compares well to experiment.
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I have demonstrated that increasing the EAF improves sampling and convergence

of several observables in this study. Asp 66 titrates more efficiently with a high EAF due

to enhanced the mobility of flexible regions of the protein. Furthermore, analysis of the

distance between the catalytic residues Asp 52 and Glu 35 show that increasing the

EAF can provide valuable chemical insight into biologically significant pH-dependent

behavior of proteins. Similarly to past work with temperature REMD, [142, 143] high

EAFs give rise to more rapid convergence.

Replica exchange methodologies can be implemented efficiently to reduce the cost

of each exchange attempt. In pH-REMD, the exchange success probability, governed by

Eq. 3–4, involves only trivial mathematics so the cost of evaluating Eq. 3–4 is negligible.

For efficient REMD implementations, like the one presented in this work, I recommend

setting the EAF to at least 10 ps-1, although some improvement is still seen with higher

EAFs.

Chodera and Shirts [138] provide an explanation for the improved efficiency of high

EAFs by relating it to Gibbs’ sampling and the effect high EAF has on ‘state space’

sampling (pH-space in this study). In their paper, Chodera and Shirts propose enhance-

ments to the exchange process in REMD simulations, such as exchanges between

non-adjacent neighbors in ‘state space’ as well as attempting multiple exchanges before

resuming dynamics. [138]

pH-REMD is likely to benefit by attempting exchanges between non-adjacent

neighbors, since the difference in pH between replicas is small. Given the simplicity

of the exchange probability equation (Eq. 3–4), the exchange success rate can be

calculated between any two replicas over the course of the pH-REMD simulation. The

calculated success rates show a non-negligible probability of accepting exchange

attempts between replicas up to 2 pH units away from each other (i.e., separated by 3

replicas).
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CHAPTER 4
CONSTANT PH MOLECULAR DYNAMICS IN EXPLICIT SOLVENT

In this chapter, I present a new method for performing CpHMD simulations in explicit

solvent building on the discrete protonation state model developed and explained in Ch.

3.

4.1 Introduction

Recently, Machuqueiro and Baptista raised concerns about pKa predictions in-

heriting problems related to the model compound definition and inaccuracies in the

underlying force field. [133] In particular, force field deficiencies have been shown to

result in incorrect—even unphysical—global minima. [23, 36, 153–155] Machuqueiro

and Baptista’s work suggests that pKa predictions are improved when the sampled con-

formations more closely resemble the true, experimental ensemble. Therefore, the role

of GB in evaluating the dynamics of biomolecules may be problematic in certain situa-

tions where GB is known to fail, such as the over-stabilization of salt bridges. [156, 157]

Indeed, for highly charged systems, like nucleic acids, a more accurate treatment of

electrostatic interactions is required to build a sensible ensemble.

While most of the physics-based methods designed to describe a biomolecular

system at constant pH use an implicit solvent representation of the solvent, several

CpHMD methods have been extended to sample, at least conformations, in explicit

solvent with both the discrete [126] and continuous [86, 158, 159] protonation models.

The methods proposed by Baptista et al. [126] and Wallace and Shen [86] use an

implicit solvent potential to sample protonation states while the methods developed by

Goh et al. [159] and Donnini et al. [158] perform λ-dynamics on the titration coordinate

directly in explicit solvent. A more recent approach by Wallace and Shen uses a λ-

dynamics approach in pure explicit solvent, but adds a counter-ion whose charge is

changed simultaneously with a titratable residue in order to maintain charge neutrality in

the unit cell. [160]
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Discrete protonation methods use molecular dynamics to propagate the spatial

coordinates, while occasionally interrupting the dynamics to attempt change(s) to the

protonation states of the titratable residues using a Metropolis Monte Carlo criteria.

The CpHMD method implemented in Amber [130] (and later implemented in CHARMM

[87]) performs MD in GB solvent, periodically attempting to change the protonation

state of one or two interacting residues roughly every 10 fs. [130] In the stochastic

titration method described by Baptista et al., dynamics is run in explicit solvent for 2 ps

[161], after which a cycle of protonation state change attempts are evaluated using the

Poisson-Boltzmann (PB) equation to treat solvation effects for every titratable residue

and interacting titratable residue pair. About 40,000 full cycles are attempted each time

protonation state changes are attempted. [162] Afterwards, the solute is held fixed while

MD is propagated on the solvent to reorganize the solvent distribution to the new set of

protonation states.

Implicit solvent models—in this case GB and PB—average over all solvent degrees

of freedom, allowing such approaches to instantly incorporate the solvent relaxation to

discrete protonation state changes. Therefore, MC moves in which a protonation state

change is attempted have a reasonable probability of succeeding when the solution pH

is set close to the intrinsic pKa of the titratable group. When explicit solvent molecules

are present, however, the solvent orientation around any solvent-exposed, titratable

residue will oppose every proposed protonation state change. On average, the solvent

distribution tends to resist protonation state changes by imposing a barrier on the order

of 100 kcal/mol as estimated by measurements in our lab and in others’, [86] making

titration with discrete protonation states difficult directly in explicit solvent.

In this study, I present a new method of performing CpHMD simulations in explicit

solvent using discrete protonation states. This method is similar in some respects to

that proposed by Baptista et al., [126] and I evaluate its performance on the model

compounds, a pentapeptide, and two proteins: Ribonuclease A (RNase A) and the hen
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egg white lysozyme (HEWL). To enhance the sampling capabilities of this new CpHMD

method, I used replica exchange in the pH-dimension (pH-REMD), whose theory and

performance were discussed previously in the context of implicit solvent calculations.

[87, 88] This chapter is organized as follows: I will first describe the method and its

implementation in the Theory and Methods section, followed by a description of the

calculations I performed in the Calculation Details section. Afterwards, I will evaluate its

performance as well as sensitivity to the method’s tunable parameters in the Results and

Discussion section.

4.2 Theory and Methods

In this section, I will discuss the details of our proposed method and highlight how

it differs from the approach used by Baptista et al. [126] The theoretical foundation of

our CpHMD method is described in detail, as well as the pH-REMD method I used in our

simulations.

4.2.1 Conformational and Protonation State Sampling

In CpHMD, structures are sampled from the semi-grand canonical ensemble, whose

probability distribution function is given by

ρ(q, p,n) =
exp

(
βµH

+
n − βĤ(q, p,n)

)
∑

n′

∫
dp′dq′ exp

(
βµH+n′ − βĤ(p′, q′,n′)

) (4–1)

where β = 1/kBT , µH+ is the chemical potential of hydronium (directly related to

the solution pH), q is the generalized coordinates of the system particles, p is the

conjugate momenta, and n is the total number of titratable protons present in that

state. When bold, n refers to the protonation state vector, specifying not only the total

number of protons present, but on which titratable sites those protons are located. The

denominator in Eq. 4–1 is the partition function of the semi-grand canonical ensemble.

To sample from the probability function ρ in Eq. 4–1, discrete protonation state

methods use MD with a fixed set of protonation states to sample coordinates and

momenta coupled with a MC-based protonation state sampling at fixed conformations
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throughout the trajectory. This is equivalent to separating ρ into conditional probabilities.

In Eq. 4–2, ρ(q, p|n) is sampled via MD and ρ(n|q, p) is sampled via the MC protonation

state changes.

∫ ∫ ∫
ρ(q, p,n)dq dp dn =

∫ ∫
ρ(q, p|n)dq dp

∫
ρ(n|q, p)dn (4–2)

In explicit solvent, ρ(n|q, p) is difficult to sample directly, since the solvent orientation

is set according to the current protonation state vector. Following the arguments of

Baptista et al., the system coordinates (and momenta) can be separated into solute and

solvent degrees of freedom. [126] The protonation state sampling is then performed

according to the conditional probability

ρ′ = ρ(psolvent , qsolvent ,n|psolute, qsolute) (4–3)

where qsolvent and psolvent are relaxed solvent distributions of positions and momenta

around the protonation state vector, n. [126] Implicit solvent models account for solvent

reorganization instantantly, so the distribution function ρ′ in Eq. 4–3 can be approx-

imated using continuum models, such as the PB or GB equations, thereby avoiding

the otherwise costly solvent relaxation calculation associated with each attempted

protonation state change.

Contrary to the stochastic titration method that calculated solvation free energies

using the PB equation to evaluate protonation state changes, [126] I chose to use the

GB implicit solvent model for three main reasons. First, sander has numerous GB

models readily available, [49, 50, 163–165] allowing us to use the existing code to

evaluate protonation state change attempts. Second, results from the original GB-based

CpHMD implementation by Mongan et al., and from a number of previous studies using

the method, have been promising. [88, 130, 135, 166] Furthermore, GB was shown to

be effective when used in a hybrid solvent method with continuous protonation states

[86] and is less computationally expensive than PB, and its calculation is more easily
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split up among many processors, allowing longer simulations to be performed in the

same amount of time.

4.2.2 Explicit Solvent CpHMD Workflow

The process of the CpHMD method presented here can be divided into three

repeating steps, summarized in the workflow diagram in Fig. 4-1. This workflow is very

similar to the one presented in Baptista et al. (Fig. 2), [126] although the nature of the

MC protonation state move is different.

In the proposed method standard MD in explicit solvent is carried out using a

constant set of protonation states (an initial set must be provided at the start of the

simulation). At some point the MD is stopped, the solvent (including any non-structural

ions) are stripped, the potential is switched to an available GB model, and a set of N

protonation state changes are attempted where N is the number of titratable residues.

While in principle the MD can be stopped randomly with a predetermined probability at

any step, in this iteration of our proposed method MD is run for a set time interval, τMD ,

similar to the stochastic titration method. [126]

After the MD is halted and the solvent stripped, protonation state changes are

proposed for each titratable residue once, in random order, choosing from the available

protonation states of that residue excluding the currently occupied state. The electro-

static energy difference between the proposed and current protonation states, as well as

the MC decision regarding whether or not to accept the proposed state, are calculated

the same way as in the original GB implementation. [130] If the protonation state change

is accepted, the ‘current’ state is appropriately updated, and the next residue, chosen at

random without replacement, is titrated with this new state.

For each residue that is titrated, there is a 25% chance that a so-called multi-

site titration will occur with a neighboring residue—that is, the proposed change will

involve changes to the protonation state of both neighbors. Two titratable residues

are considered ‘neighbors’ if their two titrating hydrogen atoms are within 2 Å from
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each other. If either residue has more than one titrating proton, the two residues are

neighbors if the minimum distance between any pair of titrating hydrogens meets the

cutoff. Like the single-residue change attempts, if this protonation state change attempt

fails, the system remains in its original protonation states for both residues.

Including multi-site protonation state jumps is important for systems that have

closely-interacting titratable residues. Without these multi-site moves, proton transfers

between adjacent titratable residues involved in a hydrogen bond would never occur due

to the high penalty of disrupting the interaction by adding another proton or removing

the proton involved in the hydrogen bond. This feature was actually present in the initial

implementation, and while no mention of it was made in the original paper, a small note

was made in the Users’ manual. [130]

If any of the protonation state change attempts were accepted, the solute is frozen

while MD is performed on the solvent (and any ions) to relax the solvent distribution

around the new protonation states. The length of this relaxation is a tunable parameter

of the method, which I will call τrlx . When the relaxation time is infinitely long, this

process becomes exact. After the relaxation is complete, the velocities of the solute

atoms are restored to their values prior to the relaxation and the standard dynamics is

continued.

4.2.3 pH-based Replica Exchange

The underlying theory behind replica exchange in pH-space with MD run in explicit

solvent is unchanged from the version I implemented in implicit solvent, as described

in Ch. 3. [87, 88] Replicas are ordered by their solution pH parameter, and adjacent

replicas attempt to exchange their pH periodically throughout the MD simulations.

The probability of accepting these replica exchange attempts, given by Eq. 3–4,

depends only on the difference in the number of titrating protons present in each replica

and their respective difference in pH. [88] As a result, the number of replicas necessary

to obtain efficient mixing in pH-space does not increase as explicit solvent is added.
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Figure 4-1. Workflow of the proposed discrete protonation CpHMD method in explicit
solvent. Following the standard MD, the solvent, including all non-structural
ions (as determined by user-input), are stripped and the protonation state
changes are evaluated in a GB potential. After that, the solvent and the
original settings are restored for the remaining steps.
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This, coupled with the improved sampling found with implicit solvent simulations, [88]

makes pH-REMD an effective tool for explicit solvent CpHMD.

4.3 Calculation Details

To evaluate the performance of the proposed method, I applied it to the amino acid

model compounds, a small pentapeptide (ACFCA), and two proteins commonly used

in pKa calculation studies—ribonuclease A (RNase A) and the hen egg-white lysozyme

(HEWL).

4.3.1 Model Compounds

Absolute pKas are very difficult to calculate in solution—they are impossible using

classical force fields. As a result, every physics-based CpHMD method uses the idea

of a model compound whose experimental pKa is easy to measure with a high level

of accuracy. An empirical parameter—the reference energy—is then added so that

CpHMD reproduces the experimental pKas of these model compounds. In this way,

CpHMD computes the pKa shift of a titratable residue in a biomolecule with respect to

the isolated model compound in solution via the thermodynamic cycle shown in Fig. 4-2

The model compounds have the sequence ACE-X-NME, where ACE is a neutral

acetyl capping residue, X is a titratable residue, and NME is a neutral methyl amine

capping residue. [130] The available titratable residues in Amber are aspartate (AS4),

glutamate (GL4), histidine (HIP), lysine (LYS), tyrosine (TYR), and cysteine (CYS),

which are all defined as described by Mongan et al. [130] A 10 Å TIP3P [167] solvent

buffer was added in a truncated octahedron around the model compound. The aspartate

model compound was also simulated with larger box sizes—15 Å and 20 Å buffers—to

determine if it had any effect on the calculated pKa.

After the system topologies were generated, each system was minimized using

100 steps of steepest-descent minimization followed by 900 steps of conjugate gradient

119



 + H+

 + H+

ΔGprot, elec ΔGunprot, elec 

ΔGref

ΔGtransition

Figure 4-2. Thermodynamic cycle used to evaluate protonation state changes in
CpHMD simulations.

minimization. They were then heated at constant pressure, varying the target tempera-

ture linearly from 50 K to 300 K over 200 ps. The solvated model compounds were then

simulated, free of restraints, for 2 ns at constant temperature and pressure.

Each model compound system was simulated at constant pH and volume for 2 ns,

setting τrlx = 200 fs. Each system was simulated with pH-REMD using six replicas with

the solution pH set to pKa ± 0.1, pKa ± 0.2, and pKa ± 1.2. To evaluate the effect of the

solvent relaxation time, the cysteine and aspartate model compounds were run with τrlx

set to 10 fs, 40 fs, 100 fs, 200 fs, and 2 ps.
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Table 4-1. Model compound pKa values and reference energies. Because only
differences in reference energies are used in the MC calculation, one state is
arbitrarily assigned a reference energy of 0 (the deprotonated states of AS4
and GL4, the protonated state of CYS, and the double-protonated state of
HIP). The listed reference energies are calculated with respect to the arbitrary
zero value. pK calca are pKas calculated with the proposed method using the
GB reference energy (∆GGBref ). Adjusted reference energies for explicit solvent
CpHMD are labeled as ∆G ∗

ref . All energies are in kcal/mol
Residue Reference pKa ∆GGBref pK calca ∆G ∗

ref

Aspartate 4.0 32.38803 4.20 32.11310
Glutamate 4.4 14.45421 4.75 13.97287
Histidine-δ 6.5 -16.34790 6.55 -16.47559
Histidine-ϵ 7.1 -11.77701 7.19 -11.71159
Cysteine 8.5 89.15114 8.40 89.28861

The results from these simulations were used to adjust the original reference

energies to reproduce the correct model compound pKas in explicit solvent. This

adjustment can be calculated directly from the pKa shift relative to experiment when

using the original reference energy. To calculate the required adjustment, the reference

energy is broken into two components—a TI-based component which is equal to the

free energy difference between the two states and a pKa-based component that offsets

the energies of the protonation states to the necessary value required to obtain the

correct pKa for the model compound. This is shown in Eq. 4–4. A summary of the

required changes is given in Table 4-1.

∆Gref = ∆GTI + kT ln 10∆N pKa,model (4–4)

4.3.2 ACFCA

A pentapeptide with the sequence Ala-Cys-Phe-Cys-Ala (ACFCA) was solvated with

a 15 Å buffer of TIP3P molecules around the solute in a truncated octahedron.

The system was minimized using 100 steps of steepest descent minimization

followed by 900 steps of conjugate gradient. The minimized structure was heated by

varying the target temperature linearly from 50 K to 300 K over 200 ps at constant
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pressure. The resulting structure was then simulated at 300 K at constant temperature

and pressure to stabilize the system density and equilibrate the solvent distribution

around the small peptide.

Simulations at six different pH values—7.1, 8.1, 8.3, 8.7, 8.9, and 9.9—were

performed beginning from the resulting ‘equilibrated’ struture. These pH values were

chosen because the pKa of the cysteine model compound is 8.5, so the two cysteines

of ACFCA were expected to titrate in this pH range. To demonstrate the effect that

pH-REMD had on the titration of ACFCA, two sets of simulations were run—CpHMD

with no exchanges and pH-REMD—with each replica being run for 2 ns. The relaxation

dynamics following successful exchange attempts were run for 100 fs.

4.3.3 Proteins: HEWL and RNase A

Two different starting structures were selected from the PDB for both HEWL and

RNase A. The structures solved in PDB codes 1AKI [147] and 4LYT [168] were used as

starting structures for the HEWL calculations, while those from PDB codes 1KF5 [169]

and 7RSA [170] were used for the RNase A calculations.

All PDB files were prepared by removing all solvent and keeping only the first

conformation present for each residue if more than one was present. All aspartate

residues were renamed AS4, all glutamate residues were renamed GL4, and all histi-

dine residues were renamed HIP in preparation for CpHMD and pH-REMD simulations.

By default, aspartate and glutamate are in their deprotonated state while histidine is in

its double-protonated state.

All disulfide bonds were added manually in tleap and each structure was solvated

with a 10 Å TIP3P water buffer surrounding the protein in a truncated octahedron. To

test the effect of ions in the explicit solvent titrations, a second set of systems was set up

for each starting structure by adding several ions randomly distributed around the unit

cell. I added 14 chloride ions and 6 sodium ions to the RNase A starting structures, and

15 chloride ions and 6 sodium ions to the HEWL starting structures, which neutralized
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all systems in their initial protonation states. The added counter-ions resulted in salt

concentrations ranging from 0.17 M to 0.18 M for all four simulations following the

constant pressure equilibration.

All structures were minimized using 1000 steps of steepest descent minimization

followed by 4000 steps of conjugate gradient, with 10 kcal/mol positional restraints

applied to the backbone. The structures were then heated at constant volume, varying

the target temperature linearly from 10 K to 300 K over 400 ps. The heated structures

were then equilibrated for 2 ns at constant temperature and pressure.

Following the setup stages of the simulations, each structure was simulated using

pH-REMD simulations for 20 ns, with 8 replicas spanning integer pH values from 1 to 8

to characterize the acidic-range titration behavior of the systems.

4.3.4 Simulation Details

All systems were parametrized using the Amber ff10 force field, which is equivalent

to the Amber ff99SB force field for proteins. [23] The tleap program of the AmberTools

12 program suite was used to build the model compound and ACFCA molecules, to add

hydrogen atoms to RNase A and HEWL, and to solvate each system.

All simulations were performed using the sander module of a development version

of Amber 12. [141] Langevin dynamics was used in every simulation to maintain

constant temperature with collision frequencies varying from 1 ps-1 to 5 ps-1, and

the random seed was set from the computer clock to avoid synchronization artifacts.

[149, 171] The Berendsen barostat was used to maintain constant pressure for the

equilibration dynamics with a coupling constant of 1 ps-1.

All molecular dynamics, including the solvent relaxation dynamics, are run with a

2 fs time step, constraining bonds containing hydrogen using SHAKE. [16, 18] Replica

exchange attempts between adjacent replicas were made every 200 fs for all pH-REMD

simulations. Protonation state changes were attempted every 200 fs for all constant pH

simulations.
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Long-range electrostatic interactions were treated with the particle-mesh Ewald

method [172, 173] using a direct-space and van der Waals cutoff of 8 Å. Defaults were

used for the remaining Ewald parameters. The GB model proposed by Onufriev et al.,

specified by the parameter igb=2 in sander, [49] was used to evaluate the protonation

state change attempts to be consistent with the original implementation in implicit

solvent. [130]

4.4 Results and Discussion

Here I will analyze the performance of our proposed CpHMD and pH-REMD

methods as well as ways to optimize its overall performance. I will start by discussing

the behavior of the model compounds when the size of the unit cell and the length of the

relaxation dynamics (τrlx ) is varied. I will follow this discussion with a similar analysis on

a slightly larger system—ACFCA—before discussing the application of our proposed

method to real proteins.

4.4.1 Box Size Effects

To study the effect that the unit cell size has on titrations in our proposed method, I

prepared three systems of the aspartate model compound with different TIP3P solvent

buffers surrounding it. I prepared systems with a 10 Å, 15 Å, and 20 Å TIP3P solvent

buffer around the model aspartate.

Because protonation state sampling takes place in GB solvent without periodic

boundary conditions, any effect of the box size on calculated pKas will arise due to

alterations of the structural ensembles induced by artifacts from the box size. The

calculated pKas of the three systems were 4.02±0.07, 4.05±0.08, and 4.12±0.07 for the

10 Å, 15 Å, and 20 Å solvent buffer systems, respectively. To estimate the uncertainties I

divided each simulation into 100 ps chunks and took the standard deviation of the set of

20 pKas calculated from those segments.
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Figure 4-3. Radial distribution functions (RDFs) of solvent oxygen atoms (O) and
hydrogen atoms (H) with different unit cell sizes. The shown
measurements—10, 15, and 20 Å—represent the size of the solvent buffer
surrounding the solute. RDF plots for three different pHs are shown,
highlighting the pH dependence of the solvent structure around the
carboxylate of the aspartate model compound and its invariance to box size.

To further demonstrate the insensitivity of box size to pH-REMD titrations, I plotted

the solvent radial distribution functions (RDFs) around the center of mass of the car-

boxylate functional group in three different solution pH environments, shown in Fig. 4-3.

The insensitivity of the pKa and solvent structure with respect to the model compound

provides strong evidence that no undue care is necessary when choosing the size of the

solvent buffer for these types of simulations.

4.4.2 τrlx Effects

An important approximation in the proposed method is that the protonation state

sampling ρ′ from Eq. 4–3 can be replaced using an implicit solvent model followed by
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relaxation MD to generate the relaxed solvent positions and momenta. The question

then becomes how long this relaxation dynamics should be run.

To address this, 2 ns of constant protonation molecular dynamics simulations

were run on the model cysteine compound in both protonation states—protonated and

deprotonated—after the same minimization and heating protocols were used as for

the other model compound simulations. The protonation state was then swapped for

the final structures of both simulations, and MD was performed while constraining the

solute position for 20 ns, equivalent to the relaxation dynamics protocol in our proposed

method.

The optimum value for τrlx is the time after which the energy of the relaxation

trajectory stabilizes and the simulation loses all memory of its initial configuration. To be

truly equivalent to having been chosen at random, the final, relaxed solvent distribution

must be completely uncorrelated from the initial distribution at the time the protonation

state was changed.

To probe the necessary time scales for these relaxation dynamics, the energy

of each snapshot in the relaxation trajectory is plotted alongside the autocorrelation

function of that energy in Fig. 4-4 to clearly demonstrate the ‘appropriate’ value of τrlx for

this model system.

I chose the cysteine model compound for this test for two reasons. First, the model

compounds are fully solvent-exposed due to their small size, which results in a worst-

case scenario in terms of the number of water molecules that must be reorganized

during the relaxation dynamics. The optimum τrlx value for model compounds is ex-

pected to be an upper-bound on the values required for larger systems. Secondly,

cysteine is the smallest and simplest of the titratable amino acids, eliminating potential

complications from tautomeric states compared to aspartate, glutamate, and histidine.

The relaxation energies plotted in Fig. 4-4 begin to stabilize after 4 to 6 ps of

relaxation dynamics, and the autocorrelation function indicates that the relaxation
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Figure 4-4. The relaxation of the protonated state—starting from the protonated
trajectory—is shown in blue with its autocorrelation function shown in purple.
The relaxation of the deprotonated state from an equilibrated snapshot from
the protonated ensemble is shown in red with its autocorrelation function
shown in green. Here, PR and DR stand for Protonated-Relaxation and
Deprotonated-Relaxation, respectively.

energies are uncorrelated from the point of the protonation state change. However,

because 4 ps of MD—corresponding to 2000 steps of dynamics with a 2 fs time step—

adds dramatically to the cost of CpHMD simulations in explicit solvent, I explored the

approximation of using a significantly smaller value for τrlx .

Both the relaxation energies and autocorrelations drop very sharply at the start of

the relaxation dynamics, so the majority of the benefit gained by relaxing the solvent is

realized within the first few steps.
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For example, the energies from the relaxation of the deprotonated structure in the

protonated state drops from -7197 kcal/mol to -7377 kcal/mol during the first 200 fs.

The average energy of the final 10 ns of that trajectory is -7490 kcal/mol. Likewise,

the energies from the other relaxation dynamics drops from -7267 kcal/mol to -7465

kcal/mol over the first 200 fs, finally settling into an average of -7552 kcal/mol over the

final 10 ns. In both cases, 70% of the total relaxation energy was realized during the

first 200 fs of relaxation dynamics. The autocorrelation function of the relaxation energy

decays similarly, so the assumption that the relaxed solvent distribution is uncorrelated

from its starting point is a reasonable approximation.

To validate the use of a shorter τrlx , I titrated the aspartate model compound using

pH-REMD with five different values for τrlx—10 fs, 40 fs, 100 fs, 200 fs, and 2 ps. The

calculated pKas were 4.08 ± 0.02, shown in Fig. 4-5. Furthermore, comparing the

solvent radial distribution functions of the different solvent relaxation times (Fig. 4-6)

shows little dependence of the solvent distribution on the value of τrlx .

4.4.3 ACFCA: CpHMD vs. pH-REMD

The small peptide chain ACFCA, described in Sec. 4.3.2, was chosen as a test

due to its small size and predictable titration behavior. The simplicity of the system

makes it an ideal test—its small size mitigates the conformational sampling problem,

and the simple titrating behavior of cysteine further simplifies protonation state sampling.

Unlike aspartate and glutamate, which have the four defined tautomeric states defined

by anti- and syn-protonation on each of two carboxylate oxygens, and histidine which

has two tautomeric states on the imidazole, cysteine has only one protonated and one

deprotonated state, presenting fewer degrees of freedom that must be exhaustively

sampled.

Each cysteine is in a slightly different micro-environment due to the different

charges of the N- and C-termini. Because Cys 2 is typically closer to the N-terminus, it is

expected to experience a negative pKa shift with respect to the model compound due to
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Figure 4-5. Computed pKas for the Aspartate model compound using different relaxation
times (τrlx ).

the electrostatic influence of the positively-charged terminus. Cys 4, on the other hand,

is expected to experience a pKa shift in the opposite direction due to the electrostatic

pressure of the negatively-charged C-terminus.

I ran simulations at pH 7.1, 8.1, 8.3, 8.7, 8.9, and 9.9 to sufficiently characterize the

titration behavior of both cysteine residues around their pKas. One set of replicas was

run with pH-REMD while the other set was run using CpHMD (i.e., without attempting

exchanges between the replicas). The titration curves for both sets of simulations,

shown in Fig. 4-7, demonstrate the importance of using pH-REMD in constant pH sim-

ulations in explicit solvent. The pKa of Cys 2 and Cys 4 were 8.2 and 9.4, respectively.

As expected, these pKas represent shifts of -0.2 pK units for Cys 2 and +0.9 pK units
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Figure 4-6. RDFs of water oxygen atoms (O) and hydrogen atoms (H) around the
center-of-mass of the carboxylate group of the model aspartate molecule at
different solution pHs.

for Cys 4 with respect to the model Cys compound. As a test, this compound was run

using the original CpHMD implementation in implicit solvent [130] to ensure that we

obtained the same results. Because the available phase space in simulations ACFCA

is so small due to the small size of the molecule, the sampled ensembles in implicit and

explicit solvent are expected to be very similar. When run in implicit solvent, the two

cysteine residues have almost identical pKas to those obtained by the simulations in

explicit solvent—8.1 and 9.4, for Cys 2 and Cys 4, respectively.

Even for a simple system such as ACFCA, using pH-REMD on top of standard

CpHMD simulations results in a drastic improvement in titration curve fit—a result of

improved protonation state sampling. The residual sum of squares (RSS), a quantity

that measures how well an equation fits a data set whose equation is shown in 3–6,

shows drastic improvement using pH-REMD. The RSS for Cys 2 and Cys 4 using
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Figure 4-7. Titration curves of Cys 2 and Cys 4 in the ACFCA pentapeptide. Results
from CpHMD (no replica exchange attempts) and pH-REMD are shown in
the plots on the left and right, respectively.

CpHMD was 9 × 10−2 and 7 × 10−3, respectively. For the pH-REMD simulations, on

the other hand, the RSS was reduced by several orders of magnitude to 7 × 10−5 and

9× 10−6 for Cys 2 and Cys 4, respectively.

4.4.4 Hen Egg White Lysozyme

HEWL is a common benchmark for pKa calculations because it has been studied

extensively both experimentally [136, 144, 145] and theoretically, [86, 88, 130, 135, 146,

161] and it has a large number of titratable residues—some with a marked pKa shift

compared to the isolated model compound.

The 1AKI and 4LYT crystal structures were prepared initially without any ions,

resulting in unit cells with a net charge of +9 electrons when the carboxylate residues

are negatively charged and the histidine residue is positively charged. The calculated

pKa for all 10 residues that titrate in the acidic range are summarized in Table 4-2 for

both starting structures.
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Table 4-2. Calculated pKas for acid-range titratable residues in HEWL using the
proposed method for both starting structures—PDBs 1AKI and 4LYT—without
ions. The root mean square error (RMSE) and mean unsigned error (MUE)
with respect to the experimental values are shown in the last two rows.
Experimental values are taken from Webb et al. [136]

Residue PDB 1AKI PDB 4LYT Experiment [136]
Glu 7 1.6 1.8 2.6
His 15 7.1 6.5 5.5
Asp 18 1.8 1.8 2.8
Glu 35 5.0 4.9 6.1
Asp 48 -0.2 -0.3 1.4
Asp 52 -0.3 -1.2 3.6
Asp 66 -1.8 -1.0 1.2
Asp 87 0.5 0.5 2.2
Asp 101 3.7 3.8 4.5
Asp 119 0.0 0.3 3.5

RMSE 2.19 2.20 —
MUE 1.91 1.83 —

The pKas predicted here agree worse than our results presented in Ref. 88, due

mainly to the poor treatment of aspartate residues 48, 52, 66, and 119. The disparity

between the implicit and explicit solvent results probably stems from the enhanced

conformational sampling attainable with implicit solvent simulations. Dynamical events

occur much slower in explicit solvent simulations due to the friction and viscosity of the

solvent. However, the conformations sampled in implicit solvent are frequently artifacts

of the inaccuracies in the underlying solvent model [156, 157] that may hinder the

performance of the CpHMD simulations. [133]

The difference in the conformational sampling ability of the proposed method

and the original, implicit solvent-based method is pronounced enough that a simple

comparison of the root mean squared deviation (RMSD) is a sufficient illustration. The

RMSD of the trajectories in the current study (Fig. 4-8) is 2 to 3 times smaller than

the RMSDs shown in Fig. 3-5 from Ch. 3, despite the extra 4 ns of production MD

performed for each replica in explicit solvent. Furthermore, the dynamics displays none
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Figure 4-8. RMSD plots over 20 ns of pH-REMD simulation for HEWL at pH 2, 4, 6 and
8 with respect to the starting crystal structure 1AKI. The distributions are
very similar for the starting structure 4LYT as well.

of the regions of flexibility noted in implicit solvent that were correlated with the improved

titration of aspartate 66. [88]

Ions

When all aspartate and glutamate residues are deprotonated and the histidine is

protonated at both the δ and ϵ positions, HEWL has a net charge of +9 electrons. Even

though the PME implementation in Amber applies a net neutralizing plasma for such

systems, the lack of counterions in the unit cell may lead to unusual behavior by any of

the 30 charged residues in the system.
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Therefore, I added 21 ions—15 chloride and 6 sodium—to add ionic strength and

to provide the ions necessary to neutralize the initial unit cell. Like the effects of the unit

cell size and τrlx value, ions will only affect the calculated pKas by modifying the sampled

conformations since the protonation state changes are performed using implicit solvent.

The predicted pKas, shown in Table 4-3, show a marked improvement for several

residues whose calculated pKa was too low without ions. The simulations with explicit

ions did not exhibit heightened sampling of large-scale conformational changes—the

RMSD plots of these simulations are shown in Fig. 4-9—but is rather a result of changes

to the microenvironment around the relevant titratable residues significant enough to

effect a noticeable change to the titrating behavior.

The residue that experienced the largest pKa shift as a result of the added ions

was Asp 66. As I observed in our previous work, Asp 66 is surrounded by proton

donors, such as the Arg 68 and the hydroxyl groups of Thr 69 and Ser 60. [88] The

arginine residue, carrying a net positive charge, is the strongest driving force favoring

the deprotonated state. To compare how Arg 68 may affect Asp 66 differently when

ions are present, I show in Fig. 4-10 that the distribution of Asp 66–Arg 68 distances is

shifted to larger values when ions are present. Because Arg 68 can occasionally interact

with chloride ions in the bulk solvent when they are present instead of Asp 66, Asp 66 is

more likely to accept proposed protonation moves when these ions are present.

It is surprising that the presence of ions can have such a large impact on predicted

pKas without inducing global conformation changes. That the ions are not included in

the GB-based, protonation state changes only increases the peculiarity of this result.

Explicit ions can modify the local environment around titratable residues enough to

induce large pKa shifts, making them important to include in the proposed method.

4.4.5 Ribonuclease A

Like HEWL, RNase A is a common benchmark for constant pH studies due to its

large number of titrating residues. Furthermore, the currently proposed mechanism
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Table 4-3. Calculated pKas for acid-range titratable residues in HEWL using the
proposed method for both starting structures—PDBs 1AKI and 4LYT—with 21
ions. The root mean square error (RMSE) and mean unsigned error (MUE)
with respect to the experimental values are shown in the last two rows.
Experimental values are taken from Webb et al. [136]

Residue PDB 1AKI PDB 4LYT Experiment [136]
Glu 7 1.9 1.8 2.6
His 15 6.4 6.3 5.5
Asp 18 1.9 1.7 2.8
Glu 35 4.6 4.9 6.1
Asp 48 -1.4 0.8 1.4
Asp 52 0.5 0.1 3.6
Asp 66 0.2 -0.4 1.2
Asp 87 0.4 0.5 2.2
Asp 101 3.5 3.5 4.5
Asp 119 0.6 -0.3 3.5

RMSE 1.89 1.91 —
MUE 1.68 1.56 —

requires one catalytic histidine to be a proton donor (general acid) and another to be a

proton acceptor (general base)—His 119 and His 12, respectively. Because a specific

combination of protonation states are necessary for catalysis, the proposed method is a

useful tool for probing the pH-dependence of RNase A.

The predicted pKas for RNase A in an acidic-range titration—summarized in Table

4-4—are in better agreement with experiment than those from HEWL. This is expected,

however, since the average magnitude of the pKa shifts with respect to the model

compounds is smaller in RNase A.

While most of the residues have a calculated pKa close to the experimental value,

several are trapped in environments that resist changing their protonation state across

the entire range of simulated pHs. Glu 2 is adjacent to the N-terminal lysine residue with

a +2 charge and interacts closely with the positively-charged lysine 7 and arginine 10

residues much of the time, pushing the predicted pKa very low. If the time scale of the

simulation is insufficient to escape this local conformational basin, the predicted pKa of

Glu 2 will be unphysically low, as seen in Table 4-4 for the 1KF5 structure.
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Figure 4-9. RMSD plots over 20 ns of pH-REMD simulation with explicit counterions for
HEWL at pH 2, 4, 6 and 8 with respect to the starting crystal structure 1AKI.

Similar traps are seen around Asp 14, which is surrounded by hydrogen bond

donors. The His 48 residue, on the other hand, interacts closely with numerous back-

bone carbonyl atoms in a configuration that resists deprotonating either Nδ or Nϵ in the

1KF5 starting structure.

Like with the HEWL simulations, I ran a second set of 20 ns simulations in which I

added 14 chloride and 6 sodium ions to generate a net ion concentration around 0.18

M. More chloride was added because the net charge of the initial protonation states

was +8 electrons. The predicted pKas for the simulations with explicit counterions

resulted in marked improvement in most titratable residues that proved problematic in
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Figure 4-10. Distance distribution functions calculated from HEWL simulations begun
with crystal structure 1AKI for all snapshots in the ensemble at pH 1.0. The
probability distributions were calculated using 10,000 snapshots and
smoothed using a gaussian kernel density estimate with a bandwidth of 0.1

the simulations without the ions, following the trend seen in the HEWL calculations. The

full summary of calculated pKas is shown in Table 4-5.

4.5 Conclusion

I have extended the constant pH molecular dynamics method developed by Mongan

et al. [130] so that the dynamics can be run in explicit solvent. I tested a wide range of

parameters in our proposed method for their effect on the conformational and protona-

tion state sampling of small test systems. Because these test systems are small and

their titratable sites are completely solvent-exposed, they likely represent the highest

level of sensitivity to these various parameters.

137



Table 4-4. Calculated pKas for RNase A using simulations begun from crystal structures
1KF5 and 7RSA. Experimental values shown are taken from Ref. 174. Root
mean squared error (RMSE) and mean unsigned error (MUE) does not
include His 48 for the 1KF5 structure or Asp 14 for the 7RSA structure.

Residue PDB 1KF5 PDB 7RSA Experiment [174]
Glu 2 -5.7 -0.2 2.5
Glu 9 3.6 3.6 3.9
His 12 6.1 5.8 6.0
Asp 14 -1.2 -8.8 1.8
Asp 38 2.1 2.3 2.1
His 48 ∞ 5.8 6.1
Glu 49 3.4 3.3 4.3
Asp 53 3.6 3.7 3.7
Asp 83 1.6 1.8 3.3
Glu 86 4.3 4.3 4.0
His 105 7.3 7.8 6.5
Glu 111 3.6 3.4 3.8
His 119 6.0 6.0 6.5
Asp 121 0.6 -0.8 3.0

RMSE* 1.83 2.20 —
MUE* 1.18 1.26 —

Table 4-5. Calculated pKas for RNase A simulations run with explicit counterions
present. All calculated pKas are included in the calculated root mean squared
error (RMSE) and mean unsigned error (MUE).

Residue PDB 1KF5 PDB 7RSA Experiment [174]
Glu 2 0.6 -1.8 2.5
Glu 9 3.7 3.6 3.9
His 12 6.2 6.9 6.0
Asp 14 -1.4 -0.3 1.8
Asp 38 1.8 2.3 2.1
His 48 7.9 6.7 6.1
Glu 49 4.2 5.2 4.3
Asp 53 3.3 2.5 3.7
Asp 83 1.5 1.3 3.3
Glu 86 3.8 3.8 4.0
His 105 7.1 6.9 6.5
Glu 111 3.7 3.6 3.8
His 119 5.7 5.7 6.5
Asp 121 -0.2 0.0 3.0

RMSE 1.53 1.70 —
MUE 1.07 1.20 —
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In particular, I found that the box size of the unit cell had no discernible effect on the

titration behavior of the aspartate model compound, given cell sizes that ranged from

20 Åin diameter—one of the smallest sizes permissible when using the minimum image

convention with an 8 Å cutoff—to 40 Å in diameter.

Another key aspect of the current method is the necessity to relax the solvent

around any new protonation state selected by the MC moves carried out in GB. By ana-

lyzing the decay of the potential energy in the solvent relaxation dynamics, I determined

that 4 ps of MD was sufficient to stabilize the energy of the solvent distributions and gen-

erate relaxed solvent conformations that are uncorrelated from the initial arrangements.

However, given the expense of such a long relaxation period, I investigated using fewer

relaxation steps to increase the simulation efficiency and found shorter times—down

to 0.2 ps—had no measurable effect on the calculated pKa and very little effect on the

solvent distribution around the model cysteine compound.

Further tests on a small pentapeptide test system with two titratable sites (ACFCA)

showed the importance of using pH-REMD over conventional CpHMD with the proposed

method. While I showed in Ch. 3 that the enhanced protonation state sampling of

pH-REMD results in smoother titration curves for complex proteins in implicit solvent,

[88] even the simplest systems in explicit solvent require pH-REMD to obtain a smooth

titration curve.

I tested the proposed method on two protein systems, hen egg white lysozyme

(HEWL) and ribonuclease A (RNase A). While calculated pKas were in good agreement

with experiment for numerous titratable residues, others appeared stuck in conforma-

tional traps resistant to changing their protonation states for the duration of the 20 ns

simulation. Many of the residues whose calculated pKas differed by more than 1 to 2 pKa

units from experiment were surrounded by charged residues that strongly favored a spe-

cific protonation state. Unlike our previous study on HEWL, [88] the large conformational
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changes seen in implicit solvent occur on a much longer timescale in explicit solvent due

to the friction and viscosity of the water molecules.

The larger the pKa shift a titratable residue experiences inside the protein envi-

ronment compared to the model compound, the less that environment resembles bulk

solution. It is for these residues, therefore, that accurate, extensive, conformational

sampling is required to reproduce experimental pKa measurements. Given the limited

mobility of HEWL and RNase A in our simulations, it is therefore not surprising that the

most problematic residues were those whose experimental pKas were several pK units

lower than their model compounds.

When I added explicit ions to the simulation cell, the calculated pKas of the most

problematic residues shifted toward their experimental values—in some cases by more

than 1 full pKa unit—despite the limited sampling of global conformational changes on

the 20 ns timescale. Therefore, while it is important to include explicit ions to provide

a more accurate microenvironment around the titratable residues, the method would

probably benefit strongly from attempts to improve conformational sampling, either

by longer simulations or some type of enhanced sampling technique. For example,

accelerated MD was used in conjunction with the original CpHMD implementation in

Amber with promising results. [135]

To summarize, our proposed extension to Amber’s CpHMD method allows dynamics

to be carried out at constant pH even for systems that cannot yield sensible results when

treated with an implicit solvent model, such as DNA and ribozymes. As an example, I

tested GB simulations of the hepatitis delta virus (HDV) ribozyme—where nucleobases

are thought to act as general acids and bases—and even after careful preparation,

the secondary and tertiary structures began breaking down almost immediately and

had completely fallen apart within 5 ns. While it may seem that such poor behavior in

the MD simulations would preclude GB from being effective for sampling protonation

states, the protonation state sampling benefits from better cancellation of errors. The
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MC protonation state move is evaluated based on a difference of energy differences—

the energy difference between the two charge states from the model compound is

subtracted from the energy difference between the two charge states in the biomolecule.

Many of the errors inherent to GB should cancel after the second difference is taken so

that sensible results may be extracted from these simulations.

In future work I will explore the use of enhanced sampling techniques in conjunction

with pH-REMD in an attempt to improve the efficiency of the conformational sampling

in explicit solvent, as well as apply our method to systems requiring an explicit solvent

representation, such as HDV.
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CHAPTER 5
REMD: GPU ACCELERATION AND EXCHANGES IN MULTIPLE DIMENSIONS

This chapter contains a description of my work implementing replica exchange

molecular dynamics (REMD) in the pmemd program of the Amber program suite. [141]

The first sections describe the general theory of the state exchanges supported by

Amber, followed by details of their implementation. I’ll then finish with a description of my

design of multiple-dimension REMD in Amber that I implemented in both the sander and

pmemd programs.

5.1 Temperature REMD

The most common variant of REMD simulations involves assigning replicas with

different temperatures (T-REMD) [78] between which the Monte Carlo-based replica

exchange attempts occur. The exchange success probability—calculated in a way that

satisfies detailed balance to preserve valid thermodynamics—is solved for the proposed

change of two replicas swapping temperatures, as shown in Eq. 5–1. When 2N replicas

are present, N independent exchange attempts can be made simultaneously between

different pairs of replicas. If no replica is involved in multiple exchange attempts, these

moves can be evaluated independently. While this may not be the most efficient way to

perform replica exchange attempts, it is the most common approach due to its simplicity

and efficiency.

To calculate the exchange probability in T-REMD exchange attempts, we start with

the detailed balance equation (Eq. 1–13) in which replicas m and n have temperatures

Tm and Tn, respectively in our initial state i . The temperatures swap in our proposed

state such that replicas m and n have temperatures Tn and Tm, respectively. Because

the potential energy function of each replica is the same—only the temperature differs

between replicas—the probability of a replica having a specific temperature is directly

proportional to the Boltzmann factor (in the canonical ensemble). The derivation of the

exchange probability equation in T-REMD simulations is shown in Eq. 5–1.
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Piπi→j = Pjπj→i

exp [−βmEm] exp [−βnEn]
QmQn

πi→j =
exp [−βnEm] exp [−βmEn]

QnQm
πj→i

πi→j
πj→i

= min {1, exp [(βn − βm)(En − Em)]} (5–1)

where βm is 1/kBTm for replica m and Em is the potential energy of the structure in

replica m.

Because the temperature of the system uniquely defines its kinetic energy, the

potential energy can be used in lieu of the total energy in Eq. 5–1 as long as the total

temperature remains consistent after the exchange attempt completes. Therefore, the

momenta of replica m are typically scaled by
√
Tn/Tm after successfully exchanging

with replica n. [78] By scaling the velocities in this way, snapshots following a successful

exchange attempt are immediately ‘equilibrated’ members of the new temperature’s

ensemble, thereby eliminating the need to relax the structure to its ‘new’ temperature.

This allows REMD simulations to be carried out more efficiently by permitting exchange

attempts very frequently. [142, 143]

An important consideration for T-REMD simulations is how many temperature

replicas you should use as well as what temperatures those replicas should have.

As the temperature of a system increases, the number of low-energy structures that

are sampled during the simulation decreases. In fact, at infinite temperatures, MD is

effectively equivalent to random sampling, whose consequences were illustrated in Fig.

1-1. The temperature ladder (i.e., the selection of temperatures at which to run each

replica) should be chosen so as to optimize the simulation efficiency. If the temperature

difference between adjacent replicas is too great, then the average potential energy

difference between adjacent replicas will be large and the exchange probability in Eq.

5–1 will be very small. As a result, the low temperature ensembles will not benefit from

the enhanced sampling achievable at the higher temperatures. On the other hand, if the
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temperature difference between adjacent replicas is too small, then computational effort

will be wasted by simulating unnecessary replicas that do not enhance sampling from

the generalized ensemble.

By analyzing Eq. 5–1, it is clear that in order to have a high exchange acceptance

probability, either the temperature difference or the potential energy difference between

exchanging replicas must be small—in the extreme case, if a higher temperature

replica has a conformation whose potential energy is less than or equal to the lower-

temperature replica, that exchange attempt is always accepted. By plotting the potential

energy distributions obtained from a short simulation at each temperature, the exchange

rate between any two replicas can be estimated based on the degree by which their

potential energy distributions overlap, shown in Fig. 5-1. A good choice of temperatures

for each replica can be made a priori based simply on the number of degrees of

freedom present in the system. [175]

One challenge with T-REMD is its scalability for large systems. It is well-known

that thermodynamic fluctuations scale as 1/
√
N in statistical ensembles where N is

the total particle count. Therefore, the larger a system gets, the narrower its potential

energy distribution becomes. Consequently, as the potential energy distributions narrow,

replicas must be spaced closer and closer together to achieve sufficient mixing along

the temperature-space parameter. For this reason, T-REMD simulations on systems

that are explicitly solvated are rare. While some approaches, like the one proposed by

Okur et al., use a hybrid solvation scheme whereby exchange attempts are carried out

in implicit solvent, the first two solvation layers are often represented poorly by implicit

solvent, requiring their inclusion even in the hybrid approach. [176]

Furthermore, the snapshots generated at higher temperatures in the generalized

ensemble are typically discarded from analyses for two reasons. First, we are typically

interested in the thermodynamics of room temperature, so the high-temperature

dynamics are not of general interest. Second, our force fields are parametrized for
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Figure 5-1. Potential energy distributions of TrpCage—a 20-residue peptide—at various
temperatures in a T-REMD simulation.

use at temperatures near 300 K, and higher temperatures may break the applicability

of harmonic functions for several bonded potentials. While the high-temperature data

may be reweighted for inclusion in low-temperature ensembles, [177] higher temperature

replicas contribute increasingly little information to the temperatures of interest.

5.2 Hamiltonian REMD

Another common variant of REMD simulations involves swapping Hamiltonians be-

tween replicas (H-REMD). Because the nature of the exchange in H-REMD simulations

is fundamentally different from those in T-REMD, Eq. 5–1 cannot be used to calculate

the exchange probability for H-REMD simulations. The proper exchange probability

for H-REMD simulations, generalized for running replicas at different temperatures, is

derived in Eq. 5–2. Eq. 5–3 is the special case of Eq. 5–2 when the temperatures of

exchanging replicas are the same. The easiest and most general way of implementing
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H-REMD is to swap coordinates between exchanging replicas. This approach, as im-

plemented in Amber, can be used for umbrella sampling REMD, [79, 80] accelerated

REMD with different boost parameters, [82, 83] and alchemical changes between two

end states. [85] As a result, Eq. 5–2 is derived subject to exchanging only coordinates.

Piπi→j = Pjπj→i

exp [−βmHm(x⃗m)] exp [−βnHn(x⃗n)]
QmQn

πi→j =
exp [−βmHm(x⃗n)] exp [−βnHn(x⃗m)]

QnQm
πj→i

πi→j
πj→i

= min {1, exp [−βm (Hm(x⃗n)− Hm(x⃗m))− βn (Hn(x⃗m)− Hm(x⃗n))]} (5–2)

πi→j
πj→i

= min {1, exp [−β (Hm(x⃗n)− Hm(x⃗m) + Hn(x⃗m)− Hm(x⃗n))]} (5–3)

Looking at Eqs. 5–2 and 5–3, it is readily apparent that exchange attempts in H-

REMD simulations are far more expensive than exchange attempts in T-REMD (Eq.

5–1) or pH-REMD (Eq. 3–4) simulations. To calculate the probability of accepting an

exchange in H-REMD simulations, each replica must calculate the potential energy of

the coordinates of its exchange partner. T-REMD and pH-REMD exchange probabilities,

on the other hand, are calculated via a single exponential of quantities known before the

exchange attempt occurs.

When performing replica exchange on an umbrella coordinate, however, the ex-

change attempt can be modified to significantly reduce its cost. Since the underlying

Hamiltonian is the same for each replica, the energy differences Hm(x⃗n) − Hm(x⃗m) are

equal to the difference in their umbrella potentials (Eq. 2–15), which can be calculated

very rapidly. This approach reduces the cost of the exchange attempts in two ways.

First, the umbrella potentials can be swapped between adjacent replicas rather than the

coordinates and momenta, thereby significantly reducing the communication overhead

and eliminating the need to reconstruct a new pairlist immediately. Second, computing
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the potential due to an umbrella restraint requires a small number of geometric mea-

surements, which is negligible compared to evaluating the energy of the entire system

(including the restraint potential).

Despite the apparently high cost of evaluating Eq. 5–2, attempting exchanges every

100 MD steps incurs, at most, a 1% performance hit due to performing one extra energy

evaluation every 100 steps (each of which requires a full force evaluation for standard

dynamics). Therefore, there has not been enough incentive for writing an optimized

exchange routine specifically for umbrella sampling simulations in Amber. Such an

exchange routine would be useful in future studies if Gibbs’ sampling exchange attempts

were implemented, [138] or in situations where swapping only an umbrella potential

simplifies calculating Eq. 5–2.

Replica Exchange Free Energy Perturbation. Here I will refocus on free energy

perturbation—Eq. 2–23—and its relationship with the H-REMD exchange probability

shown in Eq. 5–3. By comparing these two equations, we see that the energy dif-

ferences required in Eq. 2–23 are calculated every time the exchange probability is

calculated in Eq. 5–3! Therefore, the term ⟨exp (−β(EB − EA)))⟩ can be accumulated in

both the forward and reverse directions during the course of the H-REMD simulation.

This approach of computing FEP-based energy differences between two states during

a H-REMD simulation is referred to as Replica Exchange Free Energy Perturbation

(REFEP). [84, 85]

5.3 Multi-Dimensional REMD

As the architecture of modern computers continues its push into massive paral-

lelization, highly scalable techniques such as REMD become increasingly cost-efficient

methods in the field of computational chemistry. While we have seen that REMD simu-

lations, in general, enhance sampling by expanding our original ensemble through state

space (e.g., temperature space, Hamiltonian space, etc.), different variants of REMD
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bestow different advantages on the simulation. For instance, T-REMD enhances confor-

mational sampling by flattening the free energy surface, pH-REMD enhances sampling

by allowing simulations to dodge free energy barriers through pH-space, and H-REMD

enhances conformational sampling by coupling different energy functions.

As availability to large numbers of processing cores increases, it becomes feasible

to combine multiple types of replica exchanges into a single, super-expanded ensemble.

In this new, larger ensemble, replicas are defined by a series of state parameters, such

as a specific temperature, Hamiltonian, umbrella potential, or solution pH. Exchange

attempts between replicas must now take into account changes in multiple state

parameters, which may lead to complex equations for the exchange probability. To

simplify the exchange process, the replicas can be separated into different dimensions

in which only a single state variable changes along that dimension.

By adopting this approach, the exchange routines described in previous chapters

and sections can be reused in this new, multi-dimensional REMD method. To visualize

which exchanges are performed, consider a 2-dimensional square matrix in which the

rows and columns represent two different state parameters. In single rows or columns,

only a single state parameter changes, so the exchange probability equations that

have already been derived apply to these exchange attempts. Fig. 5-2 displays the

arrangement of replicas—and the allowed exchange attempts—in a simple diagram.

While these ideas can be trivially extended to an arbitrary number of dimensions, the

number of replicas required increases exponentially with each additional dimension.

5.4 Implementation

In this section, I will describe how REMD is implemented in Amber, with focus paid

to how exchange attempts are carried out as well as the programmatic details of how

information is traded between exchanging replicas.
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Figure 5-2. Schematic showing exchange attempts in multi-dimensional REMD
simulations. Exchange attempts are indicated by the colored arrows, where
red arrows indicate exchange attempts between the j state parameters and
blue arrows indicate exchange attempts between the i state parameters

5.4.1 Exchange Attempts

Specific details of how and when exchanges are attempted between replicas is very

important to not only the efficiency of our overall simulations, but also the theoretical

rigor of its correctness. As I have already mentioned, exchange attempts are restricted

to a single pair of replicas in which only a single state parameter differs between them.

The question of which replicas attempt to exchange information also has a strong impact

on how quickly observable properties converge. The easiest and most naı̈ve approach is

to choose a single partner and attempt an exchange. To maximize the likelihood that the
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exchange attempt is successful, exchanges are attempted between nearest-neighbors in

the state parameter that is being swapped. Due to its simplicity, this is the approach that

was implemented in Amber by Cheng et al.. [178] Recent evidence suggests, however,

that such an approach limits sampling in the state space coordinate. [138] Sampling

along the state space coordinate can be enhanced by employing ideas from Gibbs’

sampling, [138] or simply increasing the frequency of exchange attempts. [142, 143]

Another important consideration in REMD simulations is when to suspend the

MD in each dimension and attempt to exchange information. Strict adherence to the

condition of detailed balance and the principle of reversibility in the resulting chain of

states requires these exchange attempts be done stochastically. [138] However, while

deterministic exchange attempts violate detailed balance, they satisfy the less restrictive

condition of general balance, so the thermodynamical rigor of such an approach is

preserved. [138] Amber employs a deterministic, synchronous approach to deciding

when exchange attempts should be performed by attempting exchanges between

adjacent replicas every n steps, where n is a tunable input parameter.

Also important is the nature of the exchange itself. The two approaches currently

used in Amber—exchanging state parameters or exchanging coordinates—are de-

scribed below.

Exchanging State Parameters. The most efficient way to carry out replica ex-

changes is to swap state parameters—an approach used in Amber for both T-REMD

and pH-REMD. In this case, replicas typically differ by a term that modifies a potential

energy function that is otherwise the same for each replica. In this instance, simulations

are subject to a different thermodynamic constraint after exchanges are successful.

Following successful exchanges, the position of each replica in the ordered list of state

parameters changes. As a result, the nearest neighbors between whom exchanges are

attempted changes after each exchange attempt. Prior to each exchange attempt, each
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replica must figure out where every replica resides in state space so they know how to

carry out exchanges.

When exchanging state parameters, replicas typically need to exchange a minimal

amount of information—their state parameter and a related conjugate property. In

the case of T-REMD, replicas exchange temperatures and potential energies, and

individual replicas adopt different temperatures as a function of time. For pH-REMD, the

solution pH and total number of ‘active’ titratable protons are swapped between adjacent

replicas.

When an exchange attempt can be completed simply by swapping states, the

resulting output files from the simulations follow the course of a single trajectory as

it passes through both phase space and state space. As a result, the trajectory file

must be modified so that the state parameter of each frame can be identified. This is

necessary for reconstructing the sub-ensemble of interest (e.g., the ensemble at 300

K, or pH 7). While this approach adds the complexity of the bookkeeping required to

post-process the data, the communication required scales as O(1) with system size,

improving the scalability of these REMD simulations. [88] Because the cost of exchange

attempts in this family of REMD methods is negligible, there is no practical limit to the

frequency with which replicas attempt to exchange, allowing us to take advantage of

the faster convergence accessible via rapid exchange attempts [142, 143] or Gibbs’

sampling. [138]

Exchanging Coordinates and Momenta. The alternative to swapping state

parameters between replicas is to swap coordinates and their conjugate momenta,

which is logically equivalent to swapping full potential energy functions. It is significantly

simpler—and requires far less communication between exchanging replicas to be fully

general—than swapping the full potential energy function (which potentially includes

particle charges, masses, pairwise Lennard-Jones parameters, restraints, etc.). It

is for the added simplicity and reduced communication overhead that H-REMD is
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implemented in Amber by swapping coordinates and velocities (scaling the velocities if

exchanging pairs have different temperatures). [85]

Adding to the computational expense, however, is the need to either recompute

or exchange the full pairlist of each replica. Either choice is quite expensive since the

pairlist is a very large array that requires evaluating all pairwise distances in the system

to build. Unlike approaches that exchange state parameters, the cost of exchange

attempts that require coordinate exchanges and extra energy evaluations (and multiple

additional pairlist builds) imposes a very real upper limit on the practical efficiency of

employing rapid exchange attempts or Gibbs’ sampling ideas to these simulations.

The most efficient way of performing REMD using umbrella potentials would be

to swap the umbrella potentials—essentially a state parameter—and track a replica’s

trajectory through umbrella space.

5.4.2 Message Passing: Data Exchange in REMD Simulations

While REMD simulations can be carried out ‘in serial’ by simulating chunks of

each replica sequentially by a single process, such an approach defeats the purpose

of proposing REMD simulations as a scalable protocol for enhanced sampling. REMD

is most efficient when each replica can be simulated simultaneously using different

processes, or threads. The main simulation engines in Amber use the Message Passing

Interface (MPI) to enable distributed memory parallelization (i.e., each working thread

contains its own memory that is inaccessible by other threads). MPI—described in

more detail in Appendix C—is ideally suited for large-scale parallelization since it allows

workers to be spread across multiple processing cores that do not share a common

memory bank. The most powerful supercomputers in the world that we typically use

to carry out our simulations are so-called distributed supercomputers since they are

constructed from many individual computers with dedicated memory that are networked

together.
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MPI enables parallelism by allowing groups of threads to exchange information by

sending and receiving data through a series of predefined functions and subroutines

(typically called an application programmer interface, or API). Data, or messages, can

be sent and received between two threads in an MPI program that are grouped together

in the same communicator. Because communicators provide a simple and efficient way

of programmatically separating threads into different groups, we take advantage of this

feature when organizing the workload in MPI programs. Intra-replica communication—

which allows a single replica to be run using multiple processors—is handled by a

dedicated replica communicator. An arbitrarily designated master thread of each replica

is assigned to separate communicators for communicating all data pertinent to carrying

out replica exchange attempts.

In typical REMD simulations involving only a single state parameter, the REMD

communicator is simply a communicator that links all replica masters. In multi-

dimensional REMD, however, exchanges are only permitted between replicas that

differ in only one state parameter. Therefore, communicators are defined between only

those replicas between which exchanges are permitted. Using Fig. 5-2 as a guide, com-

municators are defined between the masters of the replicas in a single row or column.

These communicators have to be set up and destroyed after each exchange attempt

because successful exchange attempts in a dimension that implements state parameter

swaps will change the REMD communicator that the replica belongs to in the other

dimensions. This is illustrated in Fig. 5-3.
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Figure 5-3. Communicator arrangement in multi-dimensional REMD simulations at
multiple exchange steps following some successful state parameter
exchanges. The large numbers in the background are the (unchanging)
thread numbers in the communicator linking the ‘master’ threads of each
replica. The blue and red numbers are the indexes in the first and second
state parameter tables, respectively. Every cell with the same background
color is a member of the same REMD communicator.
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CHAPTER 6
FLEXIBLE TOOLS FOR AMBER SIMULATIONS

In this chapter, I will describe the motivation behind creating two tools to aid users

in carrying out biomolecular simulations with the Amber programming package as well

as some details regarding their functionality and implementation. During the course of

my graduate studies, I wrote several scripts and programs to aid in my work—several of

which I polished and released with the Amber suite of programs. The two I will describe

in this chapter are MMPBSA.py [110] and ParmEd.

6.1 MMPBSA.py

Portions of this section are reprinted with permission from Miller III, McGee Jr.,

Swails, Homeyer, Gohlke, and Roitberg, “MMPBSA.py: An Efficient Program for End-

State Free Energy Calculations,” J. Chem. Theory Comput., 2012, 8 (9), pp 3314–3321.

[110]

MMPBSA.py is a script designed to automate the procedure of performing end-

state free energy calculations, as described in Sec. 2.3.3.1.

6.1.1 Motivation

End-state free energy methods—briefly described in Sec. 2.3.3—are popular

methods for computing binding free energies for protein-ligand binding, [179–183]

protein-protein binding, [101, 102, 183, 184] nucleic acid binding, [183, 185] and

relative conformational stabilities. [186, 187] There has been significant effort applied to

improving the approximations used in end-state methods, and in some cases it has even

approached predictive accuracy. [182, 188]

By 2008, there was a set of perl scripts capable of automating MM-PBSA and

MM-GBSA calculations that were written in 2002 for release with Amber 7 and had not

been changed since 2003. These scripts will be collectively referred to as mm pbsa.pl

from now on. Due to its age, mm pbsa.pl was compatible only with the low-precision,

inefficient ASCII trajectory format, and offered only a limited set of the available implicit
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solvent models and input parameters that had been developed over the decade that

followed its initial release. Furthermore, the input for mm pbsa.pl was very different from

the typical input that most other Amber programs expected. Finally, mm pbsa.pl was

only capable of running in serial, despite the fact that end-state analyses themselves

could be trivially parallelized by computing binding free energies for individual frames

simultaneously.

The goal of my project was to revitalize this set of helpful scripts that had fallen

out of support and had grown outdated. We wanted to bring the input style in line with

the rest of the Amber programs—for example, atom selections should be input via the

Amber mask syntax, and groups of related variables should be specified in Fortran-

style namelists. Furthermore, we wanted to provide the user with access to new input

variables and solvent models. Given the magnitude of the changes required, the recent

emergence of Python in the field of computational chemistry, [110, 189–191] and the

undocumented, monolithic state of mm pbsa.pl, we decided to build a new script to

perform end-state free energy calculations in Python—MMPBSA.py. [110]

6.1.2 Capabilities

In this section, I will briefly outline some of the various types of calculations that

MMPBSA.py is capable of performing.

6.1.2.1 Stability and Binding Free Energy Calculations

End-state calculations are frequently used for two types of analyses—calculating

the relative stability of multiple conformations of a system and calculating the binding

free energy in a non-covalently bound, receptor-ligand complex, [109] whose thermo-

dynamic cycles were shown in Ch. 2, Fig. 2-11. Stability calculations compare the free

energies of multiple conformations to determine their relative stability. If we consider

the process of a biomolecule changing conformations from state A to state B, then the

free energy associated with that conformational change is simply the difference in the

free energies of states A and B. Similarly, the non-covalent binding free energies can
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be computed as the difference in free energies of the bound and free states of the two

species in solution.

The free energy changes in solution can be decomposed according to

∆Gsolvated = Egas + ∆Gsolvation − T∆Ssolute (6–1)

where ∆Gsolvation represents a true free energy, since the solvent degrees of freedom

have been averaged by using an implicit solvent model. The free energy of solvation in

6–1 can be further decomposed into a sum of polar and non-polar contributions in most

implicit solvent models. Among the solvent models available for end-state calculations in

MMPBSA.py are the previously mentioned PB and GB implicit solvent models as well as

the 3-dimensional reference interaction site model (3D-RISM). [192]

The energies described in Eq. 6–1 are single point energies of the system. How-

ever, in practice, end-state calculations estimate these energies according to ensemble

averages taken from a simulation. Expressing Eq. 6–1 in terms of an average over a

simulated ensemble yields Eq. 6–2.

∆Gsolvated ≈ ⟨Egas⟩+ ⟨∆Gsolvation⟩ − T ⟨Ssolute⟩

=
1

N

{
N∑
i=1

[Ei ,gas + ∆Gi ,solvation]− T
N∑
i=1

Si ,solute

}
(6–2)

where i is the index of a particular frame and N is the total number of analyzed frames.

There are two approaches to generating the necessary ensembles for the bound

and unbound state of binding energy calculations—all ensembles can be extracted from

a single MD or MC trajectory of the bound complex, or trajectories can be generated for

each state using separate simulations. [193] These approaches are called the single

trajectory protocol (STP) and the multiple trajectory protocol (MTP), respectively, and

each approach has distinct advantages and disadvantages.
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STP is less computationally expensive than MTP, because only a single trajectory

is required to generate all three ensembles. Furthermore, the internal potential terms

(e.g., bonds, angles, and torsions) cancel exactly in the STP, because the conformations

in the bound and unbound ensembles are the same, leading to lower fluctuations and

easier convergence in the binding free energy. The STP is appropriate if the receptor

and ligand ensembles are comparable in the bound and unbound states. However, the

conformations populating the unbound ensembles typically adopt strained configurations

when extracted from the bound state ensemble, thereby over-stabilizing the binding,

compared to the MTP.

6.1.2.2 Free Energy Decomposition

Amber [141] provides several schemes to decompose calculated free energies

into specific residue contributions using either the GB or PB implicit solvent models,

[194] following the work of Gohlke et al. [101] Interactions can be decomposed for

each residue by including only those interactions in which one of the residue’s atoms

is involved—a scheme called per-residue decomposition. Alternatively, interactions

can be decomposed by specific residue pairs by including only those interactions in

which one atom from each of the analyzed residues is participating—a scheme called

pairwise decomposition. These decomposition schemes can provide useful insights into

important interactions in free energy calculations. [101]

However, it is important to note that solvation free energies using GB and PB are

not strictly pairwise decomposable, since the dielectric boundary defined between the

protein and the bulk solvent is inherently nonlocal and depends on the arrangement of

all atoms in space. Thus, care must be taken when interpreting free energy decomposi-

tion results.

An alternative way of decomposing free energies is to introduce specific mutations

in the protein sequence and analyze how binding free energies or stabilities are affected.

[112] Alanine scanning, which is a technique in which an amino acid in the system is

158



mutated to alanine, can highlight the importance of the electrostatic and steric nature of

the original side chain. [99] Assuming that the mutation will have a negligible effect on

protein conformation, we can incorporate the mutation directly into each member of the

original ensemble. This avoids the need to perform an additional MD or MC simulation to

generate an ensemble for the mutant.

6.1.2.3 Entropy Calculations

The implicit solvent models used to calculate relative stability and binding free

energies in end-state calculations often neglect some contributions to the solute entropy.

If we assume that biological systems obey a rigid rotor model, we can calculate the

translational and rotational entropies using standard statistical mechanical formulae, [9]

and we can approximate the vibrational entropy contribution using one of two methods.

First, the vibrational frequencies of normal modes can be calculated at various local

minima of the potential energy surface. [9] Alternatively, the eigenvalues of the mass-

weighted covariance matrix constructed from every member of the ensemble can be

approximated as frequencies of global, orthogonal motions—a technique called the

quasi-harmonic approximation. [195] Using either the normal mode or quasi-harmonic

approximations, we can sum the vibrational entropies of each mode calculated from

standard formulae. [9]

Typically, normal mode calculations are computationally demanding for large

systems, because they require minimizing every frame, building the Hessian matrix,

and diagonalizing it to obtain the vibrational frequencies (eigenvalues). Because

of the Hessian diagonalization, normal-mode calculations scale as roughly (3N)3,

where N is the number of atoms in the system. While the quasi-harmonic approach is

less computationally expensive, a large number of snapshots are typically needed to

extrapolate the asymptotic limit of the total entropy for each ensemble, which increases

the computational cost of the original simulation. [179]
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6.1.3 General Workflow

MMPBSA.py is a program written in Python and nab [196] that streamlines the

procedure of preparing and calculating free energies for an ensemble generated by

MD or MC simulations whose general workflow is shown in Fig. 6-1. The process of

calculating binding free energies can be a tedious procedure that MMPBSA.py aims to

shorten and simplify.

Python is a useful programming language for performing tasks that are not numeri-

cally intensive, and because it is available on virtually every platform, Python programs

are highly portable. Nucleic Acid Builder (nab), [196] which is a molecule-based pro-

gramming language included with AmberTools, contains functionality pertinent to

building, manipulating and performing energy calculations on biological systems, such

as proteins and nucleic acids.

End-state calculations often require multiple topology files (described later) that

contain the parameters corresponding to the force field. Simulations are typically run

using explicit solvent with any of the electrostatics methods described in Ch. 2, which

would require both solvated and unsolvated topology files to use with MMPBSA.py. It

is necessary that all topology files have a consistent set of parameters, especially for

binding free energy calculations. Therefore, MMPBSA.py checks the input topology

files prior to binding free energy calculations to prevent erroneous results due to

inconsistencies that may not be immediately obvious (e.g., different particle counts,

partial charges for the same atoms, etc.). I wrote the Python utility ante-MMPBSA.py

(also released alongside MMPBSA.py), which allows a user to easily create topology

files with a consistent set of parameters, including changing the intrinsic implicit solvent

radius set to fit the desired solvent model.

The use of MMPBSA.py is similar to that of Amber’s MD engines sander and

pmemd. The command-line flags common to both MMPBSA.py and the MD engines

160



Figure 6-1. General workflow for performing end-state calculations with MMPBSA.py.
LEaP is a program in Amber used to create topology files for dynamics. The
workflow shown in step 3 is the series of steps that MMPBSA.py automates.
“Dry” topologies and ensembles are systems without explicit solvent that are
subsequently treated using an implicit solvent model. “External programs”
refers to the executables that perform the energy calculations (e.g., sander ).
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are identical, and input files are separated with similar, Fortran-style namelists, indicated

with an ampersand (&) prefix.

The MMPBSA.py input file contains a general namelist for variables that control

general behavior. For example, variables that control the subset of frames analyzed

(startframe, endframe, and interval) and the amount of information printed in the output

file (verbose) are specified here. An example of this section is shown below:

General MMPBSA.py input file

&general

startframe=1, endframe=100, interval=2,

keep_files=0, verbose=1, strip_mask=:WAT:Cl-:Na+,

/

6.1.4 Running in Parallel

MMPBSA.py is implemented in parallel, so users with access to multiple processors

can speed up their calculations. MMPBSA.py.MPI is the parallel implementation of

MMPBSA.py that uses MPI (described in Appendix C) for Python (mpi4py ). Since

energy calculations for each frame are independent, the calculation can be trivially

parallelized, given enough available processors. MMPBSA.py.MPI divides frames evenly

across all processors, which allows calculations using many frames to scale better than

if MMPBSA.py invoked parallel executables to calculate free energies. However, perfect

scaling is not attained, because certain setups tasks and file input/output can only be

done with a single processor. Fig. 6-2 demonstrates scaling for a sample MM-PBSA and

MM-GBSA calculation.

6.1.5 Differences to mm pbsa.pl

Both MMPBSA.py and mm pbsa.pl allow users to perform free energy calculations

using the STP and MTP, although MMPBSA.py offers more flexibility when using the

MTP. Both programs have the ability to use different PB and GB models contained

within Amber and estimate entropic contributions. Finally, MMPBSA.py and mm pbsa.pl
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Figure 6-2. MMPBSA.py scaling comparison for MM-PBSA and MM-GBSA calculations
on 200 frames of a 5910-atom complex. Times shown are the times required
for the calculation to finish. Note that MM-GBSA calculations are ∼5 times
faster than MM-PBSA calculations. All calculations were performed on NICS
Keeneland (2 Intel Westmere 6-core CPUs per node, QDR infiniband
interconnect).

can run free energy calculations in parallel, although only MMPBSA.py can run on

distributed memory systems (i.e., on multiple nodes connected over a network).

Despite their obvious similarities, there are many differences that exist in their

accessibility, implementation, and capabilities. MMPBSA.py is available free of charge

alongside AmberTools, while an Amber license is necessary to obtain mm pbsa.pl. The

usage of MMPBSA.py is intended to resemble Ambers MD engines for ease of the user,

while mm pbsa.pls input file and usage has its own syntax. Only MMPBSA.py has an

intuitive mechanism for guessing the ligand and receptor masks of a complex based

on the topology files provided and analyzes topology files for parameter consistency.

Furthermore, only MMPBSA.py can calculate entropic contributions to the free energy
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using the quasi-harmonic approximation. An interface to external PB solvers such as

Delphi, MEAD, and UHBD is available with mm pbsa.pl only, although both can use the

apbs program to solve the PB equation. MMPBSA.py allows users to provide their own

input files for external programs, which gives users the ability to adjust all parameters,

not just the variables described in the MMPBSA.py manual; in comparison, mm pbsa.pl

has no similar functionality without directly altering the source code. Finally, QM/MM-

GBSA and MM/3D-RISM calculations are only available through the MMPBSA.py

implementation.

6.2 ParmEd

ParmEd—short for Parmtop Ed itor—is a program that allows researchers to easily

manipulate and extract information from Amber parameter-topology (prmtop) files.

The prmtop is a compact ASCII (i.e., pure text) file whose format was optimized for

extensibility and Fortran-style parsing. The data structures stored in this file are similar

to the data structures used inside the Amber codes that perform MM simulations,

making them overly tedious to extract information by simply reading its contents. The full

structure and specification of the prmtop is presented in Appendix B.

6.2.1 Motivation

The prmtop files are very complex objects, and there is very little ‘locality’ in these

files. That is, determining which bonds exist and how strong their force constants are

is not as simple as looking for the sections labeled with BOND in the prmtop. Prior to

writing ParmEd, there were no programs released with Amber or AmberTools capable of

modifying the topology file in a general way. Changing simple atomic properties—such

as the partial charge or the set of intrinsic radii used for implicit solvent models—

required the user to modify their original input files to tleap and recreate a topology

file from their original structure, or in some cases even modify the tleap source code

directly! Because many input files for tleap are shared among all users and original input

files help document one’s protocol, modifying these files frequently is dangerous.
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The tedious and error-prone nature of this process is a deterrent for testing some

new hypotheses and methods that require small changes to the topology file. For

instance, parameterizing a new GB model by using different intrinsic radii to define the

dielectric boundary requires either modifying the topology file by hand—a dangerous

and tedious process—or learning and modifying the tleap source code and rebuilding

the program all in the process of refining a set of parameters. With ParmEd, users and

method developers can rapidly prototype a new method in a reliable way. A primary

goal of ParmEd is to enable safe, rapid prototyping of new methods that require straight-

forward changes to the prmtop file.

A second motivator for creating ParmEd was to provide a unified platform for

disseminating prmtop modifications that may be required for a particular method.

The traditional approach when a method required a prmtop modification was for the

developer that released the new code to develop a stand-alone tool in their programming

language of choice to be released alongside Amber. These tools often parsed and

modified topology files in a minimalistic fashion, and are not used or tested frequently.

Such an approach quickly becomes unsustainable as the authors of these tools leave

the developer community (e.g., through graduation or retirement). With ParmEd, I

sought to create a simple platform to unify prmtop modifying programs within Amber in

an attempt to ease the burden of support and simplify the user experience. Therefore,

ParmEd should be intuitive to use for experienced Amber users, and written in a way

that the code can be easily understood by other developers.

6.2.2 Implementation and Capabilities

I wrote ParmEd as a set of two Python scripts built on top of a common library

of functionality. The first, parmed.py, is a command-line tool that strongly resembles

the popular trajectory analysis programs ptraj and cpptraj in its use. The second,

xparmed.py, is a graphical user interface built on the Tcl/Tk toolkit through the Tkinter
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Figure 6-3. Screenshot of the xparmed.py GUI window, labeled with the available
Actions and a message log.

Python bindings. The GUI, shown in Fig. 6-3, is meant to be a very simple, point-and-

click interface for prmtop modification, while parmed.py is ideal for scripting purposes.

To further simplify the use of ParmEd to those familiar with other Amber programs, the

ubiquitous Amber mask syntax is used to specify all necessary atom selections.

The individual capabilities of ParmEd, called Actions, are all subclassed from

a common Action base class. Each Action interprets its own list of arguments and

implements its own, unique functionality. To expand the utility of the ParmEd code,
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users can incorporate individual ParmEd Actions into their own Python script through

an Application Programmer Interface (API) documented in the AmberTools manual.

This allows users to avoid the need to learn the inner-workings of the prmtop file and

re-implement existing code in the cases where ParmEd does not handle all of the users’

needs.

In the following sections, I will outline some of the Actions and functionality I

consider to be particularly helpful or particularly challenging to implement through other

programs.

6.2.2.1 Lennard-Jones Parameter Modifications

I will briefly describe here how the radius (ri ) and well depth (εi ) assigned in the

parameter databases for each atom type i is translated into a set of parameters used to

compute the LJ potential in the Amber force field. Specifically, between pairs i and j , the

well depth εi ,j is the geometric average and the radius ri ,j is the arithmetic average

εi ,j =
√
εiεj

Rmin,i ,j = Rmin,i + Rmin,j (6–3)

These combined radii and depths are then combined into A-coefficients and B-

coefficients using the equations

ACOEFi ,j = εi ,j r
−12
i ,j

BCOEFi ,j = 2εi ,j r
−6
i ,j (6–4)

Eqs. 6–3 and 6–4 are evaluated in tleap, and εi and ri are provided as input in the

parameter files. Because there are more ACOEF and BCOEF parameters than there

are input parameters, the way tleap handles LJ parameters restricts some flexibility

in the force field. The A and B coefficients can be thought of as a matrix of pairwise

combined terms—defined in Eq. 6–4—in which only the diagonal terms are specified.
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The interactions between each pair of atom types cannot be set independently like they

can in the CHARMM program via the NBFIX keyword, for instance.

I will make a detour here to discuss how tleap compresses the number of LJ

parameters written to the topology file. Since the LJ potential is composed of pairwise

terms, there must be a term for every pair of atoms in the system—a number that

becomes astronomically large for large numbers of particles. To avoid printing out on the

order of N2 terms in both coefficient matrices (where N is the total number of atoms),

tleap assigns each atom to a particular atom type index that it shares with every other

atom in the system that has the same set of starting LJ parameters εi and ri . Therefore,

each A- and B-coefficient printed in the topology file may be used for numerous other

atom pairs in the force and energy evaluations.

I implemented a number of Actions in ParmEd that allow users to query and

adjust LJ parameters in a way that is currently impossible with any other program. The

printLJTypes Action in ParmEd takes an atom selection and prints out every other atom

that has been assigned to the same LJ atom type. The changeLJPair Action allows

users to adjust individual, off-diagonal elements of the A- and B-coefficient matrices for

any pair of atoms. The addLJType command provides further flexibility by allowing the

user to treat a subset of atoms as a different LJ atom type so any off-diagonal changes

affect only the desired atoms.

6.2.2.2 Changing Atomic Properties

Another Action implemented in ParmEd—the change Action—allows users to

change one of the following atomic properties: the partial charge, atomic mass, implicit

solvent radius, implicit solvent screening factor, atom name, atom type name, atom type

index, or the atomic number. Changing any of these properties without using ParmEd

requires the user to modify a number of files, including standard residue libraries, force

field databases, and the original starting structure before running those files through
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tleap. Even then, care must be taken to ensure that the prmtop was changed the

desired way.

This functionality allows rapid prototyping for tasks such as parameterizing new

charge or implicit solvent radius sets. Alternatives are currently tedious and error-prone.

6.2.2.3 Setting up for H-REMD Simulations

The H-REMD implementation in Amber—described in Ch. 5—is capable of perform-

ing alchemical REFEP calculations provided that the alchemical pathway can be charac-

terized by different topology files with the same atoms. When an atom disappears—like

in a pKa calculation when a proton vanishes—a dummy atom is required in the end state

in which that atom is ‘missing.’ The interpolate Action is provided to create a series

of prmtops whose charge and LJ parameters are linearly interpolated between two

prmtops. Alternative approaches are, again, time consuming and error-prone.

6.2.2.4 Changing Parameters

Perhaps one of the strongest features of ParmEd is its ability to change individual

bonded parameters—i.e., bonds, angles, and torsions. The setBond and setAngle

commands can be used to either add or modify a bond or angle parameter, respectively.

The addDihedral and deleteDihedral commands can be used to create, remove, and

even change individual torsion parameters. This control over the torsion parameters is

particularly useful when attempting to fit new torsion parameters to improve force fields.

[23–25]
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APPENDIX A
NUMERICAL INTEGRATION IN CLASSICAL MOLECULAR DYNAMICS

A.1 Lagrangian and Hamiltonian Formulations

The Lagrangian and Hamiltonian formulations of classical mechanics—shown in

Eqs. A–1 and A–2, respectively—offer a more convenient formalism than the more

popularly known equations derived by Newton. [197] While Newton’s equations apply in

three-dimensional Cartesian space, they are not generally applicable to other coordinate

systems (e.g., polar and spherical-polar coordinates) that may be a more natural way to

express certain problems. For instance, polar coordinates more naturally describe the

mechanics of orbiting bodies than standard Euclidean space.

Lagrangian Equation. The Lagrangian function, L = K − V , where K is the kinetic

energy and V is the potential energy, satisfies the Lagrangian equation (Eq. A–1) for

m generalized coordinates (qm). The advantage of Eq. A–1 is that it is derived without

any assumption of a specific coordinate system for qm. Generalized velocities are the

first time-derivative of the generalized coordinates, q̇m. These generalized velocities are

used to define the kinetic energy in the familiar form K = 1/2q̇2m.

Another advantage to the Lagrangian formulation of classical mechanics is that

the equations are still valid when subject to constraints on the dynamics of the system

(as long as there are fewer constraints than particles). [197] This property is crucial for

carrying out constrained dynamics, such as those simulations employing the commonly-

used SHAKE, [16] RATTLE, [17] or SETTLE [18] algorithms, to name a few.

d

dt

∂L

∂q̇m
− ∂L

∂qm
= 0 (A–1)

L in Eq. A–1 is the Lagrangian function mentioned above, qm are the generalized coor-

dinates of every particle in the system, and q̇m are the set of corresponding generalized

velocities. When applying Eq. A–1 to a system in the standard Cartesian coordinates

without constraints, the familiar form of Newton’s equations are recovered. [197]
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Hamiltonian Equation. The Hamiltonian formulation of classical mechanics builds

on the strengths of the Lagrangian formulation and provides a deeper insight into the

physical behavior of classical systems. Unlike the Lagrangian, the Hamiltonian is defined

as the total energy of the system: H = K +V . The Lagrangian of the system, L = K −V ,

plays an important part in Hamilton’s formulation. The degrees of freedom in Hamilton’s

equation (Eq. A–2) are the generalized coordinates qm as defined in the Lagrangian,

and their conjugate momenta, pm. The generalized coordinates and momenta are said

to be canonically conjugate because they obey the relationship given in Eq. A–2. [197]

qm =
∂H

∂pm

pm = − ∂H

∂qm
(A–2)

Now that a convenient formulation of the laws of classical dynamics are known, I will

shift the discussion toward techniques by which these equations are used to integrate

these second-order differential equations in typical molecular dynamics simulations.

A.2 Numerical Integration by Finite Difference Methods

The equations of motion are second-order differential equations with respect to

the particle coordinates, since the force is proportional to the second time-derivative

(i.e., the acceleration) of those particles. Due to the typical size and complexity of

the systems and their potentials studied in computational chemistry, MD simulations

require numerical integration of the second-order differential equations of motion. In this

section, I will describe two common approaches to iteratively integrating Eqs. A–1 and

A–2—so-called predictor-corrector methods and the Verlet family of integrators.

A.2.1 Predictor-corrector

The predictor-corrector integrators are based on a simple Taylor-series expansion

of the coordinates. Knowing that the velocity and acceleration are the first- and second-

time derivatives of the particle positions, respectively, the Taylor expansions of each of
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these quantities are given below.

r⃗p(t0 + δt) = r⃗(t0) + δt v⃗(t0) + δt
2 1

2
a⃗(t0) + δt

3 1

6

d3r⃗(t)

dt3
+ ...

v⃗p(t0 + δt) = v⃗(t0) + δt a(t) +
1

2
δt2
d3r⃗(t)

dt3
+ ... (A–3)

a⃗p(t0 + δt) = a⃗(t0) + δt
d3r⃗(t)

dt3
+ ...

The subscript p in these equations emphasizes that these are the predicted quantities of

the positions, velocities, and accelerations at time t0 + δt based on the known values at

time t0.

It is convenient to truncate the Taylor series in Eqs. A–3 after the acceleration

term since the acceleration at time t0 can be easily calculated from the gradient of the

potential energy function. Higher order terms are difficult to compute, and contribute a

significantly smaller amount as the time step, δt, decreases. However, by truncating the

Taylor expansion we used an approximation that will introduce systematic error of our

predicted values calculated by Eqs. A–3 compared to their true values. There is a way

of approximating the magnitude of the deviation of the predicted values from Eqs. A–3,

however, that will allow a correction to be applied to the integrated values.

As a reminder, the gradient of the potential was used to calculate the forces—and

therefore the acceleration—on each particle when making the initial integration step

from t0. The acceleration may be calculated again using the gradient of the potential at

the predicted conformations:

▽ V [⃗rp(t0 + δt)] = ma⃗′ (A–4)

Since systematic error has been introduced by truncating the expansion in Eqs. A–3, a⃗′

from Eq. A–4 and a⃗p(t0 + δt) from Eq. A–3 will differ. The magnitude of this difference

can be used to correct the predicted values according to Eqs. A–5.
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r⃗c(t + δt) = r⃗p(t + δt) + c0∆a⃗(t + δt)

v⃗c(t + δt) = v⃗p(t + δt) + c1∆a⃗(t + δt) (A–5)

a⃗c(t + δt) = a⃗p(t + δt) + c2∆a⃗(t + δt)

where the subscripts indicate the relationship between the corrected and predicted

quantities, and the coefficients c0, c1, and c2 are parametrized to maximize performance,

[198, 199] and have the appropriate units to satisfy each equation. [54] The corrector

process can be iterated until the desired level of agreement between the predicted and

corrected values is reached.

While the predictor-corrector algorithm allows long time steps to be taken by fixing

the resulting systematic error, the corrector step requires a full force evaluation of

the system at a set of coordinates, which is the most time-consuming portion of the

calculation. As a result, the corrector step is computationally demanding, and predictor-

corrector methods have been replaced by other integration schemes in standard

practice.

A.2.2 Verlet Integrators

Among the most popular types of integrators in common use today are based

on the Verlet algorithms. The Verlet algorithm, developed in 1967 by Verlet, utilizes a

Taylor series expansion of the particle coordinates about time t0. The key to the Verlet

approach is to use both the forward and reverse time steps, as shown in Eqs. A–6. [54]

r⃗(t0 + δt) = r(t0) + δt v⃗(t0) +
1

2
δt2 a⃗(t0) + ...

r⃗(t0 − δt) = r(t0)− δt v⃗(t0) +
1

2
δt2 a⃗(t0)− ... (A–6)
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Combining Eqs. A–6 gives

r⃗(t0 + δt) = 2⃗r(t0) + δt
2 a⃗(t0)− r⃗(t0 − δt) (A–7)

where the velocities have been eliminated from the expression and are therefore

unnecessary when integrating the equations of motion. Furthermore, like the velocities,

the δt3 term also cancels, so the Verlet algorithm is not only time-reversible given its

symmetry around t0 but also accurate to fourth order in the time step. The velocities are

still useful, however, to compute the total kinetic energy and related properties, such as

the instantaneous temperature. When necessary, velocities can be approximated as the

average velocity over the time period from t0 − δt to t0 + δt.

Performing MD using the Verlet algorithm requires storing the current positions,

‘old’ positions at time t0 − δt, and the accelerations at time t0—a modest cost given the

accuracy of the integration scheme. However, the use of Eq. A–7 introduces an issue of

numerical precision, since r⃗(t0) and r⃗(t0 − δt) are potentially large values, while δt2 a⃗(t0)

is typically quite small since the time step is small. Since real numbers can be stored

only to a limited precision, accuracy is potentially lost when a small number is added to

a difference of large numbers. [54] To address this issue and improve the way in which

velocities are handled, the leap-frog and velocity Verlet methods are discussed below.

Velocity Verlet. In 1982, Swope et al. developed a variant of the Verlet algorithm

that sidesteps the potential roundoff errors and naturally stores positions, velocities, and

accelerations at the same time. A Taylor series expansion is again used to propagate

the positions, but only the t0 + δt step is used, resulting in Eq. A–8.

r⃗(t0 + δt) = r⃗(t0) + δt v⃗(t0) +
1

2
δt2 a⃗(t0) (A–8)

The accelerations of the particles are computed from their positions at time t0 + δt, and

are used to compute the velocities. To increase the accuracy of the computed velocities,

the velocity integration is divided into two half-timesteps, shown in Eqs. A–9. In this
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case, the accuracy to δt4 in the positions obtained by the Verlet algorithm is sacrificed

for improved numerical precision for finite-precision computers and a more accurate

treatment of system velocities.

v⃗

(
t0 +

1

2
δt

)
= v⃗(t0) +

1

2
δt a⃗(t0)

v⃗(t0 + δt) = v⃗

(
t0 +

1

2
δt

)
+
1

2
δt a⃗(t0 + δt)

v⃗(t0 + δt) = v⃗(t) +
1

2
δt [⃗a(t) + a⃗(t + δt)] (A–9)

The NAB and mdgx programs of the AmberTools 12 program suite (and earlier

versions, where available), utilize the velocity Verlet algorithm for dynamics.

Leap-frog. A common integrator used in MD simulations is the leap-frog method,

so-called because the computed velocities ‘leap’ over the computed coordinates in a

manner that will be explained shortly. The main dynamics engines in the Amber 12

program suite—pmemd and sander—use the leap-frog integrator.

While similar to the velocity Verlet approach, the leap-frog algorithm computes

positions and accelerations of particles at integral time steps, but computes velocities at

half-integral time steps according to Eqs. A–10.

r⃗(t0 + δt) = r⃗(t0) + δt v⃗

(
t0 +

1

2
δt

)
v⃗

(
t0 +

1

2
δt

)
= v⃗

(
t0 −

1

2
δt

)
+ δt a⃗(t0) (A–10)

If the velocities are required at time t0, they can be estimated as the average

velocities between times t0 − 1/2δt and t0 + 1/2δt, which is significantly more accurate

than the approximation in Verlet’s original algorithm. Like the velocity Verlet algorithm,

leap-frog integration sacrifices the 4th-order accuracy in integrated positions to alleviate

the aforementioned precision and velocity issues. [54]
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APPENDIX B
AMBER PARAMETER-TOPOLOGY FILE FORMAT

This appendix details the Parameter-Topology file format used extensively by the

AMBER software suite for biomolecular simulation and analysis, referred to as the

prmtop file for short. The format specification of the AMBER topology file was written

initially over a decade ago and posted on http://ambermd.org/formats.html. I have

recently expanded that document to account for the drastic change to the file format

that occurred with the 2004 release of Amber 7. The pre-Amber 7 format (old format) is

described more briefly afterwards, although each section provided in the original format

contains exactly the same information as the newer version.

This appendix also details the format changes and additions introduced by cham-

ber—the program that translates a CHARMM parameter file (PSF) into a topology file

that can be used with the sander and pmemd programs in AMBER.

This appendix draws from the information on http://ambermd.org/formats.html that

was added by both me and others, as well as the experience I gleaned while writing the

ParmEd program and working with the various codes in AMBER.

As a warning, the prmtop file is a result of bookkeeping that becomes increasingly

complex as the system size increases. Therefore, hand-editing the topology file for

all but the smallest systems is discouraged—a program or script should be written to

automate the procedure.

B.1 Layout

The first line of the Amber topology file is the version string. An example is shown

below in which XX is replaced by the actual date and time.

%VERSION VERSION_STAMP = V0001.000 DATE = XX/XX/XX XX:XX:XX

The topology format is divided into several sections in a way that is designed to be

parsed easily using simple Fortran code. A consequence of this is that it is difficult for

parsers written in other languages (e.g., C, C++, Python, etc.) to strictly adhere to the
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standard. These parsers should try, however, to support as much of the standard as

possible.

%FLAG SECTION

%COMMENT an arbitrary number of optional comments may be put here

%FORMAT(<FORTRAN FORMAT>)

... data formatted according to <FORTRAN FORMAT>

All names (e.g., atom names, atom type names, and residue names) are limited to 4

characters and are printed in fields of width exactly 4 characters wide, left-justified. This

means that names might not be space-delimited if any of the names have 4 characters.

Requirements for prmtop parsers. Parsers, regardless of the language they are

written in, should conform to a list of attributes to maximize the likelihood that they are

parsed correctly.

• Parsers should expect that some 4-character fields (e.g., atom or residue

names) may have some names that have 4 characters and therefore might not

be whitespace-delimited.

• Parsers should not expect SECTIONs in the prmtop to be in any particular order.

• Parsers should not expect or require %COMMENT lines to exist, but should properly

parse the file if any number of %COMMENT lines appear as indicated above

• The topology file may be assumed to have been generated ‘correctly’ by tleap or

some other credible source. No graceful error checking is required.

Requirements for modifying SECTIONs. To minimize the impact of prmtop changes

to existing, third-party parsers, the following conventions should be followed.

• Any new SECTION should be added to the end of the topology file to avoid conflicts

with order-dependent parsers.

• The <FORTRAN FORMAT> should be as simple as possible (and avoid adding new

formats) to maintain simplicity for non-Fortran parsers.

177



• Avoid modifying if possible. Consider if this new section or change is truly neces-

sary and belongs in the prmtop.

B.2 List of SECTIONs

TITLE

This section contains the title of the topology file on one line (up to 80 characters).

While the title serves a primarily cosmetic purpose, this section must be present.

%FORMAT(20a4)

POINTERS

This section contains the information about how many parameters are present in

all of the sections. There are 31 or 32 integer pointers (NCOPY might not be present).

The format and names of all of the pointers are listed below, followed by a description of

each pointer.

%FLAG POINTERS

%FORMAT(10I8)

NATOM NTYPES NBONH MBONA NTHETH MTHETA NPHIH MPHIA NHPARM NPARM

NNB NRES NBONA NTHETA NPHIA NUMBND NUMANG NPTRA NATYP NPHB

IFPERT NBPER NGPER NDPER MBPER MGPER MDPER IFBOX NMXRS IFCAP

NUMEXTRA NCOPY

NATOM Number of atoms

NTYPES Number of distinct Lennard-Jones atom types

NBONH Number of bonds containing Hydrogen

MBONA Number of bonds not containing Hydrogen

NTHETH Number of angles containing Hydrogen

MTHETA Number of angles not containing Hydrogen

NPHIH Number of torsions containing Hydrogen

MPHIA Number of torsions not containing Hydrogen

NHPARM Not currently used for anything
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NPARM Used to determine if this is a LES-compatible prmtop

NNB Number of excluded atoms (length of total exclusion list)

NRES Number of residues

NBONA MBONA + number of constraint bonds 1

NTHETA MTHETA + number of constraint angles 1

NPHIA MPHIA + number of constraint torsions 1

NUMBND Number of unique bond types

NUMANG Number of unique angle types

NPTRA Number of unique torsion types

NATYP Number of SOLTY terms. Currently unused.

NPHB Number of distinct 10-12 hydrogen bond pair types 2

IFPERT Set to 1 if topology contains residue perturbation information. 3

NBPER Number of perturbed bonds 3

NGPER Number of perturbed angles 3

NDPER Number of perturbed torsions 3

MBPER Number of bonds in which both atoms are being perturbed

MGPER Number of angles in which all 3 atoms are being perturbed

MDPER Number of torsions in which all 4 atoms are being perturbed 1

IFBOX Flag indicating whether a periodic box is present. Values can be 0 (no box), 1

(orthorhombic box) or 2 (truncated octahedron)

NMXRS Number of atoms in the largest residue

IFCAP Set to 1 if a solvent CAP is being used

NUMEXTRA Number of extra points in the topology file

1 AMBER codes no longer support constraints in the topology file.

2 Modern AMBER force fields do not use a 10-12 potential

3 No AMBER codes support perturbed topologies anymore
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NCOPY Number of PIMD slices or number of beads

ATOM NAME

This section contains the atom name for every atom in the prmtop.

%FORMAT(20a4) There are NATOM 4-character strings in this section.

CHARGE

This section contains the charge for every atom in the prmtop. Charges are multi-

plied by 18.2223 (
√
kele where kele is the electrostatic constant in kcal Åmol−1 q−2, where

q is the charge of an electron).

%FORMAT(5E16.8)

There are NATOM floating point numbers in this section.

ATOMIC NUMBER

This section contains the atomic number of every atom in the prmtop. This section

was first introduced in AmberTools 12. [141]

%FORMAT(10I8)

There are NATOM integers in this section.

MASS

This section contains the atomic mass of every atom in g mol−1.

%FORMAT(5E16.8)

There are NATOM floating point numbers in this section.

ATOM TYPE INDEX

This section contains the Lennard-Jones atom type index. The Lennard-Jones

potential contains parameters for every pair of atoms in the system. To minimize the

memory requirements of storing NATOM × NATOM 2 Lennard-Jones A-coefficients and B-

coefficients, all atoms with the same σ and ε parameters are assigned to the same type

2 Only half this number would be required, since ai ,j ≡ aj ,i
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(regardless of whether they have the same AMBER ATOM TYPE). This significantly reduces

the number of LJ coefficients which must be stored, but introduced the requirement for

bookkeeping sections of the topology file to keep track of what the LJ type index was for

each atom.

This section is used to compute a pointer into the NONBONDED PARM INDEX section,

which itself is a pointer into the LENNARD JONES ACOEF and LENNARD JONES BCOEF sections

(see below).

%FORMAT(10I8)

There are NATOM integers in this section.

NUMBER EXCLUDED ATOMS

This section contains the number of atoms that need to be excluded from the non-

bonded calculation loop for atom i because i is involved in a bond, angle, or torsion with

those atoms. Each atom in the prmtop has a list of excluded atoms that is a subset of

the list in EXCLUDED ATOMS LIST (see below). The i th value in this section indicates how

many elements of EXCLUDED ATOMS LIST belong to atom i .

For instance, if the first two elements of this array is 5 and 3, then elements 1

to 5 in EXCLUDED ATOMS LIST are the exclusions for atom 1 and elements 6 to 8 in

EXCLUDED ATOMS LIST are the exclusions for atom 2. Each exclusion is listed only once

in the topology file, and is given to the atom with the smaller index. That is, if atoms

1 and 2 are bonded, then atom 2 is in the exclusion list for atom 1, but atom 1 is not

in the exclusion list for atom 2. If an atom has no excluded atoms (either because it

is a monoatomic ion or all atoms it forms a bonded interaction with have a smaller

index), then it is given a value of 1 in this list which corresponds to an exclusion with (a

non-existent) atom 0 in EXCLUDED ATOMS LIST.

The exclusion rules for extra points are more complicated. When determining

exclusions, it is considered an ‘extension’ of the atom it is connected (bonded) to.
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Therefore, extra points are excluded not only from the atom they are connected to, but

also from every atom that its parent atom is excluded from.

NOTE : The non-bonded interaction code in sander and pmemd currently (as of

Amber 12) recalculates the exclusion lists for simulations of systems with periodic

boundary conditions, so this section is effectively ignored. The GB code uses the

exclusion list in the topology file.

%FORMAT(10I8)

There are NATOM integers in this section.

NONBONDED PARM INDEX

This section contains the pointers for each pair of LJ atom types into the

LENNARD JONES ACOEF and LENNARD JONES BCOEF arrays (see below). The pointer for

an atom pair in this array is calculated from the LJ atom type index of the two atoms

(see ATOM TYPE INDEX above).

The index for two atoms i and j into the LENNARD JONES ACOEF and

LENNARD JONES BCOEF arrays is calculated as

index = NONBONDED PARM INDEX [NTYPES× (ATOM TYPE INDEX(i)− 1) + ATOM TYPE INDEX(j)]

(B–1)

Note, each atom pair can interact with either the standard 12-6 LJ potential or via

a 12-10 hydrogen bond potential. If index in Eq. B–1 is negative, then it is an index into

HBOND ACOEF and HBOND BCOEF instead (see below).

%FORMAT(10I8)

There are NTYPES× NTYPES integers in this section.

RESIDUE LABEL

This section contains the residue name for every residue in the prmtop. Residue

names are limited to 4 letters, and might not be whitespace-delimited if any residues

have 4-letter names.

%FORMAT(20a4)
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There are NRES 4-character strings in this section.

RESIDUE POINTER

This section lists the first atom in each residue.

%FORMAT(10i8)

There are NRES integers in this section.

BOND FORCE CONSTANT

Bond energies are calculated according to the equation

Ebond =
1

2
k (⃗r − r⃗eq)2 (B–2)

This section lists all of the bond force constants (k in Eq. B–2) in units

kcal mol−1 Å−2 for each unique bond type. Each bond in BONDS INC HYDROGEN and

BONDS WITHOUT HYDROGEN (see below) contains an index into this array.

%FORMAT(5E16.8)

There are NUMBND floating point numbers in this section.

BOND EQUIL VALUE

This section lists all of the bond equilibrium distances (⃗req in Eq. B–2) in units of Å

for each unique bond type. This list is indexed the same way as BOND FORCE CONSTANT.

%FORMAT(5E16.8)

There are NUMBND floating point numbers in this section.

ANGLE FORCE CONSTANT

Angle energies are calculated according to the equation

Eangle =
1

2
kθ (θ − θeq)

2 (B–3)

This section lists all of the angle force constants (kθ in Eq. B–3) in units of

kcal mol−1 rad2 for each unique angle type. Each angle in ANGLES INC HYDROGEN and

ANGLES WITHOUT HYDROGEN contains an index into this (and the next) array.

%FORMAT(5E16.8)

183



There are NUMANG floating point numbers in this section.

ANGLE EQUIL VALUE

This section contains all of the angle equilibrium angles (θeq in Eq. B–3) in radians.

NOTE: the AMBER parameter files list equilibrium angles in degrees and are converted

to radians in tleap. This list is indexed the same way as ANGLE FORCE CONSTANT.

%FORMAT(5E16.8)

There are NUMBND floating point numbers in this section.

DIHEDRAL FORCE CONSTANT

Torsion energies are calculated for each term according to the equation

Etorsion = ktor cos (nϕ+ ψ) (B–4)

This section lists the torsion force constants (ktor in Eq. B–4) in units of

kcal mol−1 for each unique torsion type. Each torsion in DIHEDRALS INC HYDROGEN

and DIHEDRALS WITHOUT HYDROGEN has an index into this array.

Amber parameter files contain a dividing factor and barrier height for each dihedral.

The barrier height in the parameter files are divided by the provided factor inside tleap

and then discarded. As a result, the torsion barriers in this section might not match

those in the original parameter files.

%FORMAT(5E16.8)

There are NPTRA floating point numbers in this section.

DIHEDRAL PERIODICITY

This section lists the periodicity (n in Eq. B–4) for each unique torsion type. It is

indexed the same way as DIHEDRAL FORCE CONSTANT. NOTE: only integers are read by

tleap, although the AMBER codes support non-integer periodicities.

%FORMAT(5E16.8)

There are NPTRA floating point numbers in this section.
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DIHEDRAL PHASE

This section lists the phase shift (ψ in Eq. B–4) for each unique torsion type in

radians. It is indexed the same way as DIHEDRAL FORCE CONSTANT.

%FORMAT(5E16.8)

There are NPTRA floating point numbers in this section.

SCEE SCALE FACTOR

This section was introduced in Amber 11. In previous versions, this variable was

part of the input file and set a single scaling factor for every torsion.

This section lists the factor by which 1-4 electrostatic interactions are divided (i.e.,

the two atoms on either end of a torsion). For torsion types in which 1-4 non-bonded

interactions are not calculated (e.g., improper torsions, multi-term torsions, and those

involved in ring systems of 6 or fewer atoms), a value of 0 is assigned by tleap. This

section is indexed the same way as DIHEDRAL FORCE CONSTANT.

%FORMAT(5E16.8)

There are NPTRA floating point numbers in this section.

SCNB SCALE FACTOR

This section was introduced in Amber 11. In previous versions, this variable was

part of the input file and set a single scaling factor for every torsion.

This section lists the factor by which 1-4 van der Waals interactions are di-

vided (i.e., the two atoms on either end of a torsion). This section is analogous to

SCEE SCALE FACTOR described above.

%FORMAT(5E16.8)

There are NPTRA floating point numbers in this section.

SOLTY

This section is currently unused, and while ‘future use’ is planned, this assertion has

lain dormant for some time.

%FORMAT(5E16.8)
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There are NATYP floating point numbers in this section.

LENNARD JONES ACOEF

LJ non-bonded interactions are calculated according to the equation

ELJ =
ai ,j
r 12

− bi ,j
r 6

(B–5)

This section contains the LJ A-coefficients (ai ,j in Eq. B–5) for all pairs of distinct LJ

types (see sections ATOM TYPE INDEX and NONBONDED PARM INDEX above).

%FORMAT(5E16.8)

There are [NTYPES× (NTYPES+ 1)] /2 floating point numbers in this section.

LENNARD JONES BCOEF

This section contains the LJ B-coefficients (bi ,j in Eq. B–5) for all pairs of distinct LJ

types (see sections ATOM TYPE INDEX and NONBONDED PARM INDEX above).

%FORMAT(5E16.8)

There are [NTYPES× (NTYPES+ 1)] /2 floating point numbers in this section.

BONDS INC HYDROGEN

This section contains a list of every bond in the system in which at least one atom

is Hydrogen. Each bond is identified by 3 integers—the two atoms involved in the

bond and the index into the BOND FORCE CONSTANT and BOND EQUIL VALUE. For run-time

efficiency, the atom indexes are actually indexes into a coordinate array, so the actual

atom index A is calculated from the coordinate array index N by A = N/3 + 1. (N is the

value in the topology file)

%FORMAT(10I8)

There are 3× NBONH integers in this section.

BONDS WITHOUT HYDROGEN

This section contains a list of every bond in the system in which neither atom is

Hydrogen. It has the same structure as BONDS INC HYDROGEN described above.

%FORMAT(10I8)
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There are 3× NBONA integers in this section.

ANGLES INC HYDROGEN

This section contains a list of every angle in the system in which at least one atom

is Hydrogen. Each angle is identified by 4 integers—the three atoms involved in the

angle and the index into the ANGLE FORCE CONSTANT and ANGLE EQUIL VALUE. For run-

time efficiency, the atom indexes are actually indexes into a coordinate array, so the

actual atom index A is calculated from the coordinate array index N by A = N/3 + 1. (N

is the value in the topology file)

%FORMAT(10I8)

There are 4× NTHETH integers in this section.

ANGLES WITHOUT HYDROGEN

This section contains a list of every angle in the system in which no atom is Hydro-

gen. It has the same structure as ANGLES INC HYDROGEN described above.

%FORMAT(10I8)

There are 4× NTHETA integers in this section.

DIHEDRALS INC HYDROGEN

This section contains a list of every torsion in the system in which at least one

atom is Hydrogen. Each torsion is identified by 5 integers—the four atoms involved in

the torsion and the index into the DIHEDRAL FORCE CONSTANT, DIHEDRAL PERIODICITY,

DIHEDRAL PHASE, SCEE SCALE FACTOR and SCNB SCALE FACTOR arrays. For run-time

efficiency, the atom indexes are actually indexes into a coordinate array, so the actual

atom index A is calculated from the coordinate array index N by A = N/3 + 1. (N is the

value in the topology file)

If the third atom is negative, then the 1-4 non-bonded interactions for this torsion is

not calculated. This is required to avoid double-counting these non-bonded interactions

in some ring systems and in multi-term torsions.

If the fourth atom is negative, then the torsion is improper.
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NOTE: The first atom has an index of zero. Since 0 cannot be negative and the 3rd

and 4th atom indexes are tested for their sign to determine if 1-4 terms are calculated,

the first atom in the topology file must be listed as either the first or second atom in

whatever torsions it is defined in. The atom ordering in a torsion can be reversed to

accommodate this requirement if necessary.

%FORMAT(10I8)

There are 5× NPHIH integers in this section.

DIHEDRALS WITHOUT HYDROGEN

This section contains a list of every torsion in the system in which no atom is

Hydrogen. It has the same structure as DIHEDRALS INC HYDROGEN described above.

%FORMAT(10I8)

There are 5× NPHIA integers in this section.

EXCLUDED ATOMS LIST

This section contains a list for each atom of excluded partners in the non-bonded

calculation routines. The subset of this list that belongs to each atom is determined from

the pointers in NUMBER EXCLUDED ATOMS—see that section for more information.

NOTE: The periodic boundary code in sander and pmemd currently recalculates

this section of the topology file. The GB code, however, uses the exclusion list defined in

the topology file.

%FORMAT(10I8)

There are NNB integers in this section.

HBOND ACOEF

This section is analogous to the LENNARD JONES ACOEF array described above, but

refers to the A-coefficient in a 12-10 potential instead of the familiar 12-6 potential. This

term has been dropped from most modern force fields.

%FORMAT(5E16.8)

There are NPHB floating point numbers in this section.
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HBOND BCOEF

This section is analogous to the LENNARD JONES BCOEF array described above, but

refers to the B-coefficient in a 12-10 potential instead of the familiar 12-6 potential. This

term has been dropped from most modern force fields.

%FORMAT(5E16.8)

There are NPHB floating point numbers in this section.

HBCUT

This section used to be used for a cutoff parameter in the 12-10 potential, but is no

longer used for anything.

%FORMAT(5E16.8)

There are NPHB floating point numbers in this section.

AMBER ATOM TYPE

This section contains the atom type name for every atom in the prmtop.

%FORMAT(20a4)

There are NATOM 4-character strings in this section.

TREE CHAIN CLASSIFICATION

This section contains information about the tree structure (borrowing concepts

from graph theory ) of each atom. Each atom can have one of the following character

indicators:

M This atom is part of the “main chain”

S This atom is part of the “sidechain”

E This atom is a chain-terminating atom (i.e., an “end” atom)

3 The structure branches into 3 chains at this point

BLA If none of the above are true

%FORMAT(20a4)

There are NATOM 4-character strings in this section.
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JOIN ARRAY

This section is no longer used and is currently just filled with zeros.

%FORMAT(10I8)

There are NATOM integers in this section.

IROTAT

This section is not used and is currently just filled with zeros.

%FORMAT(10I8)

There are NATOM integers in this section.

SOLVENT POINTERS

This section is only present if IFBOX is greater than 0 (i.e., if the system was set up

for use with periodic boundary conditions). There are 3 integers present in this section—

the final residue that is part of the solute (IPTRES), the total number of ‘molecules’

(NSPM), and the first solvent ‘molecule’ (NSPSOL).

A ‘molecule’ is defined as a closed graph—that is, there is a pathway from every

atom in a molecule to every other atom in the molecule by traversing bonds, and there

are no pathways to ‘other’ molecules.

%FLAG SOLVENT_POINTERS

%FORMAT(3I8)

IPTRES NSPM NSPSOL

ATOMS PER MOLECULE

This section is only present if IFBOX is greater than 0 (i.e., if the system was set

up for use with periodic boundary conditions). This section lists how many atoms are

present in each ‘molecule’ as defined in the SOLVENT POINTERS section above.

%FORMAT(10I8)

There are NSPM integers in this section (see the SOLVENT POINTERS section above).
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BOX DIMENSIONS

This section is only present if IFBOX is greater than 0 (i.e., if the system was set up

for use with periodic boundary conditions). This section lists the box angle (OLDBETA)

and dimensions (BOX(1)×BOX(2)×BOX(3)). The values in this section are deprecated now

since newer and more accurate information about the box size and shape is stored in

the coordinate file. Since constant pressure simulations can change the box dimensions,

the values in the coordinate file should be trusted over those in the topology file.

%FLAG BOX_DIMENSIONS

%FORMAT(5E16.8)

OLDBETA BOX(1) BOX(2) BOX(3)

CAP INFO

This section is present only if IFCAP is not 0. If present, it contains a single integer

which is the last atom before the water cap begins (NATCAP)

%FORMAT(10I8)

CAP INFO2

This section is present only if IFCAP is not 0. If present, it contains four numbers—

the distance from the center of the cap to outside the cap (CUTCAP), and the Cartesian

coordinates of the cap center.

%FLAG CAP_INFO2

%FORMAT(5E16.8)

CUTCAP XCAP YCAP ZCAP

RADIUS SET

This section contains a one-line string (up to 80 characters) describing the intrinsic

implicit solvent radii set that are defined in the topology file. The available radii sets with

their 1-line descriptions are:

bondi Bondi radii (bondi)

amber6 amber6 modified Bondi radii (amber6)

191



mbondi modified Bondi radii (mbondi)

mbondi2 H(N)-modified Bondi radii (mbondi2)

mbondi3 ArgH and AspGlu0 modified Bondi2 radii (mbondi3)

%FORMAT(1a80)

There is a single line description in this section.

RADII

This section contains the intrinsic radii of every atom used for implicit solvent

calculations (typically Generalized Born).

%FORMAT(5E16.8)

There are NATOM floating point numbers in this section.

IPOL

This section was introduced in Amber 12. In previous versions of Amber, this was a

variable in the input file.

This section contains a single integer that is 0 for fixed-charge force fields and 1 for

force fields that contain polarization.

POLARIZABILITY

This section is only present if IPOL is not 0. It contains the atomic polarizabilities for

every atom in the prmtop.

%FORMAT(5E16.8)

There are NATOM floating point numbers in this section.

%FORMAT(1I8)

B.3 Deprecated Sections

All of the sections of the topology file listed here are only present if IFPERT is 1.

However, no modern programs support such prmtops so these sections are rarely (if

ever) used. They are included in Table B-1 for completeness, only.

More info can be found online at http://ambermd.org/formats.html
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Table B-1. List of all of the perturbed topology file sections.
FLAG name %FORMAT of values Description

PERT BOND ATOMS 10I8 2× NBPER perturbed bond list
PERT BOND PARAMS 10I8 2× NBPER perturbed bond pointers
PERT ANGLE ATOMS 10I8 3× NGPER perturbed angle list

PERT ANGLE PARAMS 10I8 2× NGPER perturbed angle pointers
PERT DIHEDRAL ATOMS 10I8 4× NDPER perturbed torsion list

PERT DIHEDRAL PARAMS 10I8 2× NDPER perturbed torsion pointers
PERT RESIDUE NAME 20a4 NRES end state residue names

PERT ATOM NAME 20a4 NATOM end state atom names
PERT ATOM SYMBOL 20a4 NATOM end state atom types

ALMPER 5E16.8 NATOM Unused
IAPER 10I8 NATOM Is Atom PERturbed?

PERT ATOM TYPE INDEX 10I8 NATOM Perturbed LJ Type
PERT CHARGE 5E16.8 NATOM Perturbed charge

B.4 CHAMBER Topologies

Here we will describe the general format of topology files generated by the chamber

program. The chamber program was developed to translate CHARMM topology (PSF)

files into Amber topology files for use with the AMBER program suite.

Due to differences in the CHARMM force field (e.g., the extra CMAP and Urey-

Bradley terms and the different way that improper dihedrals are treated), chamber

topologies contain more sections than Amber topologies. Furthermore, to ensure

rigorous reproduction of CHARMM energies inside the AMBER program suites, some

of the sections that are common between AMBER and CHARMM topology files have a

different format for their data to support a different level of input data precision.

Due to the differences in the chamber topology files, a mechanism to differentiate

between chamber topologies and AMBER topologies was introduced. If the topology file

has a %FLAG TITLE then it is an AMBER topology. If it has a %FLAG CTITLE instead, then

it is a chamber topology.

The following sections of the chamber topology are exacly the same as those from

the AMBER topology files:

• POINTERS
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• ATOM NAME

• MASS

• ATOM TYPE INDEX

• NUMBER EXCLUDED ATOMS

• EXCLUDED ATOMS LIST

• NONBONDED PARM INDEX

• RESIDUE LABEL

• BOND FORCE CONSTANT

• BOND EQUIL VALUE

• ANGLE FORCE CONSTANT

• DIHEDRAL FORCE CONSTANT

• DIHEDRAL PERIODICITY

• DIHEDRAL PHASE

• SCEE SCALE FACTOR

• SCNB SCALE FACTOR

• SOLTY

• BONDS INC HYDROGEN

• BONDS WITHOUT HYDROGEN

• ANGLES INC HYDROGEN

• ANGLES WITHOUT HYDROGEN

• DIHEDRALS INC HYDROGEN

• DIHEDRALS WITHOUT HYDROGEN

• HBOND ACOEF

• HBOND BCOEF

• HBCUT

• AMBER ATOM TYPE
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Table B-2. List of flags that are common between Amber and chamber topology files, but
have different FORMAT identifiers.

FLAG name AMBER Format chamber Format
CHARGE 5E16.8 3E24.16

ANGLE EQUIL VALUE 5E16.8 3E25.17

LENNARD JONES ACOEF 5E16.8 3E24.16

LENNARD JONES BCOEF 5E16.8 3E24.16

• TREE CHAIN CLASSIFICATION 3

• JOIN ARRAY

• IROTAT

• RADIUS SET

• RADII

• SCREEN

• SOLVENT POINTERS

• ATOMS PER MOLECULE

In Table B-2 is a list of sections that have the same name and the same data, but

with a different Fortran format identifier.

FORCE FIELD TYPE

This section is a description of the CHARMM force field that is parametrized in the

topology file. It is a single line (it can be read as a single string of length 80 characters).

It does not affect any numerical results.

%FORMAT(i2,a78)

CHARMM UREY BRADLEY COUNT

This section contains the number of Urey-Bradley parameters printed in the topol-

ogy file. It contains two integers, the total number of Urey-Bradley terms (NUB) and the

number of unique Urey-Bradley types (NUBTYPES).

3 Not really supported. Every entry is BLA
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%FLAG CHARMM_UREY_BRADLEY_COUNT

%FORMAT(2i8)

NUB NUBTYPES

CHARMM UREY BRADLEY

This section contains all of the Urey-Bradley terms. It is formatted exactly like

BONDS INC HYDROGEN and BONDS WITHOUT HYDROGEN.

%FORMAT(10i8)

There are 3× NUB integers in this section.

CHARMM UREY BRADLEY FORCE CONSTANT

This section contains all of the force constants for each unique Urey-Bradley term in

kcal mol−1 Å2. It is formatted exactly the same as BOND FORCE CONSTANT.

%FORMAT(5E16.8)

There are NUBTYPES floating point numbers in this section.

CHARMM UREY BRADLEY EQUIL VALUE

This section contains all of the equilibrium distances for each unique Urey-Bradley

term in Å. It is formatted exactly the same as BOND EQUIL VALUE.

%FORMAT(5E16.8)

There are NUBTYPES floating point numbers in this section.

CHARMM NUM IMPROPERS

This section contains the number of improper torsions in the topology file. It

contains one integer, the total number of improper torsions.

%FLAG CHARMM_NUM_IMPROPERS

%FORMAT(i8)

NIMPHI

CHARMM IMPROPERS

This section contains all of the improper torsion terms. It is formatted exactly like

DIHEDRALS INC HYDROGEN and DIHEDRALS WITHOUT HYDROGEN.
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%FORMAT(10i8)

There are 5× NIMPHI integers in this section.

CHARMM NUM IMPROPER TYPES

This section contains the number of unique improper torsion types in the topology

file. It contains one integer, the total number of improper torsions types.

%FLAG CHARMM_NUM_IMPROPERS

%FORMAT(i8)

NIMPRTYPES

CHARMM IMPROPER FORCE CONSTANT

This section contains the force constant for each unique improper torsion type. It is

formatted exactly like DIHEDRAL FORCE CONSTANT.

%FORMAT(5E16.8)

There are NIMPRTYPES integers in this section.

CHARMM IMPROPER PHASE

This section contains the phase shift for each unique improper torsion type. It is

formatted exactly like DIHEDRAL PHASE

%FORMAT(5E16.8)

There are NIMPRTYPES integers in this section.

LENNARD JONES 14 ACOEF

Instead of scaling the 1-4 van der Waals interactions, the CHARMM force field

actually assigns entirely different LJ parameters to each atom type. Therefore, chamber

topologies have two extra sections that correspond to the set of LJ parameters for 1-4 in-

teractions. The way these tables are set up is identical to the way LENNARD JONES ACOEF

and LENNARD JONES BCOEF are set up in chamber topologies.

%FORMAT(5E16.8)

There are [NTYPES× (NTYPES+ 1)] /2 floating point numbers in this section.
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LENNARD JONES 14 BCOEF

This section contains the LJ B-coefficients for 1-4 interactions. See

LENNARD JONES 14 ACOEF above.

%FORMAT(5E16.8)

There are [NTYPES× (NTYPES+ 1)] /2 floating point numbers in this section.

CHARMM CMAP COUNT

This section contains two integers—the number of total correction map (CMAP

terms and the number of unique CMAP ‘types.’

%FLAG CHARMM_CMAP_COUNT

%FORMAT(2i8)

CMAP_TERM_COUNT CMAP_TYPE_COUNT

CHARM CMAP RESOLUTION

This section stores the resolution (i.e., number of steps along each phi/psi CMAP

axis) for each CMAP grid.

%FORMAT(20I4)

There are CMAP TERM COUNT integers in this section.

CHARMM CMAP PARAMETER

There are CMAP TYPE COUNT of these sections, where is replaced by a 2-digit integer

beginning from 01. It is a 2-dimensional Fortran array whose 1-D sequence is stored in

column-major order.

%FORMAT(8(F9.5))

There are CHARMM CMAP RESOLUTION(i)2 floating point numbers in this section, where i is

the in the FLAG title.

198



APPENDIX C
MESSAGE PASSING INTERFACE

In this appendix, I will briefly describe the Message Passing Interface (MPI) model

that is frequently used to parallelize programs in the field of computational chemistry.

The MPI is used extensively in the field of computational chemistry to enable large-scale

parallelism on modern supercomputer architecture. Pachecho authored a particularly

useful text for learning MPI programming. [202]

C.1 Parallel Computing

C.1.1 Data Models

Generally speaking, programs fall into one of two categories with regards to how

handling and processing data is parallelized. The first approach refers to using multiple

threads to run the same program or executable, each of which work on a different set of

data—an approach called Single Program Multiple Data (SPMD). The second approach

refers to multiple threads each running different programs on different sets of data—an

approach called Multiple Program Multiple Data (MPMD).

MPI supports both SPMD and MPMD data models, with support for MPMD being

introduced with the adoption of the MPI-2 standard. With the exception of some special-

ized QM/MM functionality in sander, MPI-enabled programs in Amber use the SPMD

approach to parallelization, including all codes I contributed.

C.1.2 Memory Layout

In addition to the various approaches for parallelizing data processing, parallel

programs fall into one of two broad families with respect to memory layout and access.

An approach in which all processors share a common memory bank is called shared

memory parallelization (SMP). This is the approach used by the OpenMP API that is

implemented by most standard C and Fortran compilers. The other approach, called

distributed memory parallelization, defines separate memory buffers for each process,
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and each process can only modify its own memory buffer. The MPI implements the latter

form of parallelism.

Shared memory and distributed memory parallelism each offer different advantages

and disadvantages with respect to each other. In SMP, one thread can access data

that has previously been manipulated by a different process without requiring that the

result be copied and passed between processes. In distributed parallelism, however, the

lack of required shared memory means that not all processes need access to the same

memory bank, allowing tasks to be distributed across different physical computers.

The difference between distributed and shared memory parallelization can be

visualized by considering a number of talented craftsmen constructing a complex

machine in a workshop. SMP is analogous to crowding multiple workers around a single

workbench with a single set of tools or instruments. Each worker can perform a separate

task toward completing the project at the same time other workers are performing their

tasks. Furthermore, as soon as one worker finishes their task and returns the result to

the workbench, the result is immediately accessible to every other worker at the table.

Of course, the number of workers that can work at the table and the physical size of the

total project is limited by the number of tools present at the workbench and the size of

that table, respectively. By analogy, the number of tools can be thought of as the number

of processing cores available, while the size of the table is analogous to the amount of

available shared memory.

Distributed memory parallelization schemes like MPI, on the other hand, are akin to

providing each worker with their own workbench where they perform whatever tasks are

assigned to them. When one worker’s task requires the result of another’s work, the re-

quired materials must be transported, or ‘communicated,’ between the two workers. This

inter-workbench communication introduces a latency that is not present in SMP. How-

ever, the size of the project is no longer limited by the size of the workbench, but rather

by whether or not the individual pieces can fit on any of the available workbenches. In
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this case, the room is a cluster of computers, and each table is a separate processing

core available in that cluster. Since most modern supercomputers are composed of

large numbers of smaller, interconnected computers, distributed memory programs must

be used for large, scalable applications.

Unsurprisingly, peak parallel performance leverages the capabilities of both dis-

tributed and shared memory parallelization to optimize load balancing across the

available resources and to minimize communication requirements. On a typical com-

puter cluster or supercomputer, there are a small number of cores on each individual

machine—between 8 and 48 are currently commonplace—that are placed in a network

connecting hundreds, thousands, or even tens of thousands of these machines. Using

SMP within a single node as part of a larger, distributed application allows programs to

take advantage of the strengths of both programming models. [203] Using the analogy

above, this approach is equivalent to using multiple workers each around multiple work-

benches, such that SMP takes place within a single workbench, and data and materials

have to be ‘communicated’ between different ones.

C.1.3 Thread Count

A process, or thread, is an instance of an instruction set by which a processing

unit operates on data. Drawing again on our analogy, a thread is equivalent to a single

worker at a single workbench. Some parallel programming APIs use a dynamic thread

count, so that new threads are launched when they are needed and ended when they

are not. The OpenMP API operates this way. This is akin to more workers being called

to work on the complex, labor-intensive parts of the manufacturing process and having

them leave after that part of the task is finished. This way, a parallelization strategy is

only necessary for particularly time-consuming parts of the computational process.

The MPI approach, on the other hand, employs a static thread count set before the

program is initially launched, and this number never changes. In this case, the workers

are brought into the workroom and the room is then locked. Each worker is assigned a

201



workbench and a set of instructions to follow based on the ID card they received when

they entered the room.

C.2 The Mechanics of MPI

At its most basic level, MPI consists of a series of API calls that allow threads to

communicate contents of their memory between each other so that they may coordinate

efforts on a single task. While any parallel program may be constructed by simply

allowing any two threads to send and receive data, MPI provides an extensive set of

communication options to simplify creating efficient parallel programs.

C.2.1 Messages

In MPI, data that is sent and received between threads is referred to as a message,

and the act of passing data between threads is called communication. The following

sections will describe how messages are passed via communication within MPI.

C.2.2 Communicators

A communicator is a grouping of threads within an MPI universe between which

messages may be passed. All messages sent and received in an MPI program do so

through a particular communicator. Each thread within a communicator is given a unique

identity within that communicator, called its rank, that is an integer value between 0 and

N - 1, where N is the size of the communicator (i.e., the number of threads that define it).

The ranks of the communicators can be used to assign different processors to different

portions of total work.

Communicators can be assigned and destroyed as desired within an MPI program,

and are very useful tools for assigning a subset of the available threads to a particular

task. There is one communicator, MPI COMM WORLD, that is created when an MPI

program is launched that links every thread.

C.2.3 Communications

Communicating data between threads is the heart of parallelizing a program using

MPI. As mentioned above, a program may be fully parallelized using MPI by only
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defining simple send and receive calls between two threads. However, the optimal set of

sends and receives depends strongly on where the threads are placed, the bandwidth

and latency of the connection between them, and the pure number of such calls that are

required for a particular task.

To facilitate the creation of portable, efficient parallel programs, MPI provides an

expansive set of functions to communicate data to abstract the complexity of optimizing

communications. The following sections will briefly describe the three main families of

communications as well as some representative examples within those families.

C.2.3.1 Point-to-point

The simplest set of communication involves exchanging data between two threads.

These communications are the cheapest individual MPI communications to use, since

they require communication between the minimum number of threads—two. Example

functions in this family include MPI Send, MPI Recv, and MPI Sendrecv. The first two

allow data to be sent from one process to another, and the second explicitly receives

sent data. Every send must have a corresponding receive call on the destination thread

to complete the communication. The last function, MPI Sendrecv combines a send and

receive in the same function. The effect of these functions are shown in Fig. C-1.

C.2.3.2 All-to-one and One-to-all

The next family of communication occurs between a specified root thread and every

other thread within a communicator. These functions involve more costly communication

than the point-to-point communications described above since it requires at least

as many messages be sent as there are threads in the communicator. However,

specific MPI implementations can optimize these functions with respect to the naı̈ve

implementation, typically making them more efficient than alternatives implemented via

a series of point-to-point communications.
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MPI_Send

MPI_Recv

MPI_Sendrecv

Figure C-1. Schematic of different point-to-point communications. Threads and data are
shown as ovals and boxes, respectively, with arrows indicating the lines of
communication

Examples in this family include MPI Bcast, MPI Gather, MPI Scatter, and

MPI Reduce. MPI Bcast is a broadcast that sends data from the root thread to ev-

ery other thread in a communicator. MPI Gather collects data from all threads into

an array on the root thread. MPI Scatter operates similarly to MPI Bcast, except that

it divides the data sent by the root into equal-sized chunks that are sent out to every

thread in the communicator (this is effectively the inverse of an MPI Gather call). Finally,

MPI Reduce takes an array of data on each thread and combines them via some math-

ematical operation (i.e., addition, subtraction, etc.) into the final result on the root thread.

These functions are demonstrated diagrammatically in Fig. C-2.

C.2.3.3 All-to-all

The last family of communication involves transferring data from every thread in a

communicator to every other thread. Examples include MPI Allgather, MPI Allreduce,

and MPI Alltoall. These are the most expensive of all MPI communications since
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MPI_Gather MPI_Scatter MPI_Reduce

+

+

+

MPI_SUM

MPI_Bcast

Figure C-2. Schematic of different all-to-one and one-to-all communications. Threads
and data are shown as ovals and boxes, respectively, with arrows indicating
the lines of communication. Communicators are shown as dotted lines
enclosing all the threads in the communicator. The ‘root’ thread in all
communications is the top oval.

they involve the most amount of communication. As a result, they should be avoided

whenever possible. However, due to the complexity of the required communication,

these functions are the best candidates for performance optimization and tuning within

an MPI implementation. As a result, when such communication is required, programs

should not attempt to implement their own, equivalent alternatives.

MPI Allgather and MPI Allreduce are logically equivalent to invoking an MPI Bcast

call from the root thread following either an MPI Gather or MPI Reduce call to that root.

The MPI Alltoall function behaves like an MPI Gather to a root process followed by a

MPI Scatter from that root. The MPI Allgather is the most expensive of the all-to-all

communications given the increased amount of data that must be transmitted between

threads. Fig. C-3 illustrates how these all-to-all communications work.
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MPI_Allgather MPI_Alltoall MPI_Allreduce

+

+

+

MPI_SUM

Figure C-3. Schematic of different all-to-all communications. Threads and data are
shown as ovals and boxes, respectively, with arrows indicating where data is
transferred to and from.

C.2.4 Blocking vs. Non-blocking Communications

In general, communications within MPI fall into one of two categories: so-called

blocking and non-blocking communications. Blocking communications require the com-

munication complete before the program can continue. Non-blocking communications,

on the other hand, return instantaneously and allow the program to continue executing

code while waiting for the communication to complete. All communications involving

more than two threads—i.e., one-to-all and all-to-all—are blocking.

There is a special MPI function, MPI Barrier whose sole purpose is to block

all threads within a communicator from advancing past the barrier until each thread

has reached it. Similarly, the MPI Wait functions prevent a thread from continuing its

computations until after the specified non-blocking communications complete.
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