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Abstract

We extend the direct approach for blockmodeling one-mode data to two-mode data. The key
idea in this development is that the rows and columns are partitioned simultaneously but in different
ways. Many (but not all) of the generalized block types can be mobilized in blockmodeling two-
mode network data. These methods were applied to some ‘voting” data from the 2000-2001 term of
the Supreme Court and to the classic Deep South data on women attending events. The obtained par-
titions are easy to interpret and compelling. The insight that rows and columns can be partitioned in
different ways can be applied also to one-mode data. This is illustrated by a partition of a journal-to-
journal citation network where journals are viewed simultaneously as both producers and consumers
of scientific knowledge.

Blockmodeling tools were developed to partition network actors into clusters, called positions, and,
at the same time, to partition the set of ties into blocks that are defined by the positions. (See Lorrain
and White (1971), Breiger et al. (1975), and Burt (1976) for the foundational statements.) For these
authors, and those using their methods, the foundation for the partitioning was structural equivalence.
White and Reitz (1983) generalized structural equivalence to regular equivalence as another principle for
blockmodeling networks. For all of these authors, the use of blockmodeling tools was inductive in the
sense of specifying an equivalence type and searching for partitions that approximated those equivalence
types®. The procedures were indirect in the sense of converting network data into a (dis)similarity matrix
and using some clustering algorithm. Batagelj et al. (1992a,b) suggested an alternative strategy where
the partitioning was done by using the network data directly. In essence, their approach was built upon
the recognition that both structural and regular equivalence define certain block types if a partition of
actors and ties is exact and consistent with the type of equivalence. For structural equivalence, the ideal
blocks are null and complete (Batagelj et al. 1992a), and for regular equivalence, the ideal block types
are null and regular (Batagelj et al. 1992b). Subsequently, blockmodeling was generalized to permit
many new types of blocks. See Batagelj, 1997 and Doreian et al. (1994). The notion of constructing
blockmodeling in terms of a larger set of block types, together with the use of optimization methods
mobilized within a direct approach has been called generalized blockmodeling (Doreian et al. (2004).
Hitherto, these methods have been applied only to one-mode network data. Here, we consider another
extension of blockmodeling by including two-mode network data.

1 Two-mode Network Data

Wasserman and Faust (1994: Chapter 8) provide a discussion of affiliation networks as two-mode data.
In essence, two-mode data are defined for two sets of social units and contain measurements of a relation
from the units in one set to units in the other set. Pairs of network actor types and relations include:

1An exception is Heil and White (1976) but their algorithm did not enjoy widespread usage for blockmodeling.



people attending events, organizations employing people, justices on a court rendering decisions, and
nations belonging to alliances. The most used example of a two-mode network is the Deep South data,
also known as the ‘Southern Women’ data, collected by Davis et al. (1941) for a set of women attending
social events over a nine month period. We consider these data shortly as our second example.

2 Approachesto Two-Mode Network Data

In a two-mode network, N = (U1, Uz, R, w), one set of social units is denoted by U = {uy,ug, ..., un, }
and the second set of units is denoted by Uy = {v1,ve, ..., vy, }. By definition, Uy NU, = (. The social
relation R C Uy x Us is defined as one between the units in these two sets and is represented by the set
of lines with initial vertices in the set ¢/; and terminal vertices in the set ¢/5. The mappingw : R =& R
is a weight. Two examples of weighted two-mode networks are {Persons (l{/1), Goods/Services (Us) ,
consumed (R), frequency(w)} and {Countries ({/1), Countries (i), imported from (R), value (w)}. If
no weight is defined we can assume a constant weight w(u, v) = 1 for all uRw.

Many network analytic tools have been used to study the structure contained in two-mode data with
distinct ways of representing this type of data. We focus here on the approaches that are primarily
algebraic. One takes the form of using a rectangular n; x ny matrix A = [a,,] to represent the data for
the two sets of units, U, and .

) w(u,v) uRv
G =19 ¢ otherwise

This (rectangular) matrix can be binary or valued. For two of the examples that follow, A has a binary
form. The third example that we consider involves valued data.

A two-mode network can be viewed also as an ordinary (one-mode) network on the vertex set U, Ulfs,
divided into two sets U/, and U5, where the arcs can only go from U, to Us — it is a bipartite directed graph.
Borgatti and Everett (1997: 248) provide a pictorial representation of a bipartite graph for the Southern
Women data set and advocate the inclusion of analyses of the bipartite matrix, in this form, in the analysis
of two-mode data. Freeman (2003) also displays the Southern Women data in this fashion.

One algebraic approach to two-mode data takes the form of exploring the ‘duality’ of two-mode
data (Breiger, 1974) by constructing two valued one-mode networks. The matrix, A; = AAT, where T
denotes transposition, is in one-mode form for the actors in 2/, and A, = ATA is in one-mode form for
the actors in Us. Analyses then are conducted by using these two one-mode representations.

Atkin (1974) introduced Q-Analysis as a way of delineating the structure of the dual simplicial
complexes of A; and A,. Doreian (1979) to analyze the structure of the Southern Women data using
these tools. Freeman (1980) provides another example of using Q-Analysis for network data and Seidman
(1981) provides a related discussion in terms of hypergraphs. Galois lattices provide another algebraic
approach to two-mode data, one taken by Freeman and White (1994) who also applied these methods
to the Southern Women data. Once A; and A, have been constructed as one-mode matrices, all of the
conventional techniques for analyzing one mode data can be used.

3 Blockmodels for Two-Mode Networ k Data

Thinking of applying generalized blockmodeling tools to two-mode data implies making some adjust-
ments to this set of techniques, as well as the thinking behind them. Because the data come in the form
of rectangular arrays the language of diagonal and off-diagonal blocks is no longer applicable. Block-
models applied to (the usual) ‘square’ network data, require that the rows and columns are partitioned
simultaneously in exactly the same way. It makes no sense, conceptually and technically, to partition



rows and columns of a rectangular array in the same fashion. In this paper, the rows and columns of the
rectangular array are partitioned at the same time but they are partitioned differently.

We do not regard the use of partitioning tools for the above matrix representation of the bipartite
graph (using A, AT and two null matrices) as appropriate. The reason is simple: it is possible to have
mixtures of the two distinct types of actors in the same cluster. Indeed, exactly this happened with
Borgatti and Everett (1997) partition of the bipartite network in this form for the Southern Women data.
We propose the following procedure to ensure that actors of different types are never clustered together:
the two-mode data are treated as two-mode data.

We establish a simple notation given Uy = {u1,ug,...,un, } and Us = {v1,ve,...,vp,}. Let kg
be the number of clusters for actors in U, and let ko the number of clusters of actors in Us. Clearly,
1 <k <mand1l < ky < ng. While it is possible to consider up to nq and no for the number
of clusters of the two sets of actors, the point of the blockmodeling effort is to use fewer clusters than
actors. We will label a partition with k4 clusters of the actors in ({41) and ko clusters of the actors in ({/5)
as a (k1, k2)-partition of the two-mode array.

4 A Formalization of Blockmodeling Two-mode Data

The theoretical background for two-mode blockmodeling comes from Bategelj et al. (1992a,b), Doreian
et al. (1994) and Batagelj et al. (1998): we view the blockmodeling of two-mode data as a simple
extension of one-mode blockmodeling.

The main difference is that in blockmodeling of a two-mode network N = (U1,Us, R, w) we are
trying to identify a two-clustering C = (C4,Cy) — C; is a partition of ¢/, and Cs is a partition of Us —
such that they induce selected blocks. We denote the set of all feasible two-clusterings with ®.

The two-mode generalized problem can be formulated as an optimization problem (@, P, min):

Determine the two-clustering C* = (C}, C5) € @ for which

P(CY = Enelg P(C)

where @ is the set of feasible two-clusterings and P is the criterion function.
The criterion function P(C) is obtained in the same way as in the ordinary case:

PO =P(C,C)= >, min  6(R(CwC),B)
cuECIanEC2 “

where B(C,,C,), C, C U, and C, C U, denotes the set of all ideal blocks corresponding to block
R(Cy, Cy), and the term §(R(Cy,Cy), B) measures the difference (number of inconsistencies) be-
tween the block R(C,,C,) and the ideal block B. The value of ¢ is constructed on the basis of the
characterizations of the types of blocks in such as fashion that makes  compatible with the selected
type of equivalence. (See Batagelj et al. (1992a).) The criterion function P((C1,Cy)) is sensitive iff
P((Cy1,C2)) =0 & the blockmodel determined by (C1, C2) is exact.

The resulting optimization problem can be solved by a local optimization procedure as follows:

Determine the initial clustering C;

repeat:
if in the neighborhood of the current clustering C
there exists a clustering C’ such that P(C’) < P(C)
then move to clustering C’ .



Usually, the neighborhood is determined by two transformations: moving a unit from one cluster to
another cluster; interchanging of two units between different clusters. The procedure is repeated for
many initial clusterings and the (those) partition(s) with the smallest value of the criterion function are
selected. Once the partitions (Cy,C5) and types of blocks are determined, we can also compute the
values of connections by using averaging rules.

5 Three Empirical Examples

We consider three examples. One features some of the some decisions handed down by the U.S. Supreme
Court in their 2000-2001 term. The second comes in the form of the Deep South data discussed above
and the third is a journal-to-journal citation network.

5.1 Supreme Court Voting

These data come from the simple (preliminary) study by Doreian and Fujimoto (2003) of the Supreme
Court Justices and their “votes’ on a set of 26 “important decisions”. These data are presented in Table 1.
The nine Justices (in the order in which they joined the Supreme Court) are Rehnquist (1972), Stevens
(1975), O’Conner (1981), Scalia (1982), Kennedy (1988), Souter (1990), Thomas (1991), Ginsburg
(1993) and Breyer (1994). The distribution of votes are organized in terms of the substantive content of
the selection of decisions as organized by Greenhouse (2001).

Each row of Table 1 represents a decision handed down by the Supreme Court. On the left is a
descriptive label for that decision. A much fuller description of these case can be found in Greenhouse
(2001) and in Doreian and Fujimoto (2003). The substantive details of these cases, while stark, are of
secondary concern here. The columns correspond to the nine Justices where the Justices are represented
by a label: Breyer (Br), Ginsburg (Gi), Souter (So), Stevens (St), O’Connor (OC), Kennedy (Ke), Rehn-
quist (Re), Scalia (Sc) and Thomas (Th). In these data, a “+’ in the column of a Justice represents voting
in the majority for that issue and a ‘-’ represents voting in the minority for that decision. The decisions
range from the unanimous decision? in the case involving the Clean Air Act to many 5-4 decisions. The
latter suggest an ideologically divided court.

In the usual representation of such data, A is written with the actors (in this case the justices) in the
rows and the events (in this case the decisions) in the columns. Table 1 has been written as the transposed
form for formatting reasons. In terms of the analysis that follows, rows of A represent the justices and
the columns their decisions.

Doreian and Fujimoto viewed these data as ‘signed’ two-mode data. They constructed a matrix,
A,, for majority voting where 1 represented a majority vote and 0 a vote that was not for the majority
(i.e. either a vote against the decision or an abstention). Similarly, they constructed a matrix A, for
the negative votes for a decision, where 1 represented a vote in the minority and 0 represented either an
abstention or a vote with the majority. Their analyses involved (for a focus on the justices) ApAg for
majority voting, AnAZ for minority voting and AtAtT where A; = A, +A,, for all voting. Their analyses
were designed to explore the differing patterns of joint majority voting, joint minority voting and joint
overall voting patterns. They used a combination of tools including Q-Analysis and partitions based
on structural equivalence for the generated one-mode matrices. Some nuanced interpretations follow
as a result of looking at the differences between majority and minority voting patterns. As a result of
these different analyses, they reached a partition — having four clusters of justices and eight clusters of

2There is one case that was unanimous except for Breyer who abstained because his brother had ruled on the case at a lower
court level.



Table 1: Supreme Court Voting for Twenty-Six Important Decisions

Issue Br Gi So St OC Ke Re Sc Th
Presidential Election - - - - ¥ ¥ ¥ + =
Criminal Law Cases
Illegal Search 1 + + + + + + - - -
Illegal Search 2 + 4+ 4+ + + 4+ - - -
Illegal Search 3 o+ o+ - - - -+ o+
Seat Belts - -+ - -+ 4+ o+ o+
Stay of Execution + + + + + o+ - - -
Federal Authority Cases
Federalism - - - -+ O+ + o+ o+
Clean Air Act + + + + + + + + +
Clean Water - - - .+ o+ o+ o+ o+
Cannabis for Health 0 + + + + + + + +
United Foods . T T S S
NY Times Copyrights -+ + -+ o+ o+ o+ o+
Civil Rights Cases
\oting Rights + + + + + - - - -
Title VI Disabilities - - - -+ o+ o+ o+ o+

PGA v. Handicapped Player| + + + + + + + - -
Immigration Law Cases

Immigration Jurisdiction + + + + - o+ - - -
Deporting Criminal Aliens [+ + + + + - - - -
Detaining Criminal Aliens [+ + + + - + - - -
Citizenship s
Speech and Press Cases
Legal Aid for Poor + + + + - o+ - - -
Privacy + + + + + + - - -
Free Speech - - -+ o+ o+ o+ o+
Campaign Finance + + 4+ + + - - - -
Tobacco Ads - - - -+ o+ 4+ o+ o+
Labor and Property Rights Cases
Labor Rights - - - - o+ o+ o+ o+
Property Rights - - - o+ o+ o+ o+ o+

decisions — with 13 inconsistencies with an ideal partition based on structural equivalence®. Here, we
focus on the two-mode data as given in Table 1 and use a direct partition of the two-mode data with four
clusters of the justices and seven clusters of the decisions: i.e. a (4,7)-partition in the notation of Section
3. The clustering of the justices is identical with the partition reported by Doreian and Fujimoto. The
difference between to two procedures comes with the partition of the decisions.

Figure 1 shows the fitted blockmodel for structural equivalence where four (4) clusters were specified
for the justices and seven (7) clusters were specified for the for the decisions.

For the justices, two of the four clusters are {Breyer, Ginsburg, Souter, Stevens}, and {Rehnquist,

3The value of the criterion function for their reported partition was computed for the partition they reported and was not
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Figure 1: A (4,7)-partition of the Supreme Court Voting

Scalia, Thomas} that can be viewed, respectively, as the liberal and conservative wings of the Supreme
Court (Doreian and Fujimoto, 2003). The two singletons, O’Connor and Kennedy can be interpreted
in several ways. In one interpretation, they can be seen as justices that form a bridge between the two
wings. Alternatively, they can be viewed as being a part of the conservative wing that joins with the
liberal wing on some of the issues that come before the court. Kennedy is the justice who most often is
a part of the majority (22 times in the 26 decisions considered here). O’Connor is in the majority for 19
of the decisions®.

For the set of 26 decisions, the first cluster on the left (on top) in Figure 1 are decisions where the
conservative core plus O’Connor and Kennedy won with a narrow 5-4 vote plus the Free Speech case
where Breyer joins the majority. His vote on this issue is an inconsistency with a perfect structural
equivalence partition. The second cluster of cases (on the left) has the Seat Belt, United Foods and the
Citizenship cases. For these decisions, the conservative core plus Kennedy are joined by justices from the
liberal wing. Justices Souter and Stevens each joins them twice. These four votes from the liberal wing
are all inconsistent with the ideal null block specified under structural equivalence for these three cases.
They are the black squares in the block defined by these decisions and the liberal wing cluster. Justice
O’Connor’s votes are all consistent with a structural equivalence partition for these three cases because
she was a singleton and voted in the minority for each of these cases. The third cluster from the left has
the cases concerning the Clean Air Act, Cannabis and the New York Times cases. The conservative core
of Rehnquist, Thomas and Scalia are joined by both Kennedy and O’Connor together with at least one
member of the liberal wing of the court. The inconsistences with structural equivalence are the white
squares in the block defined by these cases and the liberal wing.

The remaining clusters of cases are those where the three justices of the conservative core are not a
part of the majority (except for Rehnquist with the PGA versus a handicapped player). The singleton,
Illegal Search 3, is a most improbable decision where Scalia and Thomas are joined by three members of

used as a part of their partitioning methods.
“In selecting this particular partition we were helped by the partition reported by Doreian and Fujimoto (2003).
These two justices are differentiated by Doreian and Fujimoto (2003) in terms of minority voting, A,,, where O’Connor

has a bridging role not shared by Kennedy.
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Figure 2: The Bipartite Supreme Court Network with the(4,7)-partition

the liberal wing in a yet another 5-4 decision. The white squares for Rehnquist and Stevens are the incon-
sistencies with structural equivalence. Next comes three decisions — Legal Aid for the Poor, Detaining
Criminal Aliens and Immigration Jurisdiction — where Kennedy joins the liberal wing to produce more
5-4 decisions. There are no inconsistencies with structural equivalence. Next comes five decisions where
the liberal wing is joined by both Kennedy and O’Connor®. Rehnquist’s vote is inconsistent with struc-
tural equivalence. Finally, there are three decisions where the liberal wing is joined by O’Connor. These
are the Campaign Finance, Voting Rights, and the Departing Aliens cases. There are no inconsistencies
with structural equivalence.

Figure 2 provides a pictorial representation of the partitioned two-mode Supreme Court data. The
clusters that are produced are homogenous - there is ho mixing of the two types of social actors in them.
Finally, together, the matrix display in Figure 1 and the picture of the bipartite graph in Figure 2 provide
clean displays of the partitioned two-mode data. Of course, Figure 2 shows the bipartite graph.

Having a partition based on structural equivalence, without really pre-specifying a model, that is
sufficient to partition the Supreme Court two-mode data set is appealing. However, in general, using
just these two types of blocks (null and complete) that could appears anywhere in a blockmodel will
not be sufficient to blockmodel all two-mode data structures. We turn now to consider other types of
blockmodels and strategies for modeling two-mode data.

®As noted above, the case of the PGA versus a handicapped player has Rehnquist in the majority.



Table 2: Sorted Participation Matrix

Actor Ey\ Ey E3 Ey Es5|E¢ E7 Eg Eg|FE19g Ev1 B2 Ei13 By
Evelyn 1111 1712 0 1 120 O O O O
Laura 111 0 112 1 1 0|0 O O O O
Theresa |0 1 1 1 11 1 1 10 O 0 0 O
Brenda 1 0 1 1 142 1 1 00 O O O O
Charlotte (O 0 1 1 1|0 1 0 00 O O O O
Frances 0o 01 011 01 0jO0O O O o0 O
Eleanor (/O 0 0 0 1|1 1 1 00 O O O O
Pearl 0 0o 0o 0 0|1 001 1,0 0 0 o0 o0
Ruth o 0o 0 01|01 1 10 0 0 0 O
Verne 0o o 0000012 1 10 0 1 0 o0
Myra 0O 0o o 0o 0j]OO 121 111 0 1 0 o0
Katherinefl 0 0 0 0 0|0 O 1 1(1 0 1 1 1
Sylvia o 0o 0o 00/O0 1 1 112 0 1 1 1
Nora o 0o 0002 1 0 1112 1 1 1 1
Helen 0O 0o o 0o 0j]O12L 1 01 1 1 0 O
Doroty '1O 0 0 0 0|0 O 1 1|0 O O O O
Olivia 0o 0 0 0OO|O OO 10 1 0 0 o
Flora 0O 0 0o 0o 0O|]OOO 1|0 1 0 o0 o0

5.2 The Southern Women Event Participation Data

Our second example is the Davis et al. (1941) Southern Women participating in social events data set.
They are shown in Table 2 where a 1 indicates attendance at an event and 0 indicates not attending an
event.

As Freeman (2002) notes, this data set “ .. reappears whenever any network analyst wants to explore
the utility of some new tool for analyzing data.” We join the long line of analysts who have mined these
data. Our assessment of the utility of using blockmodeling tools for two-mode data has been made
much easier by Freeman’s (2002) meta-analysis of 21 analyses of these data. His analysis provides a
consensual (induced) criterion regarding the ‘true structure’ in these data. It is also a point of departure
for other partitioning strategies.

Freeman is clear that the ‘true structure’ of the Southern Women data on the participation in social
events is one where there are two subgroups. One is composed of {Evelyn, Laura, Theresa, Brenda,
Charlotte, Frances, Eleanor, Pearl, Ruth} and the other has {Verne, Myra, Katherine, Sylvia, Nora,
Helen, Dorothy, Olivia, Flora} as its members. These two subgroups of women are labeled as ‘Group
A’ and ‘Group B’. Freeman is silent about the corresponding partition of the set of events. We label the
events E; for 1 < j < 14 where the labeling of the events is consistent with the partitions of those events
that we present. We have divided them into three clusters that almost have the form: events E; through
E;5 were events attended only by women of Group A; events Eg through Eg were events attended by both
groups of women and events E1, through FE+4 were attended only by the women in Group B. Pearl is the
exception in Group A because she attends only Eg, Eg and Eq and Dorothy, by attending only Eg and
Ey, is the exception in Group B. This partition is labeled “Version 1’ and is shown as Table 2. Consistent
with that description, Figure 3 shows a picture of the bipartite graph with these two clusters of women
and the three clusters of events.
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Figure 3: Southern Women Bipartite Network: Version 1

Can the (2,3)-partition shown in Table 2 be recovered as a unique (or near unique) solution by means
of (generalized) blockmodeling tools for two-mode data? If only the block types are specified and there
are no further specifications, then the answer is no. It becomes necessary to pre-specify (Batagelj et al.
(1998) the location of specific block types and it is possible to impose different penalties on some incon-
sistencies relative to others. Moving in this direction is aided by the summary of the event participation
as shown in Table 3.

Table 3 makes it clear that there are events attended only by women from Group A and a set of events
attended only by women from Group B. the blockmodel suggested by the counts in Table 3 is:

com com nul
nul  com com

With structural equivalence in mind, the specification can be ‘strengthened’ in the sense of pre-specifying
a model in terms of block types and their location within the image. In this case, if there are events
attended only be women of Group A and events attended only by women of Group B then there are
clear null blocks. It seems sensible to use this information about the structure of the data in Table 2.
So, in addition to specifying that only null and complete blocks are allowed, we can go further and
specify where in a blockmodel these null blocks should be located and specify that inconsistencies in the
form of 1s in these null blocks are to penalized. That is, 1s in these null blocks are more consequential
than Os in the otherwise complete blocks. The penalty we imposed for 1s in null blocks was 100 with
the expectation that null blocks would be identified as null but with the consequence of increasing the
number of Os in blocks whose corresponding ideal block is complete.

Fitting this block model type, with the penalty, does yield a unique blockmodel with the specified
form and 64 inconsistencies with the corresponding ideal blockmodel. The partition for the women is
the “best’ partition emerging from Freeman’s meta-analysis. The partition of the events is problematic
where the partition is { E1, Es, E4},{E3, E5 — E9} and { E19 — E14}. We note that all of the structural
equivalence partitions — where only block types were specified — has optimized criterion functions of 53.



Table 3: Counts of Participation in Events

Actor
Evelyn
Laura
Theresa
Brenda
Charlotte
Frances
Eleanor
Pearl
Ruth
\Verne
Myra
Katherine
Sylvia
Nora
Helen
Dorothy
Olivia
Flora

E; - Es
5

Eg - Eq
3

Eqo - E1s
0

O OO OO0 OO O0OFPRPROEFPLPNWEESNS
P PN NWOWONMNNOPPOWLODNDNE WPW
P PO WUuOPRADPENRPOOOOOOOO

By making sure that the null blocks were null, the ‘total’ number of inconsistencies was raised in the form
of Os in complete blocks. This is not surprising because seeking partitions with additional constraints (in
the pre-specification), in general, leads to partitions with larger values for the criterion function. There
is a price to pay if constraints are placed on solutions. In this case, there are null blocks that must be
preserved and preserving them for all fitted blockmodels increases the inconsistency count from 53 to 64.
It is a price we are willing to pay and insist that it is a price we often must pay to delineate meaningful
partitions if we know more about the data than the presence of blocks consistent with an equivalence type.

The partition shown in Figure 3 and Table 2 is appealing and reproduces the ‘truth’ identified in
Freeman’s (2003) meta-analysis of previous analyses of the Davis data. Yet there is a problem in the
patten of ties for Pearl and Dorothy. They attend only events common to Group A and Group B. This
suggests the partition shown in Table 4 where Pearl and Dorothy form their own group. This suggests a
blockmodel with a pre-specified structure of:

com com nul
nul  com com
nul com nul

When this pre-specified model is fitted, a unique solution is returned for the blockmodeling problem for
these data and it is exactly the partition shown in Table 4. This blockmodel is shown in Figure 4

The partition shown in Table 4 can be reached in at least two other ways. Doreian et al. (2004) show
that both of the following specifications also produce exactly the same partitions of women and events:

reg reg nul rdo rdo nul
nul reg reg nul rdo rdo
nul  rre nul nul  cdo nul
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Table 4: Sorted Participation Matrix

Actor Ey, Ey E3 Ey E5|E¢ Er Eg Eg|E19g Ev1 Ei1o Ei13 By
Evelyn 1111 1412 0 1 110 O O o0 O
Laura 111 0 1|12 1 1 0|0 O O O O
Theresa |0 1 1 1 11 1 1 10 O O O O
Brenda 1 0 11 142 1 1 00 O O O O
Charlotte (O 0 1 1 1|0 1 0 0] 0 O O O O
Frances 0o 010112 0 100 0 0 0 O
Eleanor |1O 0 0 0 1|1 1 1 0,0 O O O O
Ruth o 0o 0 0120 1 1 10 0 0 0 O
\erne o 0o 0o OO0 1 1 1210 0 1 o0 o
Myra 0o 0 0o 0OO0O|lO O 1 12 0 1 o0 o
Katherinef0 0 0 0 0|0 O 1 11 O 1 1 1
Sylvia o 0o 0o 00/O0 1T 1 112 0 1 1 1
Nora o 0o 0002 1 0 1112 1 1 1 1
Helen 0O 0o o 0o 0j]O12L 1 01 1 1 0 O
Olivia 0 0 0 0OO|O OO 10 1 0 0 o0
Flora 0o 0 0 0OO|O OO 10 1 0 0 o
Pearl 0o 0 0 0OO0O|2 01 12,0 0 0 o0 o
Dorothy |1O 0 0 0 0|0 O 1 1,0 O O O0 O
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Figure 4: Southern Women Bipartite Network: Version 2
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An examination of Table 4 makes it clear that these are both appropriate pre-specified blockmodels for
these data. For both, the same heavy penalty for 1s in null blocks was imposed. Of course, the measures
of inconsistency change with the change in the definition of block types. See Doreian et al. (2004) for
a discussion of having multiple blockmodel types for complementary interpretations of a body of data
and a discussion of why inconsistencies for different block types and blockmodels cannot be compared
directly.

We turn now to consider delineating the subgroup structure of Groups A and B. Given the robustness
of the partition of events into three clusters, we first consider (5,3)-partitions. We know already that
Dorothy and Pearl belong to neither Group A nor Group B. As a result, we need to specify a cluster
for them. If Group A and B are each to be split into two subgroups, then &; is 5. All our attempts to
get subgroups of A and B with predicates of complete, regular, row-regular and null blocks were not
successful. Either there are multiple equally well fitting partitions or the unique partitions, when they
are returned, are less than satisfying. The unique partitions most often break Group A into a singleton
(usually Evelyn) and the rest of A and to break Group B into a singleton (usually Nora) and the rest
of B. It appears that the use of complete, regular and row-regular blocks precludes the identification of
reasonable subgroups. When complete blocks are used, there is a tendency to return singletons as one of
the subgroups. This suggests weakening such a specification to a regular block. The key problem is that
the step away from complete blocks to regular blocks permits a large number of candidate regular blocks
of greatly varying densities. This leads to multiple equally well fitting partitions.

If there are subgroups of A and B, then their attendance patterns must differ if they are to be differen-
tiated. Core women attend more group events than the other women. This suggests blocks of differential
densities. To accommodate this notion, we pre-specify the following ideal blockmodel where ‘den’
indicated that a density is to be specified:

den reg nul
rre reg nul
nul  rre nul
nul  reg den
nul  rre rre

The density has to specified as high and we selected a density of 0.8 for the blocks specified as ‘den’.
Under this specification, ‘den’ indicated that there are women who attend heavily a subset of events for
their group. The remaining women of a group attend only some of their group’s events. For these women
we specify a row-regular block. For common events, we use either regular or row-regular blocks. The
third row of the blockmodel is specified for Dorothy and Pearl. When this pre-specified blockmodel is
fitted with 100,000 repetitions and the heavy penalty (100) for null blocks, we get the unique partition’
shown in Table 5.

The partition in Table 5 is quite appealing. Evelyn, Laura and Brenda have heavy participation in
events E1-E5. While Theresa also has a heavy participation in these events, she does not attend E; and
is located in the second cluster of women in Group A. In a similar fashion, it seems that Katherine and
Nora form the core of Group B with their heavy attendance of events E1y-FE14, the events for Group B
only. However, there is a lingering doubt that Sylvia ought to be located there also.

An alternative strategy for considering subgroups of Groups A and B is to include a finer grained
partition of the events. As a part of this alternative, it seems reasonable to focus on null blocks within the
events for Group A and within the events for group B. An inspection of the data suggested the following
blockmodel:

"When the last row of the pre-specified blockmodel has null, row-regular, and regular block types specified in that order,
the identical unique partition is returned.
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Table 5: (5,3)-Partition for Subgroups Using Density Blocks
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Table 6: (5,5)-Partition for Subgroups Using More Event Clusters
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reg com reg nul nul
nul com reg nul nul
nul  nul  rre nul  nul
nul nul reg reg com
nul  nul rre reg nul

When this blockmodel is fitted over 50,000 repetitions, the blockmodel shown in Table 6 results. The
partition is exact with zero inconsistencies. Event Ej5 is a singleton and all of the women of Group A
attend it. For events E4-E,, Eleanor and Frances are detached from the rest of Group A by attending
none of these events while the remaining members of Group A attend at least one of them. For Group B,
Katherine, Sylvia and Nora all attend E3 and E14 while the members of this group do not attend them.

Each of the two partitions (in Table 5 and Table 6) delineates slightly different features of the internal
structure of the two larger groups of women in the Deep South data. While other partitions might be
possible, it may well be the case, that this is about all that can be extracted without resorting to extremely
fine grained partitions. The additional density block type was useful in establishing a unique exact fitting
partition without expanding the number of event clusters.

6 Thinking of One-Mode Data asif They were Two-Mode Data

Recognizing that the row and column partitions may be different makes it possible to view one-mode
network data in a different fashion by thinking of them as two-mode data. People in an organization can
seek advice from each other and form advice networks. Because seeking advice and providing advice
are directional activities, the advice networks that they generate will be asymmetric®. This suggests
that partitioning the rows and columns in different ways will be useful. For social service agencies that
refer clients, the act of referral is asymmetric. As a result, these inter-agency one-mode networks can be
examined fruitfully as if they were two-mode networks. A final example comes in the form of journal-
to-journal networks for academic disciplines. Blockmodeling has been used to partition such networks
as one-mode networks in terms of structural equivalence. While the partitions had value, there is a sense
in which a partitioning strategy for one-mode data is overly restrictive. If there are ‘consumer’ journals
(as the first set of actors) and “producer’ journals (as the second set of actors), it makes sense to think of
partitioning the rows and columns of such citation networks in different ways.

The following discussion requires the use of some of the expanded set of block types presented
by Doreian et al. (1994, 2004). Table 7 shows these block types and, from them, we concentrate on
expanding the set of null, complete, and regular blocks with the row-regular, column-regular and row-
function blocks.

6.1 Journal-to-Journal Citation Networks

Journal networks are defined with journals as the vertices and have valued elements. These elements
are counts of the number of times articles on one journal cite articles in another journal. The diagonal
elements of these (one-mode) journal networks are counts of self-citation for the journals in the network.
These (valued) networks have been studied as one-mode networks and partitioned in terms of structural
equivalence (Doreian, 1985, 1988). In these partitioning efforts, the rows and columns are clustered in
the same way and the diagonal elements are ignored. Such networks have also been studied as one-mode
core-periphery structures (Borgatti and Everett, 1999). At face value, these one-mode networks are better
viewed as two-mode networks. When this is done, journals are seen as both ‘consuming journals’ (in the
rows as citing journals) and “producing journals’ (in the columns as cited journals). And, consistent with

81 some pairs of actors seek and provide advice to each other, then the advice network will be non-symmetric.

14



Table 7: Examples of Blocks with Types of Connections

Y Y Y
11 1 11 01 0 0O 0 01 00O
X|1 1 1 11 X1 1 1 11 X|0 0 1 1 0
11 1 11 0 0 0 0O 11 1 00
11 1 11 0 0 0 1 0 0 0 1 01
complete row-dominant col-dominant
Y Y Y
01 0 0O 01 0 0O 01 0 10
X1 0 1 10 X0 1 1 00 X|1 0 1 00
0 01 01 10 1 0O 11 0 1 1
11 0 0 0 01 0 01 0 0 0 0O
regular row-regular col-regular
Y
Y Y 1 0 0 O
0 0 0 0O 0 0 0 1 0 01 0 0
X|0 0 0 0 O X|0 0 1 0O xlo o 1 0
0 0 0 0O 10 0 0 O 00 0 0
0 0 0 0O 0 0 0 10 00 0 1
null row-functional

col-functional

the approach taken in this paper, the rows and columns can be clustered in different ways. Additionally,
the self-citation entries (diagonal elements) can be included as an integral part of the data even though
the “diagonal’ elements of the image have no meaning.

Viewing citation networks in this fashion allows us to examine the different roles that journals can
perform as producers and consumers of knowledge. This can be approached as a simple form of ‘hypoth-
esis testing’. If there is no difference between these roles, then the rows and columns, as an empirical
matter, will be clustered in the same way. To the extent that rows and columns are clustered differently,
we have evidence that journals function differently with regard to the production and consumption of
disciplinary knowledge.

In approaching journal networks in this way, we had only some intuitions at the outset. We thought
that there would be a core consumer position and a core producer position, consistent with the idea of
distinguishing cores from non-cores. Further, to reflect ‘coreness’, the block corresponding to the two
(producer and consumer) cores should be complete. Every core-consumer journal ought to cite every
core-producer journal and every core producer journal ought to be cited by every core consumer journal.
Second, there will be non-core consumers and non-core producers. Some will vary in the extent to
which they approximate a core and others will not be core journals. We speculate that a second level of
consumer journals will occupy a position where the block defined by them and the core-producer journals
is weaker than a complete block. We specify that the (1,2) block is regular. Put differently, for such a set
of near-core consumer journals, each will cite at least one core producer journal and every core producer
journal will be cited by at least one the second level of near-core consumer journals. In a similar fashion,
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Table 8: Journals in Social Work Citation Network

Title Label | Id
Administration in Social Work ASW | m
British Journal of Social Work BJSW | n
Child Abuse and Neglect CAN | j
Chile Care Quarterly CCQ | o
Child Welfare CW | a
Children and Youth Services Review CYSR | b
Clinical Social Work Journal CSWJ | k
Family Relations FR | |
Journal of Gerontological Social Work | JGSW | p
Journal of Social Policy JSP | g
Journal of Social Work Education JSWE | e
Public Welfare PW | r
Social Casework SCW | ¢
Social Services Review SSR | f
Social Work SW | d
Social Work with Groups SWG | g
Social Work in Health Care SWHC | h
Social Work Research and Abstracts SWRA | i

we think there will be a second level of producer journals whose block with the core consumer journals
would be regular —i.e. the (2,1) block is a regular block. Third, weaker consumer and producer positions
will have blocks, involving the core producer and core consumer journals, that would be row regular and
column regular. Fourth, there will be null blocks. It seems reasonable to expect ‘holes’ in the structure
if journals occupy different niches. There will be sets of consumer journals that never cite some of the
producer journals and there will sets of producer journals that are not cited by sets of consumer journals.
Finally, we need to allow for certain ‘almost null’ blocks: some “diagonal’ elements might cause some
problems by appearing in erstwhile null blocks. If there are consumer journals that cite some of the core
journals and then only themselves, these self-citation counts will appear in null blocks. This suggested
the use of the row-function block type to allow a single non-zero element to appear in each row of such
a null block. The specified model is:

com reg cre rre
reg reg nul nul
reg nul rfn nul
rre rre nul rfn
cre nul nul rfn

With the above arguments in mind, we re-analyze the social work journal network reported by Baker
(1992) and analyzed by Borgatti and Everett (1999). The included journals are listed in Table 5. In
addition to thinking in terms of blockmodeling these data as two-mode data, there one important differ-
ence between out approach and that of Borgatti and Everett. The original data are not symmetric and,
in contrast to Borgatti and Everett, we do not symmetrize them for a simple reason. When the data are
symmetrized there can be no distinction between production of, and consumption of, knowledge. A two-
mode analysis of such a symmetrized citation network would yield the same partition of the rows and
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Table 9: Journal Citation Matrix with the (5,4)-Partition

Idj a ¢ f dlm e g h i j ok Il n o bp g r
Ccw al187 32 10 58| 0 11 0 O Of 7 0O O[O0 O 60 O 7
CYSR|b| 70 8 14 28/ 0 O O O 512 0 0|0 5260 0 6
SCW |c| 17 149 36 124| 8 21 8 6 18| 6 8 6/ 0 0 06 0 O
SwW d|f 52 58 53 356(15 33 1543 8 0 O 9,0 0 00 019
JSWE | e 0O 18 16 58| 9 104 0 716, 0 O O/ O O OO O O
SSR f| 17 30 105 106 7 9 O 025 0 O O/ 0O O 0O O O
SWG |9 0 9 7 400 941 9 0f 0 O 00O O OO O O
SWHC|h| 0 20 O 26| 0 O 08 0 0 O 0/ 0 O OO O O
SWRA | i 8 8 39 4|0 24 0 04| 0 O 0[O0 O 0O O O
CAN j 9 6 0O 80 O O O Of109 0O 0|0 O OO O O
CSWJ | k 0O 47 20 45/ 0 O O O Of 040 0[O O OO O O
FR | 0 18 0 9/0 0 0 O Of] 0 02| 0 0 00 0 O
ASW |[m o o0 212 7370 18 0 O 7 0 O O/ O O OO O 13
BJSW | n 0O O O 1990 13 0 0 O0f O O 09 0 00 O O
CCQ |o|{12 0O O OO OO O O OO 0,092 00 0 O
JGSW |p| O 16 O 18/ 0 0 O O Of O O 0O/O0O O 09 0 O
JSP q o o 7 0,0 OOOO OO OO0 O O0OCO03% 0
PW r 0O 0 0O 0/O0 OOOO 7 0 0OO0OO0OOO0O0OY9

columns. This is especially true when a symmetrized element is constructed from a non-zero and zero
citation rate for a pair of journals.

We leave out two of the journals included by Baker. One is the Indian Journal of Social Work (1JS)
really does not belong to the network®. It is linked weakly with only one other journal. Also eliminated
was Administration in Mental Health because it was linked weakly to only one other journal. This leaves
the 18 journals whose citation volumes are shown in Table 9.

Table 9 has been organized so that rows columns that have been permuted to reflect a partitioned
structure with five consumer positions and four producer positions. The producer positions (where P.J;
is used to label producer clusters) are:

PJ; | {CW, SCW, SSR, SW}

PJy | {ASW, JSWE, SWG, SWHC, SWRA}
PJs | {CAN, CSWJ, FR}

PJ, | {BISW, CCQ, CYSR, JGSW, JSP, PW}

and the consumer positions (where CJ; is used to label the consumer positions) are:

CJ; | {CW, CYSR, SCW, SW}

CJy | {JSWE, SSR, SWG, SWHC, SWRA}
CJs | {CAN, CSWJ, FR}

CJy | {ASW, BISW}

CJs | {CCQ, JGSW, JSP, PW}

It is clear that the consuming positions differ from the producing positions. There is a single inconsis-
tency between the fitted blockmodel and the corresponding ideal blockmodel. This is the bolded element
(7) in the in the block defined by the fifth row position and the third column position.

Three journals (CW, SCW, SW) belong to both of the core positions — they are core producers in
PJy and are core consumers in C'Jy. Social Service Review (SSR) is in P.J; but not CJ; while Children
and Youth Services Review (CYSR) is CJ; but is not C'P;. SSR does appear in the second consumer

®Consulting members of a social work faculty about these data, all indicated that 1JS, regardless of its merits, is not visible
in the U.S. and is seldom or never consulted.
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Figure 5: Social Work Journal Bipartite (5,4) Network

position. Four journals, (JSWE, SWG, SWHC, SWRA) are common to the second producer position
(P.J2) and the second consumer position (C.J2). Together, these most prominent journals vary in their
roles as producers and consumers of social work knowledge. We note that the block defined by C'J5 and
PJ, is regular. This is also the case for the block defined by C'J; and PJ,. The third producer position
(PJ3) and the third consumer position (CJ3) share the same set of journals, namely, CAN, CSWJ, and
FR. The block defined by CJs and PC; regular as is the block defined by C'J; and PC5 (although we
only specified it as row-regular). The block defined by CJs and P.Js5 is a row-functional block. Apart
from these block types, the blocks associated with these positions are null blocks. The block defined
by CP, and CJ; is row-regular while the block defined by CP; and CJ5 is column-regular. Apart
from these, the blocks for the last consumer and producer positions are null or row-functional. The one
inconsistency for the fitted blockmodel is the tie from PW to CAN. The bipartite graph (for incidence of
ties but not their values) is shown in Figure 5 where the journals in each of the producer and consumer
positions are grouped together.

There is an interesting contrast with the analysis of Borgatti and Everett (1999) who found a single
core in a core-periphery structure. The core they established was {SSR, SCW, SW}. These three journals
are in our producer core (PJ;) but only SCW and SW are in the consumer core (CJ1). In our analysis,
the producer core includes also CW while the core consumer includes CW and CYSR. Analyzing these
data with a two-mode blockmodeling approach provides a more differentiated view of the core.
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7 Summary and Discussion

While (generalized) blockmodeling has been used primarily as a powerful way of modeling one-mode
network data, we have extended (generalized) blockmodeling to examine two-mode data. To do this, it
is necessary to think in terms of partitioning the rows and columns separately as a part of the overall
partitioning procedure. Two examples, the Supreme Court data and the Southern Women data, were
two-mode data sets. For the former we used structural equivalence in an unrestricted fashion and, for the
latter, we used the same equivalence idea but added to it the use of a pre-specified blockmodel.

The partitions returned for both of these data sets are straightforward and compelling. To the extent
that the “true’ partition stemming from Freeman’s meta-analysis of the many prior analyses of the South-
ern Women data provides a benchmark, the two-mode blockmodeling approach discussed here does
delineate the true structure of the subgroup formation for these data, consistent with the analysis of Free-
man and White (1994). Additionally, the corresponding partition of the events is obtained. In the same
fashion, the joint partition of justices and decisions of the Supreme Court data provides considerable
insight into the political stance of the justices and the events (decisions) that reveal their differences.

The idea of partitioning the rows and columns in different ways is imposed by the nature of two-mode
data. There is no other way to proceed. However, the idea of partitioning rows and columns in distinct
ways need not be restricted to two-mode data and can be used for one-mode data. For symmetric one-
mode data structures, there is no reason to use two-mode data analytic methods. However, for asymmetric
and non-symmetric one-mode networks, there is much to be gained by viewing them through the two-
mode lens. The third example, in the form of a journal-to-journal citation network, shows the utility of
treating one-mode data as though they were two-mode data. Journals differ in terms of their producer
and consumer positions and roles in the communication of knowledge.
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